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Accurate parameter estimation in photovoltaic (PV) models is essential for optimizing solar energy 
systems, enhancing their efficiency, and ensuring precise performance predictions. This paper proposes 
a novel Improved version of Rime Metaheuristic Optimization (RMO) influenced by rime growth and 
combined with Quadratic Interpolation Learning (QIL) technique for the simulation and design of 
the triple-Diode Model (DM). This novel combination seeks to provide a more accurate perspective in 
the field of solar energy optimization by managing the complexities of PV module characterization 
with greater flexibility and resilience. By meticulously replicating the distinctive features of both 
processes, the hard-rime puncture and soft-rime searching are disclosed. The QIL technique improves 
the search process by selecting three different rime particles rather than relying solely on the 
current best solution. This selection allows for a more diverse set of candidate solutions, fostering 
better exploration and reducing premature convergence to local optima. By leveraging quadratic 
interpolation, QIL adjusts the solution updates in a flexible and nonlinear manner, enabling a more 
precise and adaptive parameter estimation process. QIL’s capacity to adjust its quadratic function 
in a flexible and non-linear way makes it easier to navigate complex terrain. The novel IRMO as well 
as the original RMO are developed for predicting PV parameters for the triple-diode model (DM) 
of the three distinct PV modules which are Photowatt PWP201, STM6-40/36, and R.T.C France. In 
accordance with other published publications, the results of the suggested IRMO are also compared 
with those of contemporary algorithms. According to the results of the simulation, the upgraded 
IRMO shows significant average improvements of 49.56%, 62.56%, and 34.15% for the three modules, 
correspondingly.

Keywords  Rime Physics-based optimization algorithm, Quadratic interpolation learning strategy, PV 
parameters extraction, Practical solar modules

In the twenty-first century, there have been constant changes to solar energy-based electricity production. 
Enhanced field studies and the unlimited supply of sunlight during the day in many African and other nations are 
credited with the rise in solar-generated electricity1,2. As a result of that, field research is crucial for precise cell and 
PV module structure design that anticipates the PV system’s generation of electricity3,4. PV modelling considers 
well-known characteristics such series resistance, shunt resistance, the diode ideality factor, photocurrent 
production, and current saturation5. The mathematical representation and visual PV cell corresponding circuit 
allow one to calculate provide maximum power, undetermined parameters, and comprehend information from 
a basic technical data sheet6.
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Motivation of the study
Various methods (such as numerical, analytical, metaheuristic, and hybrid approaches) have been employed in 
the literature to extract distinct parameters. The optimum approach is thought to be a metaheuristic algorithm7. 
To determine the unidentified parameters of the PV cell, a collection of nonlinear formulas has been employed 
in PV modelling. Three distinct approaches, which are analytical, numerical, and progressive computational 
techniques, can be used to model PV equations, according to a comprehensive assessment of the literature on 
extraction strategies summarized in8.

The most common approach yields precise results with minimal calculation time. Analytical methods are 
fairly straightforward, and frequently the only thing that is needed to get the desired outcome is one iteration. 
Ref9 has provided a developed approximation approach that functions as an explicit model capitalizing for VI 
attributes and a determination of the single PV model of diode attributes. Other techniques have been discussed 
in the literature, including curve-fitting techniques10, the extension of the Taylor series11, Lambert’s W-function12, 
and a set of approximation explicit equations13. While some techniques extract only shunt and series resistances, 
others allow estimation of five parameters. This analytical method’s main flaw is that it only works with standard 
test settings; however, under other conditions, it collapses14. Curve fitting techniques combined with numerical 
methods are superior to analytical methods in terms of accuracy of results. The Levenberg technique is used to 
assess all PV-IV curve points and obtain solar cell characteristics. Although the Newton-Raphson approach is an 
effective way to delay convergence, it fails for faulty initial guess convergence because it requires huge processing 
times and storage15.

Related works
The estimation of PV parameters involved the optimization of constraints through the application of 
metaheuristics. Algorithms mostly draw inspiration from natural processes found in the environment. These 
algorithms have been categorized as the best since they produce the best outcomes under all circumstances. Curve 
fitting techniques combined with numerical methods are superior to analytical methods in terms of the accuracy 
of results. The Levenberg technique is used to assess all PV-IV curve points and obtain solar cell characteristics16. 
Although the Newton-Raphson approach is an effective way to delay convergence, it fails for faulty initial guess 
convergence because it requires huge processing times and storage. The estimation of PV parameters involves 
the optimization of constraints through the application of metaheuristics. Algorithms mostly draw inspiration 
from natural processes found in the environment. These algorithms have been categorized as the best since they 
produce the best outcomes under all circumstances. Many algorithms that are available in the literature illustrate 
various modeling approaches, including fundamental progressive computing and traditional GA approaches.

In17, Particle Swarm Optimization (PSO) has been applied on and applied on the one-DM and two-DM of 
solar PV cells with significant implementation but it has been stuck in local minima. Self-adaptive ensemble 
has been combined with differential evolution in18 and applied on the one-DM and two-DM of PhotoWatt-
PWP201 and RTC France Silicon cell. The combined technique has been developed with high robustness and 
accuracy, however, it suffered from high computation time. Orthogonally Adapted Harris Hawks Technique 
(OAHHT) has been elaborated in19 and applied on the one-DM and two-DM of PVM 752 GaAs and SM55 
with high convergence rates. Performance-Guided JAYA (PGJAYA) has been illustrated in20 and employed on 
the one-DM and two-DM of PhotoWatt-PWP201 and RTC France Silicon cell with acceptable accuracy but it 
has insufficient reliability. Marine Predators Algorithm (MPA) has been manifested in21 and applied on the two-
DM of MSX-60 and KC200GT. The convergence of this technique has first occurred in the procedure. Also, a 
stochastic Slime Mould Algorithm (SMA) has been manifested in22 on the one-DM and two-DM of PhotoWatt-
PWP201 and RTC France Silicon cell with substantial exploitation and exploration, however, it requires long 
time to compute. A method for estimating PV parameters called Multi-Strategy Gradient-Based Optimisation 
(MSGBO) was presented in23. This study changed the Gradient Search Rule based on the quasi-Newton approach 
by dynamically altering vector motion, and it also devised a crossover mechanism and a Novel Refresh Operator. 
The shown MAGBO was verified using many PV models, such as STM6-40/36, Photowatt-PWP, and PVM 752, 
as well as CEC2021 benchmark functions. The comparisons that were put into practice performed better than 
several coded metaheuristics. For its wider use in further studies, it will be essential to solve its constraints, 
which include scalability, dynamic model adaptation, and computing efficiency in multi-objective scenarios. 
Additionally, only one and two-DM applications were offered. By modelling the synthesis and stabilisation of 
chemical compounds and imitating the behaviour of ionic and covalent bonding in24, the Material Generation 
Algorithm (MGA) was created for PV parameter estimation in order to provide new candidate solutions. The 
RTC France and Kyocera KC200GT PV modules’ specifications were estimated using the MGA. Considering 
one and two-DMs, the MGA optimiser continuously outperforms other algorithms in lowering error under 
a variety of weather circumstances. However, more improvements were needed to ensure the MGA’s stability.

In26, Rao technique has been characterized and applied on the one-DM and two-DM of PhotoWatt-PWP201 
and RTC France Si cell with high ability to explore, however, the tests for the modules have not been conducted. 
In27, Improved Mouth-Flame Optimization (IMFO) has been signified and employed on the one-DM and two-
DM of CS6P-240P module. Moreover, Shuffled Frog Leaping Algorithm (SFLA)28 has been applied on the one-
DM of KC200GT and MSX-60 with excellent convergence but it has lots of control parameters and the solution 
was not accurate. In29, Improved JAYA (IJAYA), which is a simpler and effective technique, has been demonstrated 
on the one-DM and two-DM of RTC France Silicon cell but it showcased outcomes with low accuracy. A Hunter-
Prey-Based Optimization has been manifested in32 and employed on the one-DM, two-DM, triple-DM of STM6-
40/36 module and RTC France cell with reasonable degree of accuracy. With significant changes to increase 
the effectiveness of searches in circuit model parameter estimation, an Improved variant of the Brown-Bear 
Technique (IBBT) was presented25. Fractional-order Chaos maps (FC maps), that allow adaptable adjustment of 
the algorithm’s parameters for improved exploration, are one of the improvements. Furthermore, by employing 
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the Hippopotamus Optimizer algorithm’s processes, IBBT improves exploitation capabilities by using contextual 
information to update positions more efficiently. These changes result in more accurate and effective parameter 
optimisation by better balancing local and global search. However, the complexity of the applications was 
limited to only one and two-DMs. An Improved Heap-Based Algorithm (IHBA) has been characterized in33 
and applied on the one-DM, two-DM, triple-DM of SQ_150 PV module and PVM 752 GaAs. The robustness 
and convergence of this technique are high; however, it requires a long time to compute. The artificial bee 
colony and the teaching-learning-based optimizer were combined in34. This algorithm was used to determine 
the one-DM and two-DM ‘s unknown parameters. Its efficacy was further demonstrated by comparison with 
several competing algorithms. Additionally, a heap-based optimizer was established to look for three PV models’ 
unknown parameters35. For the purpose of switching among creating a random individual throughout the 
search space and modifying the present location in line with the enhancing core of the SMA, chaotic maps were 
used in36 as an alternative to the randomly produced number. The authors argue that SMA has a more useful 
exploration pattern for the reason to the chaotic maps. Furthermore, SMA was enhanced with the Nelder-Mead 
simplex technique to accelerate up convergence and produce superior outcomes with reduced function trials. 
The aforementioned version of SMA, which was used to determine the undetermined parameters of PV models, 
was commonly known as CCNMSMA. Two effective approaches were applied to improve the generalized typical 
distribution optimizer, resulting in the creation of an entirely novel optimizer called IGNDO37. To estimate the 
TDM’s unknown parameters, this optimizer was employed. It achieved impressive results when compared to the 
outcomes of several other computational algorithms. On the other hand, this method requires a little greater 
computing cost. Furthermore, it still suffers from a slow convergence speed issue given that it requires multiple 
function assessments to converge on the necessary findings.

Problem statement
The adequate estimation of PV parameters is a crucial challenge in solar energy optimization, as it directly 
impacts system performance and efficiency. Analytical methods, such as curve-fitting techniques and explicit 
mathematical formulations, provide fast solutions but lack generalizability beyond standard test conditions. 
Numerical techniques, including Newton-Raphson and Levenberg-Marquardt, improve accuracy but suffer 
from high computational cost and convergence issues, particularly when initial conditions are not well-defined. 
Metaheuristic algorithms have demonstrated superior performance in handling the nonlinear and multimodal 
nature of PV parameter estimation. However, existing metaheuristic-based solutions still face challenges such 
as premature convergence, insufficient exploration-exploitation balance, and computational inefficiencies. 
Therefore, this study introduces an Improved Rime Metaheuristic Optimization (IRMO) algorithm, which 
integrates the Quadratic Interpolation Learning (QIL) strategy to enhance solution diversity and exploration 
capabilities.

Paper contributions
H. Su et al. have just released the Rime-inspired Metaheuristic Optimization (RMO) method39. Through 
encouraging the rime particles’ evolution into soft and hard forms. To imitate circumstances in the environment, 
rime particles go through the soft-rime Search Process (SP) and the hard-rime Puncture Process (PP). The 
SP mimics the gradual accumulation of soft-rime under moderate wind and temperature conditions, leading 
to smooth, feather-like ice formations. In the context of optimization, SP serves as an exploratory search 
mechanism, allowing solutions to move toward promising areas with a degree of randomness. Conversely, the 
PP represents the formation of dense, frost-like layers under stronger wind conditions, resulting in a more rigid 
ice structure. This process is translated into optimization as a local refinement strategy, where solutions undergo 
more directed movements toward high-quality candidates.

Extensive research has highlighted RIME’s simplicity, adaptability, and computational efficiency, making 
it a versatile tool for addressing diverse optimization challenges. As a result, it has been successfully applied 
in various fields, including path planning of unmanned surface vehicles40, lane detection41, fault diagnosis of 
rolling bearings42, and engineering optimization43. Although a number of RIME modifications have been put 
out to increase the algorithm’s efficiency in global searches, the algorithm is still in the early stages and needs 
more work to become more robust. Furthermore, despite its promise, little research has been done on using 
RIME in solar energy estimation, suggesting a direction for further study and advancement. In this paper, a 
Quadratic Interpolation Learning (QIL) approach is integrated with an Improved RMO (IRMO). The proposed 
integration of the QIL approach with the provided IRMO method provides diversity to the solutions by 
combining information gathered from three separate rime agents rather than depending just on the best one. 
The donated randomisation and variations offer powerful searching for exploring space. The suggested IRMO 
approach is intended to detect the characteristics of PV modules by considering the triple-DM equivalent circuit 
to determine its nine unspecified parameters. Therefore, the key contributions of this paper are:

•	 An IRMO with QIL strategy is introduced to increase diversity with wider exploration and resilience against 
local optima.

•	 The implementation of the proposed IRMO technique extends to three distinct commercial PV systems, of 
the STM6-40/36, Photowatt PWP201, and R.T.C France cell.

•	 The IRMO technique demonstrates substantial robustness for both PV models when compared to the RMO 
and previous results.

•	 A recognized sustainable improvement for the IRMO is noticed with the increasing number of iterations at 
each quartile of iterations.

•	 The average, max, worst values of RMSE are significantly improved when using the IRMO.
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•	 Evaluations of the IRMO algorithm’s effectiveness on the PV triple-DM show a strong correlation between 
simulated and actual data.

Paper organization
The paper’s structure includes a problem definition in “PV module parameter extraction model” for the triple-
DM frameworks, a detailed description of the IRMO in “Proposed IRMO for PV parameter identification”, 
thorough examination of experimental findings in “Simulation results and discussions”, and a conclusion in 
“Conclusion”.

PV module parameter extraction model
The PV systems are widely regarded as the most prevalent globally due to their to their efficiency in harnessing 
solar energy for various applications44,45. The extraction of parameters from PV models poses a challenging 
problem, given the characteristics of multi-modality, and nonlinearity. To underscore the I-V characteristics of 
PV modules, distinct yet comparable circuits have been devised. The triple-DM representation, detailed in46, 
stands out as a highly comprehensive approach, relying on the extraction of nine parameters. In recent decades, 
the Shockley-diode equivalent circuits have gained popularity as a widely used approximation.

PV modeling using triple-DM equivalent circuit
The modeling of PV cells has become an essential tool for exploring the intricate dynamics among various 
components within a PV system. The triple-DM architecture serves as a widely employed framework for 
illustrating the characteristics of solar cells. As illustrated in Fig. 1, the triple-DM design presents an equivalent 
circuit. The core elements encapsulated in PV cells within the triple-DM design comprise three diodes, a current 
source, and two resistors, as detailed in Fig. 2. The mathematical expression for the load current in the triple-DM 
design is formally presented in Eq. (1)47:

	 I = IP h − IS1 − IS2 − IS3 − IP � (1)

	
IS1 = Io1 ×

(
e

V +IRS
η 1Vth − 1

)
� (2)

	
IS2 = Io2 ×

(
e

V +IRS
η 2Vth − 1

)
� (3)

	
IS3 = Io3 ×

(
e

V +IRS
η 3Vth − 1

)
� (4)

	
IP = V + IRS

Rsh
� (5)

where I represents the module’s output current; IPh signifies the photocurrent; ‘Io1,’ ‘Io2,’ and ‘Io3’ denote the 
reverse saturation currents associated, respectively, with the three diodes; ‘V’ symbolizes the terminal voltage; 
‘Vth’ defines the modules’ thermal voltage, as outlined in Eqs. (2–4); ‘RS’ and ‘Rsh’ depict the series and shunt 
resistances that collectively indicate losses in the module; ‘η1,’ ‘η2,’ and ‘η3’ represent the ideality factors pertaining 
to the three diodes D1, D2, and D3, respectively.

	
Vth = KBolt × T

qc
.� (6)

Furthermore, ‘KBolt’ characterizes Boltzmann’s coefficient, while ‘qc’ and ‘T’ stand for the electron charge and 
absolute temperature, accordingly48.

Fig. 1.  Triple-DM equivalent circuit.
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PV module model
The expression for the triple-DM equation can be formulated for a PV module comprising Nsh cells in parallel 
and Ns cells in series. Consequently, Eq. (1) undergoes modification and adaptation:

	
I = Np × (IP h − IS1 − IS2 − IS3) −

V + I RS× Ns

Nsh

NsNshRsh
.� (7)

Fig. 2.  Steps of the standard RMO.
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Within this context, there is a necessity to estimate nine unknown parameters from the I-V data of PV modules, 
namely IPh, RS, Rsh, IS1, η1, IS2, η2, IS3, and η3

49,50.

Objective function
In the statistical assessment conducted in this investigation, the given formula was employed based on the root 
mean square error (RMSE)51:

	
RMSE =

√
1

Nx

∑ Nx

rd=1
(IEs,rd(VEx,rd, x) − IEx,rd)2.� (8)

Here, Nx represents the count of recorded readings, while IEx, rd and VEx, rd represent the actual measurements of 
current and voltage for each respective record ‘rd’. The solution vector, denoted by x, can be succinctly described 
as follows:

	 x = [IphRshRSIS1η 1IS2η 2IS3η 3] .� (9)

Proposed IRMO for PV parameter identification
The RMO methodology is grounded in natural occurrences, specifically replicating the growth of rime particles 
in varying environmental circumstances. This approach imitates the pertinent environmental conditions via the 
soft-rime and the hard-rime PP39. Whereas the hard-rime PP simulates the damaging seen in the formation of 
rime, where the fitness function is influenced by the efficacy of particle motion, the soft-rime SP simulates the 
formation of rime components under a breezy climatic situation52,53. Additionally, a crossover mechanism is 
activated to aid in the exchange of information between the particles, fostering enhanced convergence.

Standard RMO
The rime population is initialised including an arbitrary search procedure, following a conventional method 
seen in numerous computer algorithms based on populations54. During this beginning, the rime position (Ymn) 
is expressed as follows:

	 Ymn (0) = Lm + z1 (Um − Lm) ; m = 1 : Ns, n = 1 : Dim� (10)

where the population size is indicated by Ns; The problem dimensional space is represented by Dim; the smallest 
and greatest dimensional constraints are referred to as Lm and Um; z1 denotes a value from the set (0,1) that was 
selected at random.

The soft-rime SP updates the position of each rime particle based on two key factors of exploration and 
randomization. Exploration is implemented where the influence of the best global solution helps guide 
the particle toward better regions in the search space. Randomization is implemented where an additional 
perturbation, controlled by the environmental parameters, ensures diverse movement. Therefore, the position 
of each rime particle, in the subsequent iteration (T + 1), can be upgraded via the soft-rime SP as symbolized by 
YM(T + 1) as follows:

	
Y Mmn(T + 1) = Y Bn (T ) + Xn (T ) , if z3 <

√
T

T M
� (11)

where, YBn(T) indicates the dimension (n) regarding the best-so-far solution (YB) inside the present iteration 
(T) while TM refers to its maximum value; z2 denotes randomized selected value in [0,1]; Xn(T) is an artificial 
vector that can be generated55 as follows:

	 Xn (T ) = z3. [H × (Un − Ln) + Ln] × β (T ) cos(θ (T ))� (12)

while z3 denotes randomized selected value in [-1,1], H symbolizes the degree of adhesion which is considered 
as randomized selected value in [0,1]; β(T) and θ(T) simulates the external circumstances representing the 
environmental factors which are modelled as follows:

	
θ (T ) =

(0.1 × π × T

T M

)
� (13)

	 β (T ) = 1 −
(
W −1 × (round (W × T/T M))

)
.� (14)

Consequently, as per39, the factor “W” governs the step function’s division and by defaults to five.
As shown in the soft-rime SP, β(T) adjusts the step size towards the best-known solution, and θ(T) adds a 

stochastic component, preventing premature convergence while Xn(T) is a randomly generated perturbation 
factor to introduce exploration. This mechanism allows the rime particles to gradually converge toward optimal 
solutions while maintaining diversity.

The hard-rime PP reinforces local exploitation by intensifying movement toward the best solution. Unlike 
SP, which includes randomness for broader search, PP prioritizes refinement by adjusting a particle’s position 
based on its current fitness level. Therefore, in conditions of high wind, the hard-rime PP is repeated. Therefore, 
the position of each rime particle can be upgraded via the hard-rime SP as symbolized by YN(T + 1) as follows55:

Scientific Reports |        (2025) 15:21166 6| https://doi.org/10.1038/s41598-025-04589-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Y Nmn (T + 1) =

{
Y Bn (T ) if z4 < F norm (Ym (T ))
Y Mmn (T + 1) Else

m = 1 : Ns, n = 1 : Dim� (15)

where z4 denotes randomized selected value in [0, 1]; F(Ym(T)) indicates the value of fitness functions of the 
solution particle (Ym(T)) while Fnorm(Ym(T)) indicates its associated normalized one as follows:

	

F norm (Ym( T )) = F (Ym( T ))√∑ Ns

m=1(F (Ym( T )))2
; m = 1 : Ns.� (16)

The process involves assessing fitness values before and after updates using the positive greedy search mechanism. 
New positions for rime particles are created using either hard-rime PP, soft-rime SP or QIL method. If the 
updated fitness value is superior, the optimal solution replaces the suboptimal one, enhancing the overall global 
solution quality. The positive greedy search mechanism in the IRMO ensures that only improved solutions are 
retained, thereby guiding the optimization process toward better convergence. This mechanism evaluates the 
newly generated solutions ( Y Nm (T + 1)) and replaces the current solutions ( Ym (T )) only if they exhibit a 
better fitness value. Therefore, the positive greedy selection is performed as follows:

	
Y Nm (T + 1) =

{
Ym (T ) if F (Ym (T )) < F (Y Nm (T + 1))

Y Nm (T + 1) Else
, m = 1 : Ns.� (17)

This technique ensures the population evolves optimally by actively replacing agents during updates. The 
procedure entails coming up with a fresh particle solution, evaluating its fitness level, and contrasting it with 
the prior one. If the newly acquired fitness is superior, it will take the place of the subpar solution, improving 
the quality of the solutions as a whole. Throughout alterations, this process continuously substitutes particles to 
guarantee beneficial evolution of the population. Figure 2 shows the important phases of the RMO, which are 
carried out iteratively until a particular amount of iterations (TM) is obtained.

Proposed improved RMO (IRMO) incorporating quadratic interpolation learning (QIL) 
strategy
In order to improve population variety and strengthen the RMO algorithm’s exploring abilities, this study 
proposes an IRMO merging with the Quadratic Interpolation Learning (QIL) technique. QIL is a local search 
approach that fits the structure of a curve to a parabola function with the goal of locating the curve’s extremes. 
The QIL strategy improves solution refinement by selecting three different rime particles instead of relying solely 
on the best-known one. This technique provides a more diverse update, reducing stagnation.

The QIL strategy was integrated into the RMO to support the equilibrium between exploitation and 
exploration, thereby improving solution diversity and search precision. Unlike traditional gradient-based 
methods that necessitate derivative information, QIL operates without derivatives, making it particularly 
suitable for complex, non-smooth, or high-dimensional optimization problems56. By employing a second-degree 
polynomial interpolation function, QIL dynamically approximates optimal step sizes, avoiding the limitations of 
fixed learning rates or arbitrary perturbations. Conventional local search methods, such as hill climbing or greedy 
algorithms, often focus on incremental improvements, which can lead to premature convergence in multimodal 
landscapes57. QIL addresses this issue by selecting three distinct rime particles for interpolation, rather than 
relying solely on the current best solution. This approach ensures a more comprehensive sampling of the search 
space, thereby reducing the risk of stagnation in local optima56. Alternative techniques like Gaussian mutation, 
commonly used in metaheuristics, introduce random perturbations that can result in inefficient exploration due 
to their stochastic nature57,58. In contrast, QIL offers structured and adaptive movements based on interpolation, 
leading to a more directed and efficient search process. Similarly, strategies such as Lévy flight-based searches, 
often employed in algorithms like Cuckoo Search59 or Whale Optimization Algorithm60, may produce 
excessively large step sizes, causing instability during the fine-tuning phase of optimization. QIL mitigates this 
by smoothly adjusting step sizes through quadratic interpolation, facilitating controlled and stable convergence. 
In summary, the integration of QIL into the RMO algorithm provides a derivative-free, adaptive mechanism 
that enhances both exploration and exploitation capabilities. By dynamically adjusting step sizes and utilizing 
multiple reference points, QIL offers a more balanced and efficient search strategy compared to traditional local 
search methods, random perturbations, or Lévy flight-based approaches. The successful integration of QIL 
into the MGA resulted in notable enhancements in both performance and stability across benchmark models. 
This integration not only improved the algorithm’s optimization efficiency but also contributed to a substantial 
reduction in energy losses while promoting environmental sustainability through decreased emissions. The 
findings highlight the overall practical effectiveness of QIL-enhanced MGA in real-world energy optimization 
applications, reinforcing its potential for advancing renewable energy solutions and optimizing photovoltaic 
systems61.

It is incorporated into the RMO to add higher diversity and allow non-linear modifications by means of its 
quadratic operations where it refines solution particle (Ym(T)) around itself and two random neighbors (YR1(T) 
and YR2(T)). Therefore, the position of each rime particle can be upgraded via the QIL strategy as symbolized 
by YN(T + 1) as follows:

	
Y Nm(T + 1) = A + B + C

2 × (a + b + c) ; m = 1 : Ns� (18)
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where

	 A =
(
YR1(T )2 − YR2(T )2)

× F (Ym (T ))� (19)

	 B =
(
YR2(T )2 − Ym(T )2)

× F (YR1 (T ))� (20)

	 C =
(
Ym(T )2 − YR1(T )2)

× F (YR2 (T ))� (21)

	 a = (YR1 (T ) − YR2 (T )) × F (Ym (T ))� (22)

	 b = (YR2 (T ) − Ym (T )) × F (YR1 (T ))� (23)

	 c = (Ym (T ) − YR1 (T )) × F (YR2 (T ))� (24)

where F (YR1(T)), F(YR2(T)) and F(Ym(T)) are the fitness values of, respectively, the current particle and the two 
other neighbors that are randomly selected.

The proposed IRMO technique, illustrated in Fig. 3, iteratively executes the entire process until reaching a 
specified number of iterations (TM). Also, a MATLAB code for the IRMO with QIL for addressing the sphere 
function is displayed in the Appendix. Utilizing the QIL technique or the soft-rime SP and hard-rime PP phases, 
it updates rime agent positions, calculates fitness values, and performs positive greedy search. As shown in this 
figure, the proposed IRMO has several main steps as follows:

•	 Step 1: Initialization: In this step, the search space is defined, and the initial population of rime particles is 
arbitrarily created inside the problem’s dimensional constraints. Also, the algorithm parameters are set, in-
cluding maximum iterations and population size.

•	 Step 2: Fitness Evaluation: The RMSE is utilized to evaluate the quality of each rime particle’s position in the 
search space.

•	 Step 3: Soft-Rime SP: The rime particles’ positions are updated based on environmental factors.
•	 Step 4: Hard-Rime PP: The local search of the rime particles’ positions is enhanced by refining solutions 

through structured perturbation.
•	 Step 5: QIL Strategy: Three distinct rime particles are selected instead of only the best one, allowing a more 

diversified exploration approach. Then, quadratic interpolation is applied to refine particle movement and 
balance global exploration with local exploitation.

•	 Step 6: Greedy Selection Mechanism: The RMSE of new and old solutions are contrasted. The solution with 
the best fitness for the next iteration is retained, ensuring continual population improvement.

•	 Step 7: Convergence Check: The steps 3–6 are repeated iteratively until the stopping criterion is reached.
•	 Step 8: Optimal Solution Extraction: The best rime particle (solution) is extracted corresponding to the 

optimal PV model parameters.

The computational complexity of the IRMO depends on the key operations performed during each iteration. The 
main computational steps contributing to the overall complexity depend on the population initialization, fitness 
evaluation, Soft-rime SP and hard-rime PP, QIL and greedy selection. The algorithm initializes a population of 
Ns rime particles, each with d dimensions (search variables). Thus, the initialization step has a complexity of 
O(Ns×Dim). The algorithm evaluates the fitness function (RMSE) for all Ns particles. The complexity of the fitness 
function evaluation depends on its mathematical formulation, denoted as O(F(Dim)). Every particle upgrades 
its position depending on either the soft-rime SP, hard-rime PP or QIL in a separate way. Since each of the Ns 
particles updates d dimensions, this step runs in O(Ns×Dim). As the greedy selection mechanism compares new 
and old fitness values and updates the best solution. Since this requires N comparisons, it runs in O(Ns). Since all 
the above steps are repeated for TM iterations, the total complexity of IRMO is O(Ns× TM×Dim). On the other 
side, the original RMO algorithm has a similar updating mechanism but lacks QIL which is either activated or 
not instead of soft-rime SP or hard-rime PP. Since the QIL step operates in O(Ns×Dim), it does not significantly 
increase the overall complexity. Thus, it has a similar complexity of O(Ns× TM×Dim). However, IRMO improves 
convergence speed, potentially reducing the required number of iterations, making it computationally more 
efficient in practice.

Simulation results and discussions
In this paper, the proposed IRMO method is expanded to estimate PV parameters for three different PV systems: 
STM6-40/36 module, Photowatt PWP201 module, and R.T.C France cell. The STM6-40/36 system consists 
of 36 series-connected monocrystalline cells, each measuring 38  mm x 128  mm, operating under 1000  W/
m2 irradiation at a temperature of 51  °C62. The PWP201 system features 36 series-connected silicon cells of 
polycrystalline type at an irradiance of 1000 W/m2 and a temperature of 45 °C63. Finally, the R.T.C France cell 
operates at 1000 W/m2 sun irradiance and 33 degrees Celsius temperature.

Simulation results regarding STM6-40/36 PV module
By implementing both the original RMO and the novel IRMO, the properties of the triple-DM of the STM6-
40/36 PV module are determined. The related variables and findings are outlined in Table 1. As illustrated from 
this table, the original RMO yields an RMSE value of 0.00354, whereas the novel IRMO achieves the minimum 
RMSE value of 0.001689. Thirty separate runs are used to evaluate the efficacy of both the novel IRMO and the 
original RMO. Their convergence properties at their best, medium, and worst can be observed in Fig. 4.
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Additionally, the electrical elements correlated with the proposed IRMO tend to be as follows: 16.91705 Ω 
and 0.004643 Ω for the shunt and series resistances; 1.944, 1.973, and 1.464 for the ideality factors of D1, D2, 
and D3; 1.66348223  A for the photocurrent; 4.59415E-01 µA, 3.5926 µA, and 9.294E-01 µA for the reverse 
saturation currents for D1, D2, and D3. The novel IRMO shows substantial enhancement from the beginning 

Fig. 3.  Steps of the IRMO.
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of the iterations, as shown in Fig.  5. The reason for this is that the LEO mechanism activates an enhanced 
exploration potential. The enhancement begins at the 60th iteration for the best convergence characteristics, but 
for the average and worst characteristics, the progress becomes noticeable earlier.

Furthermore, the disparity in RMSE observed for each run that was computed using RMO and IRMO can 
be seen in Fig. 6, along with the corresponding enhancement of using the novel IRMO instead of RMO. It is 
demonstrated that the novel IRMO outperforms the RMO in terms of robustness and superiority. It displays 
a 49.56% average improvement rate, with minimum and maximum improvements of 44.03% and 45.40%, 
respectively. Furthermore, Fig. 7 contrasts the data used for parameter estimation with the simulated efficiency of 
the P-V and I-V features using the outcomes of the triple-DM design. The curves provided manifest a significant 
efficient correlation between the observed and calculated PV parameters using the proposed IRMO.

Furthermore, a comparison between the original RMO, IRMO, as well as other recently developed techniques 
are clarified in Table  2 for this model. These recently developed techniques are teaching learning studying-
based Approach (TLSBA)65–67, social network searching (SNS)64, the tuna swarm method (TSM)68, artificial 
electric field optimizer (AEFO)69, African Vultures Optimization (AVO)70 and artificial hummingbird optimizer 
(AHO)71. The RMSE values for the Min, Max, Mean, and Standard Deviation are 1.7192E-03, 2.6632E-03, 
2.1429E-03, and 2.8467E-04, respectively, according to the information in this table. The obtained results 
demonstrate that the employed IRMO boosts significant enhancements in accuracy and effectiveness for best 
triple-DM characterization when compared to other recently developed competing solutions.

Simulation results regarding photowatt PWP201 PV module
This module is utilized to extract the triple-DM characteristics using the novel IRMO and the original RMO. 
The related variables and findings are outlined in Table  3. As illustrated from this table, the original RMO 
yields an RMSE value of 0.00315355, whereas the novel IRMO finds minimal RMSE value of 0.002428759. 
Additionally, the electrical elements correlated with the proposed IRMO tend to be as follows: 27.38819135 Ω 
and 0.033369135 Ω for the shunt and series resistances; 1.96258, 1.642196, and 1.34957 for the ideality factors 
of D1, D2, and D3; 1.66348223 A for the photocurrent; 0 µA, 2.14701E-01 µA, and 3.40761 µA for the reverse 
saturation currents for D1, D2, and D3.

A substantial enhancement can be attributed to the novel IRMO from the start of the iterative journey, as 
manifested in Figs. 8 and 9. The reason for this is that the LEO mechanism activates an enhanced exploration 
potential. The enhancement begins after the 120 iterations for the best convergence characteristics, but for the 
average and worst characteristics, the progress becomes noticeable earlier. It is demonstrated that the novel 
IRMO outperforms the RMO in terms of robustness and superiority. It shows an average improvement of 
62.56%, ranging from 22.98 to 73.48%.

Thirty separate runs are used to evaluate the efficacy of both the novel IRMO and the original RMO. Their 
convergence properties at their best, medium, and worst can be observed in Fig. 10. The disparity in RMSE 
observed for each run that was computed using RMO and IRMO can be seen in this figure, along with the 
corresponding enhancement of using the novel IRMO instead of RMO.

In addition, Fig. 11 contrasts parameter estimation data with simulated efficiency of P-V and I-V features 
using triple-DM design outcomes, showing strong correlation between calculated and observed PV parameters 
using IRMO.

Furthermore, a comparison between the original RMO, proposed IRMO, as well as other recently developed 
techniques are clarified in Table 4 for this model. These recently developed techniques are Sunflower optimization 
(SFO)47, Cuckoo Search Algorithm (CSA)73, PSO17, SNS72, Biogeography-based Heterogeneous Cuckoo Search 
(BHCS)74, and Artificial ecosystem-based optimizer (AEO)75. The RMSE values for the Min, Max, Mean, 
and Standard Deviation are 3.111E-03, 2.429E-03, 2.584E-03, and 1.631E-04, respectively, according to the 
information in this table. The employed IRMO boosts significant enhancements in accuracy and effectiveness 
for the best triple-DM characterization when contrasted to other recently solutions.

R.T.C France PV cell
It is utilized to extract the one-DM, two-DM, and triple-DM characteristics using the novel IRMO and the 
original RMO. The related variables and findings for the three models are outlined in Table  5. Moreover, it 

Item Lower bound Upper bound RMO IRMO

IPh (A) 0.00 2.00 1.65874249 1.66348223

Rs (Ω) 0.00 0.36 0.00158282 0.004643798

Rsh (Ω) 0.00 1000 30.4468306 16.91705038

IS1 (A) 0.00 50E−06 9.6845E−07 4.59415E−07

IS2 (A) 0.00 50E−06 3.4417E−09 3.5926E−06

IS3 (A) 0.00 50E−06 3.3729E−06 9.29455E−07

η1 1.00 2.00 1.70404127 1.944427681

η2 1.00 2.00 1.79899262 1.973872807

η3 1.00 2.00 1.61291207 1.464785202

RMSE – – 0.00354 0.001689

Table 1.  STM6-40/36 PV parameters employing RMO and IRMO.

 

Scientific Reports |        (2025) 15:21166 10| https://doi.org/10.1038/s41598-025-04589-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


shows the RMSE of the novel IRMO and the original RMO for the one-DM and the two-DM, where the RMSE 
values of RMO and the IRMO for the one-DM are 0.00099755 and0.00098613, respectively, and for the two-
DM are0.000993817 and 0.000983333, respectively. These results demonstrate the superiority and effectiveness 
of the novel IRMO compared to the original RMO. As illustrated from this table, the original RMO yields an 
RMSE value of 0.001030096 for the triple-DM, whereas the novel IRMO specified minimum RMSE value of 
0.000987. Additionally, the electrical elements for the triple-DM that are correlated with the proposed IRMO 

Fig. 4.  Best, mean, and worst convergence properties of RMO and IRMO for STM6-40/36 PV Module. (a) 
Best convergence properties. (b) Mean convergence properties. (c) Worst convergence properties.
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tend to be as follows: 54.44781 Ω and 0.03633 Ω for the shunt and series resistances; 1.904945, 1.482333, and 
1.904091 for the ideality factors of D1, D2, and D3; 0.760717 A for the photocurrent; 2.42E-09 µA, 3.27E-07 
µA, and 2.76E-09 µA for the reverse saturation currents for D1, D2, and D3. Their convergence properties at 
their best, medium, and worst can be observed in Fig. 12 while Fig. 13 depicts the improvement percentage of 
IRMO compared RMO in their best, mean, and worst convergences. In the triple-DM, the novel IRMO displays 
a 34.15% average improvement rate, with minimum and maximum improvements of 13.52% and 53.68%, 
respectively. A substantial improvement can be attributed to the novel IRMO from the start of the iterative 
journey, as manifested in the mentioned figure. The enhancement begins after the 70 iterations for the best 
convergence characteristics, but for the average and worst characteristics, the progress is noticeable earlier.

Figure 14 compares the data used for parameter estimation with the simulated P-V and I-V characteristics 
based on the triple-DM design outcomes. The provided characteristics derive a strong effective correlation 
between the observed and calculated PV parameters using the proposed IRMO. Furthermore, the disparity in 
RMSE observed for each run that is computed using RMO and IRMO for the one, two, and triple-DMs of R.T.C 

Fig. 6.  Achieved RMSE by RMO and IRMO in all runs for STM6-40/36 PV module.

 

Fig. 5.  Improvement percentage of IRMO compared to RMO in their best, mean, and worst convergences.
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France PV cell can be illustrated in Fig. 15, along with the corresponding enhancement of using the novel IRMO 
instead of RMO.

Furthermore, a comparison between the original RMO, proposed IRMO, as well as other recently developed 
techniques are clarified in Table 6 for this model. These recently developed techniques are Hazelnut tree search 
(HTS) algorithm76, Artificial bee colony (ABC)77, Energy valley optimizer (EVO)76, Growth optimizer (GO)76, 
Teaching–Learning–based ABC (TLbABC)78, Five Phases Algorithm (FPA)76, Flower Pollination Optimizer 
(FPO)79, Sine cosine approach (SCA)80, TLBO81, Cat Swarm Algorithm (CSA)82, Comprehensive learning 
PSO83, and Generalized oppositional TLBO84. The RMSE for the Min, Max, Mean, and Standard Deviation are 
9.86812 E-04, 1.6436 E-03, 1.12068 E-03, and 2.00229E-04, respectively, according to the information in this 
table. The employed IRMO boosts significant enhancements in accuracy and effectiveness for best triple-DM 
characterization.

Optimizer Min (RMSE) Mean (RMSE) Max (RMSE) Std (RMSE)

AEFO [70] 1.7203E−3 – – –

SNS [73] 2.30797E−3 2.829747E−3 3.34643E−3 3.3307E−4

TSLBA [72] 2.2864E−3 3.4767E−3 4.982E−3 6.4695E−4

AVO [72] 3.5398E−3 4.5393E−3 5.976E−3 6.4884E−4

Original RMO 3.0715E−03 4.2909E−03 5.2799E−03 6.3159E−04

Proposed IRMO 1.7192E−03 2.1429E−03 2.6632E−03 2.8467E−04

Table 2.  RMO and IRMO against reported results for STM6-40/36 PV Module.

 

Fig. 7.  Estimated data by means of the proposed IRMO versus the measured data for STM6-40/36 PV module.
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Conclusion
This study developed a novel enhanced IRMO for the best determination of PV module properties. The novel 
IRMO is used and evaluated to determine the nine parameters from the PV triple-DM while taking into account 
three distinct practical PV modules. The novel enhanced IRMO is assessed by combining original RMO with the 
Quadratic Interpolation Learning (QIL) technique. An enhanced exploration, and resilience against local optima 
are provided by the incorporation of the QIL approach into the RMO technique. In accordance with IRMO, the 
exploitation strategy is enabled about approximately 50% of the searching rime particles in each iteration at the 
start of the iteration process. The novel IRMO is tested using the R.T.C. France, PWP201, and STM6-40/36. 
In comparison to the original RMO, the novel IRMO significantly improved the precision of identifying the 
PV parameters with reference to the triple-DM formulation. The superiority of the proposed IRMO method 
is further asserted through statistical analysis, demonstrating its enhanced accuracy and consistency across 
different PV modules. For the STM6-40/36 module, the IRMO achieves a mean RMSE of 2.1429E-03 with a 
standard deviation of 2.8467E-04, while for the Photowatt PWP201 module, it attains a mean RMSE of 2.584E-
03 and a standard deviation of 1.631E-04. Similarly, for the R.T.C France PV cell (triple-DM model), the IRMO 
achieves a mean RMSE of 1.12068E-03 with a standard deviation of 2.00229E-04. These results indicate not only 
a significant reduction in RMSE but also a lower variability compared to existing techniques, reinforcing IRMO’s 
robustness and reliability in PV parameter estimation. The proposed IRMO demonstrates greater accuracy and 
coherence between the calculated and observed values of the P-V and I-V curves for the three PV modules under 
investigation. Furthermore, it asserts a strong superiority and consistency over previously published results.

Implications of the IRMO in the field of PV parameter Estimation
The IRMO, by integrating QIL with Rime Optimization, significantly advances PV parameter estimation by 
enhancing solution diversity, mitigating local optima trapping, and improving convergence accuracy. These 
improvements have direct implications for PV system modeling, where precise parameter extraction is essential 
for optimizing fault diagnosis, maximum power point tracking (MPPT), and forecasting. By achieving a lower 
RMSE across multiple PV modules, IRMO ensures more reliable and adaptable PV models under varying 
environmental conditions. Additionally, its superior accuracy and robustness make it a valuable tool in real-
time PV system monitoring and control, ultimately contributing to improved efficiency and integration of solar 
energy into modern power grids.

Future improvements suggestion
While the IRMO method demonstrates superior accuracy and robustness in PV parameter estimation, 
certain limitations remain. The algorithm’s computational complexity may increase with a higher number of 
parameters, potentially leading to longer processing times for large-scale PV systems. Additionally, while IRMO 
effectively mitigates local optima trapping, its performance under extreme environmental variations, such as 
rapid temperature fluctuations or partial shading, requires further investigation. Future improvements could 
focus on hybridizing IRMO with adaptive learning strategies to enhance its real-time applicability, integrating 
physics-informed constraints to improve generalization, and optimizing its computational efficiency for large-
scale solar farms. Furthermore, experimental validation with real-time PV data would strengthen its practical 
relevance and implementation in smart grid applications.

Item Lower bound Upper bound RMO IRMO

IPh (A) 0.00 2.00 1.02938243 1.030493996

Rs (Ω) 0.00 2.00 0.03232178 0.033369135

Rsh (Ω) 0.00 2000.00 53.5570524 27.38819135

IS1 (A) 0.00 50E−06 2.4446E−06 0

IS2 (A) 0.00 50E−06 5.6441E−06 2.14701E−07

IS3 (A) 0.00 50E−06 1.9005E−05 3.40761E−06

η1 1.00 2.00 1.32738853 1.962585395

η2 1.00 2.00 1.97838278 1.642196323

η3 1.00 2.00 1.9904139 1.349574121

RMSE – – 0.00315355 0.002428759

Table 3.  PWP201 PV parameters employing RMO and IRMO.
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Fig. 8.  Best, mean, and worst convergence properties of RMO and IRMO for PWP201 PV module. (a) Best 
convergence properties. (b) Mean convergence properties. (c) Worst convergence properties.
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Fig. 10.  Achieved RMSE by RMO and IRMO in all runs for PWP201 PV Module.

 

Fig. 9.  Improvement percentage of IRMO compared to RMO in their best, mean, and worst convergences.
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Item Lower limit Upper limit

One-DM Two-DM Triple-DM

RMO Proposed IRMO RMO Proposed IRMO RMO Proposed IRMO

IPh (A) 0.00 1.00 0.76055716 0.760784911 0.760864277 0.760746515 0.76096794 0.760717

Rs (Ω) 0.00 0.50 0.03625763 0.036406955 0.036173672 0.036632137 0.037300892 0.03633

Rsh (Ω) 0.00 100.00 57.372545 53.56148396 53.58354831 55.72573648 50.75232738 54.44781

IS1 (A) 0.00 10E−06 3.3687E−07 3.2093E−07 4.3113E−08 6.19476E−07 5.29424E−08 2.42E−09

IS2 (A) 0.00 10E−06 – – 3.25421E−07 2.4016E−07 1.7659E−07 3.27E−07

IS3 (A) 0.00 10E−06 – – – – 0.000001 2.76E−09

η1 1.00 2.00 1.48537668 1.480528247 1.827202939 1.987334194 1.367966883 1.904945

η2 1.00 2.00 – – 1.482783518 1.456340137 1.519524163 1.482333

η3 1.00 2.00 – – – – 1.995991274 1.904091

RMSE – – 0.00099755 0.00098613 0.000993817 0.000983333 0.001030096 0.000987

Table 5.  R.T.C France PV parameters employing RMO and IRMO considering one-DM, two-DM and triple-
DM.

 

Method Min (RMSE) Mean (RMSE) Max (RMSE) Std (RMSE)

BHCS74 3.6790E−03 – – –

AEO75 2.4800E−03 – – –

SFO47 8.2500E−02 – – –

CSA73 3.2000E−03 – – –

PSO17 3.3925E−3 2.081E−2 3.374E−2 –

SNS72 2.5090E−03 3.191E−03 5.511E−03 2.509E−03

RMO 1.173E−02 6.901E−03 3.154E−03 2.159E−03

Proposed IRMO 3.111E−03 2.584E−03 2.429E−03 1.631E−04

Table 4.  Comparisons of RMO and IRMO versus reported results for PWP201 PV.

 

Fig. 11.  Estimated data by means of the proposed IRMO versus the measured data for PWP201 PV Module.
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Fig. 12.  Best, mean, and worst convergence properties of RMO and IRMO for R.T.C France PV Cell 
considering triple-DM. (a) Best convergence properties. (b) Mean convergence properties. (c) Worst 
convergence properties.
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Fig. 14.  Estimated data by IRMO versus the measured data for R.T.C France PV cell considering triple-DM.

 

Fig. 13.  Improvement percentage of IRMO compared RMO in their best, mean, and worst convergences.
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Fig. 15.  Achieved RMSE by RMO and IRMO in all runs for R.T.C France PV cell considering one-DM, two-
DM and triple-DM.
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