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This study explores novel optical soliton solutions for the generalized derivative nonlinear conformable
Schrodinger equation under the influence of multiplicative white noise. Using the new Kudryashov
method, various solutions are derived, including solitary waves, bright, dark, singular, and W-shaped
soliton solutions. The study investigates their dynamic behavior and physical characteristics,
emphasizing the role of the conformable order derivative and temporal parameters through three-
dimensional, two-dimensional, and contour plots. Incorporating multiplicative white noise into
soliton analysis presents an innovative approach, advancing the understanding of nonlinear optical
phenomena. Noise management techniques modeled in this study help simulate real-world scenarios
where fibers face stochastic disturbances, aiding in the design of robust communication systems.
Further, understanding noise’s impact on soliton stability offers insights for minimizing errors in signal
processing and enhancing the reliability of optical fiber communication networks.
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In recent years, there has been a growing interest among researchers and scientists in solving nonlinear partial
differential equations (NLPDEs) and deriving their exact solutions'~>. Among these equations, the nonlinear
Schrodinger equation (NLSE) stands out as one of the most extensively studied, particularly in the realms
of nonlinear optics and optical fiber systems*~’. Optical fibers play a crucial role in enabling the efficient
transmission of data over long distances with minimal loss and signal degradation. To maintain stability and
ensure reliable communication, it is essential to analyze critical factors such as dispersion, nonlinearity, and
attenuation, as these directly impact signal quality and limit achievable data rates®~!°. The NLSE serves as a
fundamental model in fiber optics, describing wave systems and capturing the intricate interactions between
dispersion and nonlinear effects. Researchers have utilized the NLSE to investigate various phenomena,
including soliton dynamics, microtubule motion in optical fiber systems, novel soliton structures, peakon
and cuspon excitations, and modifications of the Schrédinger equation!!-!*. Studies have also focused on the
NLSE under different types of nonlinearities, such as dual-power law, Kerr law, quadratic-cubic, and parabolic
law nonlinearities'*!>. Understanding these propagation mechanisms enables advancements in fiber design,
the development of enhanced modulation techniques, and the implementation of effective signal processing
strategies!®~18,

Stochastic partial differential equations (SPDEs) play a vital role in modeling physical, biological, and
chemical systems influenced by randomness'®*. Their applications span diverse fields, including finance,
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engineering, biophysics, climate science, and materials science, reflecting the importance of incorporating
stochastic effects into complex system analyses??2. One notable example is the use of SPDEs in studying
optical solitons, self-sustaining wave packets in nonlinear fiber optics described by the nonlinear Schrodinger
equation. The NLSE captures the effects of an optical fiber’s nonlinear refractive index, often modeled by Kerr
nonlinearity. When multiplicative white noise is introduced, it significantly alters soliton behavior, stabilizing
solutions around zero and influencing their long-term dynamics. This has led researchers to develop innovative
methods to analyze such noise effects, offering insights that could enhance signal processing and transmission
in optical communication systems. For a better understanding of these nonlinear phenomena, it is important
to study the analytic solutions of the NPDEs. Thus, different techniques have been previously discovered and
improved to construct soliton solutions for NPDEs. These techniques include the enhanced modified tanh
expansion method??, the simple equation method?*, the enhanced algebraic method?’, the Jacobi elliptic function
expansion technique?®, the modified F-expansion method?, the generalized Kudryashov method?®?’, the Sardar
sub-equation technique®®?!, the trial equation method®?, the ¢°®— model expansion method®?, the modified
Kudryashov method*, the generalized exponential rational function technique®, and the Lie symmetry analysis
method?.

Numerous mathematical models have been refined to describe wave propagation in optical fibers, revealing
fascinating phenomena driven by the complex interplay between dispersion and nonlinearity. These insights
have found applications across various fields, including plasma physics, fluid dynamics, and optical systems,
broadening the scope of research and technological innovation in these areas*’~. In this paper, we investigate
the dynamical behavior of various novel optical solutions to the newly proposed generalized derivative NLSE
model, which includes perturbation terms with multiplicative white noise, as follows:

W (t)
dt

i(q™), +a(gd™h +iB (Ja*"q™)" + moq™® =ivlg*" (¢™)" +68lg/*""¢" 0<p<1, (D)
where q(x, t) represents a complex valued function, and i is defined as v/—1. The initial term outlines the
generalized linear progression over time. Interestingly, the constant o, o, 8, and § are all real values, and m
and n are positive integer values. The parameter o represents the coefficient linked to generalized chromatic
dispersion (CD), whereas 3 serves as the coefficient for the generalized nonlinear effects. Additionally, o denotes
the coeflicient of the noise strength, and W(t) defines the standard Wiener process, characterized by derivative
‘Z—Vf, which acts as white noise. The perturbative components on the right-hand side of the Eq. (1) represent the
dissipative term and the higher-order nonlinearity, respectively. The parameter o modulates the influence of the
external stochastic or random effects through the fractional Brownian motion W(t), while J is a real parameter
that contributes to the higher-order nonlinear interaction. By selecting these parameters carefully, the proposed
model remains both physically interpretable and mathematically tractable, enabling the construction of exact
solutions and facilitating bifurcation or stability analyses relevant to nonlinear optics and related fields.

Equation (1) is reduced to the generalized NLSE form in the case where v = § = 0. Specifically, with
conditions m = n = 3 = a = 1, Eq. (1) transforms into the derivative NLSE. Interestingly, the scenario where
o = 0 for Eq. (1) has been examined previously in the context described in. The present type of nonlinear
Schrédinger equation was very recently studied by Elsayed et al. in*!~%%. The main purpose of this paper is to
derive various optical soliton solutions to the generalized derivative NLSE model with multiplicative white noise
using the new direct mapping method and the Kudryashov method. Furthermore, the dynamical behavior of the
novel optical solutions under the influence of multiplicative white noise is analyzed.

_ ez +d2'TP) —q(2)
Definition 1.1 Ls () (2) = (}ll_r,% d ;B € (0,1]. 2

Suppose that g1 and g2 are conformable differentiable of order 3, and s1, s2 € R. The followings are hold*:

i Lg(s1q1+ s2g2) = s1Ls(q1) + s2Ls(qz).
ii. Lg(z!) =Ilz!"Pforalll € R.
ii. Lg(q192) = q2Ls(q1) + q1Ls(g2).

. Lg (%) _ qus(mz};;zlL/a(tm).

Fractional calculus has become a powerful framework for accurately modeling a wide range of physical
phenomena. Modern fractional-order models offer greater flexibility and adaptability than traditional integer-
order models, making them well-suited for complex systems. This study explores the fundamental principles of
the conformable derivative, which plays a crucial role in understanding the behavior and dynamics of various
physical processes*®*”. With broad applications in physics, engineering, economics, and biology, the conformable
derivative serves as an effective analytical tool for addressing complex challenges across multiple disciplines?3:4.

Standard Wiener process

The Standard Wiener process, commonly known as Brownian motion, plays a fundamental role in both physics
and mathematics. It describes the erratic movement of a particle suspended in a fluid, caused by continuous
collisions with the fluid’s molecules. This motion is characterized by randomness, continuity, and certain
statistical properties, making it a vital concept in various scientific fields. From this point, let us define the SWP
W(t) as follows:
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Definition 2.1 The stochastic process W(t),t > 0 is called SWP if it fulfills :

W(t) is continuous,

W(0) =0,

W(t) is has independent increments,

W (t) — W (s) has normal distribution.

L e

Formulation of problem

In this section, we apply the new Kudryashov method to analyze the generalized derivative NLSE model, which
is influenced by multiplicative white noise and conformable derivatives. The goal is to derive several closed-form
optical solutions in various forms. We begin by employing the following transformations:

"
q(z,t) = U(5)62[7k7+wt+gw(t)*02t]7

3
5:%—(%. ©

The constants k, w, , and C are real numbers to be determined, representing the soliton’s frequency, wave number,
and velocity, respectively. By substituting the transformations from (3) into Eq. (3), we derive the following real
part:

b (5 =) €™+ = 50" — m( (ak*m — o* + w) U(©)?

(4)
~aUOU(©) ~ a(m - U'©)?) =0,
and the following imaginary part:
U™ U(&) (U()*" mB +2U(&)" nf — U(€)*" my — 2m*ak —mC) =0, (5)
From Eq. (5), we obtain
C = —2ak,
=7 (6)
2n+m’
To obtain an integer value for N, hence, we need the following relation:
1
U(€) = (G(&)=" ()

Inserting the above relation into Eq. (4), we obtain:

mEG()*(8 —7) = (K*mPa+ (w - o) m + 3G (€)°) G (€)* + T G(E)G"(©) +

mao

1z (M= )G (€ =0. (8)

Application of the new Kudryashov method

In this section, we derive a range of innovative optical soliton solutions for the studied model, obtained using
the new Kudryashov method, which was first introduced by N. Kudryashov in 2022%°. Although it works well
for producing exact solutions to nonlinear partial differential equations, the new Kudryashov approach has
certain drawbacks. Its usefulness to more complicated or highly non-polynomial systems is limited, primarily
because it works best with equations that have polynomial or rational nonlinearities. The method’s effectiveness
in addressing large-scale or extended models is further diminished by the symbolic computing it requires, which
can become laborious for higher-dimensional or highly nonlinear systems. Here, we posit that the solution to Eq.
(8) can be represented as the following series:

Method Type of solutions obtained Main contributions
Improved Auxiliary Equation Method Bright and dark soliton solutions Effective for complex nonlinearities including cubic-quintic-septic terms
Generalized Projective Riccati Method | Chaotic structures and solitary waves Applicable to fractional and multidimensional systems
Modified Exponential Function Method | Bright, dark, and periodic wave solutions Useful in modeling optical fiber systems and related fields

Exact soliton solutions including bell, kink, and | Efficient for fractional and higher-order nonlinear differential equations;
New Kudryashov Method . L . -

singular types offers simplified computation and broader solution structure

Table 1. Comparison of analytical methods for solving nonlinear differential equations.
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N
G&) =fo+ Y _fiB(), ©)
i=1
where fo, f1,..., fz are real constants, and N denotes a balancing parameter. By balancing principle for
G(&)G"(€) and G(€)* in Eq. (8), we obtain N = 1. Thus, Eq. (9) reduced to the following series:
G(&) = fo+ [1B(8), (10)
where B(§) satisfies the following relation:
2
dB
(df)) = " B2(6)(1 £ xB*(€)). (a1

Here, the solutions of the above equation are defined as follows:

2eH

Bl (é‘) = H2€€7]£ ES Xe*f?”f ’

and the hyperbolic function is

2¢eH
(H? F x) cosh (&) + (H? £ x) sinh (n¢)’

By(§) = (13)

where ¢ = F1 and x, H, n, and m are constants.

By substituting Eqs. (10) and (11) into Eq. (8), we obtain a polynomial in terms of the powers of B(§). Next,
we organize the terms according to their respective powers and equate each corresponding coefficient to zero.
This procedure results in a system of algebraic equations and solving the system, one can have the following
results:

_ ftmaxn® (m — 2n)
4n?

|~ asptlrI(BQ)) : — pha — LT =0,
[ — 39.25pt][r (B(€)) : kfim (8 — ) — 4fof36 — W ~o,

2 2 2 2
| SSL25p(BE) 3k fEm (5 ) — (Kria+ (w— o) m+ f30) 5 = 543 pro + LA Siman =) _,

2
| 278259t (BE) : 3kf2 fum (8~ ) — 2 (KmPa + (w — o®) m+ f26) fofs — 23 fr5 + 20T _

[ 29.25pt][r](B(€))* : kfgm (B —v) — (K°*m*a+ (w—o0®) m+ £36) f5 = 0.

Result 1.
_ 2%n(y=f) . _ 2V ( =Bnk 4k’ (B-9)°
fo - 7f1 - = O = — 2 5
34 34 9128 (14)
8n* (8 =) k* + dnn® (B — ) k* + 96 ° 0
m=2n,w = .
9n2d
Utilizing Egs. (3), (6), (7), (10), (12)-(13), and (14), we can have the following optical solutions:
1
2n
. L ot _0_2
a1 (x,1) = f% - A L o (WO )
36 (HQe"(IMJrFl) +xen(1”+rl)>
o
knry 2v/2x ynkH "
L0 =735 T 55 (B2 1 x) conh(n (Z 1 T0)) + (H? —x) sinh(n (2 +T0)))
X n (% +T1 X n (% +T1 (16)

. gz Tot 2 )
Xez(o’W(t) k m +797725 ot ’

where x > 0.
Suppose that Y = — H 2. By inserting the value of y into Eq. (16), we acquired the following soliton solutions:
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1
— 2 ©w 2n il Lz Tot _52
(e, 1) = (_k;? _ 7vzngwkcsch (n (ﬂ; +p1>)> oWkt Tal o) @)

Suppose that x = H?>. By inserting the value of x into Eq. (16), we acquired the following soliton solutions:

1
/o2 Iz 2n (. _pzt Tat 2
qa(z,t) = (_IZ? - %H’mksech (77 (xﬂ +P1>)> o (oW —kst+ o t)7 (18)

where I’y = A2 n37%t and Iy = 29%k*N3 + n®4°k*n + 96 2o

9n2s
Result 2.
4f3s 86 fo
= fo, = — ,a= — ’k = — ,
fo=Jo. 1=V fo 3n? 3n (=6 +7) 19
27 (no® + 2 f36) (B — )" n* + 256 f36° (19)
m=n,w = 5 .
2Tnn* (B — )
Utilizing Egs. (3), (6), (7), (10), (12)-(13), and (19), we can have the following optical solutions:
N
2n
2VX foH i(2do2t 4y tow (-0t
as(@t) = | fo- on 327352t on 327382t e ( o ’ )’ (20)
HQen(T_ 312y ) + Xe_n<7_ 302~y )
T
2 H
ao(@t) = | fo— n_ 82f30%1 ik : W 32735%
(H?% 4 x) cosh (17 ("‘7 - S )) + (H? — x)sinh (n (TT - S )) (21)
x o (AT oW 0 -™)
where x > 0.

Suppose that Y = —H?2. By inserting the value of y into Eq. (21), we acquired the following soliton solutions:

1
V=H? o 320302\ \\ P (Bt er o w () —o?
q7(13,t) = (fO - TfOCSCh n 7 — 3{}027 e ( oy thst ® t) . (22)

Suppose that x = H?>. By inserting the value of x into Eq. (21), we acquired the following soliton solutions:

1

/172 “w 3 ¢2 2n . (46 fgxtt P

gs(z,t) = | fo— A2 10 oen nl(Z - 32f007t el( i AT toW (5)=01) (23)
’ H I 3%y '

nere Ts = (et 8I60) 17+ 5 760°)
where - oy ]
Result 3.
o V2R V2 GIrtet k(R 4 an?) k(5 -5 fi)
0= s J1 = J1,w = 7
2v/X 3O "
m=m,a= SV2ZEBE Dk 5 2V (547 nk

3VXn? ’ 3f1

Utilizing Egs. (3), (6), (7), (10), (12)-(13), and (24), we can have the following optical solutions:

1
2n . =P st
(z,t) = V2 /i + 2hH el(aw(t)_kTJ”ﬁﬁn?Jzt) (25)
qo\T, = Zf T T ,
X HQen(# 4) + xe ”I(M 4)

qio(z,t) = <\/§fl n 2f1H >

2VX (12 ) cosh (1 (3 —T)) + (1 =) sinh (5 (3 — 1)) (20

) _pat st 2
y el(dW(t) k m +W o t)
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where x > 0.
Suppose that x = —H 2. By inserting the value of y into Eq. (26), we acquired the following soliton solutions:

1
2 m 202 ymPk? fit 2
q11($,t) — <\[f12 + ﬁcsch ("7 (‘T _ W)))
ov/—H?2  H 7 3vV—HZ2np
\/5(3\/72112 7]20272k3f1'yn27kf1'y7]2)t ) >
—o“t

27)
i| ow(t) -kt 4
X e (U : 6y —H2n?

Suppose that x = H?>. By inserting the value of x into Eq. (26), we acquired the following soliton solutions:

_ \/ifl ﬁ ﬁ_ 2\/§7n2k2f1t %
qi2(z,t) = (2\/ﬁ+HseCh (n(u 7?)@”2 )))

(28)
) wi o VE(3V2HZ 0202 —2k3 f1an2—kfiyn? )t
" ;("WM*I@T"L v —0o t)7
where 'y = %ﬁ?wt andT's = /2 (3\/2)( nlo® — 2vk3 fin? — fyk‘flnz).
Result 4.
r 8n? (0'2 - w) 8v/X (02 - w) n?
O (k2 o) k(v B) T T (4n2k2 +50%) (v = B) K (29)
4n (02 = w) 3 (n2k2 + %772) E*n (8 —~)?
T 4n2k2 4+ 5m27 0 1692 (w — o2) =
Utilizing Egs. (3), (6), (7), (10), (12)-(13), and (29), we can have the following optical solutions:
1
2n
120% (0% —w 24./x (0? —w)n*H il _rzt i o?
qis(z, 1) = : (F. ) + \(( o " ol (i t)’ (30)
¢ T <H2€77(J'77F7) + Xeinmt 7F7)>
qua(z, t)
1
120 (o — w) 24X (o —w)n*H .
= + z : z (31)
Ts T ((H2 +x) cosh(n (7“ — F7)) + (H?2 —x) smh(n (7“ -T )))

i t)—kZE - 215)
ez(ch( ) o twt—o 7

where y > 0.
Suppose that x = —H?. By inserting the value of 'y into Eq. (31), we acquired the following soliton solutions:

2 (52 _w T2 (02 — w) 2 " 7
(ot) (1277 ( ) L1 ( )1 csch (n <NF7)>>

T's I'eH

(32)
« ei(aW(t)fk”‘;#+wt702t) .

Suppose that Y = H?>. By inserting the value of x into Eq. (31), we acquired the following soliton solutions:

e (12n2 (7 —w) | 1VIE (P =) (n @ B F7)>> !

T's e H (33)

o ei(aW(t)—k"';—erwt*U%)?
8n?(o?—w)kt
where T = 7k (4n°k® + 5¢%) and I'7 = W

Result 5.
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= = _ 2kn(y—pB)  y/6aknfo(y—p)
o= Joufi = =200 = - 3fo 3 ’ (34)
m=2n,w = 72ak2n+ M Jr02.

Utilizing Egs. (3), (6), (7), (10), (12)-(13), and (34), we can have the following optical solutions:

1
2/2x foH 2 (oW (t)—k 2 4 (02 —2ak2n— L foky)t—o2t
qur(z,t) = (fO T H2els ﬁf;em> oH (e sfok) ), (35)
1
22X foH 2
=1 fo—
(2, ?) (f O THZ ¥ x) cosh(Ts) + (HZ — ) sinh(F8)> (36)

. H 2 2 1 2
« ez(o’W(t)szi—Lﬁ»(U —2ak nfgfok’y)tfo' t)7

where x > 0.
Suppose that Y = — H 2. By inserting the value of y into Eq. (36), we acquired the following soliton solutions:

1
- 2 oy -1 o2 —2ak?n—1 —o2
o, 1) = <f0 B 7\/2HHﬁ)CSCh (Fs)> ez(o‘W(t) k2 4 (0% —2ak%n—1 fokv)t z>. 37)

Suppose that x = H?>. By inserting the value of x into Eq. (36), we acquired the following soliton solutions:

1
QQo(l’,t) _ <f0 _ 7\/2]}:[[2]0()S€Ch (F8)> 2n ei(aW(t)—k‘%-‘r(Jz—Qaan—%fok’Y)t—a%)7 (38)

where I's = 7v1222nﬂw (% — 4akn t)‘
Result 6.
dn (02 —w) v/ oxn (02 — w) 3(8—7)?
44/ —20m(c? — w) 86 (w - 02) (39)
n= 7k: = , M =n.
3(v—=5) 3(B—7)+y/on(o?—w)
Utilizing Egs. (3), (6), (7), (10), (12)-(13), and (39), we can have the following optical solutions:
5 5 b Z_((w_ﬁ)ug@u +wt+aW(t)—<72t>
P GV GV GGl SN WY e o
0 0 (H?%el9 + xeT9)
1
o= on (02 —w) 2y/0xn (0?2 —w)H .
a22(2,0) = | = 5 " 5 ((HZ + x) cosh(Ts) + (H2 — x)sinh(Ts)) "
41

< (w—o?)asar 2)
i ——ft————twt+oW(t)—0c“t

sn(o2—

e NEER ’

where dn (02 — w) > 0and dxn (02 - w) > 0.
Suppose that x = —H?. By inserting the value of 'y into Eq. (41), we acquired the following soliton solutions:

(w—0?)asar

on (o2 — —5H? 2 _ B i(ifyi»’wHﬂ?W(t)*cht)
Gas(m,t) = (_\/ n(; w) _ \/ (;;{(0’ w)CSCh (F9)> o sn(o2—w)vn . (42)

Suppose that Y = H?>. By inserting the value of x into Eq. (41), we acquired the following soliton solutions:

(w—o2)asah

on (0?2 —w 0H?n (02 —w = Z( sn(o2—w)yu
dre(at) (_\/ (5 ) \oH 5151 )sech(Fg)> o\ Vo)

+wt+oW (t)—o3t
(43)
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Figure 2. The bright plots of |¢1 (z,t)]>where H=n=1,k=2,v=0.1,§ = —0.3,x = 4,and n = 3.

Fg _ 2\/W (ﬂ + 47n(w—a2)t >
" # 3y/on(o?~w) J b (02 — w) > 0,and H?*n (02 — w) > 0,.

where

Scientific Reports|  (2025) 15:19599 | https://doi.org/10.1038/s41598-025-04981-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Re(q, (x.))

Results and discussion

As depicted in Figs. 1 and 9, graphs (a), (b), and (c), the bright solution surfaces exhibit a smooth appearance in
the absence of noise 5 — (). However, with the introduction of noise and an increase in its intensity o > 0, the
surface patterns progressively deteriorate. Notably, higher levels of noise result in surfaces that tend to become
increasingly planar. To supplement the three-dimensional visualizations

As depicted in Figs. 1 and 2, graphs (a), (b), and (c), the bright solution surfaces exhibit a smooth appearance
in the absence of noise (¢ = 0). As the white noise parameter ¢ increases (e.g., moving from o = 0 in subplots
(a) and (d) to o = 0.05 and 0.1 in subplots (b, ¢) and (e, f)), the solutions demonstrate greater fluctuations and
instability. The noise introduces perturbations to the soliton profiles, causing broader and less sharp peaks in
the soliton amplitude. The presence of white noise models real-world scenarios where random fluctuations, such
as thermal or environmental noise, affect the stability of solitons during propagation. Higher noise levels can
destabilize solitons, potentially leading to energy dissipation or chaotic behaviors. In optical fiber communication,
understanding the noise impact helps design systems with improved robustness to stochastic disturbances.
Varying the conformable derivative parameter p( 1 = 1,0.7, and 0.4) influences the soliton’s sharpness and
energy distribution. Smaller y values result in broader solitons with smoother profiles, while higher p values
preserve sharper peaks and more localized energy. The interaction between o ( white noise) and ( conformable
derivative) dictates the overall stability and dynamics of the soliton. Larger noise levels combined with lower p
values lead to more unstable and diffused solitons. These results highlight the importance of balancing noise and
system parameters to achieve desired outcomes in practical applications.

From Fig. 3, the behavior of the wave function Re(q1(z,t)) under varying values of white noise o and
conformable derivative parameter 1 is analyzed. In subplots (a), (b), and (d), increasing o introduces noticeable
fluctuations in the wave pattern. The wave profile becomes less smooth as o increases, suggesting a more
stochastic influence on the system. White noise simulates external random disturbances in physical systems,
such as thermal noise in optical fibers or environmental perturbations in wave propagation. Comparing subplots
(a) and (b) (where t = 1 and p = 0.7, respectively), the reduction in j leads to changes in wave localization and
amplitude. Lower p values result in broader and less steep wave patterns, indicating reduced system nonlinearity
and larger u values maintain sharper and more localized waveforms, reflecting stronger nonlinear effects. The
interplay between ¢ and . determines the wave’s stability and profile. High o and low ;1 amplify instability and
broaden wave patterns, whereas low o and high p preserve soliton integrity. Subgraph (c) displays an oscillatory
behavior of Re(g1 (x, t)) for i, highlighting periodic wave patterns over time at a specific spatial position x = 1.
Stable oscillations represent reliable signal propagation with minimal distortion, which is crucial for high-speed
communication systems. Subgraph (f) also exhibits oscillatory behavior of Re(qi(z,t)) but for a lower
conformable derivative value ¢ = 0.7 and at a fixed spatial position « = 1. The wave amplitude appears more
irregular compared to subgraph (c), with smaller oscillation peaks indicating a reduction in soliton strength.
Reducing ;t weakens the nonlinearity, making the soliton less robust to the influence of noise. This results in
more irregularities and smaller amplitudes in the oscillatory pattern. Figure 4 illustrates the comparison of three-
dimensional and contour plots of dark soliton to |gs(z,t)|°. The profile displays a clean, undisturbed shape.

Re(a, (x.)

Re(q, (x.1)

Re(q,(x.1))

-0.8
0

Figure 3. The wave plots of Re(q1(x,t)), where H =n =1,k =2,7v=0.1,6 = —0.3,x = 4,and n = 3.
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Figure 4. The dark plots of |g5(z, )|?, where fo =4,n =7 =3,6 = 0.3,y = 5,x = 0.2, H = 2,and
w=1

ag(x.bl?

ag(x.bl?

Jag(x.bl?

lag(x.H)I?

lag(x.0I?

lag(x.0I”

Figure 5. The dark plots of g5 (z, t)|*, where fo = 4,n =1 =3, = 0.3,y = 5,x = 0.2,and H = 2.
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This indicates the absence of noise (o = 0), where the soliton solution is stable and retains its characteristic
form. The energy density remains concentrated and localized, consistent with soliton propagation in noise-free
environments. Noise starts to influence the solution, introducing visible disturbances in the soliton’s shape. The
structure begins to lose its coherence, and irregularities emerge, suggesting the destabilizing effect of moderate
noise o = 0.25. With higher noise intensity (o = 0.5), the soliton becomes significantly distorted. The surface
demonstrates larger deviations, indicating that the noise disrupts the energy concentration and leads to more
chaotic propagation.

Figure 5, graph (a) for ;. = 1, the plot displays a clear periodic pattern, where |gs(z,t)|* oscillates with
consistent peaks and valleys. The amplitude decreases slightly as time progresses. Figure 5, graphs (b) and (c),
reducing p introduces more irregularities and reduces the peak amplitude. The oscillatory pattern becomes
less uniform over time. The same behavior can be observed in Fig. 5, graphs (d), (e), and (f). Besides, in Fig. 5,
o represents the strength of white noise in the system. The plots clearly indicate how varying o influences the
behavior of | (z, t)|*for different values of 11 the conformable derivative and positions x. Figure 6 illustrates the
effect of different values of 11 on the wave soliton solution Im(gs(x, t)). Here, the dynamical behaviuor of the
soliton under the influence of the conformable derivative is depicted.

Figures 7 and 8 depicts the comparison of the W-shaped solutions of |go(x,t)|*under varying noise
strengths (¢ = 0, 0.4, and 0.7) and conformable derivative parameter p( 1 = 1 and & = 0.7 in 3D and contour
visualizations. In the absence of noise, the W-shaped structure remains intact and well-defined. This indicates
stability in the solution and reflects an undisturbed propagation of the optical pulse. Moderate noise introduces
distortions in the W-shaped structure when (¢ = 0.25 and ¢ = 0.5). The central peaks of the soliton begin
to broaden, and the edges display irregularities. These effects indicate that the presence of noise starts to
interfere with the stability of the solution, leading to partial energy dispersion. Further, under strong noise
conditions when (o = 1), the W-shaped soliton becomes highly distorted, with the pattern showing significant
irregularities. This indicates that the system is dominated by noise, causing the soliton’s energy to spread and
leading to a loss of coherence.

Figures 8 and 9 present the W-shaped profiles of the soliton solution |go (, t)|* and wave soliton Re(qo (, t))
for different values of the temporal parameter. The figures provide a detailed view of how the soliton intensity
evolves over spatial direction. The soliton exhibits the highest energy concentration at the core (z = 0). W-shaped
solitons can be employed in optical communication systems to transmit signals over long distances with minimal
distortion. However, Figs. 8 and 9 depict the evolution of the W-shaped solution |go(z, t)|*and wave soliton
Re(go(z,t)) under varying noise strengths (o = 0,0.25,0.5, 1) in 2D visualizations. In the absence of noise,
the structures of the soliton solutions remain intact and well-defined. This demonstrates the stability of the
solution and indicates undisturbed propagation of the optical pulse. Moderate noise introduces distortions in
the structure of soliton solutions in the presence of white noise. The central peaks of the soliton begin to broaden,
and the edges display irregularities. These effects indicate that the presence of noise starts to interfere with the
stability of the solution, leading to partial energy dispersion. Further, under strong noise conditions, the soliton

(d) (e) ®)

Figure 6. The wave plots of Im(gs(x,t)), where fo = 4,n =n=3,6 =0.3,7 =5,x = 0.2, H = 2,and
o=0.
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Figure 7. The W-shaped solutions of |go(z,t)|*, wherek =n=p=1,f1 = H = —4,7 = —0.2,x = 0.1,
andn = 1.1.
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Figure 10. The wave plot of Re(go(z,t)), wherek =n=p=1,f1 = H= -4,y = —-0.2,x = 0.1, and
n=1.1

becomes highly distorted, with the pattern showing significant irregularities. This indicates that the system is
dominated by noise, causing the soliton’s energy to spread and leading to a loss of coherence. From Fig. 10, the
soliton behavior is analyzed under the influence of the temporal parameter and white noise parameter. Higher
white noise levels introduce irregularities in the soliton shape. The soliton becomes less stable, showing more
fluctuations and distortions in amplitude over time.

These findings emphasize the relationship between environmental noise and the performance of fiber
optic networks, demonstrating that when noise levels exceed a certain threshold, the functionality of soliton-
based systems may be significantly impaired. Smaller values ensure strong energy localization and stability,
while larger values lead to broader soliton profiles due to dispersion. These insights are vital for designing and
optimizing soliton-based communication systems. The results emphasize the need to minimize noise in optical
fiber systems to preserve soliton integrity. Techniques like dispersion management and noise filtering are crucial
for maintaining stable soliton propagation.

Conclusion

In this paper, we successfully constructed various novel optical soliton solutions and analyzed the dynamical
behavior of these solutions under the influence of multiplicative white noise and conformable derivative. Using
the new Kudryashov method, we obtained various optical soliton solutions, including solitary wave solutions,
bright solitons, dark solitons, singular solitons, and W-shaped solitons. The influence of the white noise
parameter, the conformable order derivative, and the temporal parameter on the present soliton solutions is
discussed through three-dimensions, two-dimensions, and contour plots. These findings have the potential to
significantly impact a variety of scientific fields, pushing the boundaries of knowledge and opening up new
possibilities in the study of nonlinear phenomena. Understanding the dynamics of nonlinear systems under
stochastic effects can enhance the design of optical signal processing systems, leading to improved noise
management and clearer signals in telecommunications. Moreover, the modulation instability and perturbation
analysis of the obtained solutions under varying physical conditions remain open for exploration. Extending
the model to include variable coefficients or higher-order dispersion terms would also enhance its relevance to
real-world optical systems.

Data availability
All data generated or analysed during this study are included in this published article.
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