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Lessons learned from
RadiologyNET foundation models
for transfer learning in medical
radiology
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Deep learning models require large amounts of annotated data, which are hard to obtain in the
medical field, as the annotation process is laborious and depends on expert knowledge. This data
scarcity hinders a model’s ability to generalise effectively on unseen data, and recently, foundation
models pretrained on large datasets have been proposed as a promising solution. RadiologyNET

is a custom medical dataset that comprises 1,902,414 medical images covering various body parts

and modalities of image acquisition. We used the RadiologyNET dataset to pretrain several popular
architectures (ResNet18, ResNet34, ResNet50, VGG16, EfficientNetB3, EfficientNetB4, InceptionV3,
DenseNet121, MobileNetV3Small and MobileNetV3Large). We compared the performance of
ImageNet and RadiologyNET foundation models against training from randomly initialiased weights
on several publicly available medical datasets: (i) Segmentation—LUng Nodule Analysis Challenge,

(ii) Regression—RSNA Pediatric Bone Age Challenge, (iii) Binary classification—GRAZPEDWRI-DX and
COVID-19 datasets, and (iv) Multiclass classification—Brain Tumor MRI dataset. Our results indicate
that RadiologyNET-pretrained models generally perform similarly to ImageNet models, with some
advantages in resource-limited settings. However, ImageNet-pretrained models showed competitive
performance when fine-tuned on sufficient data. The impact of modality diversity on model
performance was tested, with the results varying across tasks, highlighting the importance of aligning
pretraining data with downstream applications. Based on our findings, we provide guidelines for using
foundation models in medical applications and publicly release our RadiologyNET-pretrained models to
support further research and development in the field. The models are available at https://github.com/
Allab-RITEH/RadiologyNET-TL-models.
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Regression, Classification

There is a consensus among researchers that leveraging pretrained models is the path forward in machine
learning (ML)!. In transfer learning (TL), a model is first pretrained on large datasets with sufficient amounts of
data, and then retrained or fine-tuned on the actual specific dataset of the target task. This approach can improve
model stability, and mitigate the impact of scarcity of annotated data, with the latter being common in medical
ML due to the costly and tedious annotation process?.

ImageNet**—a dataset consisting of millions of natural images—is one of the most popular datasets for
building pretrained models. Although there is research suggesting that it does improve results of downstream
medical tasks™S, there is also evidence to question its applicability in the medical domain’~, and some
researchers suggest that domain-specific medical datasets are more appropriate for TL>!%1!. Although this led
to a rise of medical foundation models!>!3, ImageNet remains a popular choice in medical ML®. Many papers
have been published that exploit models previously pretrained on different datasets using various pretraining
tasks!*1>. However, based on the papers presented in”%, we find that the motivation behind choosing a particular
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pretraining dataset is seldom acknowledged, nor is there a justification provided for using a specific method of
pretraining. Although some authors do provide their motivation and guidelines for building pretrained models,
repositories providing a comprehensive list of different model architectures pretrained in the medical domain
are scarce!>16,

RadiologyNET!” is our own custom medical dataset which consists of radiology images acquired through
different imaging modalities and depicting an assorted range of anatomical regions.

While RadiologyNET is a large dataset, it was originally unlabelled, and there were no available resources
to manually annotate the data with pathological information. To address this limitation, we previously
developed a method to identify patterns within the data and generate pseudo-labels'”. Pseudo-labels generated
through this process were used to pretrain a large number of popular neural network architectures for TL.
This study is motivated by the fact that a vast amount of medical data is available, but annotating them is a
complex and laborious process which is not feasible for many institutions. Therefore, we aimed to explore
whether unannotated data could be leveraged to build pretrained models, achieving performance comparable
to models pretrained on large, well-structured datasets like ImageNet*. Existing medical data pretraining efforts
often rely on single-modality datasets with fewer than 100,000 images, which can limit the richness of learned
feature representations and their generalisability. This raises two key questions: (i) How can we leverage large-
scale, unlabelled medical image collections for model pretraining?, and (ii) How do such models compare in
downstream performance to those pretrained on large, structured natural image datasets (e.g., ImageNet®)? The
motivation for this study stems from the fact that model pretraining mostly relies on labelled and annotated
data (which is often unavailable), prompting us to explore the possibility of leveraging unannotated data as a
starting point for research. Importantly, this study is not clinically oriented but rather exploratory, with the goal
to determine whether unlabelled medical data can be effectively used in this context.

Models used in TL studies are not always state-of-the-art'®-2!, but they are widely adopted in the research
community due to their ease-of-use. While state-of-the-art performance often relies on highly specialised
techniques tailored to specific tasks, TL experiments require models that are easy to configure and adapt to
different training objectives®?. Based on these considerations, we selected models that had previously achieved
strong performance while remaining practical to reuse, and pretrained architectures commonly used in
medical ML (ResNet18, ResNet34, ResNet50%%, VGG16%, EfficientNetB3, EfficientNetB4%°, InceptionV3%,
DenseNet121?, U-Net?’, MobileNetV3Small and MobileNetV3Large®®). We used the RadiologyNET pretrained
models for a comprehensive study of TL on five publicly available medical downstream tasks and challenges®*-4.
To ensure an objective evaluation, the challenges were chosen in a way that covers different problem types
(image segmentation, regression, binary classification, and multiclass classification), and a range of different
anatomical regions and medical imaging modalities.

In addition to using RadiologyNET, we reviewed other publicly available medical imaging datasets that are,
or could be, used for TL in the medical domain. A summary is provided in Table 1, where RadImageNet'® stands
out as the most suitable for TL based on its diversity, expert annotations, and large sample size. It consists of 1.35
million images annotated by 20 radiologists across 165 distinct pathologies (labels). Despite the emergence of
medical TL models'>!3, ImageNet is still a prevalent choice in medical ML, with recent research® showing that
simple fine-tuning of ImageNet models can achieve performance comparable with other medical foundation
models. Therefore, in this paper, as a first step of evaluating RadiologyNET foundation models, we chose to
compare RadiologyNET with ImageNet and training from randomly initialised weights, deferring comprehensive
comparisons with other medical foundation models to future work. Nonetheless, we reflect on the differences
between RadiologyNET and RadImageNet (i.e., automatically-generated versus expert-annotated labels) in the
Discussion.

To summarise, our primary objective in this study is to compare our own RadiologyNET models (domain
specific data) against ImageNet (generic image data), and juxtapose the obtained results against models trained

Dataset

Annotations

Modality | Size

Applications

Unique features

DeepLesion®

CT

32,120 CT slices

Lesion bounding boxes

Lesion detection and

Diverse lesion types from multiple

similarity (36 classes)

classification body regions
RadlmageNet' | CT, MRI, US | 1,350,000 images | 165 pathologies/labels Pretraining for medical imaging | Large-scale dataset for transfer
Al learning
CheXpert*® X-ray 224,316 images 14 common observations (e.g, Chest disease classification Uncertainty labels for pathologies
pneumonia)
ChestX—ray1437 X-ray 108,948 images 8 text extracted labels Chest disease classification One of the largest publicly available
chest X-ray datasets
MIMIC-CXR*® | X-ray 377,110 images | Radiology reports, Textual diagnoses | Image and text generation Paired image-text dataset with free-
text radiology reports
. 39 . N . . . . Designed for teaching and
MedPix 2.0 Various /2 59,000 images | 12,000 cases Multimodal medical education ; o
multimodal AI applications
MURA© X-ray 40,561 images Binary abnormality labels Muscgloskeletal abnormality Focused on upper extremity
detection abnormalities
OASIS!! MRI 416 subjects Brain structure and dementia-related Neuroimaging research Lf)ngltudmal data for Alzheimer’s
labels disease research
RadiologyNET" | Various 1,902,414 images Unsupervised clustering based on case Cases from standard practice Data clustered based on their DICOM

tags, images and textual diagnoses

Table 1. Overview of various medical imaging datasets.
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from scratch (i.e. randomly initialised network weights*?). Furthermore, we test these models in data-scare
conditions, as prior research has shown that the utility of TL becomes less impactful when downstream tasks
have sufficient training data®*. Additionally, we offer our findings on TL in medical ML, which we acquired
through this study, and provide our pretrained models to the wider community. The models are publicly available
at https://github.com/Allab-RITEH/RadiologyNET-TL-models.

While this work does not introduce a novel technical innovation, its contributions are nonetheless
significant in influencing dataset selection and model pretraining—both of which are crucial for advancing
medical foundation models development such as CT-FM*! and MI2%>. Our key contributions are as follows:
(i) Pretraining multiple widely used network architectures on the pseudo-labelled RadiologyNET dataset; (ii)
Conducting a comprehensive evaluation of RadiologyNET-based foundation models, comparing them to models
pretrained on ImageNet and those trained from randomly initialised weights across a range of downstream
medical tasks (new insights on dataset and task importance); (iii) Investigating the impact of the pretraining
task and domain on downstream performance, offering insights into TL in medical imaging; and (iv) Publicly
releasing the RadiologyNET foundation models to the medical ML community, accompanied by guidelines for
their application and broader recommendations for leveraging TL in medical ML tasks. The workflow diagram
of the conducted research is given in Fig. 1.

Methods

RadiologyNET dataset and TL model pretraining

The RadiologyNET dataset!” is a custom dataset of medical radiology images obtained from Clinical Hospital
Centre Rijeka between 2008 and 2017. Ethical approval for conducting research using this dataset was obtained
from the competent Ethics Committee. The dataset has been labelled through a fully unsupervised approach
described in detail in!’, by extracting and combining features from three different data sources: text (diagnoses),
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Fig. 1. Workflow diagram of the conducted experiment.
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Fig. 3. The overall distribution of different imaging modalities (a) and anatomical regions (b) found in the
RadiologyNET dataset.

images, and tabular data—i.e. attributes found in Digital Imaging and Communications in Medicine (DICOM)
file headers*®. The unsupervised pipeline was used to label a set of 1,337,926 DICOM files into 50 distinct groups.
Some of the groups exhibited high heterogeneity in regard to the modality and body-part examined, which was
attributed to noise; as such, the final dataset used for pretraining contained 36 distinct groups, whose sizes can
be seen in Figure 2. Specifically, after visually inspecting mosaic images composed of randomly selected samples
from each cluster, we observed that some clusters lacked a clear relationship between the images, their associated
DICOM tags, and diagnoses. However, these clusters were strongly associated with high heterogeneity measures
related to imaging modality and the examined body region, which allowed us to exclude them based on this
criterion. The available DICOM files were converted into 224 x 224 pixel 8-bit portable network graphics
(PNG) format. As some of the DICOM files contained three-dimensional volumes, these volumes were sliced
into multiple two-dimensional images. Therefore, the total count of exported PNG images was 1,902,414. We
refer the reader to'” for more details.

The RadiologyNET dataset used for pretraining covered multiple imaging modalities: Magnetic Resonance
(MR), Computed Tomography (CT), Computed Radiography (CR), X-ray Angiography (XA) and Radio
Fluoroscopy (RF) (five in total). The ratios of medical imaging modalities available in the RadiologyNET dataset
can be seen in Fig. 3a. The dataset includes multiple anatomical regions and body parts, ranging from hands
and ankles to the abdomen and the brain. Figure 3b shows the distribution of the BodyPartExamined attribute
found in DICOM file headers, which is input manually by physicians and is therefore prone to errors, but can
still provide insight into the distribution of anatomies. As it can be seen in Fig. 3, the RadiologyNET pretraining
dataset consisted mostly of chest, abdominal and head images, captured mostly using MR and CT. To emphasize,
each of the 36 classes was a cluster which was comprised of the instances that were similar based on the DICOM
tags, images, and diagnoses, while body-part examined and modality served as an exclusion criterion for clusters
that were too heterogeneous (reduced the initial 50 clusters to the used 36 clusters).

While the ImageNet pretrained models were taken from the PyTorch repositories, a range of different
popular architectures were trained on the RadiologyNET dataset. These included: VGG16%, EfficientNets?®
(EfficientNetB3 and EfficientNetB4), DenseNet121?, MobileNetV3Small and MobileNetV3Large®,
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InceptionV3% and ResNets? (ranging from ResNet18 to ResNet50). RadiologyNET models were pretrained by
solving a classification task (predicting one of 36 classes shown in Fig. 2), using cross-entropy loss and AdamW
optimiser?”. During the models’ pretraining and later on transfer learning, all layers were trainable from the
start. The gradually unfreezing of the models’ layers during the pretraining process and later in transfer learning
did not yield any improvements. The best reported learning rates (LRs) used in the original papers were used
to pretrain the RadiologyNET models. In addition to multi-modality pretraining on the full RadiologyNET
dataset, separate models were also pretrained using only MR, CR and CT data, to investigate the viability of
multi-modality pretraining versus single-modality pretraining. To address the class imbalance in the training
subset, oversampling techniques were used to ensure a more balanced representation of each class. The
exemption from the classification pretraining task was U-Net? pretraining for the semantic segmentation (for
both ImageNet and RadiologyNET), where, initially, U-Net was pretrained as an image reconstruction task. As
there is not an ImageNet-pretrained U-Net publicly available, the entire ImageNet dataset was downloaded and
pretrained for this experiment. In addition to the vanilla U-Net, we also tested multiple approaches inspired by
U-Net-ResNet50%8-%, where the encoder branch was replaced by a classification-pretrained ResNet50, VGG16
or EfficientNetB4°!.

Regarding the technical setup, the pretraining process for all architectures was conducted entirely on a
machine equipped with four NVIDIA RTX A6000 GPUs (48GB each) and 512GB of CPU RAM. The downstream
tasks were evaluated on another machine with two NVIDIA L40S GPUs (48GB each) and 1TB of CPU RAM.
Pretraining on the RadiologyNET dataset required, on average, approximately seven days per model, with
multiple models often trained in parallel. For downstream tasks, each model architecture was typically trained
and evaluated within two days.

Selected predictive modelling challenges

Several different publicly available datasets were chosen to test the effectiveness of RadiologyNET pretrained
models. These datasets were chosen in a way that covers diverse radiological imaging modalities, various
anatomical regions, and different task types (segmentation, regression, binary classification, and multiclass
classification).

1. LUng Nodule Analysis Challenge (LUNA)*%. This challenge is based on the LIDC-IDRI dataset® which con-
tains a total of 1,018 CT lung scans. LUNA challenge consists of two parts: nodule classification (detect
whether a number of locations in a scan are nodules or not); and nodule segmentation (from a full CT scan,
output a mask indicating where the nodules are). The segmentation task was chosen for this study, where the
winning solution employed the U-Net?® architecture. Inspired by U-Net-ResNet50%8-50 (where the encoder
branch is replaced by ResNet50), this research utilised several different classification-pretrained models in
a U-Net-like topology to segment the nodules. These include the popular architectures VGG16*, Efficient-
NetB4?>5! and ResNet50%.

2. RSNA Pediatric Bone Age Challenge (PBA)%. This dataset consists of 14,236 hand radiographs labelled by
expert radiologists, where the goal is to estimate skeletal age—a regression task. The winning architecture
consists of InceptionV3%® whose output was concatenated with the sex information from the public dataset.
The concatenated result is fed into additional dense layers, whose final output represents bone age expressed
in months. Given the success of convolutional neural networks (CNNs)?? in this challenge, we evaluated the
performance of EfficientNetB3—another CNN architecture—using a similar approach of concatenating its
output with the available sex information.

3. GRAZPEDWRI-DX?* consists of 20,327 digital radiographs of wrists annotated by expert radiologists. The
available annotations are suitable for different detection and classification tasks; but for the purposes of this
research, the goal of classifying osteopenia was chosen, making this challenge a binary classification task. In
total, 2,473 images have osteopenia present; thus, undersampling was performed to balance osteopenia ver-
sus non-osteopenia cases. The obtained dataset consisting of 4,946 images was randomly split into training
(75%), validation (12.5%) and test (12.5%) subsets. Recent research® showed the performance of different
ResNets and DenseNets when classifying osteopenia using the GRAZPEDWRI-DX dataset.

4. The COVID-19 Radiography Database®*' comprises chest CR images of patients diagnosed with COVID-19
(3,616 images) and instances of normal chest radiographs (10,192 images). Although the dataset also in-
cludes images of lung opacity (non-COVID-19 lung infection) and viral pneumonia cases, this study focuses
on binary classification between COVID-19 and normal cases. Since there was a case imbalance between
normal and COVID-19 cases—similarly to GRAZPEDWRI-DX-random undersampling was performed
to lessen its potential impact. The original research’! tested several popular architectures, among which
ResNet18 was one of the best performers, with MobileNetV2 achieving a marginally lower score (0.01%
difference). Therefore, for this dataset, a newer version of MobileNet (MobileNetV3Large?®) and ResNet18%
were tested.

5. Brain Tumor MRI (BTMR)?3. This dataset contains 7,023 MR images of the brain with labels for four differ-
ent classes: glioma, meningioma, pituitary and no tumour—making this a multiclass classification problem.
This Kaggle contest contains submissions from various different popular network topologies, ranging from
different MobileNets?8 to ResNets?3. Thus, ResNet50 and MobileNetV3Small were tested here.

Theselected challenges covered different problem types: LUNA—segmentation; PBA—regression; GRAZPEDWRI-
DX and COVID-19—binary classification; BTMR—multiclass classification). Furthermore, as the RadiologyNET
dataset is imbalanced with regard to imaging modalities and anatomical regions (Figure 3), the datasets were
chosen to include (i) data which aligns with the pretraining dataset’s domain, and (ii) data which shows less
overlap with the original pretraining dataset. GRAZPEDWRI-DX and RSNA PBA had the least overlap in
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terms of domain relevance, whereas Brain Tumor MRI aligned with the RadiologyNET’s domain the most. It
is important to note that overlap in this context refers only to domain relevance, and that the RadiologyNET
dataset and downstream tasks were completely independent, i.e. the patient scans found in downstream tasks
were not a part of the RadiologyNET dataset.

Additionally, to assess the impact of modality-specific pretraining, we compared MR-only, CR-only and CT-
only pretrained versions of architectures tested on BTMR, GRAZPEDWRI-DX, RSNA PBA, COVID-19 and
LUNA datasets against their multi-modality pretrained counterparts. For CT, a ResNet50 model was pretrained
exclusively on CT images and incorporated as the encoder in a U-Net-ResNet50 architecture for the LUNA
segmentation task. For MR, both MobileNetV3Small and ResNet50 models were pretrained on MR-only
data and subsequently evaluated on the BTMR classification task. For the GRAZPEDWRI-DX, RSNA PBA,
and COVID-19 datasets, CR-only pretraining was performed on DenseNet121, ResNet34, EfficientNetB3,
InceptionV3, MobileNetV3Large, and ResNet18 models, followed by evaluation on the corresponding tasks.
The performance of these modality-specific models was then compared to that of models pretrained on the full,
multi-modality RadiologyNET dataset to examine the impact of pretraining diversity.

Evaluation on downstream tasks

For each of the challenges, we tested three approaches: (i) training from randomly initialised weights, (ii) fine-
tuning on ImageNet, and (iii) fine-tuning on RadiologyNET. For simplicity, any model trained from scratch
(i.e. randomly initialised weights) will be referred to as Baseline. We followed the original proposed solutions
for the individual tasks as closely as possible. This applies to model architecture, optimiser and loss functions,
and any changes to the model (e.g. the additional sex information used in the PBA Challenge solution). We note
that the aim of this study was not to outperform state-of-the-art, but to compare the performance of different TL
models and strategies, while making use of network architectures that performed well on the tasks in previous
studies.

All models were trained under equal conditions: with a maximum of 200 epochs, and an early stopping
mechanism halting the training process if the validation results did not improve in the span of 10 consecutive
epochs. All model parameters were allowed to be fine-tuned during the training process. Each model was
trained five times using learning rates logarithmically sampled in the range [10~2,10°], with a base-10 step
size. Although higher (> 0.1) and lower (< 1079) learning rates were initially tested as well, they were later
excluded from the study due to their inferior performance across all models and challenges. With lower learning
rates, the models would fail to converge within the maximum number of epochs, whilst higher learning rates
brought overall lower scores.

For the LUNA segmentation task, U-Net-based models were pretrained using two approaches. The first
approach involved simple reconstruction, where the output image matched the input image, inspired by
autoencoders®, In the second approach, the encoder was replaced with a pretrained backbone model (ResNet50,
EfficientNetB4, or VGG16) while retaining the original U-Net decoder. Skip connections were preserved by
linking intermediate encoder outputs to the corresponding decoder layers, thus preserving U-Net’s signature
multi-resolution feature fusion. Both approaches were then trained on the given LUNA segmentation task with
the same hyperparameters as mentioned above.

To compare the statistical significance of the obtained results, a Levene test™ was first performed to determine
whether significant differences in variance exist. Since the differences were deemed significant (p < 0.05), non-
parametric Kruskal-Wallis tests>® were computed, followed by a pairwise Mann-Whitney-U (MWU) tests with
Bonferroni correction where the Kruskal-Wallis showed potential significant differences.

For the segmentation task, reported metrics include Intersection-over-Union (IoU) and the Dice score®.
Performance on the regression task is reported using Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), while performance on classification tasks is reported using Precision, Recall, Accuracy, and F1-
score. Out of these metrics, the Dice score was used for statistical tests in the segmentation task, MAE for the
regression task, and F1-score was used in classification tasks.

The initial findings for GRAZPEDWRI-DX and COVID-19 challenges showed that there are no noticeable
differences between ImageNet and RadiologyNET models’ performance. Thus, for RSNA Pediatric Bone Age
and Brain Tumor MRI datasets, the codecarbon?® package was used to measure whether there are differences
in emissions and energy consumed. As expected, the recorded emissions strongly correlated with the number
of epochs required to converge. Consequently, the number of epochs was used as an evaluation metric and is
reported in the results, as it is a simpler metric that was already available for the previously tested datasets.

Despite the initial findings showing minimal differences in performance between the three approaches when
models reached convergence, there was an observable difference in initial model performance (i.e. in the first
few training epochs). For this reason, we hypothesised that the three approaches might behave differently when
training time, and resources in general, are heavily reduced. To investigate this influence and possible boosts to
initial model training, a small-scale experiment was conducted on the GRAZPEDWRI-DX and Brain Tumor
MRI datasets. In this experiment, the training time was reduced to 10 epochs, and the training subsets for these
datasets were randomly reduced to 5%, 25%, and 50% of their original size. The validation and test subsets
remained unchanged. GRAZPEDWRI-DX was chosen due to its minimal overlap with the RadiologyNET
pretraining domain, and Brain Tumor MRI for its closer alignment with the pretraining data. Additionally,
Grad-CAM>® heatmaps were visualised to compare the areas of focus for each of the three approaches on the
two datasets. The Grad-CAM heatmaps were independently reviewed by two expert radiologists, each based
in a different clinical centre, to assess the quality of the models’ focus on relevant areas within the images.
Each radiologist evaluated a sample of 20 randomly sampled heatmaps from the GRAZPEDWRI-DX test set
(obtained with DenseNet121), and another 20 randomly sampled heatmaps from the BTMR test set (generated
with ResNet50). The radiologists rated each heatmap on a scale from 1 to 5, with 1 indicating that the model
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Pretrain strategy | TL model LR Dice score IoU
R ImageNet 10—4 | 0.111+0.002 | 0.063 + 0.002
U-Net R RadiologyNET | 19—4 | 0.111 £0.002 | 0.063 + 0.001
N/A Baseline 10—4 | 0.616 £0.012 | 0.500 + 0.011
C ImageNet 10— | 0.685+0.016 | 0.582 +0.017
U-Net- EfficientNetB4 | C RadiologyNET | 19—4 | 0.695 + 0.022 | 0.593 + 0.026
N/A Baseline 10—4 | 0.688 £0.013 | 0.586 +0.014
C ImageNet 10—4 | 0.692 +0.026 | 0.593 +0.03
U-Net- ResNet50 C RadiologyNET | 19—5 | 0.715 £ 0.017 | 0.616 + 0.017
N/A Baseline 10—4 | 0.646 +£0.027 | 0.538 +0.03
C ImageNet 10-5 | 0.729£0.01 | 0.632%0.015
U-Net- VGG16 C RadiologyNET | 19—4 | 0.706 +0.015 | 0.605 + 0.019
N/A Baseline 10—4 | 0.704+0.03 | 0.601 +0.033

Table 2. Results of different training strategies on the LUNA dataset. Results are shown for U-Net, U-Net-
ResNet50, U-Net-EfficientNetB4, and U-Net-VGG16 models for Reconstruction (R) and Classification (C)
pretraining strategies. Best results are emphasized. LR Learning Rate, IoU Intersection-over-Union.

Challenge TL model LR RMSE MAE Epochs
ImageNet 10-3 [1177+14 |937+13 |22.6+7.4

PBA EfficientNetB3 (avg.) | RadiologyNET | 19—3 | 10.8+0.3 |8.23+0.2 |41.2+1.1
Baseline 1073 |31.98+17.2 | 252+13.9 |30.8+9.7
TmageNet 10—4 |11.56+ 1.1 |[9.08+1.0 |28.0+8.2

PBA InceptionV3 (avg) | RadiologyNET | 19—2 | 12.17+0.4 |931+03 |46.6+9.9
Baseline 1073 | 1216 £0.2 [9.36+0.3 |454+9.1
ImageNet 10-3 991 7.56 32.0

PBA EfficientNetB3 (best) | RadiologyNET | 19—3 | 10.971 8.261 41.0
Baseline 10—3 | 12,572 9.2 41.0
ImageNet 10— 4 | 11.154 8.587 41.0

PBA InceptionV3 (best) | RadiologyNET | 19—2 | 12.126 9.086 51.0
Baseline 10—3 | 12.028 9.296 55.0

Table 3. Metric mean and standard deviation calculated on the test subset of Pediatric Bone Age Challenge,
across five runs. Best results are emphasized. LR Learning Rate.

concentrated on entirely irrelevant areas, and 5 indicating that it focused solely on the relevant regions. In
addition to rating the heatmaps, the radiologists were asked to report any observations they might have for
each of the presented heatmaps. The source of each heatmap was concealed from the radiologists (i.e. they were
labelled as algorithms (a)—RadiologyNET, (b)—ImageNet and (c)—Baseline), to ensure evaluation is based
solely on the visual information provided.

Results

The results reported here were obtained on the test subset, and are derived from the models that exhibited the
best performance on the validation subset of each respective dataset. The results obtained on the validation set
are given in Supplementary Tables S1, S2, S3 and S4. The only exception is LUNA, where the reported results
(shown in Table 2) were computed on the validation subset (as reported in®’).

The best results for PBA, GRAZPEDWRI-DX, COVID-19 and BTMR are shown in Tables 3, 4, 5 and 6,
respectively. Each table contains results averaged across five runs, in addition to overall best recorded performers
on the test subset.

The exact p-values for metrics comparison are given in Supplementary Table S5, while the comparison of
recorded epochs (i.e. training length) are given in Supplementary Table S6. Additionally, examples of model
predictions for BTMR, COVID-19, GRAZPEDWRI-DX, and PBA datasets can be seen in Supplementary Figure
S1. The figure shows instances where all models correctly predicted the target class (thus reaching consensus), as
well as more challenging cases where predictions were inconsistent or incorrect.

LUng nodule analysis results

Among the results for basic U-Net (shown in Table 2), Baseline outperformed both TL strategies, having
attained the highest Dice and IoU scores. ImageNet and RadiologyNET reconstruction-pretrained U-Net
models achieved significantly worse results (MWU, p = 0.024 and p = 0.024 for ImageNet and RadiologyNET
against Baseline, respectively). In contrast, U-Net-ResNet50, U-Net-EfficientNetB4, and U-Net-VGG16 faired
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Challenge TL model LR Acc (%) Prec (%) Rec (%) Fl1-score (%) | Epoch
ImageNet 10-3 |93.1+1.0 [93.1+1.0 (93110 [93.1+1.0 |246+9.0
GRAZPEDWRI DenseNet121 (avg.) | RadiologyNET | 19—4 | 92.0£0.8 [920+0.8 [921+0.8 |92.0+0.8 152+ 1.1
Baseline 1073 [ 90.6+2.4 |90.6+24 |90.6+24 |90.6+2.4 38.6+10.4
ImageNet 1073 {92603 |92.6+0.3 |92.7+0.3 |92.6+0.3 244+53
GRAZPEDWRI ResNet34 (avg.) RadiologyNET | 19—3 |91.5+1.1 |915+11 |91.7+09 |91.5+1.0 20421
Baseline 10~2 | 81.5+11.6 | 81.5+11.6 | 83.8+7.8 |80.4+13.6 33.8+14.4
ImageNet 10-3 | 926 92.6 92.6 92.6 17.0
GRAZPEDWRI DenseNet121 (best) | RadiologyNET | 19—4 | 92.9 92.9 92.9 92.9 16.0
Baseline 10~3 | 93.2 93.2 93.2 93.2 51.0
ImageNet 103 | 924 924 924 924 28.0
GRAZPEDWRI ResNet34 (best) RadiologyNET | 19—3 | 92.9 92.9 92.9 92.9 22.0
Baseline 10-2 | 91.0 91.0 91.0 91.0 51.0

Table 4. Metric mean and standard deviation calculated on the test subset of GRAZPEDWRI-DX, across five
runs. Best results are emphasized. LR Learning Rate, Acc Accuracy, Prec Precision, Rec Recall.

Challenge TL model LR Acc (%) Prec (%) | Rec (%) F1-Score (%) | Epoch
ImageNet 10~3 | 97.1+1.0 |97.1£1.0 |97.1£1.0 |97.1+1.0 23.6+13.5
COVID-19 MobileNetV3Large (avg.) | RadiologyNET | 19—4 | 97.7 0.1 | 97.7+0.1 |97.8+0.1 | 97.8 0.1 254+59
Baseline 10~4 | 945+1.6 |945+16 | 945+15 | 945+1.6 320+5.5
ImageNet 10~4 [ 97.9+0.7 |97.9+£0.7 | 98.0+0.7 | 98.0 £0.7 16.0 £ 0.0
COVID-19 ResNet18 (avg.) RadiologyNET | 19—4 | 98.0+0.1 | 98.0£0.1 |98.0+0.1 | 98.0+0.1 26.6+6.1
Baseline 1073 [ 96.5+0.5 |96.5+0.5 | 96.5+0.5 | 96.5+0.5 39.8+6.9
ImageNet 10-3 |97.5 97.5 97.5 97.5 45,0
COVID-19 MobileNetV3Large (best) | RadiologyNET | 19—4 | 97.8 97.8 97.8 97.8 23.0
Baseline 10~4 | 96.0 96.0 96.1 96.0 40.0
ImageNet 10-4 | 97.3 97.3 97.4 97.3 16.0
COVID-19 ResNet18 (best) RadiologyNET | 19—4 | 98.2 98.2 98.2 98.2 26.0
Baseline 10~3 | 96.5 96.5 96.5 96.5 47.0

Table 5. Metric mean and standard deviation calculated on the test subset of COVID-19, across five runs. Best
results are emphasized. LR Learning Rate, Acc Accuracy, Prec Precision, Rec Recall.

Challenge TL Model LR Acc (%) Prec (%) | Rec (%) F1-Score (%) | Epoch
ImageNet 10-4 | 98.1£0.4 |98.0+0.4 |982+0.4 |98.1+04 |414+72
BTMR MobileNetV3Small (avg.) | RadiologyNET | 19—4 |97.9+0.3 |97.8+0.3 |98.0+0.3 | 97.9+0.3 394+5.7
Baseline 10~4 [ 953+23 |95.0+24 |955+£22 |95.1+24 60.0£17.8
ImageNet 105 [98.7£0.1 | 98.6+£0.1 |98.8+0.1 |98.7+0.1 41.6 £8.0
BTMR ResNet50 (avg.) RadiologyNET | 19—4 | 98.9+0.4 | 98.8+0.4 | 98.9+0.4 | 98.9+0.4 21.2+3.0
Baseline 10~4 97508 |97.3+09 |97.5+0.8 | 97.4+0.8 444 +£10.7
ImageNet 10~4 976 97.3 97.6 97.4 46.0
BTMR MobileNetV3Small (best) | RadiologyNET | 19—4 | 98.0 97.9 98.1 98.0 46.0
Baseline 10~4 976 97.5 97.8 97.6 83.0
ImageNet 10-5 | 98.6 98.5 98.6 98.6 47.0
BTMR ResNet50 (best) RadiologyNET | 19—4 | 99.2 99.2 99.2 99.2 23.0
Baseline 10~4 982 98.1 98.2 98.2 51.0

Table 6. Metric mean and standard deviation calculated on the test subset of Brain Tumor MRI, across five
runs. Best results are emphasized. LR Learning Rate, Acc Accuracy, Prec Precision, Rec Recall.

better than the basic U-Net, achieving higher Dice and IoU scores. While observing U-Net-ResNet50, U-Net-
EfficientNetB4 and U-Net-VGG16, the three TL approaches obtained comparable performance with the only
statistically significant difference recorded between U-Net-ResNet50 RadiologyNET and Baseline models
(MWU, p = 0.024). Figure 4 shows the difference in model outputs between models pretrained as reconstruction
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Input image Ground truth

tasks, versus models pretrained as classification tasks. The reconstruction-pretrained model merely replicated
the input image, despite our efforts to impart valuable features to the model.

Pediatric bone age challenge results

As reported in Table 3, RadiologyNET achieved the best performance on the EfficientNetB3 architecture,
outperforming ImageNet models in terms of MAE, while ImageNet models demonstrated significantly
faster convergence (ImageNet vs. RadiologyNET, MWU, p = 0.033). When it comes to InceptionV3 and the
obtained MAE, ImageNet models outperformed RadiologyNET and Baseline. Similarly to its performance on
EfficientNetB3, ImageNet pretrained models required fewer epochs to converge (although the difference was
not statistically significant). InceptionV3 models pretrained on RadiologyNET achieved similar results to those
Baseline models, exhibiting similar convergence time (RadiologyNET vs. Baseline, MWU, p = 1.00).

GRAZPEDWRI-DX results
The results for GRAZPEDWRI-DX are shown in Table 4. When it comes to DenseNet121, ImageNet’s models
achieved higher F1-scores on average, but the differences in the obtained scores between the three approaches were
not statistically significant (Kruskal-Wallis, p = 0.063). On the other hand, RadiologyNET models demonstrated
fastest convergence, which was not significantly different than ImageNet (ImageNet vs. RadiologyNET, MWU,
p = 0.07), but was significantly faster than Baseline models (RadiologyNET vs. Baseline, MWU, p = 0.033).
The performance of Baseline ResNet34 models diverged between runs. When comparing Baseline to
ImageNet, the differences in F1-score are significantly different (ImageNet vs. Baseline, MWU, p = 0.024), but
the differences in F1-score where not as prominent when comparing Baseline to RadiologyNET (RadiologyNET
vs. Baseline, MWU, p = 0.095). When comparing epoch count, there were no statistically significant differences
between the approaches (Kruskal-Wallis, p = 0.199).

COVID-19 results

While CR images constitute a minority within the RadiologyNET dataset, chest radiographs were the most
prevalent subtype'”. Consequently, ImageNet and RadiologyNET exhibited comparable performance on
MobileNetV3Large (ImageNet vs. RadiologyNET, MWU, p = 1.00). Models trained from scratch consistently
underperformed both ImageNet and RadiologyNET, with statistically lower F1-scores achieved on the test subset
(MWU, p = 0.047 and p = 0.024 for ImageNet and RadiologyNET, respectively). In terms of epochs required
to converge, the differences were not statistically significant between the approaches with MobileNetV3Large
(Kruskal-Wallis, p = 0.326).

When it comes to the evaluation of ResNet18 models, both ImageNet and RadiologyNET pretrained models
exhibited nearly identical F1-score performance, with no statistically significant differences observed between
the two (ImageNet vs. RadiologyNET, MWU, p = 1.00). Also, both of the TL approaches performed significantly
better than the Baseline models (MWU, p = 0.035 for both ImageNet and RadiologyNET). Curiously, all
ImageNet models converged at precisely the 16th epoch, which was statistically different than RadiologyNET and
Baseline (MWU, p = 0.020 and p = 0.022 when compared to RadiologyNET and Baseline, respectively). The
difference between RadiologyNET vs. Baseline convergence time was not statistically significant (RadiologyNET
vs. Baseline, MWU, p = 0.103).

Brain tumor MRl results

The Brain Tumor MRI dataset shares the biggest overlap with the original pretraining dataset, as it contains
MR images of the brain, which are prevalent in the RadiologyNET dataset. The results for the Brain Tumor
MRI dataset are shown in Table 6. While ImageNet and RadiologyNET achieved almost identical F1-scores
with MobileNetV3Small (ImageNet vs. RadiologyNET, MWU, p = 1.00), Baseline models exhibited statistically
worse results in terms of classification metrics (MWU, p = 0.048). Similarly to MobileNetV3Small, ImageNet
and RadiologyNET achieved comparable performance in terms of metrics (MWU, p = 1.00), with Baseline
being statistically worse than the two (MWU, p = 0.024 and p = 0.036 for ImageNet and RadiologyNET,

U-Net U-Net-ResNet50
(Reconstruction) (Classification)

. ‘..

1 .
&

Fig. 4. A figure showing the impact of different pretraining goals of U-Net models on randomly selected four
instances from the LUNA dataset.
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respectively). However, in this case, RadiologyNET demonstrated an advantage in terms of convergence time, by
requiring a significantly lower number of epochs to converge than Baseline (RadiologyNET vs. Baseline, MWU,
p = 0.028), but this difference was not significant when compared to ImageNet (ImageNet vs. RadiologyNET,
MWU, p = 0.052).

Multi-modality versus single-modality pretraining

Figure 5 shows the performance of single-modality (MR-only, CR-only, and CT-only) versus multi-modality
pretrained RadiologyNET models. The results are shown across five independent runs, with statistical differences
calculated using Student’s t-test. The result are shown for all tested datasets: PBA (subfigure a and b), LUNA
(subfigure c), GRAZPEDWRI-DX (subfigures d and e), COVID-19 (subfigures fand g), and BTMR (subfigures
hand ).

Among the tested datasets (and architectures), U-Net-ResNet50 (LUNA dataset) was the only case where no
statistically significant differences were observed between single-modality and multi-modality pretrained models.
On the other hand, the PBA dataset exhibited mixed results depending on the architecture: for EfficientNetB3,
multi-modality pretraining demonstrated significantly better performance than CR-only at all learning rates;
while the opposite is true in the case of InceptionV3. In the GRAZPEDWRI-DX dataset, DenseNet121 models
pretrained with multi-modality data generally achieved a significantly higher F1-score compared to CR-only
models, with similar performance at the highest tested learning rate, 1—3. In contrast, ResNet34 models showed
comparable performance between multi-modality and CR-only pretraining, with CR-only demonstrating a slight
advantage at the lowest tested learning rate, 10™°. In the COVID-19 dataset, both multi-modality pretrained
architectures (MobileNetV3Large and ResNet18) either outperformed CR-only models, or showed comparable
performance with no statistically difference. In the BTMR dataset, MobileNetV3Small models pretrained
with multi-modality achieved significantly better performance compared to MR-only models across all tested
learning rate settings. For ResNet50, multi-modality pretraining showed superior performance overall, although
the differences were less pronounced at the highest tested learning rate, 103,

A total of 27 statistical comparisons were conducted. Among these, no statistically significant differences
were observed in 10 cases. In 4 cases, single-modality pretraining outperformed multi-modality, while in 13
cases, multi-modality pretraining demonstrated better performance compared to single-modality. In MR-only
comparisons, multi-modality pretraining outperformed MR-only in 5 out of 6 cases. In CR-only comparisons,
single-modality pretraining showed improved performance in 4 out of 18 cases, while multi-modality pretraining
was better in 9 cases. In CT-only comparisons on the LUNA dataset, no statistically significant differences were
found between CT-only and multi-modality pretraining.

Training progress and resource-limited conditions

As the performances between ImageNet and RadiologyNET seldom statistically differed, additional analyses
of the trained models was performed, by analysing the impact of pretrained weights on training progress. The
results are shown in Figures 6 and 7.

Both ImageNet and RadiologyNET pretrained models gave overall boosts to performance in the first 10
epochs, which is especially noticeable when compared to Baseline. ImageNet’s most significant boost is visible
on the InceptionV3 architecture employed on the RSNA PBA Challenge, where its MAE is lower than the other
two approaches. On the other hand, RadiologyNET pretrained weights demonstrated a boost in performance
on DenseNet121, ResNet50, and MobileNetV3Small architectures. This suggests that RadiologyNET pretrained
weights could be beneficial when training time is limited. However, the extent of this improvement may vary
depending on the architecture and task, and it does not consistently translate into statistically significant
improvements in final performance. To test the significance of possible performance improvements in resource-
limited conditions, a small scale experiment was performed on the GRAZPEDWRI-DX and Brain Tumor MRI
datasets, where the original training subsets were randomly downsized to 5%, 25%, and 50% of their original
size, and the training duration was capped at 10 epochs. The downsizing process was carried out in a manner
that preserved the original class distribution, in order to avoid introducing any additional bias. The models were
trained using the learning rates specified in Tables 4 and 6. Each approach underwent five training runs, with the
mean F1-scores, along with the standard deviation, shown in Figure 8.

Grad-CAM evaluation

The radiologists’ evaluation scores are shown in Fig. 9, while samples of generated heatmaps (which were
also shown to radiologists) are given in Supplementary Figures S2, S3, S4, S5, S6, and S7. Both radiologists
noted that Baseline’s BTMR heatmaps were unreliable, while RadiologyNET’s heatmaps showed the best focus
on pathologies present in the images. One radiologist noted that ImageNet’s BTMR heatmaps “seermed to be a
little bit offset in some cases,” while the other said that ”it is significantly less accurate in detecting tumour area
than [RadiologyNET]”. When it comes to GRAZPEDWRI-DX heatmaps, one radiologist reported that the
presence of a cast puzzled all three models, but noted that the Baseline model “focused a lot on the fracture [near
osteopenia], but also the carpal bones, which would be the most relevant to look at” The other radiologist reported
that RadiologyNET’s GRAZPEDWRI-DX heatmaps were probably the most reliable of the three, but with too
wide (non-specific) areas of focus; and that ImageNet’s heatmaps were polarising: sometimes being surprisingly
specific and accurate, and sometimes missing the relevant area entirely. In their rankings and across both
datasets, the radiologists agreed that the three algorithms struggled with images in which diseased/abnormal
tissue was not present. However, they noted that heatmaps generated by RadiologyNET models were the most
dependable overall, exhibiting the best focus on pathological regions when present.
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Fig. 5. Comparison of TL performance between MR-only, CR-only, CT-only and multi-modality pretrained
RadiologyNET models. Results are averaged over five independent runs, with mean values and standard
deviations indicated on (or above—as is the case in subfigure a) each bar. The p-values are indicated at the top
and, where statistically significant differences exist, they are underscored in blue.

Discussion

In most cases, RadiologyNET and ImageNet’s peformance was almost identical, especially when the training
process was not data or time-constrained. Statistical differences were primarily observed between these two
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Fig. 6. Average performance of best-performing models on the validation subset across first 10 epochs on
the Pediatric Bone Age Challenge and GRAZPEDWRI-DX datasets. F1-score five-run mean and standard
deviation is show per each epoch.
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Fig. 7. Average performance of best-performing models on the validation subset across first 10 epochs on the
COVID-19 and Brain Tumor MRI datasets. F1-score five-run mean and standard deviation is show per each
epoch.

approaches and the Baseline models, whose performance was worse than ImageNet and RadiologyNET
foundation models.

When observing each challenge separately, the LUNA dataset showed interesting results. Specifically,
reconstruction-pretrained models significantly underperformed compared to those pretrained as classification
tasks.

Reconstruction pretraining focused on replicating textures and patterns and did not capture the semantic
meaning behind each pixel, leading to results which merely replicate the input image. In contrast, classification-
pretrained encoders (like ResNet50, VGG16, and EfficientNetB4) learn features that are better suited for
segmentation tasks where pixel-wise semantic meaning is important, as is the case in LUNA nodule segmentation.
While reconstruction-pretrained models demonstrated a significant performance gap, there may be another
task type where such models would show improved performance. One example could be image compression
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Fig. 8. Results of the MobileNetV3Small (BTMR) and DenseNet121 (GRAZPEDWRI-DX) models during
10 epochs of training, when training data is reduced to 5%, 25% and 50% of the original training subset. The
other subsets remained unchanged. F1-score five-run mean and standard deviation is shown per each epoch.

or denoising, but testing this hypothesis fell out of scope of this study. Despite the suboptimal performance
of U-Net pretrained as a reconstruction task, we believe it is important to report failed experiments, as these
findings contribute to the broader scientific understanding and may prevent other researchers from investing
time and resources into approaches that are less likely to succeed. The other challenges also demonstrated
interesting results, where the PBA and GRAZPEDWRI-DX showed how the pretraining domain might influence
the results. Namely, the RadiologyNET pretraining dataset consisted mostly of CT/MR images of the head and
abdomen, with limited available wrist/hand radiographs. Although ImageNet does not contain medical images,
its diverse range of natural images may have enabled ImageNet models to learn more generalisable features
compared to RadiologyNET, which is more domain specific. This was further corroborated by the COVID-19
and BTMR results, where RadiologyNET models demonstrated comparable performance to ImageNet, and
in some instances, exhibited faster training progress compared to both ImageNet and Baseline (Fig. 7). The
observed improvement in training progress may still be beneficial, particularly in resource-constrained settings,
but it is also important to acknowledge that RadiologyNET did not consistently outperform ImageNet, which is
a limitation of RadiologyNET models in their current form.

In addition, we investigated the impact of single-modality versus multi-modality pretraining by comparing
RadiologyNET models pretrained exclusively on MR, CR, or CT images against those pretrained on the full, multi-
modality dataset. For the BTMR classification task, models pretrained on MR-only data showed a statistically
significant drop in performance compared to multi-modality counterparts. On the other hand, CR-only models
show mixed results. In the COVID-19 dataset multi-modality pretrained models (MobileNetV3Large and
ResNet18) generally outperformed or matched the performance of CR-only models. In the RSNA PBA dataset,
the results were architecture-dependent: EfficientNetB3 benefited from multi-modality pretraining across
all learning rates, while InceptionV3 favoured CR-only pretraining. In GRAZPEDWRI-DX, DenseNet121
generally performed better with multi-modality, while ResNet34 showed mixed results. However, for the LUNA
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Fig. 9. Ratings of each radiologist given to randomly sampled Grad-CAM heatmaps from the GRAZPEDWRI-
DX and Brain Tumor MRI datasets.

segmentation task, where CT is the predominant modality (53.73% of the whole RadiologyNET dataset), no
significant difference was observed between CT-only and multi-modality pretrained models. The results indicate
that the choice of NN topologies (and their internal mechanisms) could be a factor, but there is also a general
trend visible: modality diversity is valuable when the single modality lacks sufficient internal variability or
representation. For example, MR images have less variability than CR images, thus being biased towards certain
anatomical regions. As a result, MR-only models benefit more from the inclusion of other modalities and, in
contrast, CR-only models are less reliant on multi-modality pretraining. In the case of CT-only versus multi-
modality comparisons, since the multi-modality dataset is dominated by CT images, adding data from other
modalities did not significantly alter the learned representations. Nonetheless, it is worth to noting that different
feature extraction schemes such as unsupervised representation learning® might lead to different clusters and
different numbers of clusters, which could significantly impact the obtained results. However, with the presented
setup and study settings, the obtained results yield the observations presented above.

The greatest performance differences were observed under resource-limited conditions. As there were cases
where Baseline models achieved comparable results when resources were not restricted, this indicates that the
original challenges may have had sufficient training data, and that when the training pool is large enough, the
advantages of TL become less impactful®®. In Fig. 8, it is clear that models where TL was applied show better
performance against training from randomly initialised weights. Although RadiologyNET models did not
outperform ImageNet in less-restricted resource conditions on the GRAZPEDWRI-DX dataset (i.e. the results
shown in Table 4), they showed competitive performance when training data and time were limited. However,
it is important to note that as more training data becomes available (e.g. when the dataset is reduced to 50%
instead of 5% of its original size), the performance differences between RadiologyNET and ImageNet become
less pronounced. This suggests that the relative advantage of RadiologyNET pretraining may decrease as the
availability of training data increases (as does the advantage of TL in general).

The radiologists’ evaluation of the generated heatmaps indicated that RadiologyNET models were perceived
as the most reliable overall, focusing on the present pathologies better than ImageNet and (especially) Baseline.
This result raises questions about the influence of TL on model interpretability, as patterns learned during
pretraining might help models focus on relevant regions in the downstream tasks. While pretraining on natural
images can provide generalisable features, pretraining on medical data may lead to models that are better adapted
to the specific characteristics of medical images (e.g. disease-related patterns and abnormalities). However,
testing this hypothesis further remains a topic for future research.

In the results presented in the RadlmageNet study'®, which evaluated transfer learning on a dataset of
similar size to RadiologyNET but annotated by expert radiologists, the authors reported statistically significant
improvementsin model performance, with AUCincreases 0f 1.9%,6.1%, 1.7%,and 0.9% over ImageNet-pretrained
models across five different medical tasks. While RadiologyNET-pretrained models achieved comparable results
to ImageNet in our experiments (with notable difference visible in resource-limited conditions), the performance
gains reported in the RadImageNet study highlight the value of high-quality expert annotations in enhancing
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the effectiveness of pretraining. Although both RadiologyNET and RadImageNet contain a similar number of
images, RadImageNet includes 165 distinct labels, substantially more than the 36 labels used in RadiologyNET.
This makes RadImageNet a more complex and challenging classification task, which likely encourages models to
learn richer and more discriminative features. Nevertheless, RadiologyNET achieved competitive performance
relative to ImageNet without the need for expert annotations, thereby avoiding the considerable human effort
required to construct RadImageNet (an effort that involved 20 radiologists). These observations lead to several
key insights: (i) Unsupervised labelling can be a viable strategy for constructing large-scale medical datasets
for pretraining, provided that the task includes a sufficiently large number of classes to introduce meaningful
complexity; (ii) High-quality labelled data remains the gold standard, but is often impractical due to the high
cost and expertise required for annotation. In summary, we argue that a hybrid approach - starting with
unsupervised pretraining and selectively annotating a subset of the most diagnostically challenging cases — may
offer an effective compromise between scalability and annotation quality, particularly in the context of training
medical foundation models®’.

From the obtained results, we attempt to answer the following questions: (i) Does the domain of pretrained
models affect performance? Yes. While RadiologyNET models demonstrated competitive results, ImageNet
models exhibited a slight advantage on the RSNA PBA Challenge and the GRAZPEDWRI-DX dataset. This is
likely due to their exposure to a broader range of images (which leads to more generalisable features); and the
limited inclusion of wrist radiographs in the RadiologyNET dataset. On the other hand, the Brain Tumor MRI
dataset showed that RadiologyNET models achieved faster convergence, likely due to RadiologyNET sharing
significant overlap with the downstream task’s domain. To further explore the impact of pretraining domain
characteristics, we compared models pretrained on single-modality (MR-only, CR-only and CT-only) data
with those pretrained on multi-modality RadiologyNET data, which showed a general trend that incorporating
diverse images into the pretraining dataset enables the model to generalise better in cases where intra-domain
variability is low. Thus, when choosing pretrained models for medical ML tasks, one should consider the biases
present in the dataset (e.g. the distribution of anatomical regions). (ii) Does the pretraining task matter? Yes, the
pretraining task may play a key role. When choosing the pretraining task, one may need to consider what kind
of features the model should learn. Our results from the LUNA Challenge indicate that classification-pretrained
models outperform reconstruction-pretrained models in semantic segmentation tasks, producing vastly different
output masks. This raises the issue of determining the most suitable pretraining task for the targeted problem
type, as the reconstruction-pretrained models learned different features than those pretrained as classification.
Based on the results, using reconstruction as a pretraining task for image segmentation is not ideal. Future
research should explore other pretraining approaches, such as contrastive pretraining, to determine if they yield
better performance. Moreover, learning generalisable representations from large datasets is fundamental to self-
supervised learning, which is the underlying principle for many foundation models, such as Prov-GigaPath®2.
(iii) Is TL always beneficial? Our findings suggest that TL is generally beneficial, especially in conditions where
training pools were reduced and/or training time was limited. However, there were cases where Baseline models
achieved comparable performance to those trained from pretrained weights, and there is evidence to show that,
when models are not resource-restricted (e.g. there is enough training time/data), the utility of TL becomes
less prominent‘“. Furthermore, in the case of reconstruction-pretrained U-Net, models trained from randomly
initialised weights surpassed those of ImageNet and RadiologyNET by a statistically significant margin, meaning
that some TL models may even hinder performance. This question is closely tied to questions (i) and (ii), as the
benefits of using TL depend on the alignment between the pretraining domain/task and the target domain/task,
and (if the domains do not overlap significantly) the generalisability of the learned features in the pretrained
models. (iv) What should be considered when collecting data for pretraining medical models for TL? Our findings
suggest that a well-structured dataset containing challenging and diverse classes is more beneficial than a
homogeneous one. This aligns with observations from the field of language processing, where general-domain
corpora have been shown to enhance domain-specific performance. For example, GatorTron®® incorporated data
from Wikipedia, and Med-PaLM®* was built on general-purpose language models. These insights suggest that
diverse pretraining datasets improve generalisation, and that incorporating heterogeneity (e.g., through natural
image datasets such as ImageNet) can be beneficial when developing medical foundation models. This raises a
key question for future research: how can diverse data sources (both within and beyond the medical domain) be
effectively integrated to optimise the training of medical foundation models? Similarly, the next question which
arises from RadiologyNET pseudo-labels is: (v) How to associate labels to cases for effective transfer learning using
an unsupervised approach? In case of RadiologyNET as explained in the paper!’, the labels were formed as a
concatenation of three vectors extracted from the three different sources belonging to same case: diagnosis text,
image and DICOM tags. The vectors, or to be precise embeddings, were extracted by using autoencoders-based
models®*. This yielded representations which can be classified as unsupervised data construction where the case
is represented by its compressed version (which can be noisy). It is highly possible that important features of the
observed case will not be preserved and its unique and important features, such as tumour presence or fracture,
might be lost. On the other hand, unsupervised representation learning® might be a better way to preserve
important clinical features which could lead to more versatile and demanding classes forcing models to learn
more complex features. Therefore, one of the limitations of this study is using a small number (36) of potential
simple clusters that did not force models to learn complex and advanced features.

Conclusion

This study demonstrates the effectiveness of TL in improving the performance of deep learning models for
medical image analysis. While ImageNet models showed better generalisability, RadiologyNET models
demonstrated better performance in resource-limited conditions. Furthermore, this study showed how different
biases present in the pretraining dataset may influence performance on the downstream task, as RadiologyNET
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models performed better where the downstream task’s domain aligned closely with the data used during
pretraining. Thus, the current version of RadiologyNET foundation models is the most impactful when
applied to (i) resource-limited tasks in the medical domain, and (ii) when the downstream task aligns with the
RadiologyNET dataset. One major limitation to acknowledge is the nature of the RadiologyNET dataset being
single-clinic. By incorporating data from other clinics, the biases currently present in RadiologyNET could be
mitigated and future versions of RadiologyNET foundation models could be more efficiently applied to a wider
range of downstream medical tasks. The current RadiologyNET foundation models are publicly available at htt
ps://github.com/AlIlab-RITEH/RadiologyNET-TL-models.

Based on this study’s findings, we strongly suggest researchers clearly state the justification for using
pretrained models. To be precise, this includes the pretraining task and its link to the target task, the (potential)
biases present in the pretraining dataset, and the (in)sufficiency of samples in the available target dataset.

In future work, we plan to build on our current findings by: (i) augmenting RadiologyNET with additional
data sourced from various clinics, (ii) providing a broader range of pretrained RadiologyNET models, (iii)
evaluating their robustness in comparison with other foundational models in medical radiology, (iv) exploring
effective strategies for model pretraining to enhance transfer learning, (v) extending research on segmentation
models by replacing the reconstruction task with contrastive pretraining methods, (vi) merging natural data
with medical data in pretraining tasks, and (vii) experimenting with unsupervised representation learning for
more complex auto-assigned labels.

Data availability

Due to restrictions imposed by the current Ethics Committee approval, the dataset used in this study is not avail-
able for sharing. However, the entire program code and foundation models (i.e. pretrained model weights) used
for the experiments are available at https://github.com/AIlab-RITEH/RadiologyNET-TL-models.

Received: 21 November 2024; Accepted: 30 May 2025
Published online: 01 July 2025

References

1. Han, X. et al. Pre-trained models: Past, present and future. AI Open 2, 225-250. https://doi.org/10.1016/j.aiopen.2021.08.002
(2021).

2. Kim, H. E. et al. Transfer learning for medical image classification: A literature review. BMC Med. Imaging22. https://doi.org/10.1
186/512880-022-00793-7 (2022).

3. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60,
84-90. https://doi.org/10.1145/3065386 (2017).

4. Deng, J. et al. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 248-255. https://doi.org/10.1109/CVPR.2009.5206848 (2009).

5. Ke, A, Ellsworth, W., Banerjee, O., Ng, A.Y. & Rajpurkar, P. CheXtransfer: performance and parameter efficiency of ImageNet
models for chest X-Ray interpretation. In Proceedings of the Conference on Health, Inference, and Learning, ACM CHIL "21. https:/
/doi.org/10.1145/3450439.3451867 (ACM, 2021).

6. Woerner, S. & Baumgartner, C. E Navigating data scarcity using foundation models: A benchmark of few-shot and zero-shot
learning approaches in medical imaging. In Foundation Models for General Medical AI (Deng, Z. et al., eds), 30-39. https://doi.org
/10.1007/978-3-031-73471-74 (Springer, 2025).

7. Qiu, Y, Lin, E, Chen, W. & Xu, M. Pre-training in medical data: A survey. Mach. Intell. Res. 20, 147-179. https://doi.org/10.1007/
s11633-022-1382-8 (2023).

8. Cheplygina, V., de Bruijne, M. & Pluim, J. P. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning
in medical image analysis. Med. Image Anal. 54, 280-296. https://doi.org/10.1016/j.media.2019.03.009 (2019).

9. Atasever, S., Azginoglu, N, Terzi, D. S. & Terzi, R. A comprehensive survey of deep learning research on medical image analysis
with focus on transfer learning. Clin. Imaging 94, 18-41. https://doi.org/10.1016/j.clinimag.2022.11.003 (2023).

10. Mustafa, B. et al. Supervised transfer learning at scale for medical imaging. https://doi.org/10.48550/ARXIV.2101.05913 (2021).

11. Wen, Y,, Chen, L., Deng, Y. & Zhou, C. Rethinking pre-training on medical imaging. J. Vis. Commun. Image Represent. 78, 103145.
https://doi.org/10.1016/j.jvcir.2021.103145 (2021).

12. Zhang, S. et al. BiomedCLIP: A multimodal biomedical foundation model pretrained from fifteen million scientific image-text
pairs. https://doi.org/10.48550/ARXIV.2303.00915 (2023).

13. Mei, X. et al. RadImageNet: An open radiologic deep learning research dataset for effective transfer learning. Radiol. Artif. Intell.4.
https://doi.org/10.1148/ryai.210315 (2022).

14. Silva-Rodriguez, J., Dolz, J. & Ayed, 1.B. Towards foundation models and few-shot parameter-efficient fine-tuning for volumetric
organ segmentation. In Medical Image Computing and Computer Assisted Intervention: MICCAI 2023 Workshops, 213-224. https:/
/doi.org/10.1007/978-3-031-47401-921 (Springer, 2023).

15. Zhou, H.-Y. et al. Comparing to Learn: Surpassing ImageNet pretraining on radiographs by comparing image representations. In
Medical Image Computing and Computer Assisted Intervention: MICCAI 2020, 398-407. https://doi.org/10.1007/978-3-030-5971
0-839 (Springer, 2020).

16. Alzubaidi, L. et al. MedNet: Pre-trained convolutional neural network model for the medical imaging tasks. http://arxiv.org/abs/2
110.06512 (2021).

17. Napravnik, M., Hrzi¢, E, Tschauner, S. & Stajduhar, 1. Building RadiologyNET: An unsupervised approach to annotating a large-
scale multimodal medical database. BioData Miningl7. https://doi.org/10.1186/s13040-024-00373-1 (2024).

18. Li, X. et al. Ragcn: Region aggregation graph convolutional network for bone age assessment from x-ray images. IEEE Trans.
Instrum. Meas. 71, 1-12. https://doi.org/10.1109/TIM.2022.3190025 (2022).

19. Li, X. et al. Msfr-net: Multi-modality and single-modality feature recalibration network for brain tumor segmentation. Med.
Phys.50, 2249-2262. https://doi.org/10.1002/mp.15933 (2023).

20. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Aafssisted Intervention: MICCAI 2015, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
(Springer International Publishing, 2015).

21. Li, X. etal. Vision-language models in medical image analysis: From simple fusion to general large models. Inf. Fusion 118, 102995.
https://doi.org/10.1016/j.inffus.2025.102995 (2025).

22. Cheplygina, V., de Bruijne, M. & Pluim, J. P. W. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer
learning in medical image analysis. Med. Image Anal. 54, 280-296 (2019).

Scientific Reports |

(2025) 15:21622 | https://doi.org/10.1038/s41598-025-05009-w nature portfolio


https://github.com/AIlab-RITEH/RadiologyNET-TL-models
https://github.com/AIlab-RITEH/RadiologyNET-TL-models
https://github.com/AIlab-RITEH/RadiologyNET-TL-models
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1186/s12880-022-00793-7
https://doi.org/10.1186/s12880-022-00793-7
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3450439.3451867
https://doi.org/10.1145/3450439.3451867
https://doi.org/10.1007/978-3-031-73471-74
https://doi.org/10.1007/978-3-031-73471-74
https://doi.org/10.1007/s11633-022-1382-8
https://doi.org/10.1007/s11633-022-1382-8
https://doi.org/10.1016/j.media.2019.03.009
https://doi.org/10.1016/j.clinimag.2022.11.003
https://doi.org/10.48550/ARXIV.2101.05913
https://doi.org/10.1016/j.jvcir.2021.103145
https://doi.org/10.48550/ARXIV.2303.00915
https://doi.org/10.1148/ryai.210315
https://doi.org/10.1007/978-3-031-47401-921
https://doi.org/10.1007/978-3-031-47401-921
https://doi.org/10.1007/978-3-030-59710-839
https://doi.org/10.1007/978-3-030-59710-839
http://arxiv.org/abs/2110.06512
http://arxiv.org/abs/2110.06512
https://doi.org/10.1186/s13040-024-00373-1
https://doi.org/10.1109/TIM.2022.3190025
https://doi.org/10.1002/mp.15933
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.inffus.2025.102995
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

23.

24.

25.

26.

27.

28.

29.

30.

He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), https://doi.org/10.1109/cvpr.2016.90 (IEEE, 2016).

Simonyan, K. & Zisserman, A. very deep convolutional networks for large-scale image recognition. https://doi.org/10.48550/ARX
1V.1409.1556 (2014).

Tan, M. & Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning, vol. 97 of Proceedings of Machine Learning Research, 6105-6114 (PMLR, 2019).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, ]. & Wojna, Z. Rethinking the inception architecture for computer vision. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.308 (IEEE, 2016).

Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2017.243 (IEEE, 2017).

Howard, A. et al. Searching for MobileNetV3. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). https://do
i.org/10.1109/iccv.2019.00140 (IEEE, 2019).

Halabi, S. S. et al. The RSNA pediatric bone age machine learning challenge. Radiology 290, 498-503. https://doi.org/10.1148/radi
01.2018180736 (2019).

Rahman, T. et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.
Comput. Biol. Med. 132, 104319. https://doi.org/10.1016/j.compbiomed.2021.104319 (2021).

31. Chowdhury, M. E. H. et al. Can AT help in screening viral and COVID-19 Pneumonia?. IEEE Access 8, 132665-132676. https://do
i.org/10.1109/access.2020.3010287 (2020).

32. Nagy, E., Janisch, M., Hrzi¢, E, Sorantin, E. & Tschauner, S. A pediatric wrist trauma X-ray dataset (GRAZPEDWRI-DX) for
machine learning. Sci. Data9. https://doi.org/10.1038/s41597-022-01328-z (2022).

33. Nickparvar, M. Brain tumor MRI dataset. https://www.kaggle.com/dsv/2645886. https://doi.org/10.34740/KAGGLE/DSV/2645886
(2021).

34. Armato, S. G. et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in
computed tomography images: The LUNA16 challenge. Med. Image Anal. 42, 1-13. https://doi.org/10.1016/j.media.2017.06.015
(2017).

35. Yan, K., Wang, X, Lu, L. & Summers, R. M. DeepLesion: Automated mining of large-scale lesion annotations and universal lesion
detection with deep learning. J. Med. Imaging 5, 036501. https://doi.org/10.1117/1.JML5.3.036501 (2018).

36. Irvin, J. et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proc. AAAI Conf. Artif.
Intell. 33, 590-597. https://doi.org/10.1609/aaai.v33101.3301590 (2019).

37. Wang, X. et al. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and
localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017).

38. Johnson, A. E. W. et al. Mimic-cxr, a de-identified publicly available database of chest radiographs with free-text reports. Sci. Data
6, 317. https://doi.org/10.1038/s41597-019-0322-0 (2019).

39. Siragusa, L, Contino, S., Ciura, M.L., Alicata, R. & Pirrone, R. Medpix 2.0: A comprehensive multimodal biomedical data set for
advanced ai applications with retrieval augmented generation and knowledge graphs (2025). http://arxiv.org/abs/2407.02994.

40. Rajpurkar, P. et al. Mura: Large dataset for abnormality detection in musculoskeletal radiographs (2018). http://arxiv.org/abs/1712
.06957.

41. Marcus, D. S. et al. Open access series of imaging studies (oasis): Cross-sectional mri data in young, middle aged, nondemented,
and demented older adults. J. Cogn. Neurosci.19, 1498-1507. https://doi.org/10.1162/jocn.2007.19.9.1498 (2007).

42. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, vol. 9, Proceedings of Machine Learning Research, 249-256 (PMLR,
2010).

43. He, K., Girshick, R. & Dollar, P. Rethinking imagenet pre-training. In 2019 IEEE/CVF International Conference on Computer Vision
(ICCV). https://doi.org/10.1109/iccv.2019.00502 (IEEE, 2019).

44. Pai, S. et al. Vision foundation models for computed tomography (2025). http://arxiv.org/abs/2501.09001.

45. Codella, N. C.E et al. Medimageinsight: An open-source embedding model for general domain medical imaging (2024). http://ar
xiv.org/abs/2410.06542.

46. DICOM Standards Committee. DICOM Standard . https://www.dicomstandard.org/. Accessed 5 Jul 2024.

47. Loshchilov, I. & Hutter, F. Fixing Weight Decay Regularization in Adam. (2017). http://arxiv.org/abs/1711.05101.

48. Alam, S., Tomar, N. K., Thakur, A., Jha, D. & Rauniyar, A. Automatic polyp segmentation using u-net-resnet50 (2020). http://arxi
v.org/abs/2012.15247.

49. Aboussaleh, I, Riffi, J., Fazazy, K.E., Mahraz, M.A. & Tairi, H. Efficient U-Net architecture with multiple encoders and attention
mechanism decoders for brain tumor segmentation. Diagnostics13 (2023).

50. Mukasheva, A. et al. Modification of u-net with pre-trained resnet-50 and atrous block for polyp segmentation: Model taspp-unet.
Eng. Proc.70. https://doi.org/10.3390/engproc2024070016 (2024).

51. Liu, W. et al. Automatic lung segmentation in chest X-ray images using improved U-Net. Sci. Rep.12. https://doi.org/10.1038/s415
98-022-12743-y (2022).

52. Armato, S. G. et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed
Reference Database of Lung Nodules on CT Scans. Med. Phys. 38, 915-931. https://doi.org/10.1118/1.3528204 (2011).

53. Mikuli¢, M. et al. Balancing performance and interpretability in medical image analysis: Case study of osteopenia. J. Imaging Inf.
Med. https://doi.org/10.1007/s10278-024-01194-8 (2024).

54. Li, P, Pei, Y. & Li, J. A comprehensive survey on design and application of autoencoder in deep learning. Appl. Soft Comput. 138,
110176. https://doi.org/10.1016/j.as0¢.2023.110176 (2023).

55. Schultz, B. B. Levene’s test for relative variation. Syst. Biol.34, 449-456, https://doi.org/10.1093/sysbio/34.4.449 (1985).

56. Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc.47, 583-621, https://doi.org/10.1
080/01621459.1952.10483441 (1952).

57. Miiller, D., Soto-Rey, I. & Kramer, F. Towards a guideline for evaluation metrics in medical image segmentation. BVMC Res.Notes15.
https://doi.org/10.1186/s13104-022-06096-y (2022).

58. Courty, B. et al. mlco2/codecarbon: v2.4.1. https://doi.org/10.5281/zenodo.11171501 (2024).

59. Selvaraju, R. R. et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision
128, 336-359. https://doi.org/10.1007/s11263-019-01228-7 (2019).

60. Saunshi, N., Plevrakis, O., Arora, S., Khodak, M. & Khandeparkar, H. A theoretical analysis of contrastive unsupervised
representation learning. In Proceedings of the 36th International Conference on Machine Learning, vol. 97, (Chaudhuri, K. &
Salakhutdinov, R., eds) Proceedings of Machine Learning Research, 5628-5637 (PMLR, 2019).

61. Wu, X. et al. A survey of human-in-the-loop for machine learning. Futur. Gener. Comput. Syst. 135, 364-381. https://doi.org/10.1
016/j.future.2022.05.014 (2022).

62. Xu, H. et al. A whole-slide foundation model for digital pathology from real-world data. Nature 630, 181-188. https://doi.org/10.
1038/541586-024-07441-w (2024).

63. Yang, X. et al. A large language model for electronic health records. NPJ Dig. Med. 5, 194. https://doi.org/10.1038/s41746-022-007
42-2 (2022).

Scientific Reports|  (2025) 15:21622 | https://doi.org/10.1038/s41598-025-05009-w nature portfolio


https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1109/cvpr.2016.308
https://doi.org/10.1109/cvpr.2017.243
https://doi.org/10.1109/iccv.2019.00140
https://doi.org/10.1109/iccv.2019.00140
https://doi.org/10.1148/radiol.2018180736
https://doi.org/10.1148/radiol.2018180736
https://doi.org/10.1016/j.compbiomed.2021.104319
https://doi.org/10.1109/access.2020.3010287
https://doi.org/10.1109/access.2020.3010287
https://doi.org/10.1038/s41597-022-01328-z
https://www.kaggle.com/dsv/2645886
https://doi.org/10.34740/KAGGLE/DSV/2645886
https://doi.org/10.1016/j.media.2017.06.015
https://doi.org/10.1117/1.JMI.5.3.036501
https://doi.org/10.1609/aaai.v33i01.3301590
https://doi.org/10.1038/s41597-019-0322-0
http://arxiv.org/abs/2407.02994
http://arxiv.org/abs/1712.06957
http://arxiv.org/abs/1712.06957
https://doi.org/10.1162/jocn.2007.19.9.1498
https://doi.org/10.1109/iccv.2019.00502
http://arxiv.org/abs/2501.09001
http://arxiv.org/abs/2410.06542
http://arxiv.org/abs/2410.06542
https://www.dicomstandard.org/
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2012.15247
http://arxiv.org/abs/2012.15247
https://doi.org/10.3390/engproc2024070016
https://doi.org/10.1038/s41598-022-12743-y
https://doi.org/10.1038/s41598-022-12743-y
https://doi.org/10.1118/1.3528204
https://doi.org/10.1007/s10278-024-01194-8
https://doi.org/10.1016/j.asoc.2023.110176
https://doi.org/10.1093/sysbio/34.4.449
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1186/s13104-022-06096-y
https://doi.org/10.5281/zenodo.11171501
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1038/s41586-024-07441-w
https://doi.org/10.1038/s41586-024-07441-w
https://doi.org/10.1038/s41746-022-00742-2
https://doi.org/10.1038/s41746-022-00742-2
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

64. Singhal, K. et al. Towards expert-level medical question answering with large language models (2023). http://arxiv.org/abs/2305.0
9617.

Acknowledgements

This work has been fully supported by the Croatian Science Foundation [grant number IP-2020-02-3770] and
by the University of Rijeka (grant number uniri-mladi-tehnic-23-19 3070). We also gratefully acknowledge the
invaluable contribution of Sebastian Tschauner, whose insights and ideas have greatly influenced and guided
our research efforts.

Author contributions

M.N., EH. and LS. developed the concept and planned the experiment. M.N. and EH. performed the experi-
ment. M.N., EH., M.U. and D.M. analysed the data and interpreted the results. D.M and 1.S. provided the data.
LS. supervised the experiment and acquired the project funding. M.N. wrote the manuscript with input from
EH., M.U. and 1.S. All authors read and approved the final manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Ethical approval
This research was approved by the competent Ethics Committee of Clinical Hospital Centre Rijeka, Croatia
[Class: 003-05/16-1/102, Reg.No. 2170-29-02/1-16-3].

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/1
0.1038/s41598-025-05009-w.

Correspondence and requests for materials should be addressed to EH.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports |

(2025) 15:21622 | https://doi.org/10.1038/s41598-025-05009-w nature portfolio


http://arxiv.org/abs/2305.09617
http://arxiv.org/abs/2305.09617
https://doi.org/10.1038/s41598-025-05009-w
https://doi.org/10.1038/s41598-025-05009-w
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Lessons learned from RadiologyNET foundation models for transfer learning in medical radiology
	﻿Methods
	﻿RadiologyNET dataset and TL model pretraining
	﻿Selected predictive modelling challenges
	﻿Evaluation on downstream tasks

	﻿Results
	﻿LUng nodule analysis results
	﻿Pediatric bone age challenge results
	﻿GRAZPEDWRI-DX results
	﻿COVID-19 results
	﻿Brain tumor MRI results
	﻿Multi-modality versus single-modality pretraining
	﻿Training progress and resource-limited conditions
	﻿Grad-CAM evaluation

	﻿Discussion
	﻿Conclusion
	﻿References


