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Effective student performance evaluation is essential for improving education, especially in higher 
and technical schools. Data mining helps solve educational and administrative problems. School 
performance prediction is a key field of Educational Data Mining (EDM), however manual computation 
and data mining methods struggle with the expanding volume of complicated data from varied 
sources, leaving research gaps and unresolved challenges. An integrated, multi-phase strategy to these 
issues is presented in this work. This study uses the Hybrid Probabilistic Ensemble Fuzzy C-Medoids 
with Feature Selection (HPEFCM-FSP) algorithm to cluster students by academic performance in 
Phase I to identify those who need extra help. The NeuroEvoClass algorithm mixes evolutionary 
strategies inspired by swarm intelligence and artificial neural networks (ANN) to improve student 
performance prediction in Phase II. Particle Swarm Optimization (PSO) optimizes neural network 
weight assignments, dynamically fine-tuning network topologies depending on the complex student 
dataset. The algorithm improves prediction power through progressive convergence. The proposed 
methods outperform traditional models in accuracy, precision, recall, and F1-score, according to 
this study. Since NeuroEvoClass reliably identifies pupils at risk of academic underperformance, it 
is promising for Early Warning Systems (EWS) in educational institutions. The study’s multi-phase 
approach helps educators and policymakers make data-driven decisions about student academic 
achievement. HPEFCM-FSP consistently outperforms K-means and Fuzzy C-means in clustering 
educational data by getting higher Silhouette Scores and Dunn Index values on benchmark datasets. 
This algorithm’s strong feature selection and clustering help target educational interventions by 
revealing student learning behaviors. By identifying well-separated groups of high-achieving, 
above-average, and struggling students, HPEFCM-FSP helps institutions personalize support and 
interventions. Educational administrators, teachers, and policymakers can use the algorithm to handle 
huge, heterogeneous educational datasets due to its efficiency and robustness.
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Quality education and academic performance are crucial in the continuously changing higher education 
scene. Education worldwide must transmit knowledge while also helping students reach their potential and 
staff provide the best learning experiences1. This requires accurate and complete student performance review. 
However, the digital age has brought unparalleled data creation. Data from student exams, course exchanges, 
online learning platforms, attendance records, and faculty feedback floods educational institutions. Manual 
analysis and decision-making cannot completely harness this data deluge2.

AI and advanced data mining are needed to solve these problems and maximize educational data. EDM 
provides a powerful framework for analyzing enormous and diverse educational data. EDM uses data mining 
methods and machine learning models to help educational institutions make data-driven decisions, find trends, 
and improve the learning experience3. EDM lets you track and assess student performance. EDM predicts 
academic performance, identifies at-risk kids, and customizes learning experiences for students. EDM helps 
teachers assess instruction, student feedback, and professional development. The Venn diagram below (Fig. 1) 
shows three main research areas: Educational Data Sources, Data Preprocessing and Feature Engineering, and 
Data Mining Algorithms & AI Techniques. The project blends EDM and AI for Performance Evaluation to 
predict and assess higher education student and teacher performance. This study uses data mining and AI to 
find patterns in preprocessed educational data. This predicts academic performance, identifies at-risk pupils, 
and personalizes teach4.

Advanced AI and data mining technologies can improve performance evaluation, resource allocation, and 
student potential in schools5,6. Schools, students, teachers, administrators, and researchers must work together at 
various stages. This teamwork assures adequate data collection, preparation, and analysis. Researchers and data 
analysts preprocess data for analysis, whereas data scientists employ AI and advanced data mining techniques to 
identify patterns and insights7. Researchers estimate students in the Performance Prediction and Evaluation stage 
using examined data. These projections help educators and administrators make better decisions, improving 
education and student performance. Stakeholder involvement ensures meaningful and practical insights for 
higher education improvement8,9. Recent studies further validate the use of hybrid approaches in educational 
performance prediction. Sh. Khaled et al.10 and Elshabrawy et al.11 highlight enhanced prediction accuracy using 
ensemble and swarm intelligence models. AlEisa et al.12 support the use of fuzzy logic for educational insights, 
while El-Kenawy et al.13 emphasize the importance of explainable AI reinforcing our model’s transparency and 
real-world relevance. Figure 2 shows the higher education performance prediction and evaluation process model.

By using AI and data mining to overcome restrictions, this research increases educational data analysis and 
performance evaluation. The two-phased methodology in Fig. 3 addresses higher education quality issues. Phase 
1 uses the HPEFCM-FSP Algorithm to construct flexible and probabilistic student performance profiles that 
account for educational data uncertainties. Phase 2 incorporates the Neuro EvoClass Algorithm, which uses 
swarm intelligence and ANNs to accurately predict student performance14. PSO optimization of ANN weights 
and dynamic neural network architecture improve educational outcomes, evidence-based decision-making, and 
individualized learning. The study, employing a real-time dataset of 600 engineering students at KVG College 
of Engineering, India, reveals that the proposed approach can improve digital education quality and outcomes.

Contributions

Fig. 1.  Synergy in higher education performance evaluation.
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•	 HPEFCM-FSP clustering method handles high-dimensional, noisy and uncertain educational data. For 
EDM, this method clusters better than K-means and Fuzzy C-means.

•	 NeuroEvoClass system predicts student academic progress utilizing PSO and dynamic neural network design. 
This dynamic neural network configuration strategy outperforms prediction methods.

•	 Our experimental review included testing the suggested models on multiple datasets. This gave us a real-world 
situation to test our methods and make them more applicable to teaching.

•	 We compared HPEFCM-FSP and NeuroEvoClass against SPRAR, HLVQ, and MSFMBDNN-LSTM for stu-
dent performance prediction. We proved our methods beat these models in prediction accuracy, computa-
tional efficiency, and clustering robustness.

•	 Our algorithms cluster children into performance groups and anticipate at-risk students to give instructors 
actionable insights. Informing evidence-based academic interventions allows for more tailored support for 
students across performance categories.

Fig. 3.  Conceptual view of proposed system for enhancing educational experience in higher education.

 

Fig. 2.  Performance evaluation model for higher education. HPEFCM-FSP.
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Literature survey
EDM in higher education
K-Means and hierarchical clustering have been used in several educational research to group pupils by 
academic achievement15. Traditional methods struggle with educational data ambiguity and imprecision. A 
comprehensive review of data mining techniques in education16–18 focused on clustering algorithms like K-Means 
and hierarchical clustering to identify patterns in student performance, understand learning behaviors, and 
inform teaching strategies. Meanwhile, used K-Means clustering to analyze online student learning behavior19, 
compared K-Means and hierarchical clustering to group students by academic performance20, and used 
hierarchical clustering to identify groups of students needing targeted academic support. Clustering to detect at-
risk pupils, fuzzy clustering for nuanced learning behavior representation, and K-Means and fuzzy C-Means for 
learning style categorization were also examined. K-Means’ ability to predict academic success and hierarchical 
clustering’s ability to identify underperforming pupils demonstrate these methods’ usefulness and drawbacks. 
Intuitionistic fuzzy-based clustering is used describe student performance more accurately and flexibly21.

Machine learning for student performance prediction
Machine learning is widely used in education to predict and analyze student performance. Neural networks 
can handle complex educational data. A literature review on EDM covers its basics, common operations, and 
future research fields22. Another paper reviews EDM pre-processing methods, notably clustering, and discusses 
future approaches23. The EI Bosque University data-driven student performance prediction model is accurate 
and suggests additional study24. Expert evaluation of high school students’ competence based on school ranking 
using linear regression25. The future of EDM focuses on Big Data, MOOCs, interpretability, scalability, and 
learning analytics26,27. EDM and Learning Analytics enable quantitative constructive learning and researcher 
collaboration28. Finally, proposes a framework for gathering and scoping a lot of data to evaluate educational 
institutions against accrediting criteria, saving manual effort and offering a detailed alignment evaluation and 
learning outcomes design29.

Artificial neural network in performance prediction
Higher education student performance prediction using Artificial Neural Networks is covered. Attendance 
variables helped Wang and Zhang30 predict 3518 students’ performance with 80.47% accuracy using ANN. 
Rodr’ıguez-Hernández et al.31 used deep learning to predict academic achievement in R Programming for 
postgraduate students utilizing 395 student data. Niyogisubizo et al.32 explored the use of hierarchical parallel 
ANN to evaluate university students’ performance for admission, training, and placement. Moubayed et al.33 
predicted secondary school performance with 93.6% accuracy using Naive Bayes. Weka and data mining 
helped Lovelace et al.34 forecast students’ performance based on EQ and IQ using classification algorithms with 
reliable results. For student performance evaluation, Lau et al.35 found Differential Evolution feature selection 
superior to previous methods. Bharara et al.36 used higher education data to evaluate an adaptive neuro-fuzzy 
inference system with backpropagation to predict student performance. Panskyi and Korzeniewska37 predicted 
student performance using statistical analysis and neural network modeling with 84.8% accuracy. Iatrellis et 
al.38 presented MIMO SAPP, which outperformed similar algorithms in accuracy. Umair and Majid Sharif39 
developed a convolutional neural network-based MOOC dropout prediction model with competitive accuracy, 
recall, F1 score, and AUC score. These studies show that ANN can predict student performance in many 
educational environments with high accuracy.

Prediction of student performance in data mining
This section reviews data mining studies on student performance prediction. Iatrellis et al.40 classify student and 
instructor performance using surveys. Balaban et al.41 characterizes students’ talents and social integration using 
J4.8 and random tree algorithm. Shi et al.42 utilizes logistic regression to place pupils based on nine variables. 
Using questionnaires, He et al.43 shows students’ learning styles change over time. Gaheen et al.44 classifies 
learning behavior to predict engineering students’ academic achievement. Weka is used by Dutt et al.45 to predict 
students’ academics and talents with comparable accuracy. Çebi et al.46 investigates techniques for extending 
education data mining to uncover intriguing patterns and perspectives. Shi et al.47 predicts students’ academic 
performance based on medium of study, category, and baseline qualification using college and university 
statistics. According to Özbey et al.48, learning behavior can predict exam results and identify risk factors for 
intervention. Sabitha et al.49 study students’ interest, language, and subjects using association rule mining. Khan 
et al.50 present a clustering approach to examine senior secondary students’ performance, finding that girls from 
high-socioeconomic backgrounds do better in science. Songkram et al.51 analyzes students’ performance in 
many categories utilizing education data mining.

We emphasize the need of precise student clustering in educational settings to discover learning patterns 
and provide academic support in this study proposal. K-means and hierarchical clustering may misgroup 
students and hamper intervention strategies due to educational data ambiguities. The HPEFCM-FSP algorithm 
for student clustering accounts for academic measures’ uncertainty by considering both membership and non-
membership degrees within clusters. Integration of uncertainty modeling should improve clustering reliability. 
The authors expect to prove the HPEFCM-FSP algorithm’s superiority in resolving educational data uncertainties 
through empirical validation utilizing real-world educational data. The NeuroEvoClass algorithm uses ANN and 
swarm intelligence. Local optima and inefficient weight assignments are addressed by using Particle Swarm 
Optimization (PSO), a sophisticated metaheuristic, to optimize neural network weights. The PSO algorithm 
replicates social behavior, allowing the neural network to explore more weight space and converge to optimal 
weights, boosting performance prediction. This dynamic optimization technique improves the model’s capacity 
to fit training data and generalize to unseen student performance data, making it more successful than standard 
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training methods. Experimentally proving the PSO-optimized neural network’s superiority will improve 
academic success prediction and promote data-driven education decisions.

Experimental setup and procedure
HPEFCM-FSP, an advanced clustering technique, is used in Phase I of this project to solve the constraints 
of existing clustering algorithms when dealing with uncertainty and imprecision in educational data. EDM 
focuses on student performance profiling using the PFCMedoids clustering technique for a more flexible and 
probabilistic depiction of student performance levels (Fig. 3). This strategy seeks to fully understand student 
performance patterns to inform evidence-based student support, academic interventions, and tailored learning 
strategies, improving education. Phase I also advances EDM knowledge, enabling evidence-driven interventions 
and a more data-driven and effective educational environment that improves students’ academic achievement 
and learning outcomes.

The proposed multi-phase approach for forecasting student performance was tested in a well-defined 
experimental framework. To assure reliable results, implementation, data processing, and analysis were 
thorough. Python programming enabled data processing, analysis, and visualization in the experimental 
setting. NumPy and Pandas helped manage data, while Scikit-Fuzzy implemented the HPEFCM-FSP algorithm 
during clustering. Visualization with Matplotlib and Seaborn produced useful graphs and charts. The hardware 
arrangement was an Intel Core i7 processor with 16 GB RAM running Ubuntu, ensuring hardware consistency 
throughout stages. Data pretreatment, algorithm execution, and result analysis were conducted under controlled 
conditions to ensure uniformity. The uniform technique, shared software tools, hardware configuration, and 
operating system ensured results reliability and credibility. The rigorous execution of experimental protocols 
ensured accurate results, allowing a meaningful comparison between the HPEFCM-FSP clustering phase and 
the NeuroEvoClass prediction phase.

Data preprocessing for student performance dataset
This study uses 600 undergraduate samples from KVG College of Engineering in Karnataka, India. The dataset 
contains student demographics, academic results, and assessment data. This dataset helps the study understand 
student performance and academic success variables. Data collected in real time excludes personal identifiers to 
protect privacy. Thorough preprocessing assures data accuracy, completeness, and reliability. Mean imputation, 
outlier management, and feature selection improve datasets. The dataset is divided into 80% training and 20% 
testing subsets, providing a solid foundation for HPEFCM-FSP algorithm evaluation. Comprehensive data 
collecting and preprocessing delivers a reliable dataset for impactful research and analysis.

HPEFCM-FSP is optimized for educational data clustering by carefully setting these hyperparameters. This 
is driven by domain expertise, empirical experimentation, and a need for accurate, insightful, and interpretable 
outcomes. Hyper-parameter modification can optimize the algorithm for educational datasets and circumstances. 
The HPEFCM-FSP algorithm tunes hyperparameters by defining a search space, choosing performance criteria, 
employing grid and random search strategies, cross-validation, and evaluating the optimized hyperparameters 
on validation and test datasets. This detailed method optimizes the algorithm’s hyperparameters for optimal 
performance, generalization, and real-world results.

HPEFCM-FSP algorithm for educational data clustering
Figure 4 shows the HPEFCM-FSP algorithm, a new educational data clustering method. Educational data is 
complex and ambiguous, therefore traditional clustering fails. In HPEFCM-FSP, fuzzy C-Medoids, ensemble 
techniques, feature selection, and preprocessing improve educational clustering accuracy and resilience. 
Understanding student learning and performance requires EDM. Teachers can personalize interventions and 
support for clusters of children with comparable qualities or academic achievement using clustering algorithms. 
High-dimensional, noisy educational datasets may challenge conventional clustering. The HPEFCM-FSP 
algorithm solves these problems using many ways. Probabilistic clustering assigns data points to multiple groups 
with different probabilities, creating uncertainty. Integrating feature selection reduces dimensionality and 
improves clustering by selecting relevant characteristics.
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Algorithm steps

NeuroEvoClass algorithm
NeuroEvoClass is a cutting-edge program that predicts and classifies student performance using Swarm 
Intelligence and ANN. NeuroEvoClass optimizes the ANN’s architecture and weights by intelligently exploring 
the solution space, inspired by social organisms. This evolutionary strategy improves student performance 
prediction accuracy and adaptability, making it a viable data-driven educational analytics tool. In the next 
sections, we explain the NeuroEvoClass algorithm’s unique combination of PSO with dynamic neural network 
design for outstanding performance in varied educational contexts.
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Algorithm steps

Results and discussions
To find relevant patterns in student performance and learning behavior, the experimental study evaluated 
the HPEFCM-FSP algorithm for educational data clustering. The program used fuzzy clustering, ensemble 
techniques, and feature selection to outperform traditional and state-of-the-art clustering algorithms. Its 
robustness analysis and evaluation measures showed its efficacy in various scenarios. In particular, the algorithm’s 
Recursive Feature Elimination (RFE) in data preparation found the top eight characteristics needed to capture 
student performance trends. The algorithm’s usefulness in EDM is highlighted by these findings, which inform 
educational interventions and academic outcomes. Top eleven features are listed in Table 1.

The 11 features have strong discriminative strength to cluster students by academic traits and reveal their 
academic performance, conduct, and learning outcomes. These features were chosen for their relevance to the 
clustering job, although additional features in the dataset may be beneficial for other research goals. For student 
performance pattern research, these 11 features are the most informative and impactful, making the HPEFCM-
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FSP algorithm in EDM and clustering effective. The successfully clustered students’ overall performance into six 
categories (Excellent, Very Good, Good, Above Average, Average, and absent), as demonstrated by the results in 
shown in Tables 1 and 2. The confusion matrix (Table 2) provides a detailed breakdown of cluster assignments 
for each performance category in the dataset.

The HPEFCM-FSP algorithm successfully clustered the students’ overall performance into six distinct 
categories: “Above Average,” “Good,” “Excellent,” “Average,” “Absent,” and a miscellaneous cluster with no 
specific class attribute. Cluster 0 means “Above Average”, Cluster 2 “Good”, and Cluster 3 “Excellent”. In Cluster 
4, performance is “Average” and in Cluster 5, “Absent”. These findings enable educational institutions discover 
student performance patterns and develop targeted interventions and support to improve academic outcomes. 
The algorithm’s academic attribute grouping aids educational data analysis and decision-making. The HPEFCM-
FSP algorithm is compared to K-means and Fuzzy clustering techniques in Table 3. Figure 5 shows the algorithms’ 
performance metrics: successfully clustered instances, erroneously clustered instances, Silhouette Score, Dunn 
Index, and Clustering Accuracy.

Tests of the NeuroEvoClass algorithm for predicting and classifying student performance using various 
educational datasets are presented here. We investigated the algorithm’s PSO and dynamic adaptability to 
optimize neural network architectures. Table 4 shows how swarm size, maximum iterations, inertia weight 
range, and convergence criteria affect PSO convergence and prediction accuracy. Accuracy and F1-score 
assessed NeuroEvoClass’ categorization ability. The dataset-based NeuroEvoClass technique enhanced neural 
network construction for accurate student performance prediction. The initial network topology had three 
layers with2,5,10 neurons, ReLU activation for the hidden layer and Sigmoid activation for the output layer. The 
PSO optimization loop dynamically changed network structure by experimenting with neuron and activation 
function configurations. To increase forecast accuracy, the technique modified the swarm’s neural network 
designs’ positions and velocities during iterations.

convergence analysis
As NeuroEvoClass continues, the PSO optimization loop’s convergence curve stabilizes and fitness values 
gradually improve. The termination criteria help determine if the algorithm has reached an acceptable level 
of convergence, and the proximity of the fitness values to the predefined convergence threshold indicates the 
algorithm’s effectiveness in finding a high-performing neural network architecture. We apply the NeuroEvoClass 
algorithm to optimize a neural network for classifying student performance based on a dataset of exam 
scores and corresponding labels (pass or fail). The goal is to maximize the accuracy of the neural network in 
predicting whether a student will pass or fail the exam. We set the following parameters shown in Table 5 for 
the NeuroEvoClass algorithm. These parameters will be used to guide the PSO optimization process in the 
NeuroEvoClass algorithm.

We start with a randomly initialized population of 20 neural network architectures, each with a different 
configuration of layers, neurons per layer, and activation functions. The algorithm then proceeds with the PSO 
optimization loop, updating the positions and velocities of the particles (neural network architectures) in the 
swarm based on their fitness and the global best fitness found so far. During each iteration, the algorithm evaluates 
the fitness (accuracy) of each neural network architecture on the training dataset. The convergence behavior can 
be visualized by plotting the fitness values against the number of iterations (from 1 to 100) shown in Fig. 6. 
Upon convergence, the NeuroEvoClass algorithm produced a highly optimized neural network architecture 
tailored to the characteristics of the student performance dataset. The final network topology comprised five 

Fig. 4.  Proposed framework for phase 1: HPEFCM-FSP algorithm.
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layers with2,10,15,20,25 neurons per layer. The activation functions were set to ReLU for Hidden layer 1, Tanh for 
Hidden layer 2, ReLU for Hidden layer 3, and Sigmoid for the output layer.

The algorithm reaches the termination criteria when it completes the maximum number of iterations 
(T_max = 100) or when the fitness improvement falls below the predefined convergence threshold (ε = 0.01). 
Since it achieved its maximum iteration, the algorithm ended at 100. The convergence curve shows that the 
method optimized to 0.932 fitness. As the algorithm approached the convergence threshold (ε = 0.01), the 
neural network topology was tweaked for optimal results. The convergence behavior analysis demonstrates 
that the NeuroEvoClass algorithm converged to an optimal neural network design for student performance 
prediction and classification with excellent accuracy. The algorithm met the termination conditions, and the 
convergence curve showed fitness values improving over iterations, creating a high-performing neural network. 
NeuroEvoClass obtained 93.2% fitness on the student performance prediction challenge after 100 iterations. This 
performance beats baseline models and proves PSO-based dynamic neural network design optimization works. 
The adaptive nature of the algorithm allowed it to adjust the neural network architecture to the complexities of the 
student performance dataset, leading to enhanced predictive accuracy. Although the NeuroEvoClass algorithm 
performed well, its limitations must be considered. Real-world dataset noise and training data representativeness 
may make 100% accuracy impossible. Algorithm success can also depend on evaluation metrics like accuracy or 
F1-score. These restrictions must be considered while interpreting results.

Optimized neural network architectures
Table 6 shows the NeuroEvoClass algorithm’s final architecture settings. The method predicted student 
performance using a training dataset.

This Table 6 shows the key components of each optimal neural network architecture. Neural networks have 
input, hidden, and output layers, which are listed in the “Number of Layers” column. The “Neurons per Layer” 
column lists neurons per layer. Last, the “Activation Functions” column lists each layer’s activation functions. 
The NeuroEvoClass algorithm’s optimal neural network architectures result from convergence. Neural network 
architecture is adapted to data features to properly predict student performance. The dataset determines these 
architecture combinations for student performance prediction. The method may optimize structures for different 
datasets or tasks, demonstrating its adaptability. Model structure that best reflects student performance data 
patterns is revealed by optimum neural network topologies, enabling accurate predictions and classifications.

Comparison with baseline
Figure 7 contrasts NeuroEvoClass neural networks with a baseline student performance model. The baseline 
model in this study is a feedforward neural network with two 50-neuron hidden layers. Hidden layers employ 
ReLU while output layers use Softmax for multiclass classification. The performance comparison graph 
demonstrates accuracy for each neural network architecture at different NeuroEvoClass algorithm iterations. 
The optimized neural network accuracy is red, while the baseline model accuracy is blue. The graph shows that 
the NeuroEvoClass algorithm considerably improved neural network accuracy over baseline.

Performance comparison Table 7 shows that NeuroEvoClass-optimized neural networks outperform the 
baseline model. NeuroEvoClass outperforms the baseline model in accuracy, precision, recall, and F1-score 
across 100 iterations. Improved accuracy and other assessment metrics suggest that the NeuroEvoClass algorithm 
optimizes neural network architecture. Optimized neural networks perform better due to NeuroEvoClass’s 
dynamic exploration of varied network topologies and adaptive optimization technique. NeuroEvoClass 
has strengths, yet also has drawbacks. Parameters and dataset features affect results. The initial population 
configuration might also affect convergence to an optimal solution. Comparing the NeuroEvoClass algorithm to 
the baseline model shows its great improvement in student performance prediction. NeuroEvoClass’s adaptable 
nature and ability to dynamically improve neural network designs make it a potential option for individualized 
and accurate student performance prediction in varied educational contexts. The NeuroEvoClass algorithm 
regularly beat the baseline model in Table 2, with much higher assessment metrics. Since the technique was 
adaptive, it dynamically optimized the neural network design, improving predicted accuracy.

Performance comparison with state-of-art methods
Table 8 shows a complete performance comparison of the NeuroEvoClass algorithm with numerous baseline 
approaches utilized in student performance classification assignments. The goal is to assess the algorithm’s 
neural network optimization performance for educational data processing. We compared classification measures 
like accuracy, precision, recall, F1-Score, and error rate across different swarm sizes to determine how this 
affects algorithm performance. We compared the NeuroEvoClass algorithm against many state-of-the-art EDM 
approaches to determine its efficacy in predicting student performance. The selected methods were judged on 
relevance to student performance prediction and categorization tasks, implementation availability, and approach 
diversity. Further information can be found in the Appendix provided as a supplementary file.

In this study, we tested K-NN, NN, SVM, DT, NB, DT-SVM, NB-KNN, DT-SVM-KNN, NB-NN-DT, SVM-
NB-KNN, and NeuroEvoClass across different swarm sizes. NeuroEvoClass was the most promising algorithm, 
with the best average accuracy (92%) and balanced precision, recall, specificity, and F-score (0.89–0.94). As 
indicated in Fig. 8, NeuroEvoClass was efficient in 13–39 s. However, the algorithm’s interpretability and data 
requirements may be limits. NeuroEvoClass excels in real-world applications that require high accuracy and 
balanced metrics. Further research on interpretability, hyperparameter tweaking, and real-world validation 
would optimize the algorithm’s potential and ensure responsible use. Machine learning algorithms’ performance 
indicators over swarm sizes are summarized in Table 9. The Table 9 shows each method’s average accuracy, 
precision, recall, specificity, F-score, error rate, and time, highlighting their predictive powers. The methods 
evaluated include K-Nearest Neighbors (K-NN), Neural Network (NN), Support Vector Machine (SVM), 
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Decision Tree (DT), Naïve Bayes (NB), DT-SVM, NB-KNN, DT-SVM-KNN, NB-NN-DT, SVM-NB-KNN, 
and NeuroEvoClass. Each row shows the average performance metrics of a method across swarm sizes. This 
overview helps select the best algorithm for accurate and efficient forecasts by revealing each method’s strengths 
and weaknesses.

With 92% accuracy, the NeuroEvoClass algorithm outperforms existing machine learning algorithms. 
The balanced accuracy, recall, specificity, and F-score suggest that it correctly detects positive and negative 
situations with low false positives and negatives. As seen in Fig.  9, the approach is accurate across swarm 
sizes. NeuroEvoClass’s efficiency and low time consumption make it intriguing for time-sensitive applications 
and large datasets. Reduced interpretability, vulnerability to data needs and hyperparameter tuning, and the 
necessity to test its generalizability to other domains and datasets are problems. NeuroEvoClass solves complex 
classification issues with power and reliability, making it a promising real-world solution.

Practical integration into educational decision-making platforms
To strengthen the real-world applicability of our proposed model, we outline a practical example of how the 
system can be integrated into educational decision-making platforms, particularly Early Warning Systems 
(EWS) used in higher education institutions.

A dynamic and data-driven EWS can use the HPEFCM-FSP clustering algorithm and NeuroEvoClass 
predictive model. Teachers, counselors, and administrators can use real-time decision support from the system 
incorporated in an institution’s Academic Information System (AIS) or Learning Management System (LMS).
Phase I: student profiling through HPEFCM-FSP clustering

In the beginning of each academic term, the HPEFCM-FSP algorithm can cluster students into “Excellent,” 
“Good,” “Average,” and “At-Risk.” Academic and demographic factors like internal assessment results, attendance, 

K-means Fuzzy clustering HPEFCM-FSP

Correctly clustered instance 40 47 52

Incorrectly clustered instance 18 11 6

Silhouette score 0.65 0.72 0.80

Dunn index 0.25 0.30 0.35

Clustering accuracy 68.97% 81.03% 89.66%

Area under the ROC curve (AUC) 0.70 0.75 0.85

Table 3.  Clustering performance comparison.

 

Cluster no No of instances Percentage (%) Labels Score

0 190 25.13 Above average 70–79

1 62 8.20 No class N/A

2 310 41.01 Good 80–89

3 23 3.04 Excellent 90–100

4 124 16.40 Average 50–69

5 47 6.22 Absent N/A

Table 2.  Class distribution summary.

 

S. No Attribute Description

1 AIM Average internal marks

2 ATT Class attendance in percentage

3 MEL Mother education level

4 EE Sem end exam score

5 FEL Father education level

6 ST Weekly study time

7 FFS Family financial status

8 FF Number of past class failures

9 SSLC SSLC percentage

10 PUC PUC percentage

11 AC Admission category

Table 1.  Optimal attributes.
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parental education, and prior academic success constitute these groups. Student clusters with low performance 
can be automatically flagged for early intervention.
Phase 2: dynamic performance prediction with NeuroEvoClass

Cluster no
No of 
instances AVG (EE)

AVG 
(AIM)

AVG 
(ATT) AVG (ST)

AVG 
(MEL)

AVG 
(FEL) AVG (FF)

AVG 
(FFS)

AVG 
(SSLC)

AVG 
(PUC)

AVG 
(AC)

0 190 78.5 85.2 82.6 7.4 2 3 1 GT3 70.3 62.7 Free

1 62 45.0 36.7 30.2 1.9 1 0 3 LE3 45.5 32.8 Paid

2 310 65.7 72.8 75.6 5.2 3 4 2 LE3 63.7 59.1 Free

3 23 92.3 88.9 94.3 9.8 4 4 1 GT3 85.2 78.6 Free

4 124 57.9 62.4 66.8 4.6 2 2 4 LE3 55.9 48.7 Paid

5 47 0.0 0.0 0.0 0.0 1 1 1 LE3 0.0 0.0 Free

Table 4.  Cluster characteristics summary.

 

Fig. 5.  HPEFCM-FSP Algorithm performance evaluation for (a) successfully and incorrectly clustered 
instances and (b) clustering evaluation matrix.
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After clustering pupils, the NeuroEvoClass model may predict academic success or failure based on recent 
activity and assessment outcomes.The Particle Swarm Optimization-optimized artificial neural network has 
dynamically adjustable parameters.It analyzes pupils’ academic achievement prospects weekly or monthly by 
updating their risk profiles with new input data.

Institutions can move from reactive to proactive academic support by efficiently allocating resources and 
delivering timely interventions that can improve student results. Data-driven ecosystems improve academic 
performance, institutional accountability, and student satisfaction.

Limitations and future work
HPEFCM-FSP algorithm clusters educational data well on benchmark datasets, however the publication 
acknowledges limitations and proposes further research. Addressing these constraints and exploring 
improvements can boost the algorithm’s EDM efficacy and usefulness.

Limitations of the study
The HPEFCM-FSP algorithm’s performance depends on dataset characteristics. This study employed benchmark 
datasets to represent varied educational data, but other datasets with unique qualities may impact the algorithm’s 
clustering results.

HPEFCM-FSP performs well but may struggle with large datasets. Larger datasets may require more 
processing resources, limiting iterative efficiency.

Generality: Benchmark datasets show algorithm’s educational data clustering effectiveness. Generalizing 
the findings to all educational datasets is problematic because dataset variables and environment might alter 
algorithm performance.

Areas for future research and improvements
HPEFCM-FSP could be optimized for scalability and processing large educational datasets in future research. 
Distributed and parallel computing may solve computational issues.

Scalability with Noisy Data: Test algorithms on noisy or missing datasets. Learning how to manage noisy data 
and robustly impute missing values could make the algorithm more useful for educational settings.

Fig. 6.  Convergence curve of NeuroEvoClass algorithm.

 

Parameter Value

Swarm size (S) 30

Maximum number of iterations (T_max) 100

Inertia weight range ([w_min, w_max]) [0.4, 0.9]

Convergence criterion (ε) 0.01

Cognitive coefficient (c1) 1.5

Social coefficient (c2) 1.5

Mutation rate (μ) 0.1

Table 5.  Hyper parameter settings.
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Improve Interpretability: The HPEFCM-FSP method can reveal student performance trends by enhancing 
interpretability. Cluster visualization and explanation may help educators.

Customizing Educational Data Clustering: Add domain-specific information and limits to improve 
performance. Domain experts may improve feature selection and parameter adjusting.

Future studies should evaluate the algorithm’s impact on educational interventions and decision-making. 
Longitudinal studies and intervention effectiveness based on the algorithm’s grouping could verify its usefulness.

Conclusions
NeuroEvoClass is a novel strategy for an educational institution’s EWS to identify underperforming students. 
With its unique PSO and dynamic adaption features, NeuroEvoClass optimises neural network topologies. 
Adaptability allows the approach to dynamically fine-tune network topologies based on the complicated 
student trait dataset. Innovative progressive convergence shows the algorithm’s ability to enhance prediction 
across iterations. NeuroEvoClass’s accuracy, precision, recall, and F1-score surpass traditional models, making it 
excellent for Early Warning Systems. EDM predicts student performance to solve complex academic problems. 
Research has two phases. Phase I uses the HPEFCM-FSP algorithm to group students by performance to identify 
those who need additional help. Phase II improves ANN’s student outcome prediction and classification with 
NeuroEvoClass and Particle Swarm Optimization. Student academic performance insights, decision-making, 
and educational results are the goals of the multiphase strategy.

Fig. 7.  Performance comparison of NeuroEvoClass algorithm.

 

Architecture Number of layers Neurons per layer Activation functions

Architecture 1 3 [10,30,50] [ReLU, ReLU, Sigmoid]

Architecture 2 4 [10,20,40] [ReLU, Tanh, ReLU, Sigmoid]

Architecture 3 5 [60, 40, 30, 20, 10] [Sigmoid, ReLU, Tanh, ReLU, Sigmoid]

Table 6.  Neural network architectures summary.

 

Model Accuracy Precision Recall F1-score

Optimized neural net 0.92 0.91 0.92 0.91

Baseline model 0.85 0.80 0.78 0.79

Table 7.  Neural network architecture comparison.
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Methods Swarm size

Metrics

Accuracy Precision Recall Specificity F-score Errorrate Time taken (S)

K-NN

10 0.72 0.73 0.70 0.75 0.72 0.28 39

15 0.68 0.69 0.67 0.71 0.68 0.32 42

20 0.70 0.71 0.68 0.72 0.70 0.30 48

25 0.68 0.69 0.67 0.70 0.68 0.32 55

30 0.72 0.73 0.70 0.75 0.72 0.28 61

Average 0.70 0.71 0.68 0.72 0.70 0.30 49

NN

10 0.86 0.85 0.87 0.83 0.86 0.14 50

15 0.88 0.87 0.89 0.86 0.88 0.12 62

20 0.89 0.88 0.90 0.88 0.89 0.11 73

25 0.88 0.87 0.89 0.87 0.88 0.12 78

30 0.89 0.88 0.90 0.88 0.89 0.11 88

Average 0.88 0.87 0.89 0.86 0.88 0.12 72

SVM

10 0.74 0.76 0.70 0.78 0.73 0.26 28

15 0.72 0.74 0.67 0.76 0.70 0.28 32

20 0.71 0.73 0.66 0.75 0.69 0.29 35

25 0.69 0.71 0.64 0.73 0.67 0.31 38

30 0.70 0.72 0.65 0.74 0.68 0.30 41

Average 0.71 0.73 0.66 0.75 0.69 0.28 57

DT

10 0.76 0.78 0.72 0.80 0.75 0.24 21

15 0.74 0.76 0.69 0.78 0.72 0.26 25

20 0.72 0.74 0.68 0.76 0.71 0.28 29

25 0.70 0.72 0.66 0.74 0.68 0.30 32

30 0.71 0.73 0.67 0.75 0.70 0.29 35

Average 0.72 0.74 0.68 0.7648 0.71 0.27 32

NB

10 0.78 0.80 0.74 0.82 0.77 0.22 6

15 0.75 0.78 0.71 0.80 0.74 0.25 9

20 0.73 0.75 0.69 0.77 0.72 0.27 23

25 0.71 0.72 0.67 0.75 0.70 0.29 26

30 0.72 0.74 0.69 0.75 0.71 0.28 21

Average 0.74 0.76 0.70 0.78 0.73 0.27 19

DT-SVM

10 0.86 0.90 0.82 0.90 0.85 0.14 48

15 0.85 0.86 0.83 0.86 0.84 0.15 81

20 0.83 0.86 0.79 0.87 0.82 0.17 86

25 0.77 0.78 0.74 0.80 0.76 0.23 108

30 0.78 0.79 0.76 0.80 0.78 0.22 136

Average 0.82 0.84 0.79 0.85 0.81 0.19 90

NB-KNN

10 0.80 0.83 0.76 0.84 0.80 0.20 158

15 0.79 0.81 0.74 0.83 0.79 0.23 180

20 0.77 0.80 0.74 0.81 0.76 0.23 198

25 0.73 0.74 0.69 0.76 0.71 0.28 218

30 0.74 0.75 0.70 0.75 0.73 0.26 242

Average 0.76 0.79 0.73 0.80 0.75 0.24 199

DT-SVM-KNN

10 0.82 0.85 0.78 0.86 0.87 0.18 83

15 0.81 0.85 0.77 0.86 0.80 0.19 102

20 0.79 0.82 0.75 0.84 0.78 0.21 115

25 0.73 0.75 0.70 0.77 0.72 0.27 140

30 0.75 0.76 0.72 0.78 0.74 0.25 156

Average 0.79 0.81 0.75 0.82 0.78 0.21 119

NB-NN-DT

10 0.90 0.92 0.86 0.94 0.90 0.10 24

15 0.90 0.92 0.89 0.92 0.90 0.09 35

20 0.89 0.91 0.87 0.91 0.89 0.11 46

25 0.83 0.84 0.82 0.84 0.83 0.17 56

30 0.83 0.84 0.81 0.84 0.83 0.17 65

Average 0.87 0.89 0.85 0.89 0.87 0.14 45

Continued
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Methods Accuracy Precision Recall Specificity F-score Error rate Time taken (S)

K-NN 0.70 0.71 0.68 0.72 0.70 0.30 49

NN 0.88 0.87 0.89 0.86 0.88 0.12 72

SVM 0.71 0.73 0.66 0.75 0.69 0.28 57

DT 0.72 0.74 0.68 0.76 0.71 0.27 32

NB 0.74 0.76 0.70 0.78 0.73 0.27 19

DT-SVM 0.82 0.84 0.79 0.85 0.81 0.19 90

NB-KNN 0.76 0.79 0.73 0.80 0.75 0.24 199

DT-SVM-KNN 0.79 0.81 0.75 0.82 0.78 0.21 119

NB-NN-DT 0.87 0.89 0.85 0.89 0.87 0.14 45

SVM-NB-KNN 0.84 0.86 0.82 0.87 0.83 0.15 70

NeuroEvoClass 0.92 0.91 0.89 0.91 0.90 0.09 75

Table 9.  Average performance comparison with state-of-art methods.

 

Fig. 8.  Duration of NeuroEvoClass algorithm.

 

Methods Swarm size

Metrics

Accuracy Precision Recall Specificity F-score Errorrate Time taken (S)

SVM-NB-KNN

10 0.88 0.9130 0.8400 0.92 0.88 0.12 30

15 0.88 0.8866 0.8600 0.89 0.88 0.12 49

20 0.86 0.8913 0.8200 0.90 0.86 0.14 68

25 0.79 0.8010 0.7650 0.81 0.79 0.21 91

30 0.80 0.8099 0.7840 0.82 0.80 0.20 112

Average 0.84 0.86 0.82 0.87 0.83 0.15 70

NueroEvoClass

10 0.95 0.95 0.94 0.96 0.94 0.05 13

15 0.93 0.94 0.92 0.95 0.93 0.06 16

20 0.92 0.93 0.90 0.94 0.92 0.07 28

25 0.88 0.89 0.86 0.87 0.86 0.13 27

30 0.89 0.86 0.85 0.86 0.86 0.13 39

Average 0.92 0.91 0.89 0.91 0.90 0.09 75

Table 8.  Performance comparison with state-of-art methods. Significant values are in bold.
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Data availability
The data that supports the findings of this study are available within the article.
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