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This study explores novel optical soliton solutions for the generalized derivative nonlinear conformable 
Schrödinger equation under the influence of multiplicative white noise. Using the new Kudryashov 
method, various solutions are derived, including solitary waves, bright, dark, singular, and W-shaped 
soliton solutions. The study investigates their dynamic behavior and physical characteristics, 
emphasizing the role of the conformable order derivative and temporal parameters through three-
dimensional, two-dimensional, and contour plots. Incorporating multiplicative white noise into 
soliton analysis presents an innovative approach, advancing the understanding of nonlinear optical 
phenomena. Noise management techniques modeled in this study help simulate real-world scenarios 
where fibers face stochastic disturbances, aiding in the design of robust communication systems. 
Further, understanding noise’s impact on soliton stability offers insights for minimizing errors in signal 
processing and enhancing the reliability of optical fiber communication networks.
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In recent years, there has been a growing interest among researchers and scientists in solving nonlinear partial 
differential equations (NLPDEs) and deriving their exact solutions1–3. Among these equations, the nonlinear 
Schrödinger equation (NLSE) stands out as one of the most extensively studied, particularly in the realms 
of nonlinear optics and optical fiber systems4–7. Optical fibers play a crucial role in enabling the efficient 
transmission of data over long distances with minimal loss and signal degradation. To maintain stability and 
ensure reliable communication, it is essential to analyze critical factors such as dispersion, nonlinearity, and 
attenuation, as these directly impact signal quality and limit achievable data rates8–10. The NLSE serves as a 
fundamental model in fiber optics, describing wave systems and capturing the intricate interactions between 
dispersion and nonlinear effects. Researchers have utilized the NLSE to investigate various phenomena, 
including soliton dynamics, microtubule motion in optical fiber systems, novel soliton structures, peakon 
and cuspon excitations, and modifications of the Schrödinger equation11–13. Studies have also focused on the 
NLSE under different types of nonlinearities, such as dual-power law, Kerr law, quadratic-cubic, and parabolic 
law nonlinearities14,15. Understanding these propagation mechanisms enables advancements in fiber design, 
the development of enhanced modulation techniques, and the implementation of effective signal processing 
strategies16–18.

Stochastic partial differential equations (SPDEs) play a vital role in modeling physical, biological, and 
chemical systems influenced by randomness19,20. Their applications span diverse fields, including finance, 

1Department of Mathematics, University of Duhok, Duhok, Iraq. 2Department of Mathematics, Shanghai University, 
No. 99 Shangda Road, Shanghai 200444, China. 3Department of Mathematics, Saveetha School of Engineering, 
Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, Tamil Nadu, India. 4Department of Basic 
Sciences, Technical and vocational university, Tehran, Iran. 5Department of Mathematics, Faculty of Basic Sciences, 
The German University in Cairo, Cairo, Egypt. 6Department of Mathematics, University of Ha’il, Ha’il 2440, Saudi 
Arabia. 7Department of Mathematics, Faculty of Engineering, German International University, Cairo, Egypt. 
email: homan_emadi@yahoo.com

OPEN

Scientific Reports |        (2025) 15:19599 1| https://doi.org/10.1038/s41598-025-04981-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-04981-7&domain=pdf&date_stamp=2025-6-4


engineering, biophysics, climate science, and materials science, reflecting the importance of incorporating 
stochastic effects into complex system analyses21,22. One notable example is the use of SPDEs in studying 
optical solitons, self-sustaining wave packets in nonlinear fiber optics described by the nonlinear Schrödinger 
equation. The NLSE captures the effects of an optical fiber’s nonlinear refractive index, often modeled by Kerr 
nonlinearity. When multiplicative white noise is introduced, it significantly alters soliton behavior, stabilizing 
solutions around zero and influencing their long-term dynamics. This has led researchers to develop innovative 
methods to analyze such noise effects, offering insights that could enhance signal processing and transmission 
in optical communication systems. For a better understanding of these nonlinear phenomena, it is important 
to study the analytic solutions of the NPDEs. Thus, different techniques have been previously discovered and 
improved to construct soliton solutions for NPDEs. These techniques include the enhanced modified tanh 
expansion method23, the simple equation method24, the enhanced algebraic method25, the Jacobi elliptic function 
expansion technique26, the modified F-expansion method27, the generalized Kudryashov method28,29, the Sardar 
sub-equation technique30,31, the trial equation method32, the ϕ6− model expansion method33, the modified 
Kudryashov method34, the generalized exponential rational function technique35, and the Lie symmetry analysis 
method36.

Numerous mathematical models have been refined to describe wave propagation in optical fibers, revealing 
fascinating phenomena driven by the complex interplay between dispersion and nonlinearity. These insights 
have found applications across various fields, including plasma physics, fluid dynamics, and optical systems, 
broadening the scope of research and technological innovation in these areas37–39. In this paper, we investigate 
the dynamical behavior of various novel optical solutions to the newly proposed generalized derivative NLSE 
model, which includes perturbation terms with multiplicative white noise, as follows:

	
i (qm)t + α (qm)2µ

xx + iβ
(
|q|2nqm

)µ

x
+ mσqm dW (t)

dt
= iγ|q|2n (qm)µ

x + δ|q|4nqm, 0 < µ ≤ 1,� (1)

where q(x,  t) represents a complex valued function, and i is defined as 
√

−1. The initial term outlines the 
generalized linear progression over time. Interestingly, the constant α, σ, β, γ and δ are all real values, and m 
and n are positive integer values. The parameter α represents the coefficient linked to generalized chromatic 
dispersion (CD), whereas β serves as the coefficient for the generalized nonlinear effects. Additionally, σ denotes 
the coefficient of the noise strength, and W(t) defines the standard Wiener process, characterized by derivative 
dW
dt , which acts as white noise. The perturbative components on the right-hand side of the Eq. (1) represent the 

dissipative term and the higher-order nonlinearity, respectively. The parameter σ modulates the influence of the 
external stochastic or random effects through the fractional Brownian motion W(t), while δ is a real parameter 
that contributes to the higher-order nonlinear interaction. By selecting these parameters carefully, the proposed 
model remains both physically interpretable and mathematically tractable, enabling the construction of exact 
solutions and facilitating bifurcation or stability analyses relevant to nonlinear optics and related fields.

Equation (1) is reduced to the generalized NLSE form in the case where γ = δ = 0. Specifically, with 
conditions m = n = β = α = 1, Eq. (1) transforms into the derivative NLSE. Interestingly, the scenario where 
σ = 0 for Eq. (1) has been examined previously in the context described in40. The present type of nonlinear 
Schrödinger equation was very recently studied by Elsayed et al. in41–44. The main purpose of this paper is to 
derive various optical soliton solutions to the generalized derivative NLSE model with multiplicative white noise 
using the new direct mapping method and the Kudryashov method. Furthermore, the dynamical behavior of the 
novel optical solutions under the influence of multiplicative white noise is analyzed.

Definition 1.1 	
Lβ (q) (z) = lim

d→0

q(z + dz1−β) − q(z)
d

, β ∈ (0, 1].� (2)

Suppose that q1 and q2 are conformable differentiable of order β, and s1, s2 ∈ R. The followings are hold45: 

	 i.	 Lβ(s1q1 + s2q2) = s1Lβ(q1) + s2Lβ(q2).
	ii.	 Lβ(xl) = lxl−β  for all l ∈ R.
	iii.	 Lβ(q1q2) = q2Lβ(q1) + q1Lβ(q2).
	iv.	 Lβ

(
q1
q2

)
= q2Lβ(q1)−q1Lβ(q2)

q22 .

Fractional calculus has become a powerful framework for accurately modeling a wide range of physical 
phenomena. Modern fractional-order models offer greater flexibility and adaptability than traditional integer-
order models, making them well-suited for complex systems. This study explores the fundamental principles of 
the conformable derivative, which plays a crucial role in understanding the behavior and dynamics of various 
physical processes46,47. With broad applications in physics, engineering, economics, and biology, the conformable 
derivative serves as an effective analytical tool for addressing complex challenges across multiple disciplines48,49.

Standard Wiener process
The Standard Wiener process, commonly known as Brownian motion, plays a fundamental role in both physics 
and mathematics. It describes the erratic movement of a particle suspended in a fluid, caused by continuous 
collisions with the fluid’s molecules. This motion is characterized by randomness, continuity, and certain 
statistical properties, making it a vital concept in various scientific fields. From this point, let us define the SWP 
W(t) as follows:
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Definition 2.1  The stochastic process W(t), t ≥ 0 is called SWP if it fulfills :

	1.	 W(t) is continuous,
	2.	 W (0) = 0,
	3.	 W(t) is has independent increments,
	4.	 W (t) − W (s) has normal distribution.

Formulation of problem
In this section, we apply the new Kudryashov method to analyze the generalized derivative NLSE model, which 
is influenced by multiplicative white noise and conformable derivatives. The goal is to derive several closed-form 
optical solutions in various forms. We begin by employing the following transformations:

	

q(x, t) = U(ξ)ei[−k xµ

µ
+wt+σW (t)−σ2t]

,

ξ = xµ

µ
− Ct.

� (3)

The constants k, w, , and C are real numbers to be determined, representing the soliton’s frequency, wave number, 
and velocity, respectively. By substituting the transformations from (3) into Eq. (3), we derive the following real 
part:

	

km (β − γ) U(ξ)2n+2 − δU(ξ)4n+2 − m
( (

αk2m − σ2 + w
)

U(ξ)2

− αU(ξ)U ′′(ξ) − α (m − 1) U ′(ξ)2
)

= 0,
� (4)

and the following imaginary part:

	 U(ξ)m−1U ′(ξ)
(
U(ξ)2n mβ + 2U(ξ)2n nβ − U(ξ)2n mγ − 2m2αk − mC

)
= 0,� (5)

From Eq. (5), we obtain

	

C = −2αk,

β = mγ

2n + m
.
� (6)

To obtain an integer value for N, hence, we need the following relation:

	 U(ξ) = (G(ξ))
1

2n .� (7)

Inserting the above relation into Eq. (4), we obtain:

	 mkG(ξ)3(β − γ) −
(
k2m2α +

(
w − σ2)

m + δG (ξ)2)
G (ξ)2 + mα

2n
G(ξ)G′′(ξ) + mα

4n2 (m − 2n)G′(ξ)2 = 0.� (8)

Application of the new Kudryashov method
In this section, we derive a range of innovative optical soliton solutions for the studied model, obtained using 
the new Kudryashov method, which was first introduced by N. Kudryashov in 202250. Although it works well 
for producing exact solutions to nonlinear partial differential equations, the new Kudryashov approach has 
certain drawbacks. Its usefulness to more complicated or highly non-polynomial systems is limited, primarily 
because it works best with equations that have polynomial or rational nonlinearities. The method’s effectiveness 
in addressing large-scale or extended models is further diminished by the symbolic computing it requires, which 
can become laborious for higher-dimensional or highly nonlinear systems. Here, we posit that the solution to Eq. 
(8) can be represented as the following series:

Method Type of solutions obtained Main contributions

Improved Auxiliary Equation Method Bright and dark soliton solutions Effective for complex nonlinearities including cubic-quintic-septic terms

Generalized Projective Riccati Method Chaotic structures and solitary waves Applicable to fractional and multidimensional systems

Modified Exponential Function Method Bright, dark, and periodic wave solutions Useful in modeling optical fiber systems and related fields

New Kudryashov Method Exact soliton solutions including bell, kink, and 
singular types

Efficient for fractional and higher-order nonlinear differential equations; 
offers simplified computation and broader solution structure

Table 1.  Comparison of analytical methods for solving nonlinear differential equations.
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G(ξ) = f0 +

N∑
i=1

fiB(ξ)i,� (9)

where f0, f1, ..., fN  are real constants, and N denotes a balancing parameter. By balancing principle for 
G(ξ)G′′(ξ) and G(ξ)4 in Eq. (8), we obtain N = 1. Thus, Eq. (9) reduced to the following series:

	 G(ξ) = f0 + f1B(ξ),� (10)

where B(ξ) satisfies the following relation:

	

(
dB(ξ)

dξ

)2

= η2B2(ξ)(1 ± χB2(ξ)).� (11)

Here, the solutions of the above equation are defined as follows:

	
B1(ξ) = 2εH

H2eεηξ ∓ χe−εηξ
,� (12)

and the hyperbolic function is

	
B2(ξ) = 2εH

(H2 ∓ χ) cosh (ηξ) + (H2 ± χ) sinh (ηξ) ,� (13)

where ε = ∓1 and χ, H, η, and m are constants.
By substituting Eqs. (10) and (11) into Eq. (8), we obtain a polynomial in terms of the powers of B(ξ). Next, 

we organize the terms according to their respective powers and equate each corresponding coefficient to zero. 
This procedure results in a system of algebraic equations and solving the system, one can have the following 
results:

	
[ − 45pt][r](B(ξ))0 : −f4

1 δ − f2
1 mαχ η2

n
− f2

1 mαχ η2 (m − 2n)
4n2 = 0,

	
[ − 39.25pt][r](B(ξ))1 : kf3

1 m (β − γ) − 4f0f3
1 δ − f0mαf1χ η2

n
= 0,

	[ 381.25pt][r](B(ξ))2 : 3kf0f2
1 m (β − γ) −

(
k2m2α +

(
w − σ2)

m + f2
0 δ

)
f2

1 − 5f2
0 f2

1 δ + f2
1 mα η2

2n
+ f2

1 mα η2 (m − 2n)
4n2 = 0,

	
[ 273.25pt][r](B(ξ))3 : 3kf2

0 f1m (β − γ) − 2
(
k2m2α +

(
w − σ2)

m + f2
0 δ

)
f0f1 − 2f3

0 f1δ + f0mαf1η2

2n
= 0,

	 [ 29.25pt][r](B(ξ))4 : kf3
0 m (β − γ) −

(
k2m2α +

(
w − σ2)

m + f2
0 δ

)
f2

0 = 0.

Result 1.

	

f0 = −2kn (γ − β)
3δ

, f1 = −2
√

2χ (γ − β) nk

3δ
, α = −4k2n2 (β − γ)2

9η2δ
,

m = 2n, w = 8n3 (β − γ)2 k4 + 4nη2 (β − γ)2 k2 + 9δ η2σ2

9η2δ
.

� (14)

Utilizing Eqs. (3), (6), (7), (10), (12)-(13), and (14), we can have the following optical solutions:

	

q1(x, t) =


−knγ

3δ
− 2

√
2χ γnkH

3δ

(
H2eη

(
xµ

µ
+Γ1

)
+ χe−η

(
xµ

µ
+Γ1

))




1
2n

ei
(

σW (t)−k xµ

µ
+ Γ2t

9η2δ
−σ2t

)
, � (15)

	

q2(x, t) =

(
−knγ

3δ
− 2

√
2χ γnkH

3δ
(
(H2 + χ) cosh

(
η

(
xµ

µ
+ Γ1

))
+ (H2 − χ) sinh

(
η

(
xµ

µ
+ Γ1

)))
) 1

2n

× ei
(

σW (t)−k xµ

µ
+ Γ2t

9η2δ
−σ2t

)
,

� (16)

where χ > 0.
Suppose that χ = −H2. By inserting the value of χ into Eq. (16), we acquired the following soliton solutions:
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q3(x, t) =

(
−knγ

3δ
−

√
−2H2 γnk

3δH
csch

(
η

(
xµ

µ
+ Γ1

))) 1
2n

ei
(

σW (t)−k xµ

µ
+ Γ2t

9η2δ
−σ2t

)
. � (17)

Suppose that χ = H2. By inserting the value of χ into Eq. (16), we acquired the following soliton solutions:

	
q4(x, t) =

(
−knγ

3δ
−

√
2H2 γnk

3δH
sech

(
η

(
xµ

µ
+ Γ1

))) 1
2n

ei
(

σW (t)−k xµ

µ
+ Γ2t

9η2δ
−σ2t

)
, � (18)

where Γ1 = 4k3n3γ2t
9η2δ

 and Γ2 = 2γ2k4n3 + η2γ2k2n + 9δ η2σ2.
Result 2.

	

f0 = f0, f1 = −√
χ f0, α = −4f2

0 δ

3η2 , k = − 8δf0

3n (−β + γ) ,

m = n, w =
27

(
nσ2 + 5

3 f2
0 δ

)
(β − γ)2 η2 + 256f4

0 δ3

27nη2 (β − γ)2 .

� (19)

Utilizing Eqs. (3), (6), (7), (10), (12)-(13), and (19), we can have the following optical solutions:

	

q5(x, t) =


f0 −

2√
χ f0H

H2e
η

(
xµ

µ
−

32f3
0 δ2t

3η2γ

)
+ χe

−η

(
xµ

µ
−

32f3
0 δ2t

3η2γ

)



1
2n

ei
(

4δf0xµ

nγµ
+Γ3+σW (t)−σ2t

)
, � (20)

	

q6(x, t) =


f0 −

2√
χ f0H

(H2 + χ) cosh
(

η
(

xµ

µ
− 32f3

0 δ2t

3η2γ

))
+ (H2 − χ) sinh

(
η

(
xµ

µ
− 32f3

0 δ2t

3η2γ

))



1
2n

× ei
(

4δf0xµ

nγµ
+Γ3+σW (t)−σ2t

)
,

� (21)

where χ > 0.
Suppose that χ = −H2. By inserting the value of χ into Eq. (21), we acquired the following soliton solutions:

	
q7(x, t) =

(
f0 −

√
−H2 f0

H
csch

(
η

(
xµ

µ
− 32f3

0 δ2t

3η2γ

))) 1
2n

ei
(

4δf0xµ

nγµ
+Γ3+σW (t)−σ2t

)
. � (22)

Suppose that χ = H2. By inserting the value of χ into Eq. (21), we acquired the following soliton solutions:

	
q8(x, t) =

(
f0 −

√
H2 f0

H
sech

(
η

(
xµ

µ
− 32f3

0 δ2t

3η2γ

))) 1
2n

ei
(

4δf0xµ

nγµ
+Γ3+σW (t)−σ2t

)
, � (23)

where Γ3 = (γ2(nσ2+ 5
3 f2

0 δ)η2+ 64
3 f4

0 δ3)t

nη2γ2 .
Result 3.

	

f0 =
√

2 f1

2√
χ

, f1 = f1, w =
2
√

2
(

3
4
√

2χ η2σ2 +
(
k2n2 + 1

2 η2)
k (β − γ) f1

)
3√

χ η2 ,

m = 2n, α = f1
√

2 (−β + γ) nk

3√
χ η2 , δ = −2

√
2χ (−β + γ) nk

3f1

� (24)

Utilizing Eqs. (3), (6), (7), (10), (12)-(13), and (24), we can have the following optical solutions:

	
q9(x, t) =

(√
2 f1

2√
χ

+ 2f1H

H2eη
(

xµ

µ
−Γ4

)
+ χe−η

(
xµ

µ
−Γ4

)
) 1

2n

e
i

(
σW (t)−k xµ

µ
+ Γ5t

6√
χ η2 −σ2t

)
, � (25)

	

q10(x, t) =

(√
2 f1

2√
χ

+ 2f1H

(H2 + χ) cosh
(
η

(
xµ

µ
− Γ4

))
+ (H2 − χ) sinh

(
η

(
xµ

µ
− Γ4

))
) 1

2n

× e
i

(
σW (t)−k xµ

µ
+ Γ5t

6√
χ η2 −σ2t

)
.

� (26)
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where χ > 0.
Suppose that χ = −H2. By inserting the value of χ into Eq. (26), we acquired the following soliton solutions:

	

q11(x, t) =
( √

2 f1

2
√

−H2
+ f1

H
csch

(
η

(
xµ

µ
− 2

√
2 γn2k2f1t

3
√

−H2 η2

))) 1
2n

× e
i

(
σW (t)−k xµ

µ
+

√
2
(

3
√

−2H2 η2σ2−2k3f1γn2−kf1γ η2
)

t

6
√

−H2 η2
−σ2t

)

.

� (27)

Suppose that χ = H2. By inserting the value of χ into Eq. (26), we acquired the following soliton solutions:

	

q12(x, t) =
( √

2 f1

2
√

H2
+ f1

H
sech

(
η

(
xµ

µ
− 2

√
2 γn2k2f1t

3
√

H2 η2

))) 1
2n

× e
i

(
σW (t)−k xµ

µ
+

√
2(3

√
2H2 η2σ2−2k3f1γn2−kf1γ η2)t

6
√

H2 η2
−σ2t

)
,

� (28)

where Γ4 = 2f1
√

2 γn2k2t
3√

χ η2  and Γ5 =
√

2
(
3
√

2χ η2σ2 − 2γk3f1n2 − γkf1η2)
.

Result 4.

	

f0 =
8η2 (

σ2 − w
)

(4n2k2 + 5η2) k (γ − β) , f1 =
8√

χ
(
σ2 − w

)
η2

(4n2k2 + 5η2) (γ − β) k
,

α =
4n

(
σ2 − w

)
4n2k2 + 5η2 , δ =

3
(
n2k2 + 5

4 η2)
k2n (β − γ)2

16η2 (w − σ2) , m = n.

� (29)

Utilizing Eqs. (3), (6), (7), (10), (12)-(13), and (29), we can have the following optical solutions:

	

q13(x, t) =




12η2 (
σ2 − w

)
Γ6

+
24√

χ
(
σ2 − w

)
η2H

Γ6

(
H2eη

(
xµ

µ
−Γ7

)
+ χe−η

(
xµ

µ
−Γ7

))




1
2n

ei
(

σW (t)−k xµ

µ
+wt−σ2t

)
, � (30)

	

q14(x, t)

=

(
12η2 (

σ2 − w
)

Γ6
+

24√
χ

(
σ2 − w

)
η2H

Γ6
(
(H2 + χ) cosh

(
η

(
xµ

µ
− Γ7

))
+ (H2 − χ) sinh

(
η

(
xµ

µ
− Γ7

)))
) 1

2n

ei
(

σW (t)−k xµ

µ
+wt−σ2t

)
,

� (31)

where χ > 0.
Suppose that χ = −H2. By inserting the value of χ into Eq. (31), we acquired the following soliton solutions:

	

q15(x, t) =

(
12η2 (

σ2 − w
)

Γ6
+

12
√

−H2
(
σ2 − w

)
η2

Γ6H
csch

(
η

(
xµ

µ
− Γ7

))) 1
2n

× ei
(

σW (t)−k xµ

µ
+wt−σ2t

)
.

� (32)

Suppose that χ = H2. By inserting the value of χ into Eq. (31), we acquired the following soliton solutions:

	

q16(x, t) =

(
12η2 (

σ2 − w
)

Γ6
+

12
√

H2
(
σ2 − w

)
η2

Γ6H
sech

(
η

(
xµ

µ
− Γ7

))) 1
2n

× ei
(

σW (t)−k xµ

µ
+wt−σ2t

)
,

� (33)

where Γ6 = γk
(
4n2k2 + 5η2)

 and Γ7 = 8n2(σ2−w)k t

(4n2k2+5η2) .

Result 5.
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f0 = f0, f1 = −
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3f0

, η =
√

6αknf0 (γ − β)
3α

,

m = 2n, w = −2αk2n + 2f0 (β − γ) k

3 + σ2.

� (34)

Utilizing Eqs. (3), (6), (7), (10), (12)-(13), and (34), we can have the following optical solutions:

	
q17(x, t) =

(
f0 − 2

√
2χ f0H

H2eΓ8 + χe−Γ8

) 1
2n

ei
(

σW (t)−k xµ

µ
+(σ2−2αk2n− 1

3 f0kγ)t−σ2t
)

, � (35)

	

q18(x, t) =
(

f0 − 2
√

2χ f0H

(H2 + χ) cosh(Γ8) + (H2 − χ) sinh(Γ8)

) 1
2n

× ei
(

σW (t)−k xµ

µ
+(σ2−2αk2n− 1

3 f0kγ)t−σ2t
)

,

� (36)

where χ > 0.
Suppose that χ = −H2. By inserting the value of χ into Eq. (36), we acquired the following soliton solutions:

	
q19(x, t) =

(
f0 −

√
−2H2 f0

H
csch (Γ8)

) 1
2n

ei
(

σW (t)−k xµ

µ
+(σ2−2αk2n− 1

3 f0kγ)t−σ2t
)

. � (37)

Suppose that χ = H2. By inserting the value of χ into Eq. (36), we acquired the following soliton solutions:

	
q20(x, t) =

(
f0 −

√
2H2 f0

H
sech (Γ8)

) 1
2n

ei
(

σW (t)−k xµ

µ
+(σ2−2αk2n− 1

3 f0kγ)t−σ2t
)

, � (38)

where Γ8 =
√

12αknf0γ

6α

(
xµ

µ
− 4αkn t

)
.

Result 6.

	

f0 = −
√

δn (σ2 − w)
δ
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δχn (σ2 − w)
δ

, α = 3 (β − γ)2

8δ
,

η =
4
√

−2δn(σ2 − w)
3 (γ − β) , k =

8δ
(
w − σ2)

3 (β − γ)
√

δn (σ2 − w)
, m = n.

� (39)

Utilizing Eqs. (3), (6), (7), (10), (12)-(13), and (39), we can have the following optical solutions:

	
q21(x, t) =

(
−

√
δn (σ2 − w)

δ
−

2
√

δχn (σ2 − w) H

δ (H2eΓ9 + χe−Γ9 )

) 1
2n

e
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(
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)

, � (40)

	

q22(x, t) =

(
−
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,

� (41)

where δn
(
σ2 − w

)
> 0 and δχn

(
σ2 − w

)
> 0.

Suppose that χ = −H2. By inserting the value of χ into Eq. (41), we acquired the following soliton solutions:

	
q23(x, t) =
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√
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δ
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Suppose that χ = H2. By inserting the value of χ into Eq. (41), we acquired the following soliton solutions:

	
q24(x, t) =

(
−

√
δn (σ2 − w)

δ
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where 
Γ9 =

2
√

2δn(w−σ2)
γ

(
xµ

µ
+ 4γn(w−σ2)t

3
√

δn(σ2−w)

)

, δn
(
σ2 − w

)
> 0, and δH2n

(
σ2 − w

)
> 0,.

Figure 2.  The bright plots of |q1(x, t)|2,where H = η = 1, k = 2, γ = 0.1, δ = −0.3, χ = 4, and n = 3.

 

Figure 1.  The bright plots of |q1(x, t)|2, where H = η = 1, k = 2, γ = 0.1, δ = −0.3, χ = 4, and n = 3.
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Results and discussion
As depicted in Figs. 1 and 9, graphs (a), (b), and (c), the bright solution surfaces exhibit a smooth appearance in 
the absence of noise σ = 0. However, with the introduction of noise and an increase in its intensity σ > 0, the 
surface patterns progressively deteriorate. Notably, higher levels of noise result in surfaces that tend to become 
increasingly planar. To supplement the three-dimensional visualizations

As depicted in Figs. 1 and 2, graphs (a), (b), and (c), the bright solution surfaces exhibit a smooth appearance 
in the absence of noise (σ = 0). As the white noise parameter σ increases (e.g., moving from σ = 0 in subplots 
(a) and (d) to σ = 0.05 and 0.1 in subplots (b, c) and (e, f)), the solutions demonstrate greater fluctuations and 
instability. The noise introduces perturbations to the soliton profiles, causing broader and less sharp peaks in 
the soliton amplitude. The presence of white noise models real-world scenarios where random fluctuations, such 
as thermal or environmental noise, affect the stability of solitons during propagation. Higher noise levels can 
destabilize solitons, potentially leading to energy dissipation or chaotic behaviors. In optical fiber communication, 
understanding the noise impact helps design systems with improved robustness to stochastic disturbances. 
Varying the conformable derivative parameter µ( µ = 1, 0.7, and 0.4) influences the soliton’s sharpness and 
energy distribution. Smaller µ values result in broader solitons with smoother profiles, while higher µ values 
preserve sharper peaks and more localized energy. The interaction between σ( white noise) and µ( conformable 
derivative) dictates the overall stability and dynamics of the soliton. Larger noise levels combined with lower µ 
values lead to more unstable and diffused solitons. These results highlight the importance of balancing noise and 
system parameters to achieve desired outcomes in practical applications.

From Fig.  3, the behavior of the wave function Re(q1(x, t)) under varying values of white noise σ and 
conformable derivative parameter µ is analyzed. In subplots (a), (b), and (d), increasing σ introduces noticeable 
fluctuations in the wave pattern. The wave profile becomes less smooth as σ increases, suggesting a more 
stochastic influence on the system. White noise simulates external random disturbances in physical systems, 
such as thermal noise in optical fibers or environmental perturbations in wave propagation. Comparing subplots 
(a) and (b) (where µ = 1 and µ = 0.7, respectively), the reduction in µ leads to changes in wave localization and 
amplitude. Lower µ values result in broader and less steep wave patterns, indicating reduced system nonlinearity 
and larger µ values maintain sharper and more localized waveforms, reflecting stronger nonlinear effects. The 
interplay between σ and µ determines the wave’s stability and profile. High σ and low µ amplify instability and 
broaden wave patterns, whereas low σ and high µ preserve soliton integrity. Subgraph (c) displays an oscillatory 
behavior of Re(q1(x, t)) for µ, highlighting periodic wave patterns over time at a specific spatial position x = 1. 
Stable oscillations represent reliable signal propagation with minimal distortion, which is crucial for high-speed 
communication systems. Subgraph (f) also exhibits oscillatory behavior of Re(q1(x, t)) but for a lower 
conformable derivative value µ = 0.7 and at a fixed spatial position x = 1. The wave amplitude appears more 
irregular compared to subgraph (c), with smaller oscillation peaks indicating a reduction in soliton strength. 
Reducing µ weakens the nonlinearity, making the soliton less robust to the influence of noise. This results in 
more irregularities and smaller amplitudes in the oscillatory pattern. Figure 4 illustrates the comparison of three-
dimensional and contour plots of dark soliton to |q5(x, t)|2. The profile displays a clean, undisturbed shape. 

Figure 3.  The wave plots of Re(q1(x, t)), where H = η = 1, k = 2, γ = 0.1, δ = −0.3, χ = 4, and n = 3.
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Figure 5.  The dark plots of |q5(x, t)|2, where f0 = 4, n = η = 3, δ = 0.3, γ = 5, χ = 0.2, and H = 2.

 

Figure 4.  The dark plots of |q5(x, t)|2, where f0 = 4, n = η = 3, δ = 0.3, γ = 5, χ = 0.2, H = 2, and 
µ = 1.
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This indicates the absence of noise (σ = 0), where the soliton solution is stable and retains its characteristic 
form. The energy density remains concentrated and localized, consistent with soliton propagation in noise-free 
environments. Noise starts to influence the solution, introducing visible disturbances in the soliton’s shape. The 
structure begins to lose its coherence, and irregularities emerge, suggesting the destabilizing effect of moderate 
noise σ = 0.25. With higher noise intensity (σ = 0.5), the soliton becomes significantly distorted. The surface 
demonstrates larger deviations, indicating that the noise disrupts the energy concentration and leads to more 
chaotic propagation.

Figure  5, graph (a) for µ = 1, the plot displays a clear periodic pattern, where |q5(x, t)|2 oscillates with 
consistent peaks and valleys. The amplitude decreases slightly as time progresses. Figure 5, graphs (b) and (c), 
reducing µ introduces more irregularities and reduces the peak amplitude. The oscillatory pattern becomes 
less uniform over time. The same behavior can be observed in Fig. 5, graphs (d), (e), and (f). Besides, in Fig. 5, 
σ represents the strength of white noise in the system. The plots clearly indicate how varying σ influences the 
behavior of |q5(x, t)|2for different values of µ the conformable derivative and positions x. Figure 6 illustrates the 
effect of different values of µ on the wave soliton solution Im(q5(x, t)). Here, the dynamical behaviuor of the 
soliton under the influence of the conformable derivative is depicted.

Figures  7 and  8 depicts the comparison of the W-shaped solutions of |q9(x, t)|2under varying noise 
strengths (σ = 0, 0.4, and 0.7) and conformable derivative parameter µ( µ = 1 and µ = 0.7 in 3D and contour 
visualizations. In the absence of noise, the W-shaped structure remains intact and well-defined. This indicates 
stability in the solution and reflects an undisturbed propagation of the optical pulse. Moderate noise introduces 
distortions in the W-shaped structure when (σ = 0.25 and σ = 0.5). The central peaks of the soliton begin 
to broaden, and the edges display irregularities. These effects indicate that the presence of noise starts to 
interfere with the stability of the solution, leading to partial energy dispersion. Further, under strong noise 
conditions when (σ = 1), the W-shaped soliton becomes highly distorted, with the pattern showing significant 
irregularities. This indicates that the system is dominated by noise, causing the soliton’s energy to spread and 
leading to a loss of coherence.

Figures 8 and 9 present the W-shaped profiles of the soliton solution |q9(x, t)|2 and wave soliton Re(q9(x, t)) 
for different values of the temporal parameter. The figures provide a detailed view of how the soliton intensity 
evolves over spatial direction. The soliton exhibits the highest energy concentration at the core (x = 0). W-shaped 
solitons can be employed in optical communication systems to transmit signals over long distances with minimal 
distortion. However, Figs. 8 and 9 depict the evolution of the W-shaped solution |q9(x, t)|2and wave soliton 
Re(q9(x, t)) under varying noise strengths (σ = 0, 0.25, 0.5, 1) in 2D visualizations. In the absence of noise, 
the structures of the soliton solutions remain intact and well-defined. This demonstrates the stability of the 
solution and indicates undisturbed propagation of the optical pulse. Moderate noise introduces distortions in 
the structure of soliton solutions in the presence of white noise. The central peaks of the soliton begin to broaden, 
and the edges display irregularities. These effects indicate that the presence of noise starts to interfere with the 
stability of the solution, leading to partial energy dispersion. Further, under strong noise conditions, the soliton 

Figure 6.  The wave plots of Im(q5(x, t)), where f0 = 4, n = η = 3, δ = 0.3, γ = 5, χ = 0.2, H = 2, and 
σ = 0.
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Figure 8.  The W-shaped solution of |q9(x, t)|2, where k = n = µ = 1, f1 = H = −4, γ = −0.2, χ = 0.1, 
and η = 1.1.

 

Figure 7.  The W-shaped solutions of |q9(x, t)|2, where k = n = µ = 1, f1 = H = −4, γ = −0.2, χ = 0.1, 
and η = 1.1.
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becomes highly distorted, with the pattern showing significant irregularities. This indicates that the system is 
dominated by noise, causing the soliton’s energy to spread and leading to a loss of coherence. From Fig. 10, the 
soliton behavior is analyzed under the influence of the temporal parameter and white noise parameter. Higher 
white noise levels introduce irregularities in the soliton shape. The soliton becomes less stable, showing more 
fluctuations and distortions in amplitude over time.

These findings emphasize the relationship between environmental noise and the performance of fiber 
optic networks, demonstrating that when noise levels exceed a certain threshold, the functionality of soliton-
based systems may be significantly impaired. Smaller values ensure strong energy localization and stability, 
while larger values lead to broader soliton profiles due to dispersion. These insights are vital for designing and 
optimizing soliton-based communication systems. The results emphasize the need to minimize noise in optical 
fiber systems to preserve soliton integrity. Techniques like dispersion management and noise filtering are crucial 
for maintaining stable soliton propagation.

Conclusion
In this paper, we successfully constructed various novel optical soliton solutions and analyzed the dynamical 
behavior of these solutions under the influence of multiplicative white noise and conformable derivative. Using 
the new Kudryashov method, we obtained various optical soliton solutions, including solitary wave solutions, 
bright solitons, dark solitons, singular solitons, and W-shaped solitons. The influence of the white noise 
parameter, the conformable order derivative, and the temporal parameter on the present soliton solutions is 
discussed through three-dimensions, two-dimensions, and contour plots. These findings have the potential to 
significantly impact a variety of scientific fields, pushing the boundaries of knowledge and opening up new 
possibilities in the study of nonlinear phenomena. Understanding the dynamics of nonlinear systems under 
stochastic effects can enhance the design of optical signal processing systems, leading to improved noise 
management and clearer signals in telecommunications. Moreover, the modulation instability and perturbation 
analysis of the obtained solutions under varying physical conditions remain open for exploration. Extending 
the model to include variable coefficients or higher-order dispersion terms would also enhance its relevance to 
real-world optical systems.

Data availability
All data generated or analysed during this study are included in this published article.

Figure 10.  The wave plot of Re(q9(x, t)), where k = n = µ = 1, f1 = H = −4, γ = −0.2, χ = 0.1, and 
η = 1.1.

 

Figure 9.  The W-shaped solution of |q9(x, t)|2, where k = n = µ = 1, f1 = H = −4, γ = −0.2, χ = 0.1, 
and η = 1.1.
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