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hybrid clustering and evolutionary
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Effective student performance evaluation is essential for improving education, especially in higher
and technical schools. Data mining helps solve educational and administrative problems. School
performance prediction is a key field of Educational Data Mining (EDM), however manual computation
and data mining methods struggle with the expanding volume of complicated data from varied
sources, leaving research gaps and unresolved challenges. An integrated, multi-phase strategy to these
issues is presented in this work. This study uses the Hybrid Probabilistic Ensemble Fuzzy C-Medoids
with Feature Selection (HPEFCM-FSP) algorithm to cluster students by academic performance in
Phase | to identify those who need extra help. The NeuroEvoClass algorithm mixes evolutionary
strategies inspired by swarm intelligence and artificial neural networks (ANN) to improve student
performance prediction in Phase Il. Particle Swarm Optimization (PSO) optimizes neural network
weight assignments, dynamically fine-tuning network topologies depending on the complex student
dataset. The algorithm improves prediction power through progressive convergence. The proposed
methods outperform traditional models in accuracy, precision, recall, and F1-score, according to

this study. Since NeuroEvoClass reliably identifies pupils at risk of academic underperformance, it

is promising for Early Warning Systems (EWS) in educational institutions. The study’s multi-phase
approach helps educators and policymakers make data-driven decisions about student academic
achievement. HPEFCM-FSP consistently outperforms K-means and Fuzzy C-means in clustering
educational data by getting higher Silhouette Scores and Dunn Index values on benchmark datasets.
This algorithm’s strong feature selection and clustering help target educational interventions by
revealing student learning behaviors. By identifying well-separated groups of high-achieving,
above-average, and struggling students, HPEFCM-FSP helps institutions personalize support and
interventions. Educational administrators, teachers, and policymakers can use the algorithm to handle
huge, heterogeneous educational datasets due to its efficiency and robustness.

Keywords Educational data mining, Student performance, Higher technical education, Artificial neural
networks
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Quality education and academic performance are crucial in the continuously changing higher education
scene. Education worldwide must transmit knowledge while also helping students reach their potential and
staff provide the best learning experiences'. This requires accurate and complete student performance review.
However, the digital age has brought unparalleled data creation. Data from student exams, course exchanges,
online learning platforms, attendance records, and faculty feedback floods educational institutions. Manual
analysis and decision-making cannot completely harness this data deluge?.

Al and advanced data mining are needed to solve these problems and maximize educational data. EDM
provides a powerful framework for analyzing enormous and diverse educational data. EDM uses data mining
methods and machine learning models to help educational institutions make data-driven decisions, find trends,
and improve the learning experience>. EDM lets you track and assess student performance. EDM predicts
academic performance, identifies at-risk kids, and customizes learning experiences for students. EDM helps
teachers assess instruction, student feedback, and professional development. The Venn diagram below (Fig. 1)
shows three main research areas: Educational Data Sources, Data Preprocessing and Feature Engineering, and
Data Mining Algorithms & AI Techniques. The project blends EDM and Al for Performance Evaluation to
predict and assess higher education student and teacher performance. This study uses data mining and AI to
find patterns in preprocessed educational data. This predicts academic performance, identifies at-risk pupils,
and personalizes teach®.

Advanced Al and data mining technologies can improve performance evaluation, resource allocation, and
student potential in schools™®. Schools, students, teachers, administrators, and researchers must work together at
various stages. This teamwork assures adequate data collection, preparation, and analysis. Researchers and data
analysts preprocess data for analysis, whereas data scientists employ Al and advanced data mining techniques to
identify patterns and insights’. Researchers estimate students in the Performance Prediction and Evaluation stage
using examined data. These projections help educators and administrators make better decisions, improving
education and student performance. Stakeholder involvement ensures meaningful and practical insights for
higher education improvement®°. Recent studies further validate the use of hybrid approaches in educational
performance prediction. Sh. Khaled et al.! and Elshabrawy et al.'! highlight enhanced prediction accuracy using
ensemble and swarm intelligence models. AlEisa et al.! support the use of fuzzy logic for educational insights,
while El-Kenawy et al.!* emphasize the importance of explainable Al reinforcing our model’s transparency and
real-world relevance. Figure 2 shows the higher education performance prediction and evaluation process model.

By using Al and data mining to overcome restrictions, this research increases educational data analysis and
performance evaluation. The two-phased methodology in Fig. 3 addresses higher education quality issues. Phase
1 uses the HPEFCM-FSP Algorithm to construct flexible and probabilistic student performance profiles that
account for educational data uncertainties. Phase 2 incorporates the Neuro EvoClass Algorithm, which uses
swarm intelligence and ANNS to accurately predict student performance!®. PSO optimization of ANN weights
and dynamic neural network architecture improve educational outcomes, evidence-based decision-making, and
individualized learning. The study, employing a real-time dataset of 600 engineering students at KVG College
of Engineering, India, reveals that the proposed approach can improve digital education quality and outcomes.
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Fig. 1. Synergy in higher education performance evaluation.
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Fig. 2. Performance evaluation model for higher education. HPEFCM-FSP.
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Fig. 3. Conceptual view of proposed system for enhancing educational experience in higher education.

HPEFCM-FSP clustering method handles high-dimensional, noisy and uncertain educational data. For
EDM, this method clusters better than K-means and Fuzzy C-means.

NeuroEvoClass system predicts student academic progress utilizing PSO and dynamic neural network design.
This dynamic neural network configuration strategy outperforms prediction methods.

Our experimental review included testing the suggested models on multiple datasets. This gave us a real-world
situation to test our methods and make them more applicable to teaching.

We compared HPEFCM-FSP and NeuroEvoClass against SPRAR, HLVQ, and MSFMBDNN-LSTM for stu-
dent performance prediction. We proved our methods beat these models in prediction accuracy, computa-
tional efficiency, and clustering robustness.

Our algorithms cluster children into performance groups and anticipate at-risk students to give instructors
actionable insights. Informing evidence-based academic interventions allows for more tailored support for
students across performance categories.
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Literature survey

EDM in higher education

K-Means and hierarchical clustering have been used in several educational research to group pupils by
academic achievement!®. Traditional methods struggle with educational data ambiguity and imprecision. A
comprehensive review of data mining techniques in education!®~'® focused on clustering algorithms like K-Means
and hierarchical clustering to identify patterns in student performance, understand learning behaviors, and
inform teaching strategies. Meanwhile, used K-Means clustering to analyze online student learning behavior',
compared K-Means and hierarchical clustering to group students by academic performance®®, and used
hierarchical clustering to identify groups of students needing targeted academic support. Clustering to detect at-
risk pupils, fuzzy clustering for nuanced learning behavior representation, and K-Means and fuzzy C-Means for
learning style categorization were also examined. K-Means’ ability to predict academic success and hierarchical
clustering’s ability to identify underperforming pupils demonstrate these methods’ usefulness and drawbacks.
Intuitionistic fuzzy-based clustering is used describe student performance more accurately and flexibly?!.

Machine learning for student performance prediction

Machine learning is widely used in education to predict and analyze student performance. Neural networks
can handle complex educational data. A literature review on EDM covers its basics, common operations, and
future research fields*2. Another paper reviews EDM pre-processing methods, notably clustering, and discusses
future approaches?. The EI Bosque University data-driven student performance prediction model is accurate
and suggests additional study?*. Expert evaluation of high school students’ competence based on school ranking
using linear regression?®. The future of EDM focuses on Big Data, MOOCs, interpretability, scalability, and
learning analytics?®?’. EDM and Learning Analytics enable quantitative constructive learning and researcher
collaboration?®. Finally, proposes a framework for gathering and scoping a lot of data to evaluate educational
institutions against accrediting criteria, saving manual effort and offering a detailed alignment evaluation and
learning outcomes design®.

Artificial neural network in performance prediction

Higher education student performance prediction using Artificial Neural Networks is covered. Attendance
variables helped Wang and Zhang®® predict 3518 students’ performance with 80.47% accuracy using ANN.
Rodriguez-Hernandez et al.>! used deep learning to predict academic achievement in R Programming for
postgraduate students utilizing 395 student data. Niyogisubizo et al.>> explored the use of hierarchical parallel
ANN to evaluate university students’ performance for admission, training, and placement. Moubayed et al.?
predicted secondary school performance with 93.6% accuracy using Naive Bayes. Weka and data mining
helped Lovelace et al.3 forecast students’ performance based on EQ and IQ using classification algorithms with
reliable results. For student performance evaluation, Lau et al.>® found Differential Evolution feature selection
superior to previous methods. Bharara et al.*® used higher education data to evaluate an adaptive neuro-fuzzy
inference system with backpropagation to predict student performance. Panskyi and Korzeniewska®” predicted
student performance using statistical analysis and neural network modeling with 84.8% accuracy. Iatrellis et
al.’® presented MIMO SAPP, which outperformed similar algorithms in accuracy. Umair and Majid Sharif*’
developed a convolutional neural network-based MOOC dropout prediction model with competitive accuracy,
recall, F1 score, and AUC score. These studies show that ANN can predict student performance in many
educational environments with high accuracy.

Prediction of student performance in data mining

This section reviews data mining studies on student performance prediction. Iatrellis et al.*’ classify student and
instructor performance using surveys. Balaban et al.*! characterizes students’ talents and social integration using
J4.8 and random tree algorithm. Shi et al.** utilizes logistic regression to place pupils based on nine variables.
Using questionnaires, He et al.** shows students’ learning styles change over time. Gaheen et al.* classifies
learning behavior to predict engineering students’ academic achievement. Weka is used by Dutt et al.*® to predict
students” academics and talents with comparable accuracy. Cebi et al.*6 investigates techniques for extending
education data mining to uncover intriguing patterns and perspectives. Shi et al.*’ predicts students’ academic
performance based on medium of study, category, and baseline qualification using college and university
statistics. According to Ozbey et al.*é, learning behavior can predict exam results and identify risk factors for
intervention. Sabitha et al.’ study students’ interest, language, and subjects using association rule mining. Khan
et al.”® present a clustering approach to examine senior secondary students’ performance, finding that girls from
high-socioeconomic backgrounds do better in science. Songkram et al.’! analyzes students’ performance in
many categories utilizing education data mining.

We emphasize the need of precise student clustering in educational settings to discover learning patterns
and provide academic support in this study proposal. K-means and hierarchical clustering may misgroup
students and hamper intervention strategies due to educational data ambiguities. The HPEFCM-FSP algorithm
for student clustering accounts for academic measures” uncertainty by considering both membership and non-
membership degrees within clusters. Integration of uncertainty modeling should improve clustering reliability.
The authors expect to prove the HPEFCM-FSP algorithm’s superiority in resolving educational data uncertainties
through empirical validation utilizing real-world educational data. The NeuroEvoClass algorithm uses ANN and
swarm intelligence. Local optima and ineflicient weight assignments are addressed by using Particle Swarm
Optimization (PSO), a sophisticated metaheuristic, to optimize neural network weights. The PSO algorithm
replicates social behavior, allowing the neural network to explore more weight space and converge to optimal
weights, boosting performance prediction. This dynamic optimization technique improves the model’s capacity
to fit training data and generalize to unseen student performance data, making it more successful than standard
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training methods. Experimentally proving the PSO-optimized neural networK’s superiority will improve
academic success prediction and promote data-driven education decisions.

Experimental setup and procedure

HPEFCM-FSP, an advanced clustering technique, is used in Phase I of this project to solve the constraints
of existing clustering algorithms when dealing with uncertainty and imprecision in educational data. EDM
focuses on student performance profiling using the PFCMedoids clustering technique for a more flexible and
probabilistic depiction of student performance levels (Fig. 3). This strategy seeks to fully understand student
performance patterns to inform evidence-based student support, academic interventions, and tailored learning
strategies, improving education. Phase I also advances EDM knowledge, enabling evidence-driven interventions
and a more data-driven and effective educational environment that improves students’ academic achievement
and learning outcomes.

The proposed multi-phase approach for forecasting student performance was tested in a well-defined
experimental framework. To assure reliable results, implementation, data processing, and analysis were
thorough. Python programming enabled data processing, analysis, and visualization in the experimental
setting. NumPy and Pandas helped manage data, while Scikit-Fuzzy implemented the HPEFCM-FSP algorithm
during clustering. Visualization with Matplotlib and Seaborn produced useful graphs and charts. The hardware
arrangement was an Intel Core i7 processor with 16 GB RAM running Ubuntu, ensuring hardware consistency
throughout stages. Data pretreatment, algorithm execution, and result analysis were conducted under controlled
conditions to ensure uniformity. The uniform technique, shared software tools, hardware configuration, and
operating system ensured results reliability and credibility. The rigorous execution of experimental protocols
ensured accurate results, allowing a meaningful comparison between the HPEFCM-FSP clustering phase and
the NeuroEvoClass prediction phase.

Data preprocessing for student performance dataset

This study uses 600 undergraduate samples from KVG College of Engineering in Karnataka, India. The dataset
contains student demographics, academic results, and assessment data. This dataset helps the study understand
student performance and academic success variables. Data collected in real time excludes personal identifiers to
protect privacy. Thorough preprocessing assures data accuracy, completeness, and reliability. Mean imputation,
outlier management, and feature selection improve datasets. The dataset is divided into 80% training and 20%
testing subsets, providing a solid foundation for HPEFCM-FSP algorithm evaluation. Comprehensive data
collecting and preprocessing delivers a reliable dataset for impactful research and analysis.

HPEFCM-FSP is optimized for educational data clustering by carefully setting these hyperparameters. This
is driven by domain expertise, empirical experimentation, and a need for accurate, insightful, and interpretable
outcomes. Hyper-parameter modification can optimize the algorithm for educational datasets and circumstances.
The HPEFCM-FSP algorithm tunes hyperparameters by defining a search space, choosing performance criteria,
employing grid and random search strategies, cross-validation, and evaluating the optimized hyperparameters
on validation and test datasets. This detailed method optimizes the algorithm’s hyperparameters for optimal
performance, generalization, and real-world results.

HPEFCM-FSP algorithm for educational data clustering

Figure 4 shows the HPEFCM-FSP algorithm, a new educational data clustering method. Educational data is
complex and ambiguous, therefore traditional clustering fails. In HPEFCM-FSP, fuzzy C-Medoids, ensemble
techniques, feature selection, and preprocessing improve educational clustering accuracy and resilience.
Understanding student learning and performance requires EDM. Teachers can personalize interventions and
support for clusters of children with comparable qualities or academic achievement using clustering algorithms.
High-dimensional, noisy educational datasets may challenge conventional clustering. The HPEFCM-FSP
algorithm solves these problems using many ways. Probabilistic clustering assigns data points to multiple groups
with different probabilities, creating uncertainty. Integrating feature selection reduces dimensionality and
improves clustering by selecting relevant characteristics.
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Algorithm steps

1.

Data Preprocessing

Handle missing values using mean/mode imputation.
Normalize data using Min-Max Scaling:

r_ x—min(x)
max(x)—min(x)

Apply outlier removal using the Interquartile Range (IQR).
Feature Selection using Recursive Feature Elimination (RFE)

Rank features based on importance using an estimator (SVM coefficients).

Iteratively remove the least important features until optimal performance is achieved.

Initialize Cluster Representatives (Medoids)
Randomly select ccc medoids M = {m;, m, ...m.}.

Compute Membership Matrix U
The membership function for a data point x;belonging to cluster j

1
Ujjs———————=
¢ d(xi' m]-) m—-1
2":1(11(?6;', mk))

Where d(xi_ m; ) is the Euclidean distance and m is the fuzziness parameter.

5.

Update Medoids

Update medoid m;for each cluster:
m; = arg minge ¢, Sxe c,ufid (x;, %)
Compute Cluster Validity Metrics

Silhouette Score (S):

__b®-a@)
max(a(i),b(i))

where a(i)is the average intra-cluster distance and b(i)is the nearest-cluster distance.

Dunn Index (D):
minix; d (C;, Cj)
maxy 8 (Cy )
Where: d (Ci‘ C; ) is the distance between clusters C; and C;, 8(Cy )is the diameter
distance) of cluster Cj,
Convergence Check & Output Final Clusters

D=

Stop if the change in medoid positions is below a threshold €.

NeuroEvoClass algorithm

NeuroEvoClass is a cutting-edge program that predicts and classifies student performance using Swarm
Intelligence and ANN. NeuroEvoClass optimizes the ANN’s architecture and weights by intelligently exploring
the solution space, inspired by social organisms. This evolutionary strategy improves student performance
prediction accuracy and adaptability, making it a viable data-driven educational analytics tool. In the next
sections, we explain the NeuroEvoClass algorithm’s unique combination of PSO with dynamic neural network

design for outstanding performance in varied educational contexts.

(intra-cluster
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Algorithm steps

1. Data Preprocessing
e Similar to HPEFCM-FSP (Min-Max Scaling, handling missing values).
2. Initialize Neural Network Parameters

e Randomly generate a population of particles (each representing an ANN architecture).
e Each particle p consists of: Number of layers L, Neurons per layer N;, Activation functions A;and
Connection weights W.
e Randomly initialize weights using Xavier initialization:
w®~ (0 ,;)
N Nin+ Nout
Where WO = weight matrix for layer [, N (u,0%)= normal distribution with mean p and
o?variance, p=0 indicates the weights are centered around zero, 62is chosen to balance the scale of
activations across layers, preventing vanishing/exploding gradients and Ny, Ny, = the number of neurons
in the input and output layer.

3. Evaluate Fitness Function
e Train the ANN for each particle using Cross-Entropy Loss:

L= = Xia(ilog(3)) + (1-y;) log (1-3,)
Where n represents number of training samples, i = Index of each sample, log(y,) , log (1-¥,) = logarithm

of predicted probability for class 1 and 0 respectively.

e Compute performance metrics

Particle Swarm Optimization (PSO) Update
e Update each particle’s velocity and position:
(t+1)

= WVi(t)JrCl?l (Ppest — xi(t)) + €272 (Ipest — xi(t))

xi(:+1): xi(t) N Ui(t+1)

where: w = inertia weight, ¢, ¢, = acceleration coefficients, 17, 1, = random values in
[0,1], ppest= best position of the particle and g5 = global best position.

5. Topology Adaptation
e Ifvalidation performance stagnates, mutate the best-performing architecture by:

Adding or removing neurons, changing activation functions, adjusting dropout rates.

6. Train Final Neural Network

e Use the best-found architecture and weights.

e Fine-tune on training data using Adam optimizer.
7. Prediction and Model Evaluation

e Output final prediction results with performance metrics

Results and discussions

To find relevant patterns in student performance and learning behavior, the experimental study evaluated
the HPEFCM-FSP algorithm for educational data clustering. The program used fuzzy clustering, ensemble
techniques, and feature selection to outperform traditional and state-of-the-art clustering algorithms. Its
robustness analysis and evaluation measures showed its efficacy in various scenarios. In particular, the algorithm’s
Recursive Feature Elimination (RFE) in data preparation found the top eight characteristics needed to capture
student performance trends. The algorithm’s usefulness in EDM is highlighted by these findings, which inform
educational interventions and academic outcomes. Top eleven features are listed in Table 1.

The 11 features have strong discriminative strength to cluster students by academic traits and reveal their
academic performance, conduct, and learning outcomes. These features were chosen for their relevance to the
clustering job, although additional features in the dataset may be beneficial for other research goals. For student
performance pattern research, these 11 features are the most informative and impactful, making the HPEFCM-
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Fig. 4. Proposed framework for phase 1: HPEFCM-FSP algorithm.

FSP algorithm in EDM and clustering effective. The successfully clustered students’ overall performance into six
categories (Excellent, Very Good, Good, Above Average, Average, and absent), as demonstrated by the results in
shown in Tables 1 and 2. The confusion matrix (Table 2) provides a detailed breakdown of cluster assignments
for each performance category in the dataset.

The HPEFCM-FSP algorithm successfully clustered the students’ overall performance into six distinct
categories: “Above Average, “Good,” “Excellent,” “Average,” “Absent,” and a miscellaneous cluster with no
specific class attribute. Cluster 0 means “Above Average”, Cluster 2 “Good”, and Cluster 3 “Excellent”. In Cluster
4, performance is “Average” and in Cluster 5, “Absent”. These findings enable educational institutions discover
student performance patterns and develop targeted interventions and support to improve academic outcomes.
The algorithm’s academic attribute grouping aids educational data analysis and decision-making. The HPEFCM-
FSP algorithm is compared to K-means and Fuzzy clustering techniques in Table 3. Figure 5 shows the algorithms’
performance metrics: successfully clustered instances, erroneously clustered instances, Silhouette Score, Dunn
Index, and Clustering Accuracy.

Tests of the NeuroEvoClass algorithm for predicting and classifying student performance using various
educational datasets are presented here. We investigated the algorithm’s PSO and dynamic adaptability to
optimize neural network architectures. Table 4 shows how swarm size, maximum iterations, inertia weight
range, and convergence criteria affect PSO convergence and prediction accuracy. Accuracy and Fl-score
assessed NeuroEvoClass’ categorization ability. The dataset-based NeuroEvoClass technique enhanced neural
network construction for accurate student performance prediction. The initial network topology had three
layers with>>1 neurons, ReLU activation for the hidden layer and Sigmoid activation for the output layer. The
PSO optimization loop dynamically changed network structure by experimenting with neuron and activation
function configurations. To increase forecast accuracy, the technique modified the swarm’s neural network
designs’ positions and velocities during iterations.

convergence analysis

As NeuroEvoClass continues, the PSO optimization loop’s convergence curve stabilizes and fitness values
gradually improve. The termination criteria help determine if the algorithm has reached an acceptable level
of convergence, and the proximity of the fitness values to the predefined convergence threshold indicates the
algorithm’s effectiveness in finding a high-performing neural network architecture. We apply the NeuroEvoClass
algorithm to optimize a neural network for classifying student performance based on a dataset of exam
scores and corresponding labels (pass or fail). The goal is to maximize the accuracy of the neural network in
predicting whether a student will pass or fail the exam. We set the following parameters shown in Table 5 for
the NeuroEvoClass algorithm. These parameters will be used to guide the PSO optimization process in the
NeuroEvoClass algorithm.

We start with a randomly initialized population of 20 neural network architectures, each with a different
configuration of layers, neurons per layer, and activation functions. The algorithm then proceeds with the PSO
optimization loop, updating the positions and velocities of the particles (neural network architectures) in the
swarm based on their fitness and the global best fitness found so far. During each iteration, the algorithm evaluates
the fitness (accuracy) of each neural network architecture on the training dataset. The convergence behavior can
be visualized by plotting the fitness values against the number of iterations (from 1 to 100) shown in Fig. 6.
Upon convergence, the NeuroEvoClass algorithm produced a highly optimized neural network architecture
tailored to the characteristics of the student performance dataset. The final network topology comprised five
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layers with>!®152025 neurons per layer. The activation functions were set to ReLU for Hidden layer 1, Tanh for

Hidden layer 2, ReLU for Hidden layer 3, and Sigmoid for the output layer.

The algorithm reaches the termination criteria when it completes the maximum number of iterations
(T_max=100) or when the fitness improvement falls below the predefined convergence threshold (¢=0.01).
Since it achieved its maximum iteration, the algorithm ended at 100. The convergence curve shows that the
method optimized to 0.932 fitness. As the algorithm approached the convergence threshold (e=0.01), the
neural network topology was tweaked for optimal results. The convergence behavior analysis demonstrates
that the NeuroEvoClass algorithm converged to an optimal neural network design for student performance
prediction and classification with excellent accuracy. The algorithm met the termination conditions, and the
convergence curve showed fitness values improving over iterations, creating a high-performing neural network.
NeuroEvoClass obtained 93.2% fitness on the student performance prediction challenge after 100 iterations. This
performance beats baseline models and proves PSO-based dynamic neural network design optimization works.
The adaptive nature of the algorithm allowed it to adjust the neural network architecture to the complexities of the
student performance dataset, leading to enhanced predictive accuracy. Although the NeuroEvoClass algorithm
performed well, its limitations must be considered. Real-world dataset noise and training data representativeness
may make 100% accuracy impossible. Algorithm success can also depend on evaluation metrics like accuracy or
F1-score. These restrictions must be considered while interpreting results.

Optimized neural network architectures
Table 6 shows the NeuroEvoClass algorithm’s final architecture settings. The method predicted student
performance using a training dataset.

This Table 6 shows the key components of each optimal neural network architecture. Neural networks have
input, hidden, and output layers, which are listed in the “Number of Layers” column. The “Neurons per Layer”
column lists neurons per layer. Last, the “Activation Functions” column lists each layer’s activation functions.
The NeuroEvoClass algorithm’s optimal neural network architectures result from convergence. Neural network
architecture is adapted to data features to properly predict student performance. The dataset determines these
architecture combinations for student performance prediction. The method may optimize structures for different
datasets or tasks, demonstrating its adaptability. Model structure that best reflects student performance data
patterns is revealed by optimum neural network topologies, enabling accurate predictions and classifications.

Comparison with baseline

Figure 7 contrasts NeuroEvoClass neural networks with a baseline student performance model. The baseline
model in this study is a feedforward neural network with two 50-neuron hidden layers. Hidden layers employ
ReLU while output layers use Softmax for multiclass classification. The performance comparison graph
demonstrates accuracy for each neural network architecture at different NeuroEvoClass algorithm iterations.
The optimized neural network accuracy is red, while the baseline model accuracy is blue. The graph shows that
the NeuroEvoClass algorithm considerably improved neural network accuracy over baseline.

Performance comparison Table 7 shows that NeuroEvoClass-optimized neural networks outperform the
baseline model. NeuroEvoClass outperforms the baseline model in accuracy, precision, recall, and F1-score
across 100 iterations. Improved accuracy and other assessment metrics suggest that the NeuroEvoClass algorithm
optimizes neural network architecture. Optimized neural networks perform better due to NeuroEvoClass’s
dynamic exploration of varied network topologies and adaptive optimization technique. NeuroEvoClass
has strengths, yet also has drawbacks. Parameters and dataset features affect results. The initial population
configuration might also affect convergence to an optimal solution. Comparing the NeuroEvoClass algorithm to
the baseline model shows its great improvement in student performance prediction. NeuroEvoClass's adaptable
nature and ability to dynamically improve neural network designs make it a potential option for individualized
and accurate student performance prediction in varied educational contexts. The NeuroEvoClass algorithm
regularly beat the baseline model in Table 2, with much higher assessment metrics. Since the technique was
adaptive, it dynamically optimized the neural network design, improving predicted accuracy.

Performance comparison with state-of-art methods

Table 8 shows a complete performance comparison of the NeuroEvoClass algorithm with numerous baseline
approaches utilized in student performance classification assignments. The goal is to assess the algorithm’s
neural network optimization performance for educational data processing. We compared classification measures
like accuracy, precision, recall, F1-Score, and error rate across different swarm sizes to determine how this
affects algorithm performance. We compared the NeuroEvoClass algorithm against many state-of-the-art EDM
approaches to determine its efficacy in predicting student performance. The selected methods were judged on
relevance to student performance prediction and categorization tasks, implementation availability, and approach
diversity. Further information can be found in the Appendix provided as a supplementary file.

In this study, we tested K-NN, NN, SVM, DT, NB, DT-SVM, NB-KNN, DT-SVM-KNN, NB-NN-DT, SVM-
NB-KNN, and NeuroEvoClass across different swarm sizes. NeuroEvoClass was the most promising algorithm,
with the best average accuracy (92%) and balanced precision, recall, specificity, and F-score (0.89-0.94). As
indicated in Fig. 8, NeuroEvoClass was efficient in 13-39 s. However, the algorithm’s interpretability and data
requirements may be limits. NeuroEvoClass excels in real-world applications that require high accuracy and
balanced metrics. Further research on interpretability, hyperparameter tweaking, and real-world validation
would optimize the algorithm’s potential and ensure responsible use. Machine learning algorithms’ performance
indicators over swarm sizes are summarized in Table 9. The Table 9 shows each method’s average accuracy,
precision, recall, specificity, F-score, error rate, and time, highlighting their predictive powers. The methods
evaluated include K-Nearest Neighbors (K-NN), Neural Network (NN), Support Vector Machine (SVM),
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S.No | Attribute | Description

1 AIM Average internal marks

2 ATT Class attendance in percentage
3 MEL Mother education level

4 EE Sem end exam score

5 FEL Father education level

6 ST Weekly study time

7 FFS Family financial status

8 FF Number of past class failures
9 SSLC SSLC percentage

10 PUC PUC percentage

11 AC Admission category

Table 1. Optimal attributes.

Cluster no | No of instances | Percentage (%) | Labels Score
0 190 25.13 Above average | 70-79
1 62 8.20 No class N/A

2 310 41.01 Good 80-89
3 23 3.04 Excellent 90-100
4 124 16.40 Average 50-69
5 47 6.22 Absent N/A

Table 2. Class distribution summary.

K-means | Fuzzy clustering | HPEFCM-FSP
Correctly clustered instance 40 47 52
Incorrectly clustered instance 18 11 6
Silhouette score 0.65 0.72 0.80
Dunn index 0.25 0.30 0.35
Clustering accuracy 68.97% 81.03% 89.66%
Area under the ROC curve (AUC) | 0.70 0.75 0.85

Table 3. Clustering performance comparison.

Decision Tree (DT), Naive Bayes (NB), DT-SVM, NB-KNN, DT-SVM-KNN, NB-NN-DT, SVM-NB-KNN,
and NeuroEvoClass. Each row shows the average performance metrics of a method across swarm sizes. This
overview helps select the best algorithm for accurate and efficient forecasts by revealing each method’s strengths
and weaknesses.

With 92% accuracy, the NeuroEvoClass algorithm outperforms existing machine learning algorithms.
The balanced accuracy, recall, specificity, and F-score suggest that it correctly detects positive and negative
situations with low false positives and negatives. As seen in Fig. 9, the approach is accurate across swarm
sizes. NeuroEvoClass’s efficiency and low time consumption make it intriguing for time-sensitive applications
and large datasets. Reduced interpretability, vulnerability to data needs and hyperparameter tuning, and the
necessity to test its generalizability to other domains and datasets are problems. NeuroEvoClass solves complex
classification issues with power and reliability, making it a promising real-world solution.

Practical integration into educational decision-making platforms

To strengthen the real-world applicability of our proposed model, we outline a practical example of how the
system can be integrated into educational decision-making platforms, particularly Early Warning Systems
(EWS) used in higher education institutions.

A dynamic and data-driven EWS can use the HPEFCM-FSP clustering algorithm and NeuroEvoClass
predictive model. Teachers, counselors, and administrators can use real-time decision support from the system
incorporated in an institution’s Academic Information System (AIS) or Learning Management System (LMS).
Phase I: student profiling through HPEFCM-FSP clustering

In the beginning of each academic term, the HPEFCM-FSP algorithm can cluster students into “Excellent,”
“Good, “Average,” and “At-Risk” Academic and demographic factors like internal assessment results, attendance,
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Fig. 5. HPEFCM-FSP Algorithm performance evaluation for (a) successfully and incorrectly clustered
instances and (b) clustering evaluation matrix.

0 190 78.5 85.2 82.6 7.4 2 3 1 GT3 |703 62.7 Free
1 62 45.0 36.7 30.2 1.9 1 0 3 LE3 45.5 32.8 Paid
2 310 65.7 72.8 75.6 52 3 4 2 LE3 63.7 59.1 Free
3 23 92.3 88.9 94.3 9.8 4 4 1 GT3 |852 78.6 Free
4 124 57.9 62.4 66.8 4.6 2 2 4 LE3 55.9 48.7 Paid
5 47 0.0 0.0 0.0 0.0 1 1 1 LE3 0.0 0.0 Free

Table 4. Cluster characteristics summary.

parental education, and prior academic success constitute these groups. Student clusters with low performance

can be automatically flagged for early intervention.
Phase 2: dynamic performance prediction with NeuroEvoClass
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Parameter Value

Swarm size (S) 30

Maximum number of iterations (T_max) | 100

Inertia weight range ([w_min, w_max]) | [0.4, 0.9]
Convergence criterion (g) 0.01
Cognitive coefficient (c1) 1.5
Social coefficient (c2) 1.5
Mutation rate () 0.1

Table 5. Hyper parameter settings.

g
£
= 0.4
0.2
0
0 25 50 75 100
Iterations

Fig. 6. Convergence curve of NeuroEvoClass algorithm.

After clustering pupils, the NeuroEvoClass model may predict academic success or failure based on recent
activity and assessment outcomes.The Particle Swarm Optimization-optimized artificial neural network has
dynamically adjustable parameters.It analyzes pupils’ academic achievement prospects weekly or monthly by
updating their risk profiles with new input data.

Institutions can move from reactive to proactive academic support by efficiently allocating resources and
delivering timely interventions that can improve student results. Data-driven ecosystems improve academic
performance, institutional accountability, and student satisfaction.

Limitations and future work

HPEFCM-FSP algorithm clusters educational data well on benchmark datasets, however the publication
acknowledges limitations and proposes further research. Addressing these constraints and exploring
improvements can boost the algorithm’s EDM efficacy and usefulness.

Limitations of the study
The HPEFCM-FSP algorithm’s performance depends on dataset characteristics. This study employed benchmark
datasets to represent varied educational data, but other datasets with unique qualities may impact the algorithm’s
clustering results.

HPEFCM-FSP performs well but may struggle with large datasets. Larger datasets may require more
processing resources, limiting iterative efficiency.

Generality: Benchmark datasets show algorithm’s educational data clustering effectiveness. Generalizing
the findings to all educational datasets is problematic because dataset variables and environment might alter
algorithm performance.

Areas for future research and improvements
HPEFCM-FSP could be optimized for scalability and processing large educational datasets in future research.
Distributed and parallel computing may solve computational issues.

Scalability with Noisy Data: Test algorithms on noisy or missing datasets. Learning how to manage noisy data
and robustly impute missing values could make the algorithm more useful for educational settings.
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Architecture | Number of layers | Neurons per layer | Activation functions

Architecture 1 | 3 [10,30,50] [ReLU, ReLU, Sigmoid]

Architecture 2 | 4 [10,20,40] [ReLU, Tanh, ReLU, Sigmoid]

[60, 40, 30, 20, 10] | [Sigmoid, ReLU, Tanh, ReLU, Sigmoid]

Architecture 3

(8]

Table 6. Neural network architectures summary.
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Fig. 7. Performance comparison of NeuroEvoClass algorithm.

Model Accuracy | Precision | Recall | F1-score
Optimized neural net | 0.92 0.91 0.92 0.91
Baseline model 0.85 0.80 0.78 0.79

Table 7. Neural network architecture comparison.

Improve Interpretability: The HPEFCM-FSP method can reveal student performance trends by enhancing
interpretability. Cluster visualization and explanation may help educators.

Customizing Educational Data Clustering: Add domain-specific information and limits to improve
performance. Domain experts may improve feature selection and parameter adjusting.

Future studies should evaluate the algorithm’s impact on educational interventions and decision-making.
Longitudinal studies and intervention effectiveness based on the algorithm’s grouping could verify its usefulness.

Conclusions

NeuroEvoClass is a novel strategy for an educational institution’s EWS to identify underperforming students.
With its unique PSO and dynamic adaption features, NeuroEvoClass optimises neural network topologies.
Adaptability allows the approach to dynamically fine-tune network topologies based on the complicated
student trait dataset. Innovative progressive convergence shows the algorithm’s ability to enhance prediction
across iterations. NeuroEvoClass’s accuracy, precision, recall, and F1-score surpass traditional models, making it
excellent for Early Warning Systems. EDM predicts student performance to solve complex academic problems.
Research has two phases. Phase I uses the HPEFCM-FSP algorithm to group students by performance to identify
those who need additional help. Phase II improves ANN’s student outcome prediction and classification with
NeuroEvoClass and Particle Swarm Optimization. Student academic performance insights, decision-making,
and educational results are the goals of the multiphase strategy.
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Metrics
Methods Swarm size | Accuracy | Precision | Recall | Specificity | F-score | Errorrate | Time taken (S)
10 0.72 0.73 0.70 0.75 0.72 0.28 39
15 0.68 0.69 0.67 0.71 0.68 0.32 42
K-NN 20 0.70 0.71 0.68 0.72 0.70 0.30 48
25 0.68 0.69 0.67 0.70 0.68 0.32 55
30 0.72 0.73 0.70 0.75 0.72 0.28 61
Average 0.70 0.71 0.68 0.72 0.70 0.30 49
10 0.86 0.85 0.87 0.83 0.86 0.14 50
15 0.88 0.87 0.89 0.86 0.88 0.12 62
NN 20 0.89 0.88 0.90 0.88 0.89 0.11 73
25 0.88 0.87 0.89 0.87 0.88 0.12 78
30 0.89 0.88 0.90 0.88 0.89 0.11 88
Average 0.88 0.87 0.89 0.86 0.88 0.12 72
10 0.74 0.76 0.70 0.78 0.73 0.26 28
15 0.72 0.74 0.67 0.76 0.70 0.28 32
SVM 20 0.71 0.73 0.66 0.75 0.69 0.29 35
25 0.69 0.71 0.64 0.73 0.67 0.31 38
30 0.70 0.72 0.65 0.74 0.68 0.30 41
Average 0.71 0.73 0.66 0.75 0.69 0.28 57
10 0.76 0.78 0.72 0.80 0.75 0.24 21
15 0.74 0.76 0.69 0.78 0.72 0.26 25
DT 20 0.72 0.74 0.68 0.76 0.71 0.28 29
25 0.70 0.72 0.66 0.74 0.68 0.30 32
30 0.71 0.73 0.67 0.75 0.70 0.29 35
Average 0.72 0.74 0.68 0.7648 0.71 0.27 32
10 0.78 0.80 0.74 0.82 0.77 0.22 6
15 0.75 0.78 0.71 0.80 0.74 0.25 9
NB 20 0.73 0.75 0.69 0.77 0.72 0.27 23
25 0.71 0.72 0.67 0.75 0.70 0.29 26
30 0.72 0.74 0.69 0.75 0.71 0.28 21
Average 0.74 0.76 0.70 0.78 0.73 0.27 19
10 0.86 0.90 0.82 0.90 0.85 0.14 48
15 0.85 0.86 0.83 0.86 0.84 0.15 81
DT-SVM 20 0.83 0.86 0.79 0.87 0.82 0.17 86
25 0.77 0.78 0.74 0.80 0.76 0.23 108
30 0.78 0.79 0.76 0.80 0.78 0.22 136
Average 0.82 0.84 0.79 0.85 0.81 0.19 90
10 0.80 0.83 0.76 0.84 0.80 0.20 158
15 0.79 0.81 0.74 0.83 0.79 0.23 180
NB-KNN 20 0.77 0.80 0.74 0.81 0.76 0.23 198
25 0.73 0.74 0.69 0.76 0.71 0.28 218
30 0.74 0.75 0.70 0.75 0.73 0.26 242
Average 0.76 0.79 0.73 0.80 0.75 0.24 199
10 0.82 0.85 0.78 0.86 0.87 0.18 83
15 0.81 0.85 0.77 0.86 0.80 0.19 102
DT-SVM-KNN | 20 0.79 0.82 0.75 0.84 0.78 0.21 115
25 0.73 0.75 0.70 0.77 0.72 0.27 140
30 0.75 0.76 0.72 0.78 0.74 0.25 156
Average 0.79 0.81 0.75 0.82 0.78 0.21 119
10 0.90 0.92 0.86 0.94 0.90 0.10 24
15 0.90 0.92 0.89 0.92 0.90 0.09 35
NB-NN-DT 20 0.89 0.91 0.87 0.91 0.89 0.11 46
25 0.83 0.84 0.82 0.84 0.83 0.17 56
30 0.83 0.84 0.81 0.84 0.83 0.17 65
Average 0.87 0.89 0.85 0.89 0.87 0.14 45
Continued
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Metrics
Methods Swarm size | Accuracy | Precision | Recall | Specificity | F-score | Errorrate | Time taken (S)
10 0.88 0.9130 0.8400 | 0.92 0.88 0.12 30
15 0.88 0.8866 0.8600 | 0.89 0.88 0.12 49
SVM-NB-KNN | 20 0.86 0.8913 0.8200 | 0.90 0.86 0.14 68
25 0.79 0.8010 0.7650 | 0.81 0.79 0.21 91
30 0.80 0.8099 0.7840 | 0.82 0.80 0.20 112
Average 0.84 0.86 0.82 0.87 0.83 0.15 70
10 0.95 0.95 0.94 0.96 0.94 0.05 13
15 0.93 0.94 0.92 0.95 0.93 0.06 16
NueroEvoClass | 20 0.92 0.93 0.90 0.94 0.92 0.07 28
25 0.88 0.89 0.86 0.87 0.86 0.13 27
30 0.89 0.86 0.85 0.86 0.86 0.13 39
Average 0.92 0.91 0.89 0.91 0.90 0.09 75

Table 8. Performance comparison with state-of-art methods. Significant values are in bold.

Time Taken (in Sec)
NeuroEvoClass |—
SVM-NB-KNN ]
NE-NN-DT |
DT-SVM-KNN
" VI B L ———————-_—_——
2
= DT-5VM sl
]
= NB E ® Time Taken (in Sec)
DT |
SVM
NN —
0 50 100 150 200 250
Time in seconds
Fig. 8. Duration of NeuroEvoClass algorithm.
Methods Accuracy | Precision | Recall | Specificity | F-score | Error rate | Time taken (S)
K-NN 0.70 0.71 068 |0.72 070 {030 49
NN 0.88 0.87 0.89 | 0.86 088 012 72
SVM 0.71 0.73 066 |0.75 069 |0.28 57
DT 0.72 0.74 068 |0.76 0.71 0.27 32
NB 0.74 0.76 070 | 0.78 073|027 19
DT-SVM 0.82 0.84 079 |0.85 0.81 0.19 90
NB-KNN 0.76 0.79 073 | 0.80 075 |0.24 199
DT-SVM-KNN | 0.79 0.81 075 | 0.82 078 | 021 119
NB-NN-DT | 0.87 0.89 085 | 0.89 087 |0.14 45
SVM-NB-KNN | 0.84 0.86 082 |0.87 083 |0.15 70
NeuroEvoClass | 0.92 091 0.89 091 0.90 0.09 75
Table 9. Average performance comparison with state-of-art methods.
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Fig. 9. Error rate of the NeuroEvoClass algorithm.
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