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Access to healthcare services is vital for urban public health, significantly influencing life expectancy, 
equity, and economic development. This study investigates the spatial accessibility of healthcare 
services in Rome through public transportation, emphasizing system resilience during disruptions. 
We explore transport poverty, emphasizing that individuals without cars often rely solely on public 
transit for medical access. Our methodology integrates network analysis with spatial accessibility 
assessments. We constructed a graph model of Rome’s transit system, where nodes represent stops 
and edges connect neighborhoods to healthcare facilities. This model incorporates actual travel times 
from the city’s official public transport timetables. We applied centrality metrics to identify crucial 
transit hubs and evaluated how their removal impacts travel times to healthcare facilities. The findings 
reveal significant disparities in accessibility resilience, influenced primarily by network redundancy 
and the strategic importance of high-centrality nodes. To enhance resilience, it is essential to monitor 
critical transit nodes and implement real-time flow monitoring to respond to disruptions. Collaboration 
among local authorities, transport agencies, and healthcare providers is crucial for risk assessment 
and identifying vulnerable populations. Developing targeted interventions and strengthening network 
redundancy will ensure more equitable and reliable access to healthcare, particularly for those 
dependent on public transportation.
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Access to healthcare facilities is a crucial component of urban planning. An accessible healthcare system increases 
citizens’ life expectancy, improving overall quality of life1. According to various studies, human development 
depends on equal access to essential services such as healthcare2. From this perspective, the literature identifies 
accessibility to these services as a fundamental pillar for positively influencing economic growth, social equity, 
and the well-being of communities and territories3–5. To assess access to healthcare facilities, it is important 
to first identify the population groups with the greatest need2–6. For example, older adults and people with 
disabilities exhibit a high demand for medical care and, lacking private means of transport, depend almost 
exclusively on public transit to reach hospitals7–9. As a result, fully understanding access to medical facilities 
means looking at both how easy they are to reach and how available public transport is. Designing a public 
transport system that works well is essential for fair access to healthcare, since transport problems can strongly 
affect people’s quality of life and the economy6,10.

In general terms, accessibility of the public transport system represents the ease with which destinations 
can be reached. It is expressed through cost-time or cost-distance functions11,12. Conversely, service availability 
represents the system’s scheduled offering (lines, frequencies, hours of operation, and stops). It is measured using 
indicators such as the number of trips per hour or the density of stops in an area13.
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In terms of socio-economic planning of the transport system to healthcare facilities, it is therefore essential 
to combine, on one hand, high service availability-ensured by an adequate number of scheduled trips, stops, and 
frequencies—and, on the other hand, high transport accessibility, understood as the actual travel and waiting 
times recorded by users. This integrated approach is particularly crucial for the most vulnerable groups of 
citizens who rely almost exclusively on public transit to access healthcare services. In this sense, coordinated 
management of the public transport network not only reduces disparities in service provision and actual use 
but also promotes more inclusive, sustainable, and resilient urban planning, capable of responding equitably to 
the health needs of all population segments while helping to mitigate complex phenomena such as poverty and 
healthcare inequalities1.

The need for a robust public transport system focused towards healthcare facility access highlights the 
importance of designing resilient networks capable of ensuring continuity and reliability even in the event of 
disruptions or external shocks. A resilient network is characterized by the presence of redundancies—that is, 
alternative routes and connections—which allow for the timely restoration of operational performance and 
minimize the impact of any service disruptions on users14.

At the empirical level, network analysis emerges as one of the most relevant and widespread methodologies 
for investigating and measuring transport accessibility and availability to essential services15–17. The network 
analysis enables efficient modeling of networks as graphs composed of nodes (e.g., bus stops or healthcare 
centers) and edges that illustrate their connections (e.g., distances between services and travel times), allowing 
for accurate analysis of network structural properties, efficient identification of critical nodes, and precise 
assessment of system resilience7,10,14–18.

Although several studies have examined spatial access to health facilities and public transport networks 
separately, there is still a lack of research exploring their interaction. In particular, how accessibility to health 
facilities is affected in areas characterized by limited public transport provision and low resilience to external 
shocks remains little explored19–21.

This study aims to fill this gap by offering an integrated analysis, combining network analysis with spatial 
accessibility measures, to comprehensively assess disparities in access to health services through public 
transport and its resilience to external disruptions. In particular, similar to analyses such as Guida et al.7, 
which examine public transport accessibility for the elderly population in need of health services, we focus on 
measuring accessibility to health facilities in the Municipality of Rome through the public transit network in 
ordinary and disruption scenarios. We exploit the availability of daily scheduled data on Roman transit lines, 
which allows us to model with detail and precision timetables, stops, and pre-established routes. In our study, 
”public transport” (PT) therefore means the public transit services composed of bus, tram and metro lines. This 
methodological choice is motivated by the relevance of PT as the main vector of urban mobility and by their 
widespread use by the elderly population without private means, as highlighted in several works, for example, 
Gimie et al.22, Gao et al.8, Ravensbergen et al.23, Zhang et al.24.

The research uses quantitative methods and advanced computational tools to analyze the structural properties 
of the PT network, assess access to health services, and evaluate the resilience and reliability of the network. The 
network topology analysis uses centrality and connectivity metrics to identify critical nodes and paths, while 
spatial accessibility measurements integrate geographic and public transport data to assess travel times to health 
facilities. Resilience assessments explore the network response to disruptions and the implications for health 
accessibility. The results highlight the main transport hubs, classify stations within the complex network, and 
measure spatial accessibility to health services in both baseline and disruption scenarios, providing valuable 
insights into the impact of public transport on equity and providing recommendations to improve the resilience 
and reliability of the urban public transport system. In pursuing these objectives, the research provides guidance 
essential to strengthen public transport, promoting a more sustainable and equitable health system.

In summary, the contribution of our work is twofold. Firstly, we assess territorial sustainability by analyzing the 
equitable distribution and accessibility of health facilities via public transport across Rome’s municipal districts, 
identifying disparities in areas with limited or difficult connections to hospitals. Methodologically, we combine 
network analysis with rigorous real-time travel time estimation, integrating the topological complexity of Rome’s 
PT network and its daily GTFS schedules, to construct a transit-network-based healthcare accessibility index 
that delivers precise, realistic measures for both direct and connecting trips. Secondly, we integrate disruption 
sensitivity directly into our accessibility framework by simulating targeted removals of high-centrality nodes to 
evaluate how external shocks compromise network integrity and affect users’ ability to reach essential services, 
thus providing robust insights, both for research and future urban policy.

The structure of this work is organized as follows. In Sect. "Literature background" a critical review of the 
literature is presented, with particular attention to spatial inequalities in access to health services, consolidated 
methodological approaches (gravity models, 2SFCA, network analysis), and the existing gaps in terms of 
integration between accessibility and resilience. Section  "Empirical approach and methodology" describes in 
detail the empirical approach adopted, illustrating the data sources, the pre-processing phases, the construction 
of the multi-layer database, and the analytical methods, such as travel time calculation, betweenness centrality, 
and interruption simulations. In Sect.  "Results" the main results are presented, divided into: (a) analysis of 
ordinary spatial accessibility; (b) evaluation of the variations in access times following targeted removals of high-
centrality nodes; (c) identification of the most vulnerable and most resilient areas. Finally, in Sect. "Discussion 
and policy implications" we discuss the implications of the results for urban and health planning, proposing 
recommendations to improve network redundancy and service continuity, and outline possible future 
developments. The overall workflow of the study is illustrated in Fig. 1.
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Literature background
As discussed in the "Introduction" section, strengthening access to essential services is crucial to promoting social 
equity, as these services influence the quality of life of citizens and their ability to fully participate in society1,2,5,25. 
In general, spatial accessibility refers to the ease with which individuals can reach desired destinations, such 
as healthcare facilities, workplaces, or educational institutions26,27. It plays a critical role in urban planning, 
transportation modeling, and equity assessments12,28.

The economic and quantitative literature shows that there are two theoretical frameworks to calculate 
accessibility:(i) Place-based (potential) location-based accessibility counts destinations reachable within a 
certain distance or time12,27; (ii) Person-based (individual) accessibility considers personal constraints (time 
budget, daily travel, mobility resources), assessing the actual ability of each person to reach destinations28.

In many works, accessibility and availability to health facilities were assessed using GIS methodologies that 
include travel times or distance estimates (usually as an impedance factor), such as the 2-step floating catchment 
area method (2FSCA)29–33, gravity models34,35 robust space-time accessibility assessments36, and network 
analysis37–39.

Network analysis mainly uses estimated or self-reported travel times on a network (e.g., a road or public 
transport network) to calculate the number of points of interest (in our case, e.g., healthcare facilities) that can 
be reached within a time threshold37–39. A similar framework is also present in gravity models34,35 and 2SFCA 
methods7,29–33, but they feature integrated systems. Comparatively, although all three methods rely on travel time 
or distance as a central component, they differ in how accessibility is conceptualized. Network analysis focuses 
on reachability within a time threshold. Although it does not explicitly account for spatial interactions and is 
sensitive to arbitrary distance or time thresholds, which may neglect variations just outside the defined limits, 
it remains one of the most widely used methodologies in the literature due to its operational clarity and ease of 
computation, especially in the presence of large amounts of data, which allow for immediate interpretation of 
the results12,40. Gravity models calculate the number of reachable opportunities within a given time or distance 
threshold by applying a continuous decay function that gives greater weight to the closest destinations34,35. A 
notable example is Hansen’s11 formulation, which integrates destination density with a distance decay term. 
However, because they typically treat all service locations as equally “attractive”, these approaches may overlook 
spatial heterogeneity in service provision, a crucial issue when studying inequalities in access to care41,42. The 
2SFCA method partially overcomes these limitations since it calculates for each origin the ratio between available 
opportunities and reachable population inside a defined catchment area. However, the definition of the catchment 
areas is often based on arbitrary time or distance thresholds, and this can lead to over- or underestimations of 
users in very heterogeneous contexts7,29–33. Furthermore, the model considers the opportunities’ capacity as a 
fixed value and does not take into account daily and hourly variations in personnel and resources.

Generally, transport equity is a function of several factors, such as transport availability9, mode-specific 
access7, supply heterogeneity43, and regional disparities35.

As regards mode access, Guida et al.7 found that using only the transit network and assuming no car access 
for older people, peripheral areas of Milan had significantly lower accessibility to healthcare facilities for this 
user group compared to central areas, noting spatial accessibility patterns. Similarly, Noh9 detailed transport 
equity for older adults as the spatial interaction between transit availability and the share of the older population 
living in the communities of the study area in Florida. To consider heterogeneity in supply, Shao and Luo43 
utilized a doctor-specific attraction score inside the 2SFCA framework to control for the fact that the different 
attractiveness of doctors to patients can influence patients’ choice and, as a consequence, individual accessibility 

Fig. 1.  Overall workflow of the research.
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to doctors. Also regional disparities matter. Raza et al.35 using 4-step modeling, the Lorenz curve, and the Gini 
Index, found significant transit accessibility disparities among urban and rural Chinese areas in the Wuhan 
region. Algaidan et al.44 developed an analytical framework to measure gaps between private and public transit 
stations using three common methods—cumulative opportunity, potential access, and gravity metrics—across 
multiple travel time thresholds and peak periods. Incorporating both spatial and temporal variables, the study 
assessed how accessibility disparities vary by method and time of day. Such examples help us understand 
that accessibility measures should be tailored to the user class studied (e.g., older adults without car access), 
considering, depending on the research focus, spatial disparities, heterogeneity in preferences, and/or disparities 
in mode availability, with particular attention to the needs of the target group. Taking a step further into network 
science, complex network analysis can be combined with more traditional approaches for travel time estimations.

A complex network comprises a set of nodes representing the system’s constituents of interest and links 
representing the physical connections between node pairs45,46. Several properties and indices of the network can 
be used to describe its composition47,48. Complex network frameworks and tools are also helpful in analyzing the 
network’s integrity when external disruptions occur, detailing the resilience properties of the network. Resilience 
is generally defined in the literature as the ability of transport networks to resist shocks, maintain functionality, 
and recover as quickly as possible to a whole level of service49. In the static part of resilience, at the moment 
of disruption, robustness defines the amount of performance the network can maintain. On the other hand, 
redundancy refers to the set of infrastructural and modal alternatives the system provides users50. Vulnerability, 
the opposite of robustness, indicates the amount of performance loss at the moment of disruption, serving as an 
index of susceptibility to loss51.

Important investigations on resilience and vulnerability in transportation studies include, for example, the 
works of Jenelius and Mattsson52, Reggiani et al.49, and Gu et al.53. Resilience analysis can be system-based or 
topology-based52, with the former more focused on the performance of the network (in terms of flows, speeds, 
etc.), while the latter focuses on the topological features of the networks, i.e., nodes, edges, and their connections. 
Several studies have built upon a framework combining both system-based and topology-based approaches. 
Using data from taxi trips, Wang et al.54 showed that nodes with high centrality significantly influence network 
vulnerability and that travel time is directly related to flow loss. Similar studies have also been conducted on 
rail transit networks55 and urban bus networks56. Focusing on transit, an efficient and effective Urban Public 
Transport System (UPTS) ensures that passenger transfer runs smoothly and stations are adequately distributed 
to businesses and residents57,58. Starting from this framework, Baggag et al.59 used the public transport network 
(PTN) model to represent nodes, which are the stations and stops of a public transport system, and edges, which 
connect subsequent stations along a route. The critical nodes identified through the single-modal analysis cannot 
accurately represent the actual state of public transport. Therefore, it is useful to explore methods to identify 
pivotal nodes from a topological perspective within multimodal public transport networks7,19,60. Murray-Tuite61 
introduces the concept of quantitative metrics to measure the resilience of the transport system, analyzing the 
four dimensions of transport resilience and exploring the influence of traffic assignment on resilience.

This study integrates transportation network resilience analyses with accessibility measurements, generating 
an index that reflects both the topological structure and operational performance of the transit network to 
healthcare facilities. Differently from other relevant studies in the literature employing gravity models and 
2SFCA methods, this paper adopts origin-to-specific-opportunity travel time estimates as the main measure 
of accessibility: our main objective is to build a complex transit network framework that integrates complex 
network geometry and scheduled timetables to minimize travel times between specific origin-opportunity pairs, 
identifying, through rigorous and realistic travel time estimation, the optimal opportunity among those reachable. 
By incorporating rigorous, data-driven travel time estimates alongside the underlying network geometry, our 
approach captures both the topological and performance dimensions of the transit system, providing realistic 
and disruption-sensitive estimates of accessibility. Building on the reviewed literature on resilience, we consider 
both dimensions and evaluate the transit-network-based healthcare accessibility index under both normal and 
disrupted conditions. Our travel-time-based method serves as a practical proxy for spatial reach and system 
performance, enabling more accurate assessments of urban service resilience in the face of disruptions. This 
integration of resilience into accessibility analysis represents a novel contribution to the field, addressing an 
aspect that remains underexplored in current research.

Empirical approach and methodology
Data processing
We use three datasets in this study. The first dataset contains georeferenced information about Rome’s public 
transport network, provided in GeoJSON format and sourced from Kujala et al.62. This dataset represents the 
network as a multi-line string object and is illustrated in a simplified origin-destination (O-D) form in Fig. 2.

In our model, nodes correspond to PT stops, links are the segments of PT lines connecting consecutive stops, 
and routes consist of a sequence of these links that define the full path of a PT line. The overall public transport 
network is formed by the interconnection of these individual lines at shared stops.

The second dataset contains the georeferenced coordinates of the centroids of Rome’s 66 neighborhoods, 
used to spatially represent population locations. The third dataset includes the geolocations of public and 
private healthcare facilities across the city63. In total, 36 healthcare facilities are mapped. Among them, 11 public 
facilities are classified by the Italian Ministry of Health’s DEA system64. These classifications are “First Aid (PS),” 
offering basic emergency services; “First-level DEA (DEA1),” with essential emergency care; and “Second-level 
DEA (DEA2),” equipped for full-spectrum emergency care26,27. These public facilities are the primary focus 
of our analysis, as we aim to assess the ease with which residents can reach them via public transport. Private 
healthcare centers, mostly offering ambulatory services, are included in a supplementary analysis to provide a 
broader picture of service reachability. Figure 3 illustrates the spatial distribution of origins and destinations.
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In our database, the service availability component includes PT schedule data (lines, stops, frequencies), while 
the transport accessibility component comes from the calculation of travel times between origins (centroids) and 
destinations (hospitals).

The GeoJSON point data for the healthcare facilities also indicates the closest PT stop to them, allowing us 
to evaluate the accessibility of healthcare facilities through the public transport network. The third data set that 
we use is the General Transit Feed Specification (GTFS) for public transportation in Rome, obtained from the 
website of the City Government Department of Transportation. This comprehensive dataset contains detailed 
scheduling information for Rome’s public transportation system. It provides a complete record of all PT routes, 
including the precise sequence of stops along each path and the scheduled arrival and departure times for every 
service throughout the day. The data structure allows for detailed travel planning as it contains the complete 
timetable of the city’s PT network. With this information, users can calculate the optimal travel routes between 
two points in the city at any time, including trips that require transfers between multiple lines. The temporal 
and spatial precision of the dataset makes it valuable for everyday travel planning and advanced transportation 
analysis, enabling accurate estimation of travel times across Rome’s entire public transit network.

Fig. 3.  Spatial distribution of origins (centers) and destinations (hospitals) in the Municipality of Rome. 
Source: Author’s elaboration on the Italian Ministry of Health. This map was generated in R v4.4.265, with the 
ggplot2 v3.5.1 package66, and the road network was extracted from osmdata v0.2.567.

 

Fig. 2.  Complex network graph, with blue circles denoting selected PT stops and gray lines representing PT 
routes.
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Datasets
We construct our multi-layer database68,69 by combining relational, geospatial, and temporal components 
that comprehensively reflect service availability (scheduled lines, stops, frequencies) and separately compute 
transport accessibility (travel-time-based reach) from the centroids of Rome’s neighborhoods to hospitals 
via a public PT lines network. To achieve this, we develop a complex model structure that integrates two key 
components: on one side, the availability of geographical data, which includes the coordinates of PT stops closest 
to Rome’s neighborhood centers and hospitals; and on the other side, the travel time information for the routes, 
along with the scheduled service times of the Municipality of Rome’s fixed-route PT.

The main objective is to calculate, from the PT arrival and departure times of lines at stops, the travel times 
from every neighborhood centroid to any reachable hospital, including a maximum of one line change, to put a 
threshold on the individual travel times.

In this framework, municipal centroids, defined by latitude and longitude, serve as the network’s origins, 
while the nearest stops to each hospital act as the destinations. Hospitals are classified according to the DEA 
classification system, which helps to calculate accessibility in terms of travel time from each neighborhood 
centroid to specific types of hospitals. In our dataset, each PT line connecting neighborhoods to hospitals 
is represented as a distinct data block. Within this block, travel times are calculated based on the scheduled 
timetables from origin to destination, reflecting the availability of PT services at those times, as illustrated in 
Fig. 4. There are two possible scenarios: In the first, a single line directly connects the origin and destination. In 
the second, the origin and destination are connected through one transfer stop. Figure 5 provides a graphical 
representation of both cases. In the second scenario, the accessibility is calculated as the sequential sum of 
time differences between consecutive stops, with the addition of a 20-min waiting time at the transfer stop, as 
estimated by Moovit70.

Fig. 5.  Illustrates the undirected (on the left) and directed (on the right) lines between origin and destination.

 

Fig. 4.  Example of a directed route between O-D. Source: Author’s elaboration on Municipality of Rome. This 
map was generated in R v4.4.265, with the leaflet v2.2.2 package71, and the road network was extracted from 
osrm v4.2.072.
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Formally, in the case of a direct connection, it is assumed that a single PT line provides available service 
linking the stop associated with a given centroid to one or more stops located near hospitals. In tabular terms, 
this is represented by the creation of entries that indicate, for each centroid ci, each line lk  passing through it, 
and each hospital hj  reachable by lk , the presence of a direct connection: (ci → hj). This structure supports the 
calculation of accessibility, measured in terms of travel time, for direct routes. For indirect connections requiring 
a transfer, the dataset is structured to store the journey in two segments (see Eq. 1). In the first segment, the 
centroid is connected to an intermediate stop vk  via a direct line. In the second segment, the route continues 
from vk  to the hospital hj . In such cases, the total travel time from ci to hj  via vk  is calculated as:

	 Tikj = tik + ∆t + tkj � (1)

where:

•	 tik  is the travel time from the centroid ci to the intermediate stop vk ;
•	 ∆t is a fixed waiting time (20 min), based on Moovit estimates, representing the time required for transfer-

ring between lines in Rome;
•	 tkj  Is the travel time from the stop vk  to the hospital hj .

To accommodate cases where a line or a transfer segment is available to serve multiple hospitals, we introduced 
a mechanism that replicates data blocks for each hospital destination. Specifically, when a PT route (or a 
segment of it in the case of transfer-based routes) connects a centroid to more than one hospital, the original 
origin-destination data block, including intermediate stops and travel times, is duplicated for each hospital. 
Each duplicate represents a distinct travel path that originates from the same centroid and follows the same 
available route but ends at a different hospital. This ensures that each hospital is treated as a unique destination 
for accessibility evaluation, even when the travel segments overlap.

The final structure of the database used for estimating accessibility in terms of travel time between centroids 
and hospitals consists of the following components:

•	 PT stops: A list of all stops, including their geographical coordinates and the PT lines serving them.
•	 Hospitals: A list of target facilities, along with their coordinates and relevant attributes.
•	 Lines and timetables: Detailed information about PT routes, linking each line with its ordered list of stops and 

scheduled times of arrival at each stop.
•	 Travel times: Computed either from

•	 Direct connections: (ci → hj);
•	 Indirect connections with one transfer: (ci → vk → hj).

A table summarizing the sample of entries and the structure of our dataset, as well as a table summarizing 
the frequency distribution of the number of trips in our dataset for each origin-destination, is provided in the 
Supplementary Material.

Temporal transport accessibility to emergency care via public transit
Contrary to a purely geospatial approach—based on Euclidean distance, road distance, or abstract topological 
network structures—this study adopts a framework grounded in scheduled PT timetable data. Specifically, we 
utilize General Transit Feed Specification (GTFS) data made available by the Municipality of Rome. The objective 
is to derive an empirically informed estimate of transport accessibility, starting from service availability (GTFS 
schedules) to calculate actual access times to hospitals and hospital care via public transport, thereby avoiding 
geographical simplifications that overlook the actual functioning of the transportation network. Following the 
construction of the integrated database, travel times from centroids to hospitals are computed as the median and 
minimum values of observed travel durations between urban centroids (origin points) and hospitals classified 
under the DEA (“Dipartimento di Emergenza e Accettazione”) category (destination points). The focus on 
DEA-classified hospitals ensures that the analysis prioritizes access to emergency medical services, which are 
critical for urgent healthcare needs. For each trip on a given line lk  connecting a centroid ci to a hospital hi, we 
calculate the travel time by summing the time intervals between consecutive PT stops along the route. Let the 
sequence of stops be denoted by s1, s2, . . . , sn, where s1 is the first stop near ci and sn is the final stop near hi. 
If tarr(lk, sp+1) denotes the arrival time at the stop sp+1 and tdep(lk, sp) the departure time from the stopsp, 
then the total travel time tn for a single trip is computed as:

	
tn =

n−1∑
p=1

[tarr(lk, sp+1) − tdep(lk, sp)] .� (2)

This formulation captures the sequential nature of the trip, where each segment contributes a “gap time” reflecting 
actual service intervals. Since multiple trips are scheduled along the same route on a given day, we define the set 
of observed travel times as:

	 Ť
(lk)
ij = {t1, t2, . . . , tn}.� (3)

Based on this set, three main computations are performed:
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	(a)	  Calculation of the median travel time : For each homogeneous route, defined as all trips on the same line 
lk  connecting the same centroid ci to the same hospital hi—we compute the median of travel times:

	 Ť
(lk)
ij = median(Ť (lk)

ij ).� (4)

	This value provides a robust estimate of typical travel time, less sensitive to outliers.

	(b)	 Calculation of the minimum observed time : Next, for each (ci, hi, lk) combination, we identify the mini-
mum observed travel time:

	 Ť
(lk)
ij = min(Ť (lk)

ij ),� (5)

	representing the best-case scenario under optimal transit conditions.

	(c)	 Minimum time grouped by DEA category : Assuming that hospitals within the same DEA category are 
interchangeable from the user’s perspective, we compute the minimum travel time from each centroid to 
any hospital in the same DEA group:

	 Ť
(lk)
ij = min(Ť (lk)

ijc ),� (6)

	where the subscript c denotes the hospital category. This final result constitutes the first major output of the 
spatial accessibility analysis.

Network topology modelling
To quantify the importance of each node in facilitating access to the healthcare network via public transportation, 
we employ centrality analysis, a fundamental concept in network theory15,16. While numerous centrality 
metrics exist, each capturing a distinct aspect of node influence  73,74, we adopt betweenness centrality (BC), 
mathematically represented in Eq. 7, as the primary metric due to its demonstrated relevance in transportation 
networks 75,76. The choice of betweenness centrality is motivated by its ability to identify transit hubs that facilitate 
movement between urban zones (origins) and healthcare facilities (destinations). As Barthélemy 77 highlights, 
BC is particularly effective in detecting bottleneck nodes whose removal would disrupt network connectivity—
an essential concern in emergency healthcare contexts where timely access can be life-saving. Mathematically, 
the betweenness centrality of a node vk  is defined as:

	
BC(vk) =

∑
s ̸=t

σst(vk)
σst

,� (7)

where:

•	 σst is the total number of shortest paths from node s to node t;
•	 σst(vk) is the number of those paths that pass through node vk .

Nodes with high BC values often serve as structural checkpoints. Previous studies have used BC to assess 
geopolitical relevance and infrastructure vulnerability78.

Resilience assessment
The resilience assessment component of this methodology addresses a critical aspect of access to healthcare: 
the robustness of the system in disruption scenarios. Drawing on the theoretical and empirical frameworks 
discussed in Jenelius and Mattsson21, Ganin et al.14, and Bergantino et al.50, we define resilience as the network’s 
ability to maintain healthcare accessibility when key nodes are compromised. This assessment focuses on how 
disruptions to high-centrality nodes impact healthcare accessibility across Rome’s urban zones. To evaluate 
network resilience, we implement targeted node removal scenarios following the methodology of Albert et 
al.79, refined for transportation networks by Berche et al.80 The top three high-centrality nodes belonging to the 
section of the O-D between the 0.25 and the 0.75 quantiles of the bus routes, ranked by betweenness centrality, 
are removed altogether to simulate a widespread disruption. The decision to consider only the central segments 
of PT routes is based on the rationale behind the node selections. Since origins and destinations are always 
touched by the shortest paths, given that all routes ultimately lead to the 11 healthcare facilities, using all lengths 
of paths to select the nodes to remove would result in the hospital nodes being identified as the chosen ones. 
We then recalculate the minimum median travel time to the nearest hospital within the same DEA group, the 
number of urban zones that lost access, and the change in average healthcare accessibility.

If the optimal path is disrupted, the next-best alternative is selected within the one-line-change constraint. 
If no alternative exists, the travel time is recorded as infinite, indicating a complete loss of access due to the 
unavailability of a feasible transit route. This approach builds on the work of Jenelius et al.52 and El-Adaway 
et al.76, demonstrating that targeted disruptions to high-centrality nodes offer more meaningful insights into 
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network vulnerability than random failures. In addition to analyzing the impact of targeted node removals on 
network-wide accessibility metrics, we also performed a focused evaluation of the spatial heterogeneity in travel-
time variations between individual origin-destination pairs after node removal. This analysis illustrates how 
accessibility to healthcare facilities varies at an aggregate level and between specific urban zones and hospitals 
when the network is disrupted. Specifically, we compare the minimum travel time T base

ij  from the urban centroid 
ci to the hospital hj  under normal, undisrupted conditions with the corresponding minimum travel time T disr

ij  
after the removal of one or more high-betweenness centrality nodes. The spatial impact of the disruption for 
each origin–destination pair is quantified as:

	 ∆Tij = T disr
ij − T base

ij � (8)

where:

•	 T base
ij : minimum travel time from centroid ci to hospital hj  in the intact network;

•	 T disr
ij : new minimum travel time for the same pair after network disruption;

•	 ∆Tij : variation in travel time due to the failure.

A positive ∆Tij  indicates worsened accessibility for that specific origin–destination pair. If ∆Tij = 0, 
accessibility is preserved despite the disruption. In cases where no route remains within the one-line-change 
constraint, T disr

ij  is considered infinite, and ∆Tij  is marked as undefined to reflect complete inaccessibility.
This spatial heterogeneity analysis helps identify localized vulnerabilities and assess the uneven impacts of 

disruption across the urban area. By adopting a multi-scale heterogeneity perspective, we move beyond global 
resilience metrics and provide a more granular understanding of how disruptions reshape access to emergency 
healthcare spatially. We perform two analyses to compare healthcare accessibility under different scenarios. The 
first considers only the 11 DEA-classified healthcare facilities as defined in the baseline scenario. The second 
expands to include all 36 DEA and non-DEA classified facilities, treating each as a viable alternative.

This broader approach applies to less critical healthcare needs, where patients may seek care at any facility 
that is available and accessible for general check-ups or non-urgent consultations.

Results
To address the research question concerning the impact of network disruptions on access to healthcare, we 
estimate travel times under baseline and disruption scenarios. These estimates capture changes in healthcare 
accessibility across urban neighborhoods, accounting for direct routes and potential detours caused by targeted 
node removals in the transportation network. The results, presented in Tables 1, 2, and  3, reveal key outcomes.

Firstly, in some cases, the minimum median travel time remains unaffected despite network disruptions. 
This indicates a high degree of redundancy in the transportation network, as specific node removal did not 
affect the connection between a given centroid and its closest DEA-specific hospital. In other areas, disruptions 
result in significantly longer travel times to specialized hospitals. This occurs when the closest facility becomes 

Neighborhood Minimum travel times (base analysis) Minimum travel times (disruption analysis) Pre- and post disruption differences

11B Valco San Paolo 10.43 – –

20B Acquatraversa 13.57 – –

Marconi 5.63 – –

11A Ostiense 6.03 21.83 5.80

16X Villa Pamphili 8.47 8.52 0.05

15B Portuense 13.25 13.25 0

15D Trullo 31.90 31.90 0

16B Buon Pastore 29 29 0

16X Villa Pamphili 45.92 45.92 0

17A Prati 38.60 38.60 0

1A Centro storico 28.13 28.13 0

1D Testaccio 10.50 10.50 0

1G Celio 6.35 6.35 0

1X Zona archeologica 10.03 10.03 0

2X Villa Borghese 13.80 13.80 0

3Y Verano 57 57 0

5B Casal Bruciato 37.33 37.33 0

5C Tiburtino Nord 60.93 60.93 0

9E Latino 13.67 13.67 0

Aurelio Nord 35.77 35.77 0

Tuscolano Nord 7.70 7.70 0

Table 1.  Minimum travel times: DEA2.
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unreachable due to hub disruption, requiring residents to travel to more distant hospitals offering the same 
specialization. Thirdly, the most concerning outcome is observed in certain urban centroids where specialized 
hospital types become entirely inaccessible following network disruptions. These areas experience a complete loss 
of access to essential healthcare services, which has the most severe impact on the healthcare system’s resilience. 
This last scenario is particularly critical for affected area residents when the designated hospital provides highly 
specialized emergency services, as for level 2 DEA facilities (see Table 2).

Several instances of these vulnerabilities emerge from our results, where travel times can increase by more 
than 30 min. In extreme cases, access to essential healthcare facilities becomes entirely unfeasible following the 
removal of key nodes, leaving residents without viable routes to specialized emergency care. For instance, in 
the baseline scenario, residents of the Marconi district can reach San Camillo Forlanini, a Level 2 DEA hospital 
providing specialized emergency care, in just 5.63 min under normal, undisrupted conditions. However, our 
analysis revealed that if the ’Maiorana-Fornetto’ transportation node is disrupted, Marconi residents lose all 
accessible routes to Level 2 DEA hospitals. A similar situation arises in Acquatraversa, where the Policlinico 
Universitario Fondazione Gemelli is the closest DEA2 hospital under normal conditions. However, after the 
elimination of the “Trionfale-Tenuta Sant’Agata” stop, no DEA2 hospitals are reachable from this location.

Furthermore, our analysis also identifies numerous intermediate scenarios where transportation disruptions 
caused increases in travel time to specialized hospitals. An example of these intermediate impacts can be seen 
in the Tomb of Nerone district (as shown in Table 1). Under normal conditions, residents can reach a Level 
1 DEA hospital within just 7  min. However, our analysis reveals that if the ’Cassia-Pareto’ transportation 
node is interrupted, the travel time to the nearest alternative Level 1 DEA hospital increases dramatically to 
40.2 min, nearly a six-fold increase, although access to the hospital remains possible. While this situation does 
not result in total inaccessibility, the delays can significantly impact urgent medical access, particularly in areas 

Neighborhood Minimum travel times (base analysis) Minimum travel times (disruption analysis) Pre- and post disruption differences

20B Acquatraversa 18.93 – –

16X Villa Pamphili 39.65 39.65 0

Table 3.  Minimum travel times: First aid (PS).

 

Neighborhood Minimum travel times (base analysis) Minimum travel times (disruption analysis) Pre- and post disruption differences

1A Centro storico 32.97 – –

2C Flaminio 16.68 – –

2X Villa Borghese 22.00 – –

Medaglie d’Oro 16.77 – –

Tomb of Nerone 7 40.23 33.23

17B Della Vittoria 19.03 43.17 24.13

20X Foro Italico 19.03 43.17 24.13

20H La Storta 21.90 24.80 2.90

10F Osteria del Curato 17.70 17.70 0

10I Barcaccia 8.78 8.78 0

10L Morena 18.33 18.33 0

10X Ciampino 17.07 17.07 0

12G Spinaceto 15.23 15.23 0

16X Villa Pamphili 75.37 75.37 0

19B Primavalle 16.98 16.98 0

19C Ottavia 8.63 8.63 0

20L Prima Porta 17.55 17.55 0

20M Labaro 17.55 17.55 0

5B Casal Bruciato 12.90 12.90 0

5C Tiburtino Nord 4 4 0

5G Pietralata 7.70 7.70 0

7B Alessandrina 23.00 23.00 0

7C Tor Sapienza 32.20 32.20 0

8C Giardinetti-Tor Vergata 4.53 4.53 0

8F Torre Angela 14.80 14.80 0

Centro Direzionale Centocelle 30.60 30.60 0

Grotta Rossa Est 8 8 0

Table 2.  Minimum travel times: DEA1.
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with high mobility demand. In contrast to these vulnerabilities, our analysis also identifies areas with high 
resilience in healthcare accessibility. Several central urban districts—including Zona Archeologica, Verano, and 
Villa Borghese—maintain consistent access to key hospitals even when high-centrality transportation nodes 
are disrupted. These areas benefit from redundant transportation options that provide multiple pathways to 
healthcare facilities.

Our broader analysis, which considers all healthcare facilities (both specialized DEA and non-specialized 
non-DEA hospitals) as potential destinations, reveals a much more robust healthcare accessibility network. In 
this case, many origin-destination paths show only marginal changes in travel times (see the third Table in 
the Supplementary Material), suggesting that simply removing three nodes, given the wide range of alternative 
destinations, does not have a significant impact.

Discussion and policy implications
By comparing travel times under normal and disrupted conditions, we identified key weaknesses in Rome’s 
public transport system in maintaining access to emergency care, addressing the research question we posed on 
how disruptions in the transport network affect access to healthcare services.

To understand the impact of these disruptions, we removed specific PT stations identified as key hubs using 
complex network analysis. This allowed us to examine how taking out central nodes—and the routes linked to 
them—affects people’s ability to reach healthcare facilities.

The results show that some neighborhoods in Rome depend heavily on just a few key transit hubs to reach 
healthcare services, making them particularly exposed to disruptions. In certain cases, when a central hub is 
lost, it leads to a total loss of access to specific types of hospitals because no alternative routes are available. 
The impact of disruptions is not evenly spread across the city. While many routes between neighborhoods and 
healthcare services remain mostly unaffected, some neighborhoods experience significant delays. For instance, 
certain routes to more advanced emergency care facilities face major increases in travel time, which could 
seriously hinder timely medical assistance. On the other hand, some routes, like the one to Villa Pamphili, 
experience minimal delays, showing that parts of the network benefit from good redundancy. One of the most 
affected routes connects the Tomb of Nerone area to a basic emergency facility and shows a drastic increase in 
travel time. These contrasts highlight how vulnerability within the network varies by location, and in the most 
affected neighborhoods, disruptions can entirely cut off access to hospitals, leaving residents without timely 
public transport options for emergency care.

The spatial distribution of disruption impacts reveals important patterns about Rome’s transportation 
network resilience. The concentration of significant travel time increases in specific areas (particularly northern 
and western zones like Tomb of Nerone, Della Vittoria, and Foro Italico) suggests localized vulnerabilities in the 
transportation infrastructure. This pattern may reflect areas where alternative routes are limited or where the 
transportation network lacks sufficient redundancy. The research methodology revealed the most vulnerable 
neighborhoods and pinpointed critical hubs in the transport network whose failure could isolate entire 
neighborhoods from essential healthcare services. These findings emphasize the need to enhance redundancy 
within the public transport system to ensure continuity of access during unexpected disruptions. On the other 
hand, the absence of disruption impacts across most origin-destination pairs (17 out of 21 for DEA2 facilities and 
21 out of 28 for DEA1 facilities) indicates substantial resilience in Rome’s overall transportation network. This 
resilience is particularly evident in central and eastern areas of the city, suggesting more robust transportation 
infrastructure or greater route alternatives in these regions.

The observed patterns have significant implications for healthcare accessibility, particularly in emergencies, 
that can translate into direct policy implications. The data reveals that disruptions can create substantial inequities 
in healthcare access across different neighborhoods. This highlights the role of redundant transit connections, 
i.e., alternative routes that, while slower, serve as viable substitutes when primary routes are disrupted. These 
substitutes play a critical role in safeguarding healthcare access during emergencies, especially in areas with 
limited baseline service options. Conversely, areas with lower redundancy are significantly more vulnerable, 
facing a risk of complete isolation from hospital facilities in the event of hub failures. In today’s rapidly changing 
environment, where infrastructure modifications, traffic patterns, and healthcare facility operations can shift 
unexpectedly, static analyses are insufficient, particularly in identifying which communities face total or partial 
disconnection from healthcare services during such events. To mitigate this vulnerability, it is advisable to 
identify and continuously monitor critical structural hubs through dynamic monitoring systems that can adapt 
to evolving urban conditions. Such systems can promptly detect interruptions or congestion and suggest real-
time diversions or reinforcements of the service. Strategies should include temporary lines, emergency shuttle 
services, and real-time travel information systems, all of which would enhance the resilience of the healthcare 
transport network.

The analysis also highlights the unequal burden such disruptions place on certain populations. Many of the 
most affected residents depend exclusively on public transportation, often due to financial or social constraints 
that limit access to private vehicles or more flexible mobility options. As a result, any interruption in service 
disproportionately impacts these communities, particularly when timely access to emergency or specialized 
healthcare is essential. Our approach can help policymakers identify where resilience interventions are most 
urgently needed to protect the health and mobility of vulnerable residents. This analysis should inform targeted 
infrastructure planning, prioritizing new transport nodes, increased service frequencies, and preferential lanes 
in the most affected areas. We recommend that authorities also engage citizens and local stakeholders through 
participatory consultations and targeted communication campaigns. This would support the co-creation of 
transport services and improve public awareness of alternative routes during emergencies.

Overall, the use of daily GTFS data and a “real” travel time model, combined with network analysis, showed 
potential in identifying strategic nodes and mapping the most vulnerable areas. The phase of collecting and 
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processing GTFS data into a single dataset represented the main challenge, in particular to ensure the correct 
temporal alignment of trips. The comparison with the literature confirms the importance of major public 
transport hubs in maintaining redundancy and continuity of service and extends previous resilience analyses by 
introducing more granular disruption simulations than those proposed by Jenelius et al.52 or Wang et al.54. This 
operational approach, which combines methodological rigor and empirical details, opens new perspectives for 
future studies on the robustness of urban transport networks.

We acknowledge that this study has limitations. While our focus on rigorous travel time estimation and 
complex network construction represents a significant methodological contribution, we did not account for 
other important factors that influence accessibility. These include, for example, spatial dynamics of supply and 
demand, user perceptions, and behavioral heterogeneity. Further extensions of this paper addressing such 
dimensions will contribute to our understanding of accessibility to healthcare services and transportation 
equity. On-field experiments, behavioral data collection, and population surveys could validate the results of 
our empirical application. Other streams of future research are worth exploring: implementing a multi-scenario 
monitoring framework, including rush-hour conditions, holidays, and unexpected emergencies such as extreme 
weather events or traffic incidents, would allow for the development of more effective response strategies. 
Additionally, integrating epidemiological and clinical data into transport accessibility studies could provide 
valuable insights into the direct relationship between travel times and health outcomes, particularly for medical 
emergencies such as strokes, heart attacks, and severe trauma, where timely hospital arrival is crucial.

Data availability
The data used in the study comes entirely from public sources and is accessible to the public domain. In par-
ticular, the georeferenced data relating to the public transport network of Rome (GeoJSON and GTFS formats) 
were obtained from the open data portal of the Municipality of Rome and from the database made available by 
Kujala et al. (2018). The information on the classification of healthcare facilities comes from open datasets of the 
Ministry of Health. The procedure described in the article for the construction of the database (including the 
association between stops, lines, timetables, municipal centroids, and hospitals) is therefore entirely replicable, 
being based on open data sources that can be freely consulted and downloaded. Any additional details on the 
processing or direct links to the data publication platforms can be provided, upon request, by the authors.
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