
Lessons learned from 
RadiologyNET foundation models 
for transfer learning in medical 
radiology
Mateja Napravnik1, Franko Hržić2,3, Martin Urschler4, Damir Miletić5 & Ivan Štajduhar1,2

Deep learning models require large amounts of annotated data, which are hard to obtain in the 
medical field, as the annotation process is laborious and depends on expert knowledge. This data 
scarcity hinders a model’s ability to generalise effectively on unseen data, and recently, foundation 
models pretrained on large datasets have been proposed as a promising solution. RadiologyNET 
is a custom medical dataset that comprises 1,902,414 medical images covering various body parts 
and modalities of image acquisition. We used the RadiologyNET dataset to pretrain several popular 
architectures (ResNet18, ResNet34, ResNet50, VGG16, EfficientNetB3, EfficientNetB4, InceptionV3, 
DenseNet121, MobileNetV3Small and MobileNetV3Large). We compared the performance of 
ImageNet and RadiologyNET foundation models against training from randomly initialiased weights 
on several publicly available medical datasets: (i) Segmentation—LUng Nodule Analysis Challenge, 
(ii) Regression—RSNA Pediatric Bone Age Challenge, (iii) Binary classification—GRAZPEDWRI-DX and 
COVID-19 datasets, and (iv) Multiclass classification—Brain Tumor MRI dataset. Our results indicate 
that RadiologyNET-pretrained models generally perform similarly to ImageNet models, with some 
advantages in resource-limited settings. However, ImageNet-pretrained models showed competitive 
performance when fine-tuned on sufficient data. The impact of modality diversity on model 
performance was tested, with the results varying across tasks, highlighting the importance of aligning 
pretraining data with downstream applications. Based on our findings, we provide guidelines for using 
foundation models in medical applications and publicly release our RadiologyNET-pretrained models to 
support further research and development in the field. The models are available at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​
A​I​l​a​b​​-​R​I​T​E​​H​/​R​a​d​i​​o​l​o​g​y​N​​E​T​-​T​L​-​​m​o​d​e​l​s.
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There is a consensus among researchers that leveraging pretrained models is the path forward in machine 
learning (ML)1. In transfer learning (TL), a model is first pretrained on large datasets with sufficient amounts of 
data, and then retrained or fine-tuned on the actual specific dataset of the target task. This approach can improve 
model stability, and mitigate the impact of scarcity of annotated data, with the latter being common in medical 
ML due to the costly and tedious annotation process2.

ImageNet3,4—a dataset consisting of millions of natural images—is one of the most popular datasets for 
building pretrained models. Although there is research suggesting that it does improve results of downstream 
medical tasks5,6, there is also evidence to question its applicability in the medical domain7–9, and some 
researchers suggest that domain-specific medical datasets are more appropriate for TL2,10,11. Although this led 
to a rise of medical foundation models12,13, ImageNet remains a popular choice in medical ML5. Many papers 
have been published that exploit models previously pretrained on different datasets using various pretraining 
tasks14,15. However, based on the papers presented in7,8, we find that the motivation behind choosing a particular 
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pretraining dataset is seldom acknowledged, nor is there a justification provided for using a specific method of 
pretraining. Although some authors do provide their motivation and guidelines for building pretrained models, 
repositories providing a comprehensive list of different model architectures pretrained in the medical domain 
are scarce15,16.

RadiologyNET17 is our own custom medical dataset which consists of radiology images acquired through 
different imaging modalities and depicting an assorted range of anatomical regions.

While RadiologyNET is a large dataset, it was originally unlabelled, and there were no available resources 
to manually annotate the data with pathological information. To address this limitation, we previously 
developed a method to identify patterns within the data and generate pseudo-labels17. Pseudo-labels generated 
through this process were used to pretrain a large number of popular neural network architectures for TL. 
This study is motivated by the fact that a vast amount of medical data is available, but annotating them is a 
complex and laborious process which is not feasible for many institutions. Therefore, we aimed to explore 
whether unannotated data could be leveraged to build pretrained models, achieving performance comparable 
to models pretrained on large, well-structured datasets like ImageNet4. Existing medical data pretraining efforts 
often rely on single-modality datasets with fewer than 100,000 images, which can limit the richness of learned 
feature representations and their generalisability. This raises two key questions: (i) How can we leverage large-
scale, unlabelled medical image collections for model pretraining?, and (ii) How do such models compare in 
downstream performance to those pretrained on large, structured natural image datasets (e.g., ImageNet5)? The 
motivation for this study stems from the fact that model pretraining mostly relies on labelled and annotated 
data (which is often unavailable), prompting us to explore the possibility of leveraging unannotated data as a 
starting point for research. Importantly, this study is not clinically oriented but rather exploratory, with the goal 
to determine whether unlabelled medical data can be effectively used in this context.

Models used in TL studies are not always state-of-the-art18–21, but they are widely adopted in the research 
community due to their ease-of-use. While state-of-the-art performance often relies on highly specialised 
techniques tailored to specific tasks, TL experiments require models that are easy to configure and adapt to 
different training objectives22. Based on these considerations, we selected models that had previously achieved 
strong performance while remaining practical to reuse, and pretrained architectures commonly used in 
medical ML (ResNet18, ResNet34, ResNet5023, VGG1624, EfficientNetB3, EfficientNetB425, InceptionV326, 
DenseNet12127, U-Net20, MobileNetV3Small and MobileNetV3Large28). We used the RadiologyNET pretrained 
models for a comprehensive study of TL on five publicly available medical downstream tasks and challenges29–34. 
To ensure an objective evaluation, the challenges were chosen in a way that covers different problem types 
(image segmentation, regression, binary classification, and multiclass classification), and a range of different 
anatomical regions and medical imaging modalities.

In addition to using RadiologyNET, we reviewed other publicly available medical imaging datasets that are, 
or could be, used for TL in the medical domain. A summary is provided in Table 1, where RadImageNet13 stands 
out as the most suitable for TL based on its diversity, expert annotations, and large sample size. It consists of 1.35 
million images annotated by 20 radiologists across 165 distinct pathologies (labels). Despite the emergence of 
medical TL models12,13, ImageNet is still a prevalent choice in medical ML, with recent research6 showing that 
simple fine-tuning of ImageNet models can achieve performance comparable with other medical foundation 
models. Therefore, in this paper, as a first step of evaluating RadiologyNET foundation models, we chose to 
compare RadiologyNET with ImageNet and training from randomly initialised weights, deferring comprehensive 
comparisons with other medical foundation models to future work. Nonetheless, we reflect on the differences 
between RadiologyNET and RadImageNet (i.e., automatically-generated versus expert-annotated labels) in the 
Discussion.

To summarise, our primary objective in this study is to compare our own RadiologyNET models (domain 
specific data) against ImageNet (generic image data), and juxtapose the obtained results against models trained 

Dataset Modality Size Annotations Applications Unique features

DeepLesion35 CT 32,120 CT slices Lesion bounding boxes Lesion detection and 
classification

Diverse lesion types from multiple 
body regions

RadImageNet13 CT, MRI, US 1,350,000 images 165 pathologies/labels Pretraining for medical imaging 
AI

Large-scale dataset for transfer 
learning

CheXpert36 X-ray 224,316 images 14 common observations (e.g., 
pneumonia) Chest disease classification Uncertainty labels for pathologies

ChestX-ray1437 X-ray 108,948 images 8 text extracted labels Chest disease classification One of the largest publicly available 
chest X-ray datasets

MIMIC-CXR38 X-ray 377,110 images Radiology reports, Textual diagnoses Image and text generation Paired image-text dataset with free-
text radiology reports

MedPix 2.039 Various ≈ 59,000 images 12,000 cases Multimodal medical education Designed for teaching and 
multimodal AI applications

MURA40 X-ray 40,561 images Binary abnormality labels Musculoskeletal abnormality 
detection

Focused on upper extremity 
abnormalities

OASIS41 MRI 416 subjects Brain structure and dementia-related 
labels Neuroimaging research Longitudinal data for Alzheimer’s 

disease research

RadiologyNET17 Various 1,902,414 images Unsupervised clustering based on case 
similarity (36 classes) Cases from standard practice Data clustered based on their DICOM 

tags, images and textual diagnoses

Table 1.  Overview of various medical imaging datasets.
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from scratch (i.e.  randomly initialised network weights42). Furthermore, we test these models in data-scare 
conditions, as prior research has shown that the utility of TL becomes less impactful when downstream tasks 
have sufficient training data6,43. Additionally, we offer our findings on TL in medical ML, which we acquired 
through this study, and provide our pretrained models to the wider community. The models are publicly available 
at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​A​I​l​a​b​​-​R​I​T​E​​H​/​R​a​d​i​​o​l​o​g​y​N​​E​T​-​T​L​-​​m​o​d​e​l​s.

While this work does not introduce a novel technical innovation, its contributions are nonetheless 
significant in influencing dataset selection and model pretraining—both of which are crucial for advancing 
medical foundation models development such as CT-FM44 and MI245. Our key contributions are as follows: 
(i) Pretraining multiple widely used network architectures on the pseudo-labelled RadiologyNET dataset; (ii) 
Conducting a comprehensive evaluation of RadiologyNET-based foundation models, comparing them to models 
pretrained on ImageNet and those trained from randomly initialised weights across a range of downstream 
medical tasks (new insights on dataset and task importance); (iii) Investigating the impact of the pretraining 
task and domain on downstream performance, offering insights into TL in medical imaging; and (iv) Publicly 
releasing the RadiologyNET foundation models to the medical ML community, accompanied by guidelines for 
their application and broader recommendations for leveraging TL in medical ML tasks. The workflow diagram 
of the conducted research is given in Fig. 1.

Methods
RadiologyNET dataset and TL model pretraining
The RadiologyNET dataset17 is a custom dataset of medical radiology images obtained from Clinical Hospital 
Centre Rijeka between 2008 and 2017. Ethical approval for conducting research using this dataset was obtained 
from the competent Ethics Committee. The dataset has been labelled through a fully unsupervised approach 
described in detail in17, by extracting and combining features from three different data sources: text (diagnoses), 
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Fig. 1.  Workflow diagram of the conducted experiment.

 

Scientific Reports |        (2025) 15:21622 3| https://doi.org/10.1038/s41598-025-05009-w

www.nature.com/scientificreports/

https://github.com/AIlab-RITEH/RadiologyNET-TL-models
http://www.nature.com/scientificreports


images, and tabular data—i.e. attributes found in Digital Imaging and Communications in Medicine (DICOM) 
file headers46. The unsupervised pipeline was used to label a set of 1,337,926 DICOM files into 50 distinct groups. 
Some of the groups exhibited high heterogeneity in regard to the modality and body-part examined, which was 
attributed to noise; as such, the final dataset used for pretraining contained 36 distinct groups, whose sizes can 
be seen in Figure 2. Specifically, after visually inspecting mosaic images composed of randomly selected samples 
from each cluster, we observed that some clusters lacked a clear relationship between the images, their associated 
DICOM tags, and diagnoses. However, these clusters were strongly associated with high heterogeneity measures 
related to imaging modality and the examined body region, which allowed us to exclude them based on this 
criterion. The available DICOM files were converted into 224 × 224 pixel 8-bit portable network graphics 
(PNG) format. As some of the DICOM files contained three-dimensional volumes, these volumes were sliced 
into multiple two-dimensional images. Therefore, the total count of exported PNG images was 1,902,414. We 
refer the reader to17 for more details.

The RadiologyNET dataset used for pretraining covered multiple imaging modalities: Magnetic Resonance 
(MR), Computed Tomography (CT), Computed Radiography (CR), X-ray Angiography (XA) and Radio 
Fluoroscopy (RF) (five in total). The ratios of medical imaging modalities available in the RadiologyNET dataset 
can be seen in Fig. 3a. The dataset includes multiple anatomical regions and body parts, ranging from hands 
and ankles to the abdomen and the brain. Figure 3b shows the distribution of the BodyPartExamined attribute 
found in DICOM file headers, which is input manually by physicians and is therefore prone to errors, but can 
still provide insight into the distribution of anatomies. As it can be seen in Fig. 3, the RadiologyNET pretraining 
dataset consisted mostly of chest, abdominal and head images, captured mostly using MR and CT. To emphasize, 
each of the 36 classes was a cluster which was comprised of the instances that were similar based on the DICOM 
tags, images, and diagnoses, while body-part examined and modality served as an exclusion criterion for clusters 
that were too heterogeneous (reduced the initial 50 clusters to the used 36 clusters).

While the ImageNet pretrained models were taken from the PyTorch repositories, a range of different 
popular architectures were trained on the RadiologyNET dataset. These included: VGG1624, EfficientNets25 
(EfficientNetB3 and EfficientNetB4), DenseNet12127, MobileNetV3Small and MobileNetV3Large28, 

(a) (b)

Fig. 3.  The overall distribution of different imaging modalities (a) and anatomical regions (b) found in the 
RadiologyNET dataset.

 

Fig. 2.  Group sizes in the RadiologyNET pretraining dataset.
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InceptionV326 and ResNets23 (ranging from ResNet18 to ResNet50). RadiologyNET models were pretrained by 
solving a classification task (predicting one of 36 classes shown in Fig. 2), using cross-entropy loss and AdamW 
optimiser47. During the models’ pretraining and later on transfer learning, all layers were trainable from the 
start. The gradually unfreezing of the models’ layers during the pretraining process and later in transfer learning 
did not yield any improvements. The best reported learning rates (LRs) used in the original papers were used 
to pretrain the RadiologyNET models. In addition to multi-modality pretraining on the full RadiologyNET 
dataset, separate models were also pretrained using only MR, CR and CT data, to investigate the viability of 
multi-modality pretraining versus single-modality pretraining. To address the class imbalance in the training 
subset, oversampling techniques were used to ensure a more balanced representation of each class. The 
exemption from the classification pretraining task was U-Net20 pretraining for the semantic segmentation (for 
both ImageNet and RadiologyNET), where, initially, U-Net was pretrained as an image reconstruction task. As 
there is not an ImageNet-pretrained U-Net publicly available, the entire ImageNet dataset was downloaded and 
pretrained for this experiment. In addition to the vanilla U-Net, we also tested multiple approaches inspired by 
U-Net-ResNet5048–50, where the encoder branch was replaced by a classification-pretrained ResNet50, VGG16 
or EfficientNetB451.

Regarding the technical setup, the pretraining process for all architectures was conducted entirely on a 
machine equipped with four NVIDIA RTX A6000 GPUs (48GB each) and 512GB of CPU RAM. The downstream 
tasks were evaluated on another machine with two NVIDIA L40S GPUs (48GB each) and 1TB of CPU RAM. 
Pretraining on the RadiologyNET dataset required, on average, approximately seven days per model, with 
multiple models often trained in parallel. For downstream tasks, each model architecture was typically trained 
and evaluated within two days.

Selected predictive modelling challenges
Several different publicly available datasets were chosen to test the effectiveness of RadiologyNET pretrained 
models. These datasets were chosen in a way that covers diverse radiological imaging modalities, various 
anatomical regions, and different task types (segmentation, regression, binary classification, and multiclass 
classification). 

	1.	 LUng Nodule Analysis Challenge (LUNA)34. This challenge is based on the LIDC-IDRI dataset52 which con-
tains a total of 1,018 CT lung scans. LUNA challenge consists of two parts: nodule classification (detect 
whether a number of locations in a scan are nodules or not); and nodule segmentation (from a full CT scan, 
output a mask indicating where the nodules are). The segmentation task was chosen for this study, where the 
winning solution employed the U-Net20 architecture. Inspired by U-Net-ResNet5048–50 (where the encoder 
branch is replaced by ResNet50), this research utilised several different classification-pretrained models in 
a U-Net-like topology to segment the nodules. These include the popular architectures VGG1624, Efficient-
NetB425,51 and ResNet5023.

	2.	 RSNA Pediatric Bone Age Challenge (PBA)29. This dataset consists of 14,236 hand radiographs labelled by 
expert radiologists, where the goal is to estimate skeletal age—a regression task. The winning architecture 
consists of InceptionV326 whose output was concatenated with the sex information from the public dataset. 
The concatenated result is fed into additional dense layers, whose final output represents bone age expressed 
in months. Given the success of convolutional neural networks (CNNs)29 in this challenge, we evaluated the 
performance of EfficientNetB3—another CNN architecture—using a similar approach of concatenating its 
output with the available sex information.

	3.	 GRAZPEDWRI-DX32 consists of 20,327 digital radiographs of wrists annotated by expert radiologists. The 
available annotations are suitable for different detection and classification tasks; but for the purposes of this 
research, the goal of classifying osteopenia was chosen, making this challenge a binary classification task. In 
total, 2,473 images have osteopenia present; thus, undersampling was performed to balance osteopenia ver-
sus non-osteopenia cases. The obtained dataset consisting of 4,946 images was randomly split into training 
(75%), validation (12.5%) and test (12.5%) subsets. Recent research53 showed the performance of different 
ResNets and DenseNets when classifying osteopenia using the GRAZPEDWRI-DX dataset.

	4.	 The COVID-19 Radiography Database30,31 comprises chest CR images of patients diagnosed with COVID-19 
(3,616 images) and instances of normal chest radiographs (10,192 images). Although the dataset also in-
cludes images of lung opacity (non-COVID-19 lung infection) and viral pneumonia cases, this study focuses 
on binary classification between COVID-19 and normal cases. Since there was a case imbalance between 
normal and COVID-19 cases—similarly to GRAZPEDWRI-DX–random undersampling was performed 
to lessen its potential impact. The original research31 tested several popular architectures, among which 
ResNet18 was one of the best performers, with MobileNetV2 achieving a marginally lower score (0.01% 
difference). Therefore, for this dataset, a newer version of MobileNet (MobileNetV3Large28) and ResNet1823 
were tested.

	5.	 Brain Tumor MRI (BTMR)33. This dataset contains 7,023 MR images of the brain with labels for four differ-
ent classes: glioma, meningioma, pituitary and no tumour—making this a multiclass classification problem. 
This Kaggle contest contains submissions from various different popular network topologies, ranging from 
different MobileNets28 to ResNets23. Thus, ResNet50 and MobileNetV3Small were tested here.

The selected challenges covered different problem types: LUNA—segmentation; PBA—regression; GRAZPEDWRI-
DX and COVID-19—binary classification; BTMR—multiclass classification). Furthermore, as the RadiologyNET 
dataset is imbalanced with regard to imaging modalities and anatomical regions (Figure 3), the datasets were 
chosen to include (i) data which aligns with the pretraining dataset’s domain, and (ii) data which shows less 
overlap with the original pretraining dataset. GRAZPEDWRI-DX and RSNA PBA had the least overlap in 
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terms of domain relevance, whereas Brain Tumor MRI aligned with the RadiologyNET’s domain the most. It 
is important to note that overlap in this context refers only to domain relevance, and that the RadiologyNET 
dataset and downstream tasks were completely independent, i.e. the patient scans found in downstream tasks 
were not a part of the RadiologyNET dataset.

Additionally, to assess the impact of modality-specific pretraining, we compared MR-only, CR-only and CT-
only pretrained versions of architectures tested on BTMR, GRAZPEDWRI-DX, RSNA PBA, COVID-19 and 
LUNA datasets against their multi-modality pretrained counterparts. For CT, a ResNet50 model was pretrained 
exclusively on CT images and incorporated as the encoder in a U-Net-ResNet50 architecture for the LUNA 
segmentation task. For MR, both MobileNetV3Small and ResNet50 models were pretrained on MR-only 
data and subsequently evaluated on the BTMR classification task. For the GRAZPEDWRI-DX, RSNA PBA, 
and COVID-19 datasets, CR-only pretraining was performed on DenseNet121, ResNet34, EfficientNetB3, 
InceptionV3, MobileNetV3Large, and ResNet18 models, followed by evaluation on the corresponding tasks. 
The performance of these modality-specific models was then compared to that of models pretrained on the full, 
multi-modality RadiologyNET dataset to examine the impact of pretraining diversity.

Evaluation on downstream tasks
For each of the challenges, we tested three approaches: (i) training from randomly initialised weights, (ii) fine-
tuning on ImageNet, and (iii) fine-tuning on RadiologyNET. For simplicity, any model trained from scratch 
(i.e. randomly initialised weights) will be referred to as Baseline. We followed the original proposed solutions 
for the individual tasks as closely as possible. This applies to model architecture, optimiser and loss functions, 
and any changes to the model (e.g. the additional sex information used in the PBA Challenge solution). We note 
that the aim of this study was not to outperform state-of-the-art, but to compare the performance of different TL 
models and strategies, while making use of network architectures that performed well on the tasks in previous 
studies.

All models were trained under equal conditions: with a maximum of 200 epochs, and an early stopping 
mechanism halting the training process if the validation results did not improve in the span of 10 consecutive 
epochs. All model parameters were allowed to be fine-tuned during the training process. Each model was 
trained five times using learning rates logarithmically sampled in the range [10−2, 10−5], with a base-10 step 
size. Although higher (≥ 0.1) and lower (≤ 10−6) learning rates were initially tested as well, they were later 
excluded from the study due to their inferior performance across all models and challenges. With lower learning 
rates, the models would fail to converge within the maximum number of epochs, whilst higher learning rates 
brought overall lower scores.

For the LUNA segmentation task, U-Net-based models were pretrained using two approaches. The first 
approach involved simple reconstruction, where the output image matched the input image, inspired by 
autoencoders54. In the second approach, the encoder was replaced with a pretrained backbone model (ResNet50, 
EfficientNetB4, or VGG16) while retaining the original U-Net decoder. Skip connections were preserved by 
linking intermediate encoder outputs to the corresponding decoder layers, thus preserving U-Net’s signature 
multi-resolution feature fusion. Both approaches were then trained on the given LUNA segmentation task with 
the same hyperparameters as mentioned above.

To compare the statistical significance of the obtained results, a Levene test55 was first performed to determine 
whether significant differences in variance exist. Since the differences were deemed significant (p < 0.05), non-
parametric Kruskal–Wallis tests56 were computed, followed by a pairwise Mann–Whitney-U (MWU) tests with 
Bonferroni correction where the Kruskal-Wallis showed potential significant differences.

For the segmentation task, reported metrics include Intersection-over-Union (IoU) and the Dice score57. 
Performance on the regression task is reported using Mean Absolute Error (MAE) and Root Mean Squared 
Error (RMSE), while performance on classification tasks is reported using Precision, Recall, Accuracy, and F1-
score. Out of these metrics, the Dice score was used for statistical tests in the segmentation task, MAE for the 
regression task, and F1-score was used in classification tasks.

The initial findings for GRAZPEDWRI-DX and COVID-19 challenges showed that there are no noticeable 
differences between ImageNet and RadiologyNET models’ performance. Thus, for RSNA Pediatric Bone Age 
and Brain Tumor MRI datasets, the codecarbon58 package was used to measure whether there are differences 
in emissions and energy consumed. As expected, the recorded emissions strongly correlated with the number 
of epochs required to converge. Consequently, the number of epochs was used as an evaluation metric and is 
reported in the results, as it is a simpler metric that was already available for the previously tested datasets.

Despite the initial findings showing minimal differences in performance between the three approaches when 
models reached convergence, there was an observable difference in initial model performance (i.e. in the first 
few training epochs). For this reason, we hypothesised that the three approaches might behave differently when 
training time, and resources in general, are heavily reduced. To investigate this influence and possible boosts to 
initial model training, a small-scale experiment was conducted on the GRAZPEDWRI-DX and Brain Tumor 
MRI datasets. In this experiment, the training time was reduced to 10 epochs, and the training subsets for these 
datasets were randomly reduced to 5%, 25%, and 50% of their original size. The validation and test subsets 
remained unchanged. GRAZPEDWRI-DX was chosen due to its minimal overlap with the RadiologyNET 
pretraining domain, and Brain Tumor MRI for its closer alignment with the pretraining data. Additionally, 
Grad-CAM59 heatmaps were visualised to compare the areas of focus for each of the three approaches on the 
two datasets. The Grad-CAM heatmaps were independently reviewed by two expert radiologists, each based 
in a different clinical centre, to assess the quality of the models’ focus on relevant areas within the images. 
Each radiologist evaluated a sample of 20 randomly sampled heatmaps from the GRAZPEDWRI-DX test set 
(obtained with DenseNet121), and another 20 randomly sampled heatmaps from the BTMR test set (generated 
with ResNet50). The radiologists rated each heatmap on a scale from 1 to 5, with 1 indicating that the model 
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concentrated on entirely irrelevant areas, and 5 indicating that it focused solely on the relevant regions. In 
addition to rating the heatmaps, the radiologists were asked to report any observations they might have for 
each of the presented heatmaps. The source of each heatmap was concealed from the radiologists (i.e. they were 
labelled as algorithms (a)—RadiologyNET, (b)—ImageNet and (c)—Baseline), to ensure evaluation is based 
solely on the visual information provided.

Results
The results reported here were obtained on the test subset, and are derived from the models that exhibited the 
best performance on the validation subset of each respective dataset. The results obtained on the validation set 
are given in Supplementary Tables S1, S2, S3 and S4. The only exception is LUNA, where the reported results 
(shown in Table 2) were computed on the validation subset (as reported in60).

The best results for PBA, GRAZPEDWRI-DX, COVID-19 and BTMR are shown in Tables  3, 4, 5 and 6, 
respectively. Each table contains results averaged across five runs, in addition to overall best recorded performers 
on the test subset.

The exact p-values for metrics comparison are given in Supplementary Table S5, while the comparison of 
recorded epochs (i.e.  training length) are given in Supplementary Table S6. Additionally, examples of model 
predictions for BTMR, COVID-19, GRAZPEDWRI-DX, and PBA datasets can be seen in Supplementary Figure 
S1. The figure shows instances where all models correctly predicted the target class (thus reaching consensus), as 
well as more challenging cases where predictions were inconsistent or incorrect.

LUng nodule analysis results
Among the results for basic U-Net (shown in Table  2), Baseline outperformed both TL strategies, having 
attained the highest Dice and IoU scores. ImageNet and RadiologyNET reconstruction-pretrained U-Net 
models achieved significantly worse results (MWU, p = 0.024 and p = 0.024 for ImageNet and RadiologyNET 
against Baseline, respectively). In contrast, U-Net-ResNet50, U-Net-EfficientNetB4, and U-Net-VGG16 faired 

Challenge TL model LR RMSE MAE Epochs

PBA EfficientNetB3 (avg.)

ImageNet 10−3 11.77 ± 1.4 9.37 ± 1.3 22.6 ± 7.4

RadiologyNET 10−3 10.8 ± 0.3 8.23 ± 0.2 41.2 ± 1.1

Baseline 10−3 31.98 ± 17.2 25.2 ± 13.9 30.8 ± 9.7

PBA InceptionV3 (avg.)

ImageNet 10−4 11.56 ± 1.1 9.08 ± 1.0 28.0 ± 8.2

RadiologyNET 10−2 12.17 ± 0.4 9.31 ± 0.3 46.6 ± 9.9

Baseline 10−3 12.16 ± 0.2 9.36 ± 0.3 45.4 ± 9.1

PBA EfficientNetB3 (best)

ImageNet 10−3 9.91 7.56 32.0

RadiologyNET 10−3 10.971 8.261 41.0

Baseline 10−3 12.572 9.2 41.0

PBA InceptionV3 (best)

ImageNet 10−4 11.154 8.587 41.0

RadiologyNET 10−2 12.126 9.086 51.0

Baseline 10−3 12.028 9.296 55.0

Table 3.  Metric mean and standard deviation calculated on the test subset of Pediatric Bone Age Challenge, 
across five runs. Best results are emphasized. LR  Learning Rate.

 

Pretrain strategy TL model LR Dice score IoU

U-Net

R ImageNet 10−4 0.111 ± 0.002 0.063 ± 0.002

R RadiologyNET 10−4 0.111 ± 0.002 0.063 ± 0.001

N/A Baseline 10−4 0.616 ± 0.012 0.500 ± 0.011

U-Net- EfficientNetB4

C ImageNet 10−4 0.685 ± 0.016 0.582 ± 0.017

C RadiologyNET 10−4 0.695 ± 0.022 0.593 ± 0.026

N/A Baseline 10−4 0.688 ± 0.013 0.586 ± 0.014

U-Net- ResNet50

C ImageNet 10−4 0.692 ± 0.026 0.593 ± 0.03

C RadiologyNET 10−5 0.715 ± 0.017 0.616 ± 0.017

N/A Baseline 10−4 0.646 ± 0.027 0.538 ± 0.03

U-Net- VGG16

C ImageNet 10−5 0.729 ± 0.01 0.632 ± 0.015

C RadiologyNET 10−4 0.706 ± 0.015 0.605 ± 0.019

N/A Baseline 10−4 0.704 ± 0.03 0.601 ± 0.033

Table 2.  Results of different training strategies on the LUNA dataset. Results are shown for U-Net, U-Net-
ResNet50, U-Net-EfficientNetB4, and U-Net-VGG16 models for Reconstruction (R) and Classification (C) 
pretraining strategies. Best results are emphasized. LR Learning Rate, IoU Intersection-over-Union.
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better than the basic U-Net, achieving higher Dice and IoU scores. While observing U-Net-ResNet50, U-Net-
EfficientNetB4 and U-Net-VGG16, the three TL approaches obtained comparable performance with the only 
statistically significant difference recorded between U-Net-ResNet50 RadiologyNET and Baseline models 
(MWU, p = 0.024). Figure 4 shows the difference in model outputs between models pretrained as reconstruction 

Challenge TL Model LR Acc (%) Prec (%) Rec (%) F1-Score (%) Epoch

BTMR MobileNetV3Small (avg.)

ImageNet 10−4 98.1 ± 0.4 98.0 ± 0.4 98.2 ± 0.4 98.1 ± 0.4 41.4 ± 7.2

RadiologyNET 10−4 97.9 ± 0.3 97.8 ± 0.3 98.0 ± 0.3 97.9 ± 0.3 39.4 ± 5.7

Baseline 10−4 95.3 ± 2.3 95.0 ± 2.4 95.5 ± 2.2 95.1 ± 2.4 60.0 ± 17.8

BTMR ResNet50 (avg.)

ImageNet 10−5 98.7 ± 0.1 98.6 ± 0.1 98.8 ± 0.1 98.7 ± 0.1 41.6 ± 8.0

RadiologyNET 10−4 98.9 ± 0.4 98.8 ± 0.4 98.9 ± 0.4 98.9 ± 0.4 21.2 ± 3.0

Baseline 10−4 97.5 ± 0.8 97.3 ± 0.9 97.5 ± 0.8 97.4 ± 0.8 44.4 ± 10.7

BTMR MobileNetV3Small (best)

ImageNet 10−4 97.6 97.3 97.6 97.4 46.0

RadiologyNET 10−4 98.0 97.9 98.1 98.0 46.0

Baseline 10−4 97.6 97.5 97.8 97.6 83.0

BTMR ResNet50 (best)

ImageNet 10−5 98.6 98.5 98.6 98.6 47.0

RadiologyNET 10−4 99.2 99.2 99.2 99.2 23.0

Baseline 10−4 98.2 98.1 98.2 98.2 51.0

Table 6.  Metric mean and standard deviation calculated on the test subset of Brain Tumor MRI, across five 
runs. Best results are emphasized. LR Learning Rate, Acc Accuracy, Prec Precision, Rec Recall.

 

Challenge TL model LR Acc (%) Prec (%) Rec (%) F1-Score (%) Epoch

COVID-19 MobileNetV3Large (avg.)

ImageNet 10−3 97.1 ± 1.0 97.1 ± 1.0 97.1 ± 1.0 97.1 ± 1.0 23.6 ± 13.5

RadiologyNET 10−4 97.7 ± 0.1 97.7 ± 0.1 97.8 ± 0.1 97.8 ± 0.1 25.4 ± 5.9

Baseline 10−4 94.5 ± 1.6 94.5 ± 1.6 94.5 ± 1.5 94.5 ± 1.6 32.0 ± 5.5

COVID-19 ResNet18 (avg.)

ImageNet 10−4 97.9 ± 0.7 97.9 ± 0.7 98.0 ± 0.7 98.0 ± 0.7 16.0 ± 0.0

RadiologyNET 10−4 98.0 ± 0.1 98.0 ± 0.1 98.0 ± 0.1 98.0 ± 0.1 26.6 ± 6.1

Baseline 10−3 96.5 ± 0.5 96.5 ± 0.5 96.5 ± 0.5 96.5 ± 0.5 39.8 ± 6.9

COVID-19 MobileNetV3Large (best)

ImageNet 10−3 97.5 97.5 97.5 97.5 45.0

RadiologyNET 10−4 97.8 97.8 97.8 97.8 23.0

Baseline 10−4 96.0 96.0 96.1 96.0 40.0

COVID-19 ResNet18 (best)

ImageNet 10−4 97.3 97.3 97.4 97.3 16.0

RadiologyNET 10−4 98.2 98.2 98.2 98.2 26.0

Baseline 10−3 96.5 96.5 96.5 96.5 47.0

Table 5.  Metric mean and standard deviation calculated on the test subset of COVID-19, across five runs. Best 
results are emphasized. LR Learning Rate, Acc Accuracy, Prec Precision, Rec Recall.

 

Challenge TL model LR Acc (%) Prec (%) Rec (%) F1-score (%) Epoch

GRAZPEDWRI DenseNet121 (avg.)

ImageNet 10−3 93.1 ± 1.0 93.1 ± 1.0 93.1 ± 1.0 93.1 ± 1.0 24.6 ± 9.0

RadiologyNET 10−4 92.0 ± 0.8 92.0 ± 0.8 92.1 ± 0.8 92.0 ± 0.8 15.2 ± 1.1

Baseline 10−3 90.6 ± 2.4 90.6 ± 2.4 90.6 ± 2.4 90.6 ± 2.4 38.6 ± 10.4

GRAZPEDWRI ResNet34 (avg.)

ImageNet 10−3 92.6 ± 0.3 92.6 ± 0.3 92.7 ± 0.3 92.6 ± 0.3 24.4 ± 5.3

RadiologyNET 10−3 91.5 ± 1.1 91.5 ± 1.1 91.7 ± 0.9 91.5 ± 1.0 20.4 ± 2.1

Baseline 10−2 81.5 ± 11.6 81.5 ± 11.6 83.8 ± 7.8 80.4 ± 13.6 33.8 ± 14.4

GRAZPEDWRI DenseNet121 (best)

ImageNet 10−3 92.6 92.6 92.6 92.6 17.0

RadiologyNET 10−4 92.9 92.9 92.9 92.9 16.0

Baseline 10−3 93.2 93.2 93.2 93.2 51.0

GRAZPEDWRI ResNet34 (best)

ImageNet 10−3 92.4 92.4 92.4 92.4 28.0

RadiologyNET 10−3 92.9 92.9 92.9 92.9 22.0

Baseline 10−2 91.0 91.0 91.0 91.0 51.0

Table 4.  Metric mean and standard deviation calculated on the test subset of GRAZPEDWRI-DX, across five 
runs. Best results are emphasized. LR Learning Rate, Acc Accuracy, Prec Precision, Rec Recall.
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tasks, versus models pretrained as classification tasks. The reconstruction-pretrained model merely replicated 
the input image, despite our efforts to impart valuable features to the model.

Pediatric bone age challenge results
As reported in Table  3, RadiologyNET achieved the best performance on the EfficientNetB3 architecture, 
outperforming ImageNet models in terms of MAE, while ImageNet models demonstrated significantly 
faster convergence (ImageNet vs. RadiologyNET, MWU, p = 0.033). When it comes to InceptionV3 and the 
obtained MAE, ImageNet models outperformed RadiologyNET and Baseline. Similarly to its performance on 
EfficientNetB3, ImageNet pretrained models required fewer epochs to converge (although the difference was 
not statistically significant). InceptionV3 models pretrained on RadiologyNET achieved similar results to those 
Baseline models, exhibiting similar convergence time (RadiologyNET vs. Baseline, MWU, p = 1.00).

GRAZPEDWRI-DX results
The results for GRAZPEDWRI-DX are shown in Table 4. When it comes to DenseNet121, ImageNet’s models 
achieved higher F1-scores on average, but the differences in the obtained scores between the three approaches were 
not statistically significant (Kruskal-Wallis, p = 0.063). On the other hand, RadiologyNET models demonstrated 
fastest convergence, which was not significantly different than ImageNet (ImageNet vs. RadiologyNET, MWU, 
p = 0.07), but was significantly faster than Baseline models (RadiologyNET vs. Baseline, MWU, p = 0.033).

The performance of Baseline ResNet34 models diverged between runs. When comparing Baseline to 
ImageNet, the differences in F1-score are significantly different (ImageNet vs. Baseline, MWU, p = 0.024), but 
the differences in F1-score where not as prominent when comparing Baseline to RadiologyNET (RadiologyNET 
vs. Baseline, MWU, p = 0.095). When comparing epoch count, there were no statistically significant differences 
between the approaches (Kruskal-Wallis, p = 0.199).

COVID-19 results
While CR images constitute a minority within the RadiologyNET dataset, chest radiographs were the most 
prevalent subtype17. Consequently, ImageNet and RadiologyNET exhibited comparable performance on 
MobileNetV3Large (ImageNet vs. RadiologyNET, MWU, p = 1.00). Models trained from scratch consistently 
underperformed both ImageNet and RadiologyNET, with statistically lower F1-scores achieved on the test subset 
(MWU, p = 0.047 and p = 0.024 for ImageNet and RadiologyNET, respectively). In terms of epochs required 
to converge, the differences were not statistically significant between the approaches with MobileNetV3Large 
(Kruskal-Wallis, p = 0.326).

When it comes to the evaluation of ResNet18 models, both ImageNet and RadiologyNET pretrained models 
exhibited nearly identical F1-score performance, with no statistically significant differences observed between 
the two (ImageNet vs. RadiologyNET, MWU, p = 1.00). Also, both of the TL approaches performed significantly 
better than the Baseline models (MWU, p = 0.035 for both ImageNet and RadiologyNET). Curiously, all 
ImageNet models converged at precisely the 16th epoch, which was statistically different than RadiologyNET and 
Baseline (MWU, p = 0.020 and p = 0.022 when compared to RadiologyNET and Baseline, respectively). The 
difference between RadiologyNET vs. Baseline convergence time was not statistically significant (RadiologyNET 
vs. Baseline, MWU, p = 0.103).

Brain tumor MRI results
The Brain Tumor MRI dataset shares the biggest overlap with the original pretraining dataset, as it contains 
MR images of the brain, which are prevalent in the RadiologyNET dataset. The results for the Brain Tumor 
MRI dataset are shown in Table  6. While ImageNet and RadiologyNET achieved almost identical F1-scores 
with MobileNetV3Small (ImageNet vs. RadiologyNET, MWU, p = 1.00), Baseline models exhibited statistically 
worse results in terms of classification metrics (MWU, p = 0.048). Similarly to MobileNetV3Small, ImageNet 
and RadiologyNET achieved comparable performance in terms of metrics (MWU, p = 1.00), with Baseline 
being statistically worse than the two (MWU, p = 0.024 and p = 0.036 for ImageNet and RadiologyNET, 

Fig. 4.  A figure showing the impact of different pretraining goals of U-Net models on randomly selected four 
instances from the LUNA dataset.
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respectively). However, in this case, RadiologyNET demonstrated an advantage in terms of convergence time, by 
requiring a significantly lower number of epochs to converge than Baseline (RadiologyNET vs. Baseline, MWU, 
p = 0.028), but this difference was not significant when compared to ImageNet (ImageNet vs. RadiologyNET, 
MWU, p = 0.052).

Multi-modality versus single-modality pretraining
Figure 5 shows the performance of single-modality (MR-only, CR-only, and CT-only) versus multi-modality 
pretrained RadiologyNET models. The results are shown across five independent runs, with statistical differences 
calculated using Student’s t-test. The result are shown for all tested datasets: PBA (subfigure a and b), LUNA 
(subfigure c), GRAZPEDWRI-DX (subfigures d and e), COVID-19 (subfigures f and g), and BTMR (subfigures 
h and i).

Among the tested datasets (and architectures), U-Net-ResNet50 (LUNA dataset) was the only case where no 
statistically significant differences were observed between single-modality and multi-modality pretrained models. 
On the other hand, the PBA dataset exhibited mixed results depending on the architecture: for EfficientNetB3, 
multi-modality pretraining demonstrated significantly better performance than CR-only at all learning rates; 
while the opposite is true in the case of InceptionV3. In the GRAZPEDWRI-DX dataset, DenseNet121 models 
pretrained with multi-modality data generally achieved a significantly higher F1-score compared to CR-only 
models, with similar performance at the highest tested learning rate, 10−3. In contrast, ResNet34 models showed 
comparable performance between multi-modality and CR-only pretraining, with CR-only demonstrating a slight 
advantage at the lowest tested learning rate, 10−5. In the COVID-19 dataset, both multi-modality pretrained 
architectures (MobileNetV3Large and ResNet18) either outperformed CR-only models, or showed comparable 
performance with no statistically difference. In the BTMR dataset, MobileNetV3Small models pretrained 
with multi-modality achieved significantly better performance compared to MR-only models across all tested 
learning rate settings. For ResNet50, multi-modality pretraining showed superior performance overall, although 
the differences were less pronounced at the highest tested learning rate, 10−3.

A total of 27 statistical comparisons were conducted. Among these, no statistically significant differences 
were observed in 10 cases. In 4 cases, single-modality pretraining outperformed multi-modality, while in 13 
cases, multi-modality pretraining demonstrated better performance compared to single-modality. In MR-only 
comparisons, multi-modality pretraining outperformed MR-only in 5 out of 6 cases. In CR-only comparisons, 
single-modality pretraining showed improved performance in 4 out of 18 cases, while multi-modality pretraining 
was better in 9 cases. In CT-only comparisons on the LUNA dataset, no statistically significant differences were 
found between CT-only and multi-modality pretraining.

Training progress and resource-limited conditions
As the performances between ImageNet and RadiologyNET seldom statistically differed, additional analyses 
of the trained models was performed, by analysing the impact of pretrained weights on training progress. The 
results are shown in Figures 6 and 7.

Both ImageNet and RadiologyNET pretrained models gave overall boosts to performance in the first 10 
epochs, which is especially noticeable when compared to Baseline. ImageNet’s most significant boost is visible 
on the InceptionV3 architecture employed on the RSNA PBA Challenge, where its MAE is lower than the other 
two approaches. On the other hand, RadiologyNET pretrained weights demonstrated a boost in performance 
on DenseNet121, ResNet50, and MobileNetV3Small architectures. This suggests that RadiologyNET pretrained 
weights could be beneficial when training time is limited. However, the extent of this improvement may vary 
depending on the architecture and task, and it does not consistently translate into statistically significant 
improvements in final performance. To test the significance of possible performance improvements in resource-
limited conditions, a small scale experiment was performed on the GRAZPEDWRI-DX and Brain Tumor MRI 
datasets, where the original training subsets were randomly downsized to 5%, 25%, and 50% of their original 
size, and the training duration was capped at 10 epochs. The downsizing process was carried out in a manner 
that preserved the original class distribution, in order to avoid introducing any additional bias. The models were 
trained using the learning rates specified in Tables 4 and 6. Each approach underwent five training runs, with the 
mean F1-scores, along with the standard deviation, shown in Figure 8.

Grad-CAM evaluation
The radiologists’ evaluation scores are shown in Fig. 9, while samples of generated heatmaps (which were 
also shown to radiologists) are given in Supplementary Figures S2, S3, S4, S5, S6, and S7. Both radiologists 
noted that Baseline’s BTMR heatmaps were unreliable, while RadiologyNET’s heatmaps showed the best focus 
on pathologies present in the images. One radiologist noted that ImageNet’s BTMR heatmaps “seemed to be a 
little bit offset in some cases,” while the other said that ”it is significantly less accurate in detecting tumour area 
than [RadiologyNET]”. When it comes to GRAZPEDWRI-DX heatmaps, one radiologist reported that the 
presence of a cast puzzled all three models, but noted that the Baseline model ”focused a lot on the fracture [near 
osteopenia], but also the carpal bones, which would be the most relevant to look at.” The other radiologist reported 
that RadiologyNET’s GRAZPEDWRI-DX heatmaps were probably the most reliable of the three, but with too 
wide (non-specific) areas of focus; and that ImageNet’s heatmaps were polarising: sometimes being surprisingly 
specific and accurate, and sometimes missing the relevant area entirely. In their rankings and across both 
datasets, the radiologists agreed that the three algorithms struggled with images in which diseased/abnormal 
tissue was not present. However, they noted that heatmaps generated by RadiologyNET models were the most 
dependable overall, exhibiting the best focus on pathological regions when present.
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Discussion
In most cases, RadiologyNET and ImageNet’s peformance was almost identical, especially when the training 
process was not data or time-constrained. Statistical differences were primarily observed between these two 

Fig. 5.  Comparison of TL performance between MR-only, CR-only, CT-only and multi-modality pretrained 
RadiologyNET models. Results are averaged over five independent runs, with mean values and standard 
deviations indicated on (or above—as is the case in subfigure a) each bar. The p-values are indicated at the top 
and, where statistically significant differences exist, they are underscored in blue.

 

Scientific Reports |        (2025) 15:21622 11| https://doi.org/10.1038/s41598-025-05009-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


approaches and the Baseline models, whose performance was worse than ImageNet and RadiologyNET 
foundation models.

When observing each challenge separately, the LUNA dataset showed interesting results. Specifically, 
reconstruction-pretrained models significantly underperformed compared to those pretrained as classification 
tasks.

Reconstruction pretraining focused on replicating textures and patterns and did not capture the semantic 
meaning behind each pixel, leading to results which merely replicate the input image. In contrast, classification-
pretrained encoders (like ResNet50, VGG16, and EfficientNetB4) learn features that are better suited for 
segmentation tasks where pixel-wise semantic meaning is important, as is the case in LUNA nodule segmentation. 
While reconstruction-pretrained models demonstrated a significant performance gap, there may be another 
task type where such models would show improved performance. One example could be image compression 

Fig. 7.  Average performance of best-performing models on the validation subset across first 10 epochs on the 
COVID-19 and Brain Tumor MRI datasets. F1-score five-run mean and standard deviation is show per each 
epoch.

 

Fig. 6.  Average performance of best-performing models on the validation subset across first 10 epochs on 
the Pediatric Bone Age Challenge and GRAZPEDWRI-DX datasets. F1-score five-run mean and standard 
deviation is show per each epoch.
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or denoising, but testing this hypothesis fell out of scope of this study. Despite the suboptimal performance 
of U-Net pretrained as a reconstruction task, we believe it is important to report failed experiments, as these 
findings contribute to the broader scientific understanding and may prevent other researchers from investing 
time and resources into approaches that are less likely to succeed. The other challenges also demonstrated 
interesting results, where the PBA and GRAZPEDWRI-DX showed how the pretraining domain might influence 
the results. Namely, the RadiologyNET pretraining dataset consisted mostly of CT/MR images of the head and 
abdomen, with limited available wrist/hand radiographs. Although ImageNet does not contain medical images, 
its diverse range of natural images may have enabled ImageNet models to learn more generalisable features 
compared to RadiologyNET, which is more domain specific. This was further corroborated by the COVID-19 
and BTMR results, where RadiologyNET models demonstrated comparable performance to ImageNet, and 
in some instances, exhibited faster training progress compared to both ImageNet and Baseline (Fig.  7). The 
observed improvement in training progress may still be beneficial, particularly in resource-constrained settings, 
but it is also important to acknowledge that RadiologyNET did not consistently outperform ImageNet, which is 
a limitation of RadiologyNET models in their current form.

In addition, we investigated the impact of single-modality versus multi-modality pretraining by comparing 
RadiologyNET models pretrained exclusively on MR, CR, or CT images against those pretrained on the full, multi-
modality dataset. For the BTMR classification task, models pretrained on MR-only data showed a statistically 
significant drop in performance compared to multi-modality counterparts. On the other hand, CR-only models 
show mixed results. In the COVID-19 dataset multi-modality pretrained models (MobileNetV3Large and 
ResNet18) generally outperformed or matched the performance of CR-only models. In the RSNA PBA dataset, 
the results were architecture-dependent: EfficientNetB3 benefited from multi-modality pretraining across 
all learning rates, while InceptionV3 favoured CR-only pretraining. In GRAZPEDWRI-DX, DenseNet121 
generally performed better with multi-modality, while ResNet34 showed mixed results. However, for the LUNA 

Fig. 8.  Results of the MobileNetV3Small (BTMR) and DenseNet121 (GRAZPEDWRI-DX) models during 
10 epochs of training, when training data is reduced to 5%, 25% and 50% of the original training subset. The 
other subsets remained unchanged. F1-score five-run mean and standard deviation is shown per each epoch.
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segmentation task, where CT is the predominant modality (53.73% of the whole RadiologyNET dataset), no 
significant difference was observed between CT-only and multi-modality pretrained models. The results indicate 
that the choice of NN topologies (and their internal mechanisms) could be a factor, but there is also a general 
trend visible: modality diversity is valuable when the single modality lacks sufficient internal variability or 
representation. For example, MR images have less variability than CR images, thus being biased towards certain 
anatomical regions. As a result, MR-only models benefit more from the inclusion of other modalities and, in 
contrast, CR-only models are less reliant on multi-modality pretraining. In the case of CT-only versus multi-
modality comparisons, since the multi-modality dataset is dominated by CT images, adding data from other 
modalities did not significantly alter the learned representations. Nonetheless, it is worth to noting that different 
feature extraction schemes such as unsupervised representation learning60 might lead to different clusters and 
different numbers of clusters, which could significantly impact the obtained results. However, with the presented 
setup and study settings, the obtained results yield the observations presented above.

The greatest performance differences were observed under resource-limited conditions. As there were cases 
where Baseline models achieved comparable results when resources were not restricted, this indicates that the 
original challenges may have had sufficient training data, and that when the training pool is large enough, the 
advantages of TL become less impactful43. In Fig. 8, it is clear that models where TL was applied show better 
performance against training from randomly initialised weights. Although RadiologyNET models did not 
outperform ImageNet in less-restricted resource conditions on the GRAZPEDWRI-DX dataset (i.e. the results 
shown in Table 4), they showed competitive performance when training data and time were limited. However, 
it is important to note that as more training data becomes available (e.g. when the dataset is reduced to 50% 
instead of 5% of its original size), the performance differences between RadiologyNET and ImageNet become 
less pronounced. This suggests that the relative advantage of RadiologyNET pretraining may decrease as the 
availability of training data increases (as does the advantage of TL in general).

The radiologists’ evaluation of the generated heatmaps indicated that RadiologyNET models were perceived 
as the most reliable overall, focusing on the present pathologies better than ImageNet and (especially) Baseline. 
This result raises questions about the influence of TL on model interpretability, as patterns learned during 
pretraining might help models focus on relevant regions in the downstream tasks. While pretraining on natural 
images can provide generalisable features, pretraining on medical data may lead to models that are better adapted 
to the specific characteristics of medical images (e.g.  disease-related patterns and abnormalities). However, 
testing this hypothesis further remains a topic for future research.

In the results presented in the RadImageNet study13, which evaluated transfer learning on a dataset of 
similar size to RadiologyNET but annotated by expert radiologists, the authors reported statistically significant 
improvements in model performance, with AUC increases of 1.9%, 6.1%, 1.7%, and 0.9% over ImageNet-pretrained 
models across five different medical tasks. While RadiologyNET-pretrained models achieved comparable results 
to ImageNet in our experiments (with notable difference visible in resource-limited conditions), the performance 
gains reported in the RadImageNet study highlight the value of high-quality expert annotations in enhancing 

Fig. 9.  Ratings of each radiologist given to randomly sampled Grad-CAM heatmaps from the GRAZPEDWRI-
DX and Brain Tumor MRI datasets.
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the effectiveness of pretraining. Although both RadiologyNET and RadImageNet contain a similar number of 
images, RadImageNet includes 165 distinct labels, substantially more than the 36 labels used in RadiologyNET. 
This makes RadImageNet a more complex and challenging classification task, which likely encourages models to 
learn richer and more discriminative features. Nevertheless, RadiologyNET achieved competitive performance 
relative to ImageNet without the need for expert annotations, thereby avoiding the considerable human effort 
required to construct RadImageNet (an effort that involved 20 radiologists). These observations lead to several 
key insights: (i) Unsupervised labelling can be a viable strategy for constructing large-scale medical datasets 
for pretraining, provided that the task includes a sufficiently large number of classes to introduce meaningful 
complexity; (ii) High-quality labelled data remains the gold standard, but is often impractical due to the high 
cost and expertise required for annotation. In summary, we argue that a hybrid approach – starting with 
unsupervised pretraining and selectively annotating a subset of the most diagnostically challenging cases – may 
offer an effective compromise between scalability and annotation quality, particularly in the context of training 
medical foundation models61.

From the obtained results, we attempt to answer the following questions: (i) Does the domain of pretrained 
models affect performance? Yes. While RadiologyNET models demonstrated competitive results, ImageNet 
models exhibited a slight advantage on the RSNA PBA Challenge and the GRAZPEDWRI-DX dataset. This is 
likely due to their exposure to a broader range of images (which leads to more generalisable features); and the 
limited inclusion of wrist radiographs in the RadiologyNET dataset. On the other hand, the Brain Tumor MRI 
dataset showed that RadiologyNET models achieved faster convergence, likely due to RadiologyNET sharing 
significant overlap with the downstream task’s domain. To further explore the impact of pretraining domain 
characteristics, we compared models pretrained on single-modality (MR-only, CR-only and CT-only) data 
with those pretrained on multi-modality RadiologyNET data, which showed a general trend that incorporating 
diverse images into the pretraining dataset enables the model to generalise better in cases where intra-domain 
variability is low. Thus, when choosing pretrained models for medical ML tasks, one should consider the biases 
present in the dataset (e.g. the distribution of anatomical regions). (ii) Does the pretraining task matter? Yes, the 
pretraining task may play a key role. When choosing the pretraining task, one may need to consider what kind 
of features the model should learn. Our results from the LUNA Challenge indicate that classification-pretrained 
models outperform reconstruction-pretrained models in semantic segmentation tasks, producing vastly different 
output masks. This raises the issue of determining the most suitable pretraining task for the targeted problem 
type, as the reconstruction-pretrained models learned different features than those pretrained as classification. 
Based on the results, using reconstruction as a pretraining task for image segmentation is not ideal. Future 
research should explore other pretraining approaches, such as contrastive pretraining, to determine if they yield 
better performance. Moreover, learning generalisable representations from large datasets is fundamental to self-
supervised learning, which is the underlying principle for many foundation models, such as Prov-GigaPath62. 
(iii) Is TL always beneficial? Our findings suggest that TL is generally beneficial, especially in conditions where 
training pools were reduced and/or training time was limited. However, there were cases where Baseline models 
achieved comparable performance to those trained from pretrained weights, and there is evidence to show that, 
when models are not resource-restricted (e.g.  there is enough training time/data), the utility of TL becomes 
less prominent43. Furthermore, in the case of reconstruction-pretrained U-Net, models trained from randomly 
initialised weights surpassed those of ImageNet and RadiologyNET by a statistically significant margin, meaning 
that some TL models may even hinder performance. This question is closely tied to questions (i) and (ii), as the 
benefits of using TL depend on the alignment between the pretraining domain/task and the target domain/task, 
and (if the domains do not overlap significantly) the generalisability of the learned features in the pretrained 
models. (iv) What should be considered when collecting data for pretraining medical models for TL? Our findings 
suggest that a well-structured dataset containing challenging and diverse classes is more beneficial than a 
homogeneous one. This aligns with observations from the field of language processing, where general-domain 
corpora have been shown to enhance domain-specific performance. For example, GatorTron63 incorporated data 
from Wikipedia, and Med-PaLM64 was built on general-purpose language models. These insights suggest that 
diverse pretraining datasets improve generalisation, and that incorporating heterogeneity (e.g., through natural 
image datasets such as ImageNet) can be beneficial when developing medical foundation models. This raises a 
key question for future research: how can diverse data sources (both within and beyond the medical domain) be 
effectively integrated to optimise the training of medical foundation models? Similarly, the next question which 
arises from RadiologyNET pseudo-labels is: (v) How to associate labels to cases for effective transfer learning using 
an unsupervised approach? In case of RadiologyNET as explained in the paper17, the labels were formed as a 
concatenation of three vectors extracted from the three different sources belonging to same case: diagnosis text, 
image and DICOM tags. The vectors, or to be precise embeddings, were extracted by using autoencoders-based 
models54. This yielded representations which can be classified as unsupervised data construction where the case 
is represented by its compressed version (which can be noisy). It is highly possible that important features of the 
observed case will not be preserved and its unique and important features, such as tumour presence or fracture, 
might be lost. On the other hand, unsupervised representation learning60 might be a better way to preserve 
important clinical features which could lead to more versatile and demanding classes forcing models to learn 
more complex features. Therefore, one of the limitations of this study is using a small number (36) of potential 
simple clusters that did not force models to learn complex and advanced features.

Conclusion
This study demonstrates the effectiveness of TL in improving the performance of deep learning models for 
medical image analysis. While ImageNet models showed better generalisability, RadiologyNET models 
demonstrated better performance in resource-limited conditions. Furthermore, this study showed how different 
biases present in the pretraining dataset may influence performance on the downstream task, as RadiologyNET 
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models performed better where the downstream task’s domain aligned closely with the data used during 
pretraining. Thus, the current version of RadiologyNET foundation models is the most impactful when 
applied to (i) resource-limited tasks in the medical domain, and (ii) when the downstream task aligns with the 
RadiologyNET dataset. One major limitation to acknowledge is the nature of the RadiologyNET dataset being 
single-clinic. By incorporating data from other clinics, the biases currently present in RadiologyNET could be 
mitigated and future versions of RadiologyNET foundation models could be more efficiently applied to a wider 
range of downstream medical tasks. The current RadiologyNET foundation models are publicly available at ​h​t​t​
p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​A​I​l​a​b​​-​R​I​T​E​​H​/​R​a​d​i​​o​l​o​g​y​N​​E​T​-​T​L​-​​m​o​d​e​l​s.

Based on this study’s findings, we strongly suggest researchers clearly state the justification for using 
pretrained models. To be precise, this includes the pretraining task and its link to the target task, the (potential) 
biases present in the pretraining dataset, and the (in)sufficiency of samples in the available target dataset.

In future work, we plan to build on our current findings by: (i) augmenting RadiologyNET with additional 
data sourced from various clinics, (ii) providing a broader range of pretrained RadiologyNET models, (iii) 
evaluating their robustness in comparison with other foundational models in medical radiology, (iv) exploring 
effective strategies for model pretraining to enhance transfer learning, (v) extending research on segmentation 
models by replacing the reconstruction task with contrastive pretraining methods, (vi) merging natural data 
with medical data in pretraining tasks, and (vii) experimenting with unsupervised representation learning for 
more complex auto-assigned labels.

Data availability
Due to restrictions imposed by the current Ethics Committee approval, the dataset used in this study is not avail-
able for sharing. However, the entire program code and foundation models (i.e. pretrained model weights) used 
for the experiments are available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​A​I​l​​​a​b​-​R​I​T​​​E​H​/​R​a​​d​i​o​l​o​g​​y​​N​E​T​​-​​T​L​-​m​o​d​e​l​s.
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