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Recent advancement in the Internet of Medical Things (IoMT) allows patients to set up smart sensors 
and medical devices to connect to remote healthcare setups. However, existing remote patient 
monitoring solutions predominantly rely on persistent connectivity and centralized cloud processing, 
resulting in high latency and energy consumption, particularly in environments with intermittent 
network availability. There is a need for real-time IoMT computing closer to the dew, with secured and 
privacy-enabled access to healthcare data. To address this, we propose the DeW-IoMT framework, 
which includes a dew layer in the roof-fog-cloud systems. Notably, our approach introduces a novel 
roof computing layer that acts as an intermediary gateway between the dew and fog layers, enhancing 
data security and reducing communication latency. The proposed architecture provides critical services 
during disconnected operations and minimizes computational requirements for the fog-cloud system. 
We measure heart rate using the pulse sensor, where the dew layer sets up conditions for remote 
patient monitoring with low overheads. We experimentally analyze the proposed scheme’s response 
time, energy dissipation, and bandwidth and present a simulation analysis of the fog layer through the 
iFogSim software. Our results at dew demonstrate a reduction in response time by 74.61%, a decrease 
in energy consumption by 38.78%, and a 33.56% reduction in task data compared to traditional cloud-
centric models. Our findings validate the framework viability in scalable IoMT setups.
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The Internet of Medical Things (IoMT) connects wearable and implantable sensors to gateways that interface 
with cloud platforms (e.g., AWS, Microsoft Azure, Blynk Cloud) for data storage and analytics. This ecosystem 
leverages technologies such as AI, Big Data, Blockchain, and advanced wireless networks (e.g., 5G and beyond)1,2. 
According to Acumen Research, IoMT sensor market revenue is projected to grow from 6,193 million USD 
in 2022 to 11,973.24 million USD by 2030 at a CAGR of 7.6%3. Healthcare is set to evolve into Healthcare 
5.0-encompassing telehealth, telesurgery, and virtual clinics enhanced by augmented and virtual reality4–6—and 
will further benefit from distributed and explainable AI, blockchain, 6G, AR/VR, and the metaverse to improve 
real-time patient monitoring and telepresence7. Ultimately, this will create an interconnected healthcare system 
that leverages resources intelligently to enhance the quality of care and improve patient outcomes8.

Despite these advances, current IoMT assisted remote patient monitoring solutions predominantly rely 
on centralized cloud-based processing, which suffers from high latency, increased energy consumption, and 
vulnerability under intermittent connectivity. This limitation motivates the need for a more decentralized 
approach that brings computation closer to the data source. IoMT in healthcare 5.0 requires resilient cloud-
based architectures. However, owing to computational bottlenecks and high-end latency on the cloud, research 
has moved towards the edge and fog-based analytics9. The demand for processing elements is made close to 
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the sensor nodes. Thus, a hierarchical architecture is formed, where the fog layer connects networking devices 
(gateways and switches) for analytics. Fog is the resource manager between the cloud and edge computing node, 
closest to the physical sensor node10. However, the COVID-19 pandemic has introduced requirements for quick, 
seamless, and ultra-responsive health monitoring and decision frameworks for critical patients11. In IoMT 
networks, the fog/edge nodes face bottlenecks owing to low power, limited storage, and resource constraints. 
Thus, there is a general requirement to make quick decisions in state-of-network disconnections at cloud/fog 
nodes so that timely help can be supplied in emergencies. Thus, Dew Computing (DC) forms a viable solution 
to assist IoMT with the support of fog/cloud computing analytics12.

DC allows the computing paradigm to shift towards the end device, where tightly-coupled microservice 
operations are supported to give quick decisions with extremely low latency. With DC, Roof Computing (RC) 
layer can be integrated to provide an end-to-end resource and security support to the IoMT ecosystem13,14. RC 
layer acts as a gateway between the dew and the fog layer and ensures quick data processing and collection from 
dew client nodes. Further, security principles can be integrated at the RC layer, which provides secured and 
privacy-preserving access to the IoMT data15. This is crucial as medical data contains sensitive attributes, and 
its disclosure and alteration might create life-threatening effects. RC layer also minimizes the amount of data 
transmission and improves the infrastructure build cost of the Cloud Computing (CC) nodes. The RC layer can 
be built as a service (software) on top of the DC layer or as a hardware device (access point or gateway) node. 
The RC layer allows data aggregation from multiple dew devices, and specific user queries are forwarded to the 
fog layer if not resolved at the RC layer itself. A similar hierarchy is followed for the fog-cloud system. Thus, the 
DC-RC link forms a scalable near-fog-cloud ecosystem to support resilient and scalable operations at low latency 
in IoMT setups. Furthermore, the RC layer serves as a critical intermediary by forwarding the preprocessed data 
and local intelligence gathered at the dew layer to the fog layer, where more complex analytics are performed. 
The fog layer, with its enhanced computational resources, refines this data to detect anomalies and execute 
decision-making tasks that exceed the processing capabilities of the roof. Subsequently, essential insights and 
aggregated data are transmitted to the cloud, where heavyweight models provide long-term analysis and storage. 
This integrated flow across the RC, fog, and cloud layers ensures low latency, enhanced security, and overall 
system resilience in the IoMT ecosystem.

The choice of computing mechanism depends on the application requirements and constraints. Table 1 
presents a comparative analysis of different computing paradigms in real-world scenarios. The far-edge (dew-
fog-cloud) computing system is suitable for applications that require low latency and moderate bandwidth, 
such as real-time monitoring and control systems. The near-edge (dew-roof-fog-cloud) computing system is 
suitable for applications that require higher bandwidth and low to moderate latency, such as healthcare, IoT, and 
federated analytics. The dew-edge-cloud computing system is suitable for applications that require low latency 
and high bandwidth, such as cloud gaming and high-performance computing.

For IoMT applications, the dew-roof-fog-cloud computing system is the best fit. IoMT applications require 
low latency and high bandwidth for real-time data processing and analysis, which the dew and roof layers can 
provide.Additionally, security and resiliency are crucial for IoMT applications, and these requirements can be 
met by the fog and cloud layers, respectively. Furthermore, energy consumption is a critical consideration for 
IoMT devices. The dew-roof-fog-cloud computing system can minimize energy consumption by processing 
and analyzing data locally at the dew and roof layers before transmitting it to the fog and cloud layers for 
further analysis and storage. Therefore, the dew-roof-fog-cloud computing system is the best choice for IoMT 
applications, providing the optimal balance of energy efficiency, security, and resiliency.

Thus, the DC layer hierarchically communicates with the CC layer via the roof-fog layer. The CC-RC-DC 
operation opens up exciting avenues for distributed data accessibility at the local device, with no Internet 
availability16. Dropbox support is an example of a DC layer, where a user carries out offline operations and 
is transferred to the CC server during reconnection. Thus, DC extends the reach of cloud servers through an 
independent and hybrid computing behavior, which is self-adaptive and extremely scalable, even in the presence 
of heterogeneous offline IoMT nodes. In the case of IoMT, the DC layer can be installed on lightweight Arduino 
and Raspberry Pi devices, where critical indicators are monitored offline, and remote monitoring and analytics 
are carried out at the CC layer. However, owing to the federated nature of the DC layer, dew-intelligence (or AI 
analytics at the dew)17,18 requires an adaptation towards data sharing challenges and regulations. In such cases, 

Parameters Far-Edge (dew-fog-cloud) Near-Edge (dew-roof-fog-cloud) Dew-Edge-Cloud

Latency 10–20 ms 1–5 ms < 1 ms

Bandwidth 1–100 Mbps 10–1000 Mbps 100–1000 Gbps

Reliability Low to moderate High Moderate to high

Security Low High High

Scalability High High Low to moderate

Energy consumption Low to moderate Moderate to high High

Computing resources Low to moderate Moderate to high High

Cost Efficiency Moderate High Low

Data Privacy Moderate High High

Fault Tolerance Low to moderate High Moderate to high

Table 1.  Analysis of various computing mechanisms in applicative scenarios.
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federated learning is the optimal choice, and tiny models are instantiated on the roof layer19. The local learned 
gradients are shared to update the global models in the cloud. Thus, it leverages dual support with independence 
and collaborative learning, where local data is not shared.

Research motivation
In our proposed system, we implement an innovative strategy that leverages the interaction of cloud, roof, 
and dew layers, with robust support provided by the fog layer. The dew layer creates a localized, distributed 
environment for data acquisition, processing, and analysis in collaboration with the fog layer, thereby reducing 
latency and lowering bandwidth demands. The roof layer, in turn, supplies cloud-like services-such as high-
speed connectivity, substantial processing power, and extensive storage-to the dew layer, ensuring that it can 
access necessary resources without losing its localized advantages. Furthermore, fog computing is deployed 
at the network edge to perform real-time data processing and analysis, which speeds up response times and 
minimizes the volume of data sent to the cloud.

Novelty
IoMT setups forward massive sensor data to the fog layer for analytical support. Due to the heterogeneity of 
end devices and link variability, variable delays in data aggregation deem time-based analytics more accurate. 
Possible solutions of layered fog nodes10, federated edge learning19,20, and streaming analytics21 are proposed. 
Still, they need to be more robust to handle the variability and velocity of ingested data. Thus, the services 
switch to best-effort mode, which is not viable for mission-critical healthcare IoMT setups. Thus, in this work, 
a framework DeW-IoMT is presented that addresses these challenges and performs operations with low latency. 
Our framework is constructed hierarchically, where the dew-roof-fog-cloud computing paradigm is proposed 
for IoMT. The DC layer supports distributed resource management, while the roof layer provides data security. 
This approach offers greater flexibility and user control at ultra-low latency, high mobility, and data security. 
Additionally, the RC layer integrates security services and forwards quick resource requirements to the dew 
layer, ensuring resilience against attacks. Furthermore, the DC layer can be fine-tuned to support patient-specific 
needs, resulting in a more personalized healthcare system. Our proposed framework offers a reliable and accurate 
solution for mission-critical IoMT setups, paving the way for a smarter and more efficient healthcare system.

Article contributions
The research contributions of the article are presented as follows.

•	 We propose a hierarchical architecture, DeW-IoMT, to support remote patients with quick, scalable, and 
dependable critical support.

•	 The patient healthcare indicators (pulse, heart rate, and electrocardiogram signal) are recorded at the dew 
node (Arduino Uno board). They are communicated to the alert module through a serial connection, where 
critical indicators are monitored and compared against the threshold values.

•	 The performance of the proposed framework is evaluated for parameters like response time, energy dissipa-
tion, and bandwidth usage against recent approaches to indicate the framework’s efficacy.

Layout
The article is divided into four sections. Section “Related work” presents the related work, which presents the 
state-of-the-art (SOTA) approaches of cloud, fog, edge, and dew computing in IoMT. Section “DeW-IoMT: 
the proposed framework” presents the schematics of the proposed DeW-IoMT scheme, which discusses the 
framework, its components and connections, and the testbed setup. Section “DeW-IoMT: performance 
evaluation” presents the performance evaluation of the proposed scheme, and finally, section “Conclusions” 
concludes the article with the future scope of the work.

Related work
Recently, many schemes have been proposed to leverage improved healthcare services in IoMT ecosystems. 
These schemes include computing paradigms like cloud, fog, edge, and dew computing for task processing, 
analytics, management, resource allocation, and offloading. Table 2 presents a comparative analysis of the 
different schemes/frameworks, where we compare our proposed schemes with the existing SOTA approaches.

Approaches for job allocation31,34,35, and fog node selection16,32,40 are the most discussed for in healthcare 
setups, where critical indicators are analyzed for making relevant predictions. Flexibility and wise decision-
making are still difficult, though. Karmakar et al.25 proposed a biosignal monitoring scheme, named MedGini 
for Internet of Health Things (IoHT), where the emphasis was laid on the time and space-efficient dissemination 
of healthcare data. For the same, the authors exploited the requirement of IoT-based wireless connectivity, 
where the data was temporarily stored on local dew nodes and later synchronized with the cloud servers. The 
synchronization process of DC-CC is optimal through the use of the Gini Index and Shannon entropy, which 
removes erroneous signals, and outliers in the collected data. The scheme was compared for cost and network 
parameters on real-time collected data.

Authors in26 proposed a Convolutional Neural Network (CNN)-based framework to predict the patient’s 
mental state based on behavioral psychology. The analysis was done on the dew layer; hence, bypass connections 
made the CNN model lightweight. This also ensured optimized gradient propagation in the CNN, and the results 
were evaluated on the FER-2013 dataset. Another dataset, CK+, was designed and used, and the model reported 
an accuracy of 96.12%. Authors in41 discussed about optimal function placement in serverless computing to 
optimize resource efficiency and delay. Approaches like ML, heuristics, and local models are discussed. Serverless 
functions can be integrated at dew layer to optimize resource and instruction usage. In42, authors discussed about 
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improper data offloading in serverless computing systems and discusses about different offloading schemes to 
minimize resource consumption and latency. Afaq and Manocha27 proposed a DC model for diarrhea prediction, 
where severity values were captured and analyzed through a probabilistic weighted Naïve Bayes algorithm. This 
classified the abnormality conditions, and the output was sent to a multi-scaled Gated Recurrent Unit (GRU) 
unit to analyze the correlation between the patient’s eating habits and environmental conditions. The model 
was compared for precision, recall, and accuracy, and it was found that GRU has a precision of 93.26%, and the 
precision value of Naïve Bayes was reported to be 97.15%. The decision-making was kept at the dew layer for 
serious patients, and monitoring was done at the cloud layer.

Poonia et al.28 proposed a three-layered (dew-fog-cloud)-based healthcare monitoring framework, named 
as CONFRONT, which helped in the preliminary avoidance of COVID-19 virus sabotage to the human body. 
The dew layer made the scheme scalable and allowed low-cost sensor wearables to be used with fast uptime. 
For high computational requirements, fog offloading was supported, which resolved most queries, and high 
computational requirements were only forwarded to the cloud layer. Ghosh and De24 proposed a DC architecture 
for D2D communication scenario for wireless networks. For the same, the authors have proposed a coalition 
game and operate cooperatively with the dew storage layer in the event of disconnections. The proposed 
scheme has a reduced delay of ≈ 28%, and energy consumption has been reduced by 12%. Jazayeri et al.43 
introduced a FC based IoT architecture, termed as mobile fog that can offload data to cloud based on number 
of executable modules under operates. It forms a best fit scheduling for reducing latency among tasks, and 
sequentially decides about the placement of tasks for execution (whether at mobile fog or cloud) layers. In44, 
authors discussed about local data processing and content caching mechanisms at edge nodes based on metrics 
like traffic, and available bandwidth. Jeyaraj et al.45 have proposed the performance of IoT applications where 
dew-cloud layers provide resources. The work discussed resource provisioning, load balancing, and workload 
allocation in heterogeneous networks. Marjan Gusev46 proposed an edge-assisted offline dew storage server that 
allows end devices to communicate for resource management. For the same, an AI-driven classifier is designed 
to understand critical tasks on the edge and dew server. A use-case of cardiologist prediction for data collected 

Authors Year Dew Fog Edge Cloud Performance Metrics Advantages Limitations Application Area

The proposed 
scheme 2024 Y Y N Y Response time, energy, 

bandwidth
Low latency, enhanced security, 
scalability

Increased orchestration 
complexity Health-care IoMT

Vinu and 
Diwan22 2024 Y Y N N Consensus delay, 

throughput
Decentr-alized, secure via 
blockchain High consensus overhead General IoT

Zhao et al.23 2024 Y Y N Y Cache hit ratio, latency 
reduction

Efficient caching, improved 
network performance

Limited to caching 
improvements Smart cities IoT

Ghosh and De24 2023 Y N Y Y Delay reduction (28%), 
energy savings (12%)

Reduced network delay and 
power consumption

Reliant on stable D2D 
communication Wirele-ss networks

Karm-akar et 
al.25 2022 Y N Y Y Data synchronization 

efficiency
Effective synchronization using 
statistical measures

Scalability issues in 
heterogeneous settings

Internet of Health 
Things (IoHT)

Podder et al.26 2022 Y N Y Y Prediction accuracy, latency Lightweight CNN, enhanced 
gradient propagation

Dataset-specific tuning may 
be needed

Health-care 
biosignal monitoring

Afaq and 
Manoc-ha27 2022 Y Y N Y Precision, recall, accuracy Effective prediction using GRU 

and Naïve Bayes
Limited generalizability across 
conditions

Health-care 
diagnostics

Poonia et al.28 2021 Y Y N Y Bandwidth usage, scalability Real-time performance, scalable 
design

Complex multi-layer 
coordination

COVID-19 
management, 
Healthcare IoT

Mukher-jee et 
al.29 2021 Y N Y Y Communic-ation delay, 

success rate
Improved connectivity and 
caching in UAV networks

Limited to UAV-supported 
scenarios

Smart cities, UAV-
based IoT

Jung-yeon and 
Kaddoum30 2021 N N N N Offloading efficiency, 

resource utilization
Adaptive resource allocation 
via DRQN

Not applicable for dew-based 
scenarios

General fog 
computing in IoT

Zhou et al.31 2020 N Y N N Long-term delay reduction Adaptive offloading based on 
task properties

May underperform in volatile 
environments

Task offloading 
in IoT

Fan et al.32 2020 N Y N N Offloading latency, resource 
allocation

Effective D2D pairing and 
offloading

Depends on proximity and 
D2D availability

Edge computing 
in IoT

Yang et al.33 2019 N Y N N Task completion time Efficient paired offloading Scalability may be limited Fog computing 
in IoT

Lan et al.34 2019 N Y N N Resource allocation 
efficiency

Fair allocation using statistical 
measures

Complexity increases with 
user numbers

Resou-rce 
management in IoT

Li et al.35 2019 N Y N N Energy consumption, 
offloading delay Energy efficiency Overhead due to offloading 

computation
Energy constr-ained 
IoT

Mutlag et al.36 2019 N Y N N Scalability, real-time 
performance Real-time scalability High resource costs in large 

systems E-health services

Sodhro et al.37 2019 N N Y Y Service placement efficiency Geo-distributed intelligence 
improves service quality Complex deployment strategy Health-care IoT 

networks

Ray et al.38 2019 Y N N Y Real-time context analysis Context-aware decisions at 
dew level

Limited scalability in 
extensive networks

Context-aware IoT 
applications

Rahm-an et al.39 2018 N Y N Y Local processing speed, 
storage efficiency

Provides real-time local 
processing

Dependent on gateway 
capacity

Embe-dded IoT 
applications

Table 2.  Comparative analysis of the proposed framework with existing SOTA frameworks.
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from wearable sensors is presented. Catalani et al.47 presented a deep learning model for IoMT wearables that 
monitors cardiac problems. The model interprets the electrocardiogram signals from ECG sensors. The model is 
fine-tuned and is executed on an embedded processor. Further, multicore architecture is considered to improve 
the classifier execution time. The tradeoff is measured in terms of latency and event detection ratio. Authors 
in29 proposed a scheme named Dew-Drone, which allowed Unmanned Aerial Vehicles (UAVs) to communicate 
data captured from smart cities48, industrial applications, and society 4.0 through a dew-cloud infrastructure. 
An opportunistic communication framework was realized for faster UAV response in conditions of intermittent 
network connectivity. The scheme discussed a hardware testbed, and UAV delivery accuracy was reported to 
be significantly high, with a success rate of 91.4%. The dew buffer size was kept at 150 MBs, and the obtained 
latency to UAV-ground communication was 20.04 milliseconds (ms), which is minimal. proposed resource 
optimization in Dew-fog layers citemutlag2019enabling49, where energy consumption was considered the cost 
factor to solve the optimization problem. The approaches involved real-time data processing by sensor-based 
applications. Authors in50 proposed a low-powered transmission protocol to leverage the connectivity of near-
edge nodes and conserved energy dissipation.

In51, the authors exploited the concept of neighborhood edge networks to solve computations at the edge 
nodes for IoT health architectures. The edge nodes communicated with fog nodes for mobility control, rapid 
response, and storage requirements. Zhao et al.23 presented a load balancing of fog servers for vehicular networks 
using a dew server. They introduced a innovative clustering algorithm with caching at dew node, based on the 
file request and popularity. The testing showcases the strategy’s robustness, especially in maintaining cluster 
leadership and improving cache hit rates. Authors in39 proposed an edge-gateway assisted scheme for body 
sensor networks, where a geo-distributed intelligence layer was constructed between the cloud and edge node. 
A fog layer was induced to support offloading, which improved the scheme’s reliability. Sodhro et al.37 worked 
on the Quality of Service (QoS) of edge computing applications in healthcare setups. Authors in52 proposed the 
ubehealth framework, which used edge computing, IoT, and deep learning to handle different issues with smart 
health. The architecture provided better network service quality. Deep learning was implemented to estimate the 
network traffic to maximize data rates, caching, and routing choices. Authors in53 proposed a clustered approach 
based on the Hybrid Whale Particle Swarm Optimization (HWPSO) algorithm in an IoT-fog architecture.

In summary, while cloud and FC have been extensively explored to reduce latency and improve data 
processing in IoMT applications, DC has emerged to empower local device intelligence and offline capabilities. 
However, the lack of a dedicated RC layer in most existing solutions limits on-site data aggregation and secure 
resource management. Recent initiatives underscore the importance of a formalized RC framework to bridge 
the gap between edge and cloud processing54. Our proposed DeW-IoMT framework integrates these paradigms 
into a unified, hierarchical architecture that leverages the benefits of dew, roof, fog, and cloud computing. This 
comprehensive approach not only enhances performance and security but also paves the way for scalable and 
resilient IoMT deployments.

DeW-IoMT: the proposed framework
This section presents the schematics of the dew-roof-fog-cloud-assisted layered framework, named DeW-IoMT. 
Figure 1 presents the framework details.

The framework is designed specifically for timely response to critical patient health requirements; thus, the 
local operations are executed locally at the dew layer. The suggested framework seeks to deliver a user-centric, 
adaptable, customized, and quick response to tasks. The details of the layers and associated components are 
presented as follows.

•	 IoT devices-In the framework, we consider that there are n patients registered in a hospital, designated as 
P = {P1, P2, . . . , Pn}. Any ith patient Pi is equipped with k sensors (wearbles or implants), denoted by 
{s1, s2, . . . , sk}. A sensor node (sj) is presented as a three tuple as follows: sj = {sidj , stypej , sstatusj }, 
where sidj ,stypej , and sstatusj  denotes the sensor ID, the type of the object for which the data collection 
takes place (such as temperature, pulse, etc.), and the status of the sensor, i.e., active or idle, respectively, and 
j ∈ k. The sensor IDs are registered and mapped to Pi through a mapping function M(F). The data collected 
from the sensors, denoted as {Ds1 , Ds2 , . . . , Dsk } is sent to the Arduino controller, which is at the dew lay-
er DL. We consider 8, 16, and 32-bit microcontrollers, whose prime operation is to transmit data to the dew 
service node. Depending on the end application requirement, the sensors are networked via Wi-Fi, Bluetooth, 
and Long Range Radio (LoRa) networks. We assume that sensor nodes are placed near an associated hotspot 
node (Hs) for sending the data to the DC layer DL. The DL nodes might be hospital-owned nodes or rented 
by third-party providers in close proximity. Specifically, we use a 9 Volt (V) adapter, and a client-server com-
munication is set up at DL.

•	 Dew Layer-The dew layer DL operates as a distributed hotspot network access55. The hotspot range uses 
the 2.4 GHz unlicensed band. However, end-IoT devices Dn can operate with ranges from 3.6-9.60 GHz 
band. The communication protocol is IEEE 802.11n, and for long-range communication, we shift to IEEE 
802.11ax, with a data rate of 900 Mbps. In our work, we considered Wi-Fi, with an associated data capacity 
of 50 Kbps for communicating channels. At DL, we consider q dew nodes, represented as hotspot nodes 
{H1, H2, . . . , Hq}. They communicate with the Raspberry Pi, AML-S905X, UDOO Blot v3 boards for com-
munication. Any Hq  node can monitor any Pi patient critical indicators, denoted as C(Pi), and support 
disconnected/intermittent Internet connectivity to the cloud layer nodes.

•	 Roof Layer-At the roof layer (RL), security and privacy mechanisms, like encryption and role-based access 
control, are integrated. It ensures that data from the DL is securely transmitted to the fog-cloud layers. The 
sensitive data attributes are hidden, and the data is encrypted and protected from unauthorized access. In 
our framework, we consider that there are r roof layer nodes, denoted by {R1, R2, . . . , Rr}. These nodes are 
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connected to the dew layer nodes and the cloud layer nodes via wired or wireless networks, such as Ethernet 
or Wi-Fi. Each Ri node has a unique ID, denoted by ridi , and is responsible for specific tasks, such as data 
encryption or access control. The roof layer nodes also have resources, such as computing power or storage, 
which can be allocated to the dew layer nodes as needed. These resources are denoted as Rresi , where Rresi  
is the resources available at node Ri. To assure privacy-based access control, we denote the set of authorized 
users for patient Pi as A(Pi), and the set of sensitive data for Pi as S(Pi).

•	 Fog Layer-At the fog layer FL, the collected data which are not immediately critical are forwarded. At this later, 
we consider that the data collected, which have f health indicators, denoted by If , mapped to sk , which is nor-
malized for every indicator between range [0, 1], and is sent to the training classifier. However, we consider 
lightweight models for healthcare analysis at the fog, and the results are sent back to the DL for display. This 
saves critical time for analysis at the cloud node, as critical predictions are returned from the fog node itself.

•	 Cloud Server-Once the network connection becomes stable, the collected data is sent to the cloud server for 
analytics. At the cloud layer CL, heavyweight analytics models are used. CNN models like RestNet-50 and 
Inception v3 are normally used for imaging analysis. Similarly, time-series data is analyzed through deep 
learning algorithms like Long-Short Term Memory (LSTM) units or GRUs. To induce the interpretability of 
the results, Explainable AI (XAI) techniques are used7. XAI techniques include Shapley Addictive Explana-
tions or Local Interpretable Model Agnostic Explanation (LIME) explainers used to indicate which parameter 
If  had more impact on the output prediction O(p).

A sequence diagram interaction
Figure 2 represents the information flow between the different layers in the framework, based on the discussions 
presented in Fig. 1.

In this diagram, the IoMT sensors continuously capture patient vital indicators, which are then transmitted to 
the Arduino-based dew layer via serial communication. The dew node executes functions such as Collect(), 
Validate(), and Critical_Case() to check if the sensed data exceed predetermined thresholds. Upon 
detecting abnormal values, the dew layer immediately triggers local alerts and forwards the data through its 
communication interface. The data then flows to the roof layer (implemented on a smartphone), where it is 
aggregated, secured using advanced encryption standard (AES) encryption and role-based access control, and 
subsequently forwarded to the fog layer. The fog layer performs lightweight analysis and, if necessary, passes 
critical information to the cloud server for deeper analytics and long-term storage. This coordinated, multi-layer 
approach ensures reg-time response and resilience even under intermittent connectivity.

Fig. 1.  Dew-IoMT: The proposed framework (drawn using draw.io desktop software version v26.2.2 ​h​t​t​p​s​:​​/​/​g​i​t​
h​​u​b​.​c​o​m​​/​j​g​r​a​p​​h​/​d​r​a​​w​i​o​-​d​e​​s​k​t​o​p​/​​r​e​l​e​a​s​​e​s​/​t​a​g​/​v​2​6​.​2​.​2).
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Components and testbed setup
In this subsection, we discuss the details of the hardware components used in the framework and the testbed 
setup. The detail is presented as follows.

Components
The basic components used in the framework are as follows.

•	 IoMT Sensors (Data collection)-We take plug-and-play IoMT sensors to record the patient vital indicators. We 
connect the sensors to our Arduino Uno R3 board to measure the patient’s heart rate, pulse, blood pressure, 
and temperature. The sensors are equipped with a noise-removal circuit, removing unwanted signals that 
might change readings. These sensors are connected to an Arduino board at pin number A0.

•	 Jumper Wires (Connections)-Electrical cables connect the breadboard or circuit parts with other components 
without soldering. These jumper wires make all connections of our circuit.

•	 Arduino Uno R3 (Dew Layer)-Arduino UNO R3 is a microcontroller board based on ATmega328p, and it 
is designated as our dew layer DL. We read data from k sensors, where a matching rule algorithm is stored, 
which checks the measured If  against threshold indicators, denoted by T hI . In case If > T hI , then an 
alert is raised, and the nearest hospitals are informed for intensive patient care. In case of non-serious condi-
tions, the data is forwarded to RL through the uplink Urf , with data rate RUrf . The communication is done 
through serial communication via the Universal Asynchronous Receiver-Transmitter (UART) protocol. Thus, 
the decision at the DL does not require any Internet connectivity, and in such cases, the data is stored in a dew 
database, denoted by Db(DL).

•	 LCD Display (Alerts at dew)-The alerts are displayed on a 16 × 2 LCD display, which displays 32 information 
characters. Each character is made of 40 pixels. Thus, 40 × 32, which is 1280 pixels, is displayed for messages.

•	 Raspberry Pi (Roof Layer)-Raspberry Pi is used as the roof layer device in our framework. It is a single-board 
computer with a Broadcom system-on-a-chip (SoC). It has a 64-bit quad-core ARM Cortex-A72 CPU, 
clocked at 1.5 GHz, which provides high processing power. It has a RAM of 4 GB, which provides sufficient 
memory to run complex applications. It has built-in wireless connectivity, including Wi-Fi and Bluetooth, 
based on IEEE 802.11 b/g/n/ac protocols. Additionally, it has Gigabit Ethernet for wired networking sup-
port. The received data is encrypted and is represented as Ek(RUrf ), where K represents the symmetric 
AES encryption key. For any user U, and access control role, Rlu is defined with a specific object (a resource 
the user can access) as OK . The access rights are defined as tuples that map Ru with OK . As an example, 
any authorized doctor (Rlu = Doctor) can access patient temperature object OK  =Temp in read mode only. 
The details can be shown as a tuple T u = (Doctor, P atientT emp, Read). Based on the temperature, the 
critical actions can be written in the patient health record as Au = (Doctor, P atientT emp, W rite), where 
explicit identifiers (name of patient, address) are hidden. This is appended with previous data, encrypted, and 
sent to the fog node for analysis. The offloading strategy of Raspberry Pi is decided based on its computational 
power and storage capacity. In low storage, data can be offloaded to ESP32 (fog node) or Blynk Cloud for task 
computation. This is done by establishing a communication link directly with the fog-cloud nodes.

•	 ESP32 chip (Fog Node)-The ESP32 acts as the fog node in our framework and involves a Tensilica Xrtensa 32-
bit processor with 1-2 cores. The operating clock frequency is 240 MHz, allowing wireless connectivity based 
on IEEE 802.11 b/g/n/i protocol. It has a ROM of 448 KB, fast RAM of 520 KB, and 8 KB for sleep modes. 
It can support external Static Random Access Memory (SRAM) with flash encryption. Thus, with sufficient 
memory and networking support, it can execute lightweight analytics and support communication with the 
cloud layer CL via the uplink Ufc, with data rate DUfc . It is connected with DL (Arduino) using the Tx2 RX2 
pins of ESP32.

•	 Blynk Cloud (Cloud Node)-The healthcare data received from Arduino will be sent to the Blynk cloud, where 
monitoring and analysis can be done. The cloud node uses Blynk Cloud, an open-source cloud-based IoT 

Fig. 2.  Sequence Diagram: Communication between different entities in the framework (drawn using draw.io 
desktop software version v26.2.2 ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​j​g​r​a​p​​h​/​d​r​a​​w​i​o​-​d​e​​s​k​t​o​p​/​​r​e​l​e​a​s​​e​s​/​t​a​g​/​v​2​6​.​2​.​2).
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solution. It can connect to any smartphone with an Android version of 4.2 or higher and an iOS version of 9 
or higher, with in-built networking support.

Testbed setup
The testbed setup in Fig. 3 shows the connection of the pulse sensor (PS) with Arduino.

•	 The dew node is an Arduino Uno. The PS’s data pin is connected to the Arduino’s A0 pin, and the Arduino is 
connected to the Raspberry Pi via USB.

•	 The roof node is a Raspberry Pi 3 Model B+. The DHT11 sensor’s data pin is connected to GPIO17 (pin 11), 
and the LED’s anode is connected to GPIO27 (pin 13) and its cathode to GND (pin 6). The Raspberry Pi 
communicates with the fog node via WiFi.

•	 The fog node is an ESP32 chip. Its RX2 and TX2 pins are connected to GPIO15 and GPIO4 of the Raspberry 
Pi, respectively. The ESP32 is also connected to the BME280 sensor via I2C, with SDA connected to GPIO21 
(pin 40) and SCL connected to GPIO22 (pin 38).

•	 The cloud layer is Blynk Cloud, which receives data from the fog node via WiFi.

The control flow of the proposed framework
This subsection discusses the operational flow of the DeW-IoMT framework. Fig. 4 presents the details.

The framework considers that sensors (pulse, blood pressure, and ECG) are connected to Pn, and the data is 
sent to Arduino UNO R3. Based on the proposed monitoring and alert algorithm, as depicted in Algorithm 1, it 
measures the indicators and compares them to normal threshold values of health indicators.

The normal indicators are 60–120 beats/min for the heart, 120–140 mmHg for pressure, and 98.6 F for 
temperature. If the measured indicator exceeds the threshold, it is displayed on the LCD, and the data is 
forwarded to ESP32 via the UART protocol at 9600 bps.

The operational flow considers the system is initially in an idle state. Once data is received from sensor nodes 
X = {P u, T e, P r}, the dew node generates alerts based on the threshold conditions displayed as messages 
on the LCD. If network availability exists, the data is forwarded to the fog layer FL, and lightweight analysis is 
done to present basic prediction results. Further, the data is sent to CL for constant monitoring. The structural 
elements at the dew layer are as follows.

•	 Dew Manager: The dew layer executes the basic checking function Validate(), which matches the sensor data 
to the threshold values via the Collect() function. The critical conditions are covered via Critical_Case() func-
tion, and alerts are forwarded to the smartphone.

•	 Communication Interface: Plug-and-play networking elements are connected via the Wi-Fi interface, which 
sends the data to the fog nodes via the Request() function.

Fig. 4.  The operational flow of the framework (drawn using draw.io desktop software version v26.2.2 ​h​t​t​p​s​:​​​/​​/​g​i​
t​h​u​​b​.​c​o​​m​/​j​g​r​a​​​p​h​/​d​r​​a​w​​i​o​-​​d​e​s​k​​t​o​​p​/​r​e​l​​e​a​​s​e​s​​/​t​a​g​​/​​v​2​6​.​2​.​2).

 

Fig. 3.  Testbed setup of the proposed scheme (drawn using draw.io desktop software version v26.2.2 ​h​t​t​p​s​:​​/​/​g​i​t​
h​​u​b​.​c​o​m​​/​j​g​r​a​p​​h​/​d​r​a​​w​i​o​-​d​e​​s​k​t​o​p​/​​r​e​l​e​a​s​​e​s​/​t​a​g​/​v​2​6​.​2​.​2).
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•	 Device Handler: At the fog layer, we consider two functionalities, the basic fog node and the fog controller, 
which form a request-response protocol via IoT message passing protocol such as Message Queue Telemetry 
Transport (MQTT), and manage the connection between the dew server block and PS using the message 
passing.

•	 Dew Storage: In case of disconnection, the data is stored in a dew database, where the critical findings can 
be analyzed based on dew intelligence. Once the reconnection state happens, the data is forwarded to higher 
fog-cloud layers.

•	 Roof Layer: In case of reconnection, we consider that the data stored in the dew database is forwarded to the 
roof layer, where the AES encryption and role-based Access Control (ACL) listing is applied. Further, compu-
tationally intensive tasks are divided and sent to the roof for offloading, which computes and sends the result 
back to the dew layer.

 

1: Input: Pu ← Pulsedata, Te ← Tempdata, and Pr ← Pressuredata
2: Output: Display on LCD
3: Procedure READ AND DISPLAY SENSOR DATA(Pu, Te, Pr):
4: Read X ← Pu, Te, Pr
5: DisplayX
6: Alert(X) in case X > Threshold
7: Procedure ALERT(X):
8: if Pu ≥ 100 and Pu ≤ 120 then
9: Display “Heart Rate is normal”

10: else if Pu ≥ 120 then
11: Display “Heart Rate is fast, needs attention”
12: else if Pu ≤ 100 and Pu ≥ 50 then
13: Display “Heart Rate is slow, needs attention”
14: end if
15: if Te ≥ 100.4F then
16: Display “Fever, needs attention ”
17: else if Te ≥ 97F and Te ≤ 99F then
18: Display “Normal Range”
19: else if Te ≤ 97F then
20: Display “Low body temperature, needs attention”
21: end if
22: if Pr ≥ 140(H) and Pr ≥ 90(L) then
23: Display “High Blood Pressure, needs attention”
24: else if Pr ≤ 120(H) and Pr ≤ 80(L) then
25: Display “Normal Range”
26: else if Pr ≤ 100(H) and Pr ≤ 60(L) then
27: Display “Low pressure, needs attention”
28: end if
29: Procedure SEND SENSOR DATA TO ESP32(X):
30: Begin Serial Monitor
31: Send ← X
32: Procedure READ SENSOR DATA FROM ARDUINO(X):
33: Connect to Wi-Fi
34: Connect to Cloud Server
35: Display Data on Cloud

Algorithm 1.  DeW-IoMT: The proposed monitoring and alert system
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Communication Protocol between ESP32 and Blynk Cloud: To facilitate efficient and secure data transfer 
between the ESP32-based fog node and the Blynk Cloud, our system employs the MQTT protocol in accordance 
with industry standards. The ESP32 is configured as an MQTT client operating over IEEE 802.11n/802.11ax 
wireless networks, ensuring robust connectivity with low latency. It uses a unique authentication token provided 
by Blynk to establish a secure session, conforming to IEEE 802.11i (WPA2/WPA3) security standards at the link 
layer. Sensor data collected by Arduino-based dew devices is first aggregated and pre-processed at the roof layer, 
then forwarded to the ESP32. Here, the data is published to designated MQTT topics on the Blynk Cloud with 
a predefined Quality of Service (QoS) level (typically QoS 1 to guarantee message delivery). Simultaneously, the 
ESP32 subscribes to control command topics to receive real-time configuration updates. To further enhance 
security, all MQTT messages are encapsulated within a TLS/SSL channel, adhering to the cryptographic 
standards outlined in IEEE P1363. This combination of secure, standards-based communication protocols 
minimizes latency, ensures data integrity and confidentiality, and supports reliable real-time monitoring even in 
challenging network conditions.

Algorithm analysis and practical use-case
The computational overhead of the proposed algorithm is primarily determined by the number of sensor inputs 
and the operations performed at each layer. The core procedures-such as sensor data collection, threshold 
validation, and offloading decision-making-exhibit linear time complexity, i.e., O(n), where n represents 
the number of sensors per patient. This lightweight processing is distributed across the dew and roof layers, 
thereby reducing the load on the fog and cloud nodes. Consequently, the framework scales efficiently with an 
increasing number of patients, as each node operates independently without causing system-wide bottlenecks. 
The inherent modularity of the architecture further facilitates scalability, making it well-suited for large-scale 
IoMT deployments.

To illustrate the practical applicability of the proposed framework, consider a hospital scenario where 
multiple patients are monitored concurrently. Each patient is equipped with wearable sensors that record vital 
signs such as heart rate, temperature, and blood pressure. These sensors send data to an Arduino Uno (the dew 
layer) located at the patient’s bedside. The dew node rapidly validates the readings; if any measurement exceeds 
the safe threshold, an immediate alert is generated and displayed locally. Simultaneously, the data is transmitted 
to a nearby smartphone (the roof layer), which aggregates and encrypts the information before forwarding it to 
an ESP32-based fog node. The fog node performs further analysis to detect anomalies and, if required, instructs 
the system to notify medical staff. For more complex evaluations, the processed data is then relayed to the cloud 
for comprehensive analysis and long-term storage. This example demonstrates how the DeW-IoMT framework 
effectively reduces latency and enhances system reliability, ensuring timely interventions in critical healthcare 
scenarios.

Monitoring and analysis of data on cloud
This study references a publicly available dataset created by us (Remote data monitoring file, Zenodo - ​h​t​t​p​s​:​/​/​d​o​i​.​
o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​4​5​0​0​2​5​7​​​​​)​. The dataset is titled Remote Data Monitoring File and it provides synthetic sensor 
readings for heart rate, body temperature, and blood pressure (systolic and diastolic). Based on the dataset, we 
have analyzed the data on Blynk Cloud and created a minimalistic design of the basic components through a 

Fig. 5.  Monitoring of vital indicators on Cloud.
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user-friendly dashboard, which does real-time analytics on the readings to ensure seamless operations. Fig. 5 
refers to the created dashboard.

The data captured from the IoT devices at the dew layer is sent to the cloud to provide real-time feedback. 
This feedback is plotted through appropriate visualization with matching colors and fonts. We have selected 
the bar chart to display the pulse rate information, as it provides an intuitive and effective medium to visualize 
and measure changes in data over time. The fonts are kept to maximize the reading visibility, and the web 
page is designed to be responsive and optimized for device width (different views for desktops, mobile, and 
palmtops). The layout and size of the visualization ensure that the dashboard is easy to navigate and interact 
with on all devices. The IoT device is authenticated on the dashboard via tuple T, which contains template_id, 
template_name, and authentication_code. This allows Blynk Cloud to identify the device and allow rule-based 
access to the data. Once the pulse data is displayed on the dashboard, cloud nodes perform analytics using AI 
models to analyze the data further. These analytics can provide insights into trends and patterns in the data that 
may be difficult to discern with simple visualizations, allowing users to make more informed decisions about 
their health and wellness.

Security and access control
In the proposed framework, we implement security and access-control mechanisms at RL. We present the 
possible attack scenarios on the proposed framework and then the security mechanisms built to evade them. 
The details are presented as follows.

Security attacks
The possible security attacks are as follows.

•	 Data interception: This attack involves an adversary intercepting and accessing the data being transmitted 
between the dew and roof layers. The adversary can use this data for malicious purposes such as identity theft, 
financial fraud, or blackmail.

•	 Data tampering: This attack involves an adversary modifying the data being transmitted between the dew and 
roof layers. The adversary can use this to inject false data into the system, leading to incorrect decisions or 
actions based on that data.

•	 Denial-of-service (DoS): This attack involves an adversary disrupting the normal functioning of the system by 
flooding it with a large number of requests or by overloading the resources of the system.

Attack countermeasures: encryption and role-based access control
To prevent these attacks, the integrated security mechanisms are presented as follows.

•	 Data encryption: Let E represent the encryption function that encrypts the data collected from the sen-
sors. This function takes the plaintext data D as input and produces ciphertext data C as output, such that 
C = E(D). We implement this function using the Advanced Encryption Standard (AES) mechanism.

•	 Role-based access control: Let U be the set of all users who have access to the patient data. Each user is as-
signed a role Rl from a set of predefined roles {Rl1, Rl2, . . . , Rlm}. Let Pi be the patient whose data is being 
accessed. We define a role-based access control policy as a function that maps each user u ∈ U  and patient 
Pi to a set of permissions Pu,i = {pu,i,1, pu,i,2, . . . , pu,i,k}, where pu,i,j  is a binary variable that indicates 
whether user u is allowed to access the jth sensor data of patient Pi. We enforce this policy by using access 
control lists (ACLs) or by implementing it in the form of a role-based access control (RBAC) system.

Parameters Value

RAM of Fog node 1 GB

CPU length of Fog node 40000 MIPS

RAM of Roof node 4 GB

CPU length of Roof node 30000 MIPS

RAM of cloud VM 8 GB

CPU length of cloud VM 44800 MIPS

Idle power of Fog node 16 × 83.25 W

Idle power of Roof node 8 × 50 W

Idle power of cloud VM 16 × 83.25 W

Busy power of Fog node 16 × 103 W

Busy power of Roof node 8 × 70 W

Busy power of cloud VM 16 × 103 W

Uplink bandwidth 90–110 Mbps

Downlink bandwidth 140–160 Mbps

Table 3.  Simulation parameters (iFogSim).
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Resource offloading: dew to roof
In this subsection, we discuss the offloading mechanism of memory-intensive tasks at the DL to RL. Let T be the 
set of all tasks at the dew layer, and M be the set of all memory-intensive tasks at the dew that can be offloaded 
to the roof layer. We assume the roof layer has more resources, such as power, I/O, and bandwidth, than the 
dew layer. Let Resd and Resr  denote the available resources at the dew and roof layers, respectively, where 
Resd < Resr .

Let us assume that DLt is the execution time of task t at dew, and RLt is the execution time at roof layer. The 
overall latency of the dew-to-roof offloading for a given task t is presented as follows.

	 Lt = max(E(DLt), E(DLt → RLt))� (1)

where E(DLt) denotes the execution of the task at dew fully, and E(DLt → RLt) denotes the partial transfer 
of the task from dew to the roof. It also involves the computation and process task formation time at an available 
bandwidth Bd. Thus, an estimated offloading time To would depend on the decision to execute locally or offload.

The offloading mechanism aims to minimize the overall latency of executing all tasks. We define the objective 
function as follows.

	
min

∑
t∈T

Lt� (2)

where Lt is the latency of task t. To offload a task t ∈ M  from the dew layer to the roof layer, we use the following 
equation to estimate the offloading time To.

	
To = Si

Br
+ Si

Bd
+ Cmpt

Rr
� (3)

where Si is the task data size, Br  and Bd are the available bandwidths at the roof and dew layers, respectively, 
and Cmpt is the computation time of task t.

If the estimated offloading time To is less than the execution time of the task t at the dew layer, the task is 
offloaded to the roof layer. Otherwise, the task is executed locally at the dew layer.

	

{
if To < t Offload task to roof layer
otherwise Execute task locally at dew layer � (4)

Once a task is offloaded to the roof layer, it is executed there, and the results are sent back to the dew layer. We 
assume that the communication between the dew and roof layers is reliable and secure.

DeW-IoMT: performance evaluation
The performance evaluation is based on simulation and experimental evaluation. In the simulation, we have 
considered the iFogSim simulator56 to set up the roof and the fog environment. Table 3 presents the simulation 
parameters considered in the iFogSim simulator as part of simulation analysis.

Simulation analysis
We have divided the simulation analysis into two parts, the evaluation of the roof layer and the fog layer, as they 
extend support to the dew layer nearby. The details are presented as follows.

Fig. 6.  Analysis of task offloading at roof layer.
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Roof layer analysis
In this subsection, we validate the benefits of including the roof layer in the dew-for computing paradigm. As 
suggested, the roof layer solves the immediate problem of offloading memory-intensive tasks from the dew to 
itself, thereby reducing communication latency. We enable the offloading mechanism on the Raspberry Pi (roof 
node) in the proposed scheme. It allows the roof node to take memory and bandwidth-intensive tasks from the 
dew layer and perform them. In case of resource requirements, it requests services from the fog controller node. 
This results in improved performance.

Table 3 lists configuration parameters that primarily vary the uplink and downlink bandwidth, our simulation 
scenario in iFogSim is designed to isolate the impact of network bandwidth on overall performance while 
keeping other parameters constant. In our implementation, the roof layer is modeled as a dedicated intermediary 
node that emulates the characteristics of a Raspberry Pi device. Specifically, the roof node is configured with 
processing power, memory, and encryption overhead parameters based on real-world specifications (e.g., a 1.5 
GHz quad-core ARM Cortex-A72 CPU and 4 GB of RAM). Its communication interface is simulated using 
IEEE 802.11n/802.11ax standards, ensuring that both its wireless connectivity and security features (such as 
TLS encryption) are accurately represented. This modeling allows the roof layer to aggregate data from the dew 
devices and perform preliminary processing before forwarding tasks to the fog layer.

Figure 6 presents a comparative analysis of task completion time. In case the dew-fog architecture does not 
have the roof layer, the average task completion time is ≈ 10 seconds with a standard deviation of ≈ 2 seconds. 
The dew-roof-fog architecture has an average task completion time of ≈ 7 seconds with a standard deviation of 
≈ 1.5 seconds. Thus, the task completion time in the dew-roof-fog significantly improves by 27.89% against the 
dew-fog architecture. This is mainly because most of the tasks are completed near dew (roof), which reduces the 
turnaround time.

Fig. 8.  Network usage of proposed paradigm.

 

Fig. 7.  Attack probability analysis.
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Next, we present the mitigation of security attacks in the framework. We measure the attack probability Ap 
of the dew-fog paradigm against the dew-roof-fog computing. Ap measures the likelihood that the system (or 
network) would be compromised. We fix the number of malicious nodes n in the system for both architectures and 
measure the impact as the malicious nodes increase. We consider an exponential decay function α ∗ (1 − eβn) 
to compute Ap, where α is a constant that represents the threshold of maximum attack probability when there 

Parameters Value

Sensor delay 5 ms

Latency (Dew Uplink) 2 ms

Latency (Dew Downlink) 1 ms

Latency (Fog) 10 ms

Latency (Cloud) 100 ms

Data processing latency 10 ms

Energy dissipation (per sensor) 2 J

Fog/Dew Nodes 3

RAM (Dew) 1 MB

Table 4.  Experimental parameters table.

 

Fig. 10.  Energy consumption of proposed paradigm.

 

Fig. 9.  Delay of proposed paradigm.

 

Scientific Reports |        (2025) 15:22882 14| https://doi.org/10.1038/s41598-025-04774-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


are no compromised devices in the system, and β represents the attack deviation factor of the previous round, 
which is denoted as follows.

	
β = Ap−1 − Np−1

Np−1
� (5)

where Ap−1 and Np−1 are the attack and normal probabilities of the previous round r − 1.
Figure 7 shows the plot. From the plot, we can observe that the attack probability for both architectures 

increases as the number of malicious devices increases. However, the dew-roof-fog-cloud architecture has a 
Ap compared to the dew-fog-cloud architecture for the same number of malicious devices. This implies that 
including the roof layer in the architecture provides better security against malicious attacks.

Simulation scenarios for iFogSim
The proposed paradigm has been simulated in iFogSim, and the performance is analyzed regarding network 
usage and delay. Here, we have considered three scenarios depending on the uplink and downlink bandwidth. 
The uplink bandwidth considered in Scenario 1, Scenario 2, and Scenario 3 is 90 Mbps, 100 Mbps, and 110 
Mbps, respectively. The downlink bandwidth considered in Scenario 1, Scenario 2, and Scenario 3 is 140 Mbps, 
150 Mbps, and 160 Mbps, respectively. The other parameters’ values57 are provided in Table 3. The cloud server 
has higher resources than the fog node, so the cloud VM’s RAM size and CPU length are higher than the fog 
node.

Figure 8 presents the network usage of the proposed paradigm concerning the three scenarios. Network usage 
refers to the utilization of the system resources in terms of data transmission and reception from the network 
interfaces, measured in kilobytes (kB). This is observed that the network usage of the proposed paradigm is 
9450–9470 kB.

Figure 9 presents the delay of the proposed paradigm concerning the three scenarios. The delay refers to 
the execution delay of the application, measured in milliseconds (ms). This is observed that the delay of the 
proposed paradigm is 24–25.5 ms.

Figure 10 presents the energy consumption of the proposed paradigm concerning the three scenarios. The 
energy consumption is determined by the power consumption of all hosts in a particular time frame and is 
measured in Megajoule (MJ). In our approach, the communication between cloud-fog requires an energy of ≈ 
2.18–2.2 MJ.

Experimental analysis
The section presents the details of the performance metrics, the experimental setup, and the results of the 
scheme. At the dew layer, we have installed appropriate packages to receive real-time health indicators and have 
used the Table 4 presents the parameters considered in the experiment.

The parameter values are taken by Medhi et al.58. We have considered that maximum of three dew nodes 
are connected to three fog nodes, respectively, and the experiment is conducted 20 times, and the reading is 
averaged. The uplink bandwidth of dew, fog, and cloud nodes is kept at 50 Mbps, 100 Mbps, and 100 Mbps, 
respectively. Network parameters like response time, energy dissipation, and bandwidth are the performance 
metrics in the experiment.

Performance metrics
To analyze the performance of DeW-IoMT, response time, energy dissipation, and network bandwidth are 
considered. As per the simulation table, we have fixed the network bandwidth. Hence, we discuss the effects of 
response time and energy dissipation only.

Fig. 11.  Response time analysis.
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At the fog layer, recommendation analytics Lrem is sent on the data d. We consider two links, once between 
the fog and cloud, with data transmission rate Rfc, and between the fog and dew through the roof, where we 
present transmission rate as Rfd. The failure rates are denoted as ffc and ffd. Thus, the latency in analytics from 
the cloud layer is denoted as follows.

	 Lcf = (d/Rfd)(1 + ffc) + (d/Rfd)(1 + ffd)� (6)

From the fog layer, the latency would be as follows.

	 Lfd = (d/Rfd)(1 + ffd)� (7)

with the trivial condition Lfd < Lfc. In the proposed scheme, the dew layer can store cache updates in case of 
connectivity failure. It is noted that with the dew layer, the latency reduces by ≈ 17–25% in comparison with 
fog-cloud architectures.

For power analysis, we consider a scenario where we assume that the dew node receives data from k IoMT 
nodes, denoted as Dn. The total data packets from ith device is P wi, where 1 ≤ Ni ≤

∑k

i=1 Nk . In terms of 

Fig. 13.  Task size offloaded by Fog..

 

Fig. 12.  Energy dissipation analysis.
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power analysis, the power is divided into data packet accumulation, analysis, and transmission requirements. 
The power consumption of any dew node receiving (accumulating) a packet P wk  from node Dn is

	
P wa =

k∑
l=1

P wl� (8)

where P wl is the power dissipation of a single node. Similarly, the power dissipation formula can be used for 
analysis and transmission (denoted as P wana and P wtrans respectively). The total power at the dew node is 
shown as follows.

	 P wtotal = P wa + P wana + P wtrans + P wdis� (9)

where P wdis denotes the power consumption required in the event of disconnection. It is noted that the total 
power consumption also decreases by ≈ 35% from the cloud-based solutions and ≈ 15% from the fog-edge-
based solutions.

Experimental results
The experimental with analytical results are compared for the parameters against cloud-based59 and fog-edge-
based solution60.

Figure 11 shows the response time computation against patient IoT setups (we consider three sensors 
attached to the patient’s body) for each node. Based on Rfc and Rfd, Lcf  and Lfd is computed. For 5 node 
setups, recommendation response from the cloud takes ≈ 1.95 seconds (s), from fog 0.6 s, and dew layer, it takes 

Fig. 15.  Network Bandwidth analysis.

 

Fig. 14.  Storage Cost at Cloud.
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0.495 s. Thus, there is a significant improvement of ≈ 74.61% from the cloud and ≈ 17.5% from fog computation 
at the dew layer for 5 IoMT node setups.

Figure 12 compares dew, fog, and cloud layers concerning energy dissipation. As evident, we observe the 
power requirements as depicted in equation (9). Compared to fog and edge layers, we observe an increase in 
power consumption at the cloud layer. At 6 node setups, the energy dissipation at the cloud is 1470 kJ, compared 
to 670 kJ at the fog, and 570kJ at dew, which shows an improvement of 38.78% from the cloud and 14.92% from 
the fog layer.

We further analyze the number of tasks offloaded to the fog node. A comparative analysis is drawn against 
Fan et al.32, which considers the task t offloaded to fog. Fig. 13 depicts the results. As depicted in section 
“Resource offloading: dew to roof ”, our approach considers Si as the task size offloaded to the roof, with the 
condition To < t. We consider the percentage of data sent to the cloud in both approaches, with the underlying 
condition that data generated for each task is constant (Cons). Thus, the amount of data sent to the cloud Dc can 
be approximated as a linear function against several tasks N(t). The same is presented as follows.

	 Dc = Cons × N(t)� (10)

As indicated, the percentage of data is computed as follows.

	
Dc = 100 − Tl

Ttotal
� (11)

where To
Ttotal

 denotes the percentage of tasks offloaded to any layer. In our approach, we see that an improvement 
of ≈ 29.43% is achieved against the approach presented in32, as due to the roof layer, the number of tasks sent to 
the cloud reduces, and thus Dc is reduced.

Next, we analyze the storage cost of the proposed roof-fog scheme against Poonia et al.28. In our scheme, 
most of the task is resolved at the roof-fog layer. Hence, a small portion of the task is forwarded to the cloud. 
Thus, it reduces the size of task execution in the cloud. Therefore, there is a reduction in the storage cost in the 
cloud. Fig. 14 presents the results. With 351 tasks, the storage cost at the cloud is 7986 MB in28, compared to 3987 
MB in our proposed approach. On average, a significant reduction of ≈ 33.56% is obtained on task data stored 
in the cloud node. Thus, our proposed scheme provides a more efficient, cost-effective, and scalable solution to 
offload IoMT tasks, leveraging applications’ processing power.

Figure 15 shows the network bandwidth consumption for 5 IoMT setups, numbered as {D1, D2, D3, D4, D5}. 
For three nodes, cloud bandwidth is 3552 Mbps, 1788 Mbps for fog, and 861 Mbps for dew nodes.

Statistical analysis of performance metrics
To ensure the robustness of our experimental results, we conducted statistical hypothesis testing on key 
performance metrics-namely, response time, throughput, and energy consumption. Our simulation experiments 
were repeated 20 times to capture variability, and the mean values along with the standard deviations were 
computed for both the baseline (traditional dew-fog or cloud-centric architectures) and the proposed DeW-
IoMT framework (dew-roof-fog-cloud architecture). A two-sample t-test was then applied to each metric to 
compare the means between the two setups, with a significance level of α = 0.05. Additionally, a one-way 
ANOVA was performed to evaluate the effect of varying network conditions on these metrics. The resulting 
p-values and F-values confirmed that the improvements observed using the proposed framework are statistically 
significant.

Table 5 summarizes the statistical analysis. For instance, the average response time in the baseline architecture 
was found to be 10.00 seconds (± 2.00 s), while the proposed approach achieved an average response time of 
7.00 seconds (± 1.50 s) with a p-value of 0.012 and an ANOVA F-value of 5.32. Similarly, throughput improved 
from 50.0 Mbps (± 5.0 Mbps) to 65.0 Mbps (± 4.0 Mbps) (p-value 0.008, F-value 6.45), and energy consumption 
decreased from 1470 kJ (± 100 kJ) to 1020 kJ (± 80 kJ) (p-value 0.005, F-value 7.10). These results demonstrate 
that the enhancements in the proposed DeW-IoMT framework are not due to chance, but are statistically 
significant.

These statistical results affirm that the proposed DeW-IoMT framework significantly reduces response time 
and energy consumption while improving throughput, thereby substantiating its effectiveness and scalability for 
IoMT applications.

Formal security analysis
In section “Security and access control”, we highlighted the security attacks possible in the framework, namely, 
data interception, data tampering, and DoS attacks. We counter these attacks at the RL layer, where the 
encryption function E encrypts data sent by sensor nodes via the AES algorithm. Rule-based access control 

Metric Baseline (Mean ± SD) Proposed (Mean ± SD) p-value (t-test) ANOVA F-value

Response Time (s) 10.00 ± 2.00 7.00 ± 1.50 0.012 5.32

Throughput (Mbps) 50.0 ± 5.0 65.0 ± 4.0 0.008 6.45

Energy Consumption (kJ) 1470 ± 100 1020 ± 80 0.005 7.10

Table 5.  Statistical analysis of key performance metrics.
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maps only authorized users to predefined roles61. This section presents the formal proofs against the attacks to 
validate the claims.

Theorem 1  The proposed dew-roof-fog-cloud framework is secure against data interception attacks.

Proof  In this attack, an adversary intercepts and accesses the data transmitted over the dew and roof lay-
ers. Let D be the data collected from the sensors at the dew layer, and E(D) be the encrypted data using the 
AES encryption scheme with key K. Let M be the set of all possible messages an adversary can intercept, 
and C be the set of all possible ciphertexts an adversary can obtain. In such cases, the probability of mes-
sage m getting intercepted from c is negligible and thus can be ignored. By the definition of AES encryp-
tion, we have E(D) = AES(D, k). This means that the ciphertext c is a deterministic function of the mes-
sage m and the key K, which means c = E(m, K). Thus, the probability function can be written as follows 
P r[M = m|C = c] = P r[D = d|E(D) = c] = P r[AES−1(c, K) = d]. Since AES is a secure encryption 
algorithm, the probability that an adversary can invert the ciphertext to recover the plaintext is negligible. □

Theorem 2  The proposed dew-roof-fog-cloud framework is secure against data tampering attacks.

Proof  In this attack, we consider D and E(D) to be respectively the original and encrypted data. An adversary 
tampers the data, represented as D′, and E(D′) is the encryption of the tampered data. For the same, the ad-
versary performs an interception attack on E(D) and modifies it to get E(D′). As AES is a secure encryption 
algorithm, it is computationally infeasible to obtain D′ from E(D′) without the encryption key K. Even if the 
adversary has the encryption key K, it cannot modify the encrypted data E(D) to get E(D′) without being de-
tected by the integrity checks in place. Thus, the system is secure against the data tampering attack. □

Theorem 3  The proposed dew-roof-fog-cloud framework is secure against DoS attacks.

Proof  In this case, we consider that Rr  be the available resources at the roof layer and Tr  be the tasks needed. 
Let f(T) be the resource requirement of a task T, and let Prc(T) be the processing time of a task T. Suppose an 
attacker tries to launch a DoS attack by flooding the system with a large number of resource requests. However, 
since the attacker does not have the necessary privileges (owing to role-based access control), their requests will 
be denied, and the attacker will not be able to consume any resources. Formally, let Ua be the set of users the 
attacker can impersonate, and let Rla be the set of roles the attacker can assume. Let Ma be the access matrix for 
the attacker, where Ma,i,j  represents the set of privileges that the attacker has for role j when they assume the 
identity of user i. Since the attacker does not have the necessary privileges, Ma,i,j  would be empty for all i ∈ Ua 
and j ∈ Ra. Therefore, the attacker cannot perform tasks on the roof layer, and their resource requests will be 
denied. Thus, the system is secure against DoS attacks. □

Theorem 4  The proposed dew-roof-fog-cloud framework is secure against unauthorized access attacks.

Proof  In this attack, we assume the malicious entity attempts to steal credentials by forging (impersonating) 
another user to gain unauthorized access and perform unwanted actions. In our approach, we have employed 
the RBAC to manage user privileges. We consider that let Ua be the set of unauthorized users and Ra be the set 
of unauthorized roles that the attacker can assume. In such case, a role-matrix Ma is the access matrix of the 
attacker, and let Ma,i,j  represent the set of privileges that the attacker has for role j when assuming the identity 
of user i.

As RBAC is implemented, locks L on updating the matrix are allowed to only authorized users. Thus, 
the access matrix updation to M ′

a would return empty for unauthorized users, and thus no data or resource 
can be manipulated in our approach. Formally, for any unauthorized user u ∈ Ua and unauthorized role 
r ∈ Ra, Ma,u,r = ∅. Therefore, the attacker cannot perform unauthorized actions within the system, ensuring 
the framework’s security against unauthorized access attacks. □

Security cost analysis
In this section, we analyze the proposed framework’s communication and security computation cost. Our 
framework considers that the roof layer allows AES encryption, which involves a symmetric encryption/

Parameter 25 28 29 Proposed

A1 Y N Y Y

A2 Y Y Y Y

A3 N Y N Y

A4 N Y Y Y

Table 6.  A comparative analysis of security functions against related schemes. Attacks A1: Interception; A2: 
Tampering (Alteration); A3: DoS; A4: Unauthorized Access Y shows parameter is present; N shows parameter 
is absent.
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decryption process. As indicated in Srinivas et al.62, the security cost of symmetric/encryption-decryption is 
0.0056 seconds. In our framework, the task t is sent from dew to roof, involving 1 round of encryption and 
corresponding decryption. Similarly, between roof fog, we would have 1 more round, followed by a final 
round between fog-cloud. Let us denote the encryption operation as Eop and the decryption operation 
as Edop, then the security computation cost is 3Eop + 3Edop, which is 0.0336 seconds. We compare the 
proposed scheme against Mukherjee et al.29, which uses asymmetric encryption for node communication. In 
the Eop, an additional operation of computing modular exponentiation Mexp is required, which costs 0.0192 
seconds. Modular inverse Minv  is required at the receiver, which is ≈ 0.00264 seconds. Thus, the overall cost 
is Eop + Mexp + Edop + Minv , which is 0.05544 seconds, and thus an improvement of 65% is obtained in 
security cost.

For security communication cost, we consider the message exchanges between different entities as depicted 
in Fig. 2. The IoMT sensor nodes share health data with a timestamp value of 32 bits. The data is then passed 
to the dew (Arduino Uno), which forwards it to the roof layer with a random nonce value of 32 bits. Finally, 
the data is passed over the IEEE 802.11 network, where the associated node attaches a digital signature verified 
at the receiver end. For real-time response, we use a MAC value of 160 bits. Thus, the overall communication 
cost is Csn + Cdew + Croof + Cdew + Ccloud, where all these operations are performed, which is 32 + 32 + 
(32 + 160) + (32 + 160) + (32 + 160) bits, which is 640 bits. We compare the proposed communication cost with 
authors in25,28, and we obtain an improvement of 128 bits over these schemes, as they perform the random nonce 
operation and timestamp both in the communication, which amounts to 64 bits at each link. Thus, an additional 
overhead of 96 bits is obtained between the dew-fog and fog-cloud systems. Thus, our framework demonstrates 
an improvement of 15% in terms of communication cost.

Table 6 shows a comparative analysis of performed and validated security functions in the proposed schemes 
against existing schemes.

Limitations of the proposed framework
The proposed framework DeW-IoMT outlines the integration of the dew layer in IoMT setups for critical 
response and actions. The roof layer ably supports the dew layer, and the roof-fog paradigm provides resource 
management for the dew. Only high-compute intensive tasks would go to the cloud for analysis (bulky models 
being trained on a high amount of data). However, there are inherent open challenges in terms of networking, 
resource management, and security and privacy in the scheme, which limits its effectiveness in real-world setups.

Firstly, the proposed scheme requires a high amount of changes to the existing centralized (fog/edge and 
cloud infrastructures) in terms of daily operations and control to integrate the dew component. This conversion 
might be a costly affair and would be time-consuming. Thus, it increases the overall deployment cost of the 
scheme in highly scalable and dynamic environments and might require extensive training operations. Moreover, 
the current evaluation is based on simulation, and additional real-world experiments are necessary to capture 
the full complexity of operational environments. To solve this problem, further research is focused on designing 
loosely coupled fog/edge and cloud computing paradigms, where the services are handled close to the user level. 
Moreover, with the rise of robust wireless communication and networking protocols, the networks can handle 
intermittent connectivity or frequent disconnections. Another direction is the shift towards decentralized peer-
to-peer networking, which allows more effective data transmission and processing between the layers.

Secondly, we present a resource offloading approach at the roof layer to support the dew operations. Such 
a model might not be feasible for all types of tasks. Modern systems have a set of heterogeneous medical data, 
which requires a differentiated viewpoint to handle the data. Viewing the entire data as a homogeneous task 
component might not scale well to diverse applications in such cases. Thus, it is imperative to design task 
evaluation and classification strategies that allow the user to understand the task semantics and decide which 
task to offload to the roof layer. In future work, we plan to develop dynamic task classification algorithms, 
possibly using explainable AI techniques, to further refine the offloading decisions based on real-time contextual 
data. Thus, the future scope is to address the challenges of resource constraints and design efficient algorithms 
to manage tasks and resource allocation. For the same, explainable AI-based techniques are used to model 
resource interpretation and usage patterns. The explainable results are then fed to the machine learning model 
to dynamically allocate resources based on the current and the projected demand in the near future.

Finally, the scheme is heavily skewed toward the security and privacy mechanism focusing on symmetric 
encryption and role-based access control. However, owing to the vast nature of zero-day attacks, the vulnerability 
space has increased, and thus it is important to design more resilient security and privacy mechanisms. 
Future research should consider the integration of advanced cryptographic techniques such as homomorphic 
encryption and secure multi-party computation to further safeguard sensitive medical data. Thus, advanced 
techniques, such as homomorphic encryption and secure multi-party computation, can be performed, allowing 
the computations on encrypted data without decryption. These algorithms also assure the privacy of sensitive 
patient attributes during data sharing among multiple nodes in operation.

Conclusions
The paper presents the DeW-IoMT framework that leverages a dew layer to quickly detect critical health issues by 
monitoring patient pulse using an Arduino Uno and LCD-even during disconnections. A connected roof layer 
enhances resilience by securely offloading data, reducing reliance on fog or cloud processing for urgent alerts, 
while continuous cloud monitoring provides long-term analytics. Simulation and experimental evaluations 
show significant gains in response time, energy efficiency, and network utilization compared to cloud-centric 
models, with the roof layer particularly reducing latency and bolstering security.
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Future work aims to integrate additional sensors (e.g., temperature and ECG) for on-dew analysis, refine task 
offloading strategies between fog and cloud layers, and explore improved resource management and advanced 
security mechanisms to enhance framework adaptability in diverse, real-world scenarios.
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