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As network environments become increasingly complex and new attack methods emerge more 
frequently, the diversity of network attacks continues to grow. Particularly with new or rare attacks, 
gathering a large number of labeled samples is extremely difficult, resulting in limited training data. 
Existing few-shot learning methods, while reducing reliance on large datasets, mostly handle single-
modality data and fail to fully exploit complementary information across different modalities, limiting 
detection performance. To address this challenge, we introduce a multimodal fusion based few-shot 
network intrusion detection method that merges traffic feature graphs and network feature sets. 
Tailored to these modal characteristics, we develop two models: the G-Model and the S-Model. The 
G-Model employs convolutional neural networks to capture spatial connections in traffic feature 
graphs, while the S-Model uses the Transformer architecture to process and fuse network feature sets 
with long-range dependencies. Furthermore, we extensively study the fusion effects of these two 
modalities at various interaction depths to enhance detection performance. Experimental validation 
on the CICIDS2017 and CICIDS2018 datasets demonstrates that our method achieves multi-class 
accuracy rates of 93.40% and 98.50%, respectively, surpassing existing few-shot network intrusion 
detection methods.
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Amid rapid technological advancements, network security has emerged as a pivotal component of contemporary 
security infrastructures1. Traditional Network Intrusion Detection Systems (NIDS) are adept at managing 
attacks that conform to well-defined rules, known patterns, or signatures. By exploiting predefined rule sets 
and signature databases, these systems effectively thwart such threats, excelling in stable and predictable 
environments. Nonetheless, as network environments evolve swiftly and attack methodologies continue 
to advance, particularly with respect to high-dimensional data complexity and diverse attack techniques, 
traditional NIDS are increasingly challenged. The rapid development of deep learning offers novel solutions to 
these challenges. Deep Neural Networks (DNNs), celebrated for their superior feature extraction capabilities, 
are becoming a dominant technology for enhancing NIDS performance2. Deep learning’s capacity to derive 
insights from vast and complex datasets enables NIDS to more effectively detect intricate network attacks. This 
signifies a progressive transformation of traditional intrusion detection methods through deep learning to 
address contemporary network security threats. However, present deep learning models generally depend on 
substantial volumes of training data. In high-security network environments, it is impractical to delay responses 
until frequent attacks occur. Thus, there is an imperative need for systems that can perform rapid and effective 
detection with limited samples. Proactive defense is crucial in addressing novel and rapidly evolving attack 
patterns, particularly when these attacks often lack adequate training samples. Consequently, researchers are 
investigating techniques that remain efficient and accurate in sample-constrained environments. The application 
of few-shot techniques to NIDS has garnered significant interest. A notable achievement of 78.26% accuracy in 
a 5-way 1-shot scenario was reached by transforming principal static features into a two-dimensional matrix 
format and using only static features, marking substantial progress in few-shot environments3. However, this 
method did not fully exploit the internal traffic information and heavily relied on expert knowledge for feature 
selection. Another approach transformed raw network traffic into traffic images and processed the internal 
structure, making significant strides4. However, the sample cropping and selection during processing might 
lead to the omission of some critical features, thereby limiting the full utilization of the data. To address these 
shortcomings, we propose a few-shot NIDS that leverages multimodal fusion technology. This system integrates 
the dynamic structure of traffic, represented by feature graphs, with static features from network feature sets, 
through advanced multimodal feature extraction and fusion techniques. This integration of dynamic traffic 
feature maps and static network feature sets allows the system to fully exploit the interrelationships among data, 
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enhancing the network security system’s ability to tackle complex and variable threats. The combined approach 
not only preserves the temporal dynamics of network traffic but also leverages contextual information from 
static features, providing a comprehensive view that is crucial for identifying and mitigating sophisticated cyber 
threats.

Traditional network intrusion detection models typically rely on voluminous data and adhere strictly to 
known attack patterns or signatures. Yet, as data becomes more complex and attacks more diverse, DNNs have 
gradually supplanted traditional methods. However, they still depend heavily on large datasets. In security-
sensitive environments, securing sufficient samples is neither safe nor feasible. Contemporary few-shot NIDS 
solutions are broadly divided into two categories: those that utilize raw traffic and those that employ structured 
files post-feature extraction. For raw traffic, whether dealing with flows or packets5, despite its format regularity 
and not requiring expert input for feature extraction decisions, the scalability limitations in data processing 
frequently lead to cropping and selection issues, causing the loss or diminishment of crucial information, such 
as packet counts and lengths. Conversely, structured files post-feature extraction, although more readable and 
smaller in scale, are extensively utilized6, but often lack the detailed content of raw traffic, such as the positional 
relationships among packets and the temporal relations within traffic flows. In our study, we amalgamate the 
benefits of raw traffic and structured files, and through sophisticated feature fusion techniques, we remedy their 
deficiencies. We proposed an integrated system employing multimodal fusion technology, generating two modal 
data types through heterogeneous data: traffic feature graphs and network feature sets. Traffic feature graphs 
depict the intricate features of traffic content, with an emphasis on the spatial relationships among internal data 
packets, processed using convolutional neural networks. For the network feature set, we classify features into 
discrete and continuous categories and process them separately. Employing the multi-head attention mechanism 
of Transformer, we adeptly integrate and process both sets of features. Ultimately, we fuse the outputs from both 
modalities, conducting experiments across various interaction depths, and achieving optimal outcomes under 
deep self-attention interaction fusion. Additionally, we implement transfer enhancement strategies to further 
improve the performance of few-shot network intrusion detection. The principal contributions of this work 
include the following points: 

	(1)	 A multimodal fusion based detection system is proposed that combines the spatial feature extraction capa-
bilities of convolutional neural networks (CNNs) with the global information capture of the Transformer’s 
multi-head attention mechanism.

	(2)	 Three multimodal fusion strategies are presented that enhance data representation by extracting and merg-
ing features and employing data heterogeneity techniques to generate multimodal data.

	(3)	 The results of a performance evaluation on the benchmark CICIDS2017 and CICIDS2018 datasets reveal 
accuracies of 93.40% and 98.50%, surpassing existing methods.

The remainder of this paper is organized as follows: “Related work” introduces the recent related work. Section 
“Multimodal feature fusion detection method” describes the multimodal feature fusion detection method. 
Section “Experiments” describes the experiments, and “Discussion” presents a comparison and discussion. 
Section “Future work” outlines our future work. Finally, “Conclusion” concludes the paper.

Related work
This section briefly reviews recent studies published on deep learning-based network intrusion detection models, 
malicious traffic detection methods for few-shot learning, and the application of multimodal feature fusion 
techniques. We will explore in detail the contributions of these studies in enhancing efficiency and innovation 
within the field of cybersecurity. Additionally, we will examine the advantages these methods display in practical 
applications and their potential in addressing complex issues within cybersecurity.

Network intrusion detection
In recent years, deep learning-based methods have been widely applied in network intrusion detection, 
significantly improving the detection effectiveness. As these algorithms continue to evolve and become 
more sophisticated, increasingly efficient NIDSs are being developed to combat the growing complexity of 
cybersecurity threats effectively. Souradip et al.7 optimized several aspects, including removing multicollinearity, 
sampling, and dimension reduction, thereby enabling the effective detection of network attacks and anomalies 
in resource-constrained environments. Ankit et al.8 introduced techniques that combine autoencoding and 
principal component analysis (PCA) to capture both the linear and nonlinear relationships between features, 
reduce data dimensionality, and offer new solutions for managing complex network traffic data. Jafar et al.9 
developed a hybrid deep-learning framework that integrates the strengths of CNNs and long short-term 
memory (LSTM) networks to enhance the detection rates. Maya et al.10 combined bootstrapping aggregation 
with gradient boosting decision trees using a dual ensemble model. Zakieh et al.11 enhanced the African vultures 
optimization algorithm with the sine cosine algorithm to avoid local optima and enhance the global search 
capabilities. Liu et al.12 highlighted the limitations of popular deep-learning algorithms in terms of accuracy and 
dependency on manually selected features and proposed an enhanced empirical component analysis approach 
that combines empirical mode decomposition with PCA, retaining the most relevant features and classifying 
attack nodes using LSTM. Karima et al.13 designed an end-to-end one-dimensional (1D) CNN model tailored 
to detect complex threats in Industrial IoT (IIoT) environments, which exhibited excellent performance on the 
Edge-IIoT set dataset through k-fold cross-validation. Miel et al.14 introduced a new multistage hierarchical 
intrusion detection method that can detect unknown zero-day attacks and is easy to deploy. MD et al.15 
developed a two-stage intrusion detection system using the generalized mean grey wolf optimizer and ElasticNet 
shrinkage autoencoders for feature selection, significantly improving the attack classification accuracy. Vladimir 
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et al.16 discussed how most current methods are based on datasets spanning at least five years, leading to unclear 
security performance insights. They proposed a modular network intrusion detection architecture that can 
simulate real-world network attacks and assess their defense capabilities. Ratul et al.17 focused on real-time 
traffic detection and proposed a feature selection method that combines particle swarm optimization with 
genetic algorithms to establish a two-stage NIDS. Nguyen et al.18 introduced a traffic-aware self-supervised 
learning method known as TS-IDS for IoT NIDSs aimed at capturing traffic relationships between network 
entities. Their experiments on the real-world NF-ToN-IoT and NF-BoT-IoT datasets demonstrated the model’s 
potential to enhance the detection performance and work effectively even without labeled data, outperforming 
state-of-the-art baseline models. Amir et al.19 proposed a novel lightweight structure based on parallel deep 
autoencoders that leverages local and surrounding information in feature vectors. This type of feature separation 
enables the model to improve the accuracy while significantly reducing the number of parameters, memory 
usage, and processing power requirements.

Few-shot detection
Few-shot learning has gained widespread application in the field of network intrusion detection to mimic rapid 
and flexible human-like learning capabilities and adapt to modern network environments. The objective of few-
shot learning is to develop a model that operates effectively with minimal labeled data. Marija et al.20 demonstrated 
that coarse-grained processing of fewer feature types is crucial, with their method accurately detecting attacks 
with only three instances. Radhika et al.21 addressed the imbalance between different attack categories, which 
diminishes the learning performance of machine-learning models for malicious traffic, by introducing a 
regularized Wasserstein generative adversarial network (WGAN) to balance the dataset by augmenting minority 
attack samples. Their enhanced WGAN-IDR performed better than other augmentation techniques. Danish et 
al.22 emphasized prioritizing key elements in datasets and allocating more computational resources to segments 
that are likely to contain patterns or anomalies indicative of security threats. This approach, combined with Bi-
LSTM, improved the ability of the detection system to learn effectively from limited datasets by integrating the 
Shapley additive explanation (SHAP)mechanism to enhance the transparency, credibility, and interpretability 
of the system. Xiao et al.23 argued that existing network intrusion detection methods rely heavily on traditional 
machine-learning or deep-learning techniques based on the statistical characteristics of network flows that 
can only be extracted after flow termination, thereby delaying intrusion detection. To address this issue, they 
proposed a detection method based on graph embedding techniques. Their approach classifies graph vectors 
using random forests, automatically extracts flow graph features using subgraph structures, and relies on only a 
few initial packets of each bidirectional network flow. Mohamed et al.24 developed an intelligent hybrid model 
using machine learning and artificial intelligence with feature reduction techniques, including singular value 
decomposition, PCA, and a k-means clustering model, to enhance the information gain, thereby ensuring high 
accuracy and reliability of the extracted features. Nan et al.25 proposed a malicious traffic detection model based 
on feature enhancement for small unbalanced datasets, grouping the original traffic features using Gaussian 
eigenvalues and generating clustering features using the k-means algorithm. This dual classification model, 
which was built on shallow neural networks and random forests, was used for network traffic detection. Ankit 
et al.26 used a bagging classifier to address class imbalance issues, employing deep neural networks (DNNs) as 
base estimators to achieve generalization while handling the class imbalance in intrusion detection datasets with 
dual benefits and advantages. Rajkumar et al.27 focused on data generation, starting with data preprocessing to 
enhance the quality of the training data. They then used adaptive synthetic oversampling techniques to generate 
minority class samples to overcome the class imbalance. Finally, they incorporated SHAP feature importance 
into the recursive feature elimination across five base classifiers for feature selection, and input these features 
into a dynamic ensemble selection technique that classifies by varying the k-value.

Multimodal feature fusion
Multimodal feature fusion techniques aim to combine data or features from different sources to enhance the 
decision-making accuracy in systems. The integration of information from multiple data sources can effectively 
identify and respond to potential network threats during network intrusion detection. However, practical 
applications often encounter challenges owing to data processing complexities and insufficient fusion efficiency. 
Ren-Hung et al.28 evaluated three host-based data sources, namely network traffic, system logs, and host metrics, 
to assess their combined detection capabilities across various attack stages and types. Network traffic data were 
processed using CNNs for improved automatic feature selection, system log data were handled with LSTMs and 
attention models to enhance the temporal relationship exploration, and host metrics were processed through 
DNNs, thereby enhancing the model performance through the detailed handling of diverse data types. Ankit 
et al.29 designed a DNN-based IDS that used a statistical significance fusion of the standard deviation and the 
difference between the mean and median for feature selection, with the aim of filtering out highly discriminative 
and biased relevant features for more effective learning. Liu et al.30 proposed a multitask deep-learning intrusion 
detection approach that combines anomaly detection, clustering, and classification, effectively addressing attack 
detection and class distribution imbalances in network traffic. Juan et al.31 introduced a feature fusion technique 
that is enhanced by gradient importance, combining feature fusion and enhancement to make the models focus 
more on classification-relevant sample features. Hong et al.32 initially designed an adversarial sample generation 
algorithm to assess the performance of IoT network intrusion detectors and proposed a new framework that 
defends against adversarial attacks through feature grouping and multimodel fusion, thereby contributing 
significantly to IoT network intrusion detection. Xiao et al.33 focused on fusing heterogeneous threat intelligence 
from security information and event management systems to reconstruct multistep attack scenarios and identify 
key attack paths. They formatted structured threat information to express heterogeneous threat intelligence 
cohesively, using semantic association weights and community detection algorithms to mine attack scenarios.
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Multimodal feature fusion detection method
This section provides a detailed introduction to our proposed multimodal feature fusion framework. We begin 
by discussing the data acquisition and preprocessing steps to ensure data quality and consistency, which are 
crucial for model training and system detection performance. Next, we demonstrate how heterogeneous data 
is generated to form multimodal datasets and explain how our framework implements comprehensive data 
analysis and feature fusion.

Data processing
To ensure the effectiveness of model training and the accuracy of system detection, this paper utilizes the 
raw pcap data from CICIDS2017 and CICIDS2018 provided by the Canadian Institute for Cybersecurity 
(CIC) as experimental datasets. These two datasets include benign network traffic and various common 
attack traffic, adhering to real-world standards to ensure the broad applicability and reproducibility of the 
datasets. Additionally, during the preprocessing phase, we rigorously align the network traffic data to generate 
corresponding multimodal data, thereby providing a solid foundation for subsequent analysis and detection.

Network traffic sources
Obtaining high-quality and representative network traffic data is crucial for network intrusion detection because 
it directly influences the model training and system detection performance. Common techniques such as packet 
capturing, port mirroring, traffic redirection, and network probes are utilized to capture raw traffic data from 
various network environments. These methods provide a foundation for model training and validation, ensuring 
the broad adaptability of data processing and reproducibility of experiments, and enhancing the universality and 
transferability of research findings.

Preprocessing and labeling
Raw traffic is first scrutinized to remove incomplete, incorrect, or anomalous records, thereby ensuring data 
quality and consistency. The cleaned traffic is then finely segmented by quintuple information (source IP address, 
source port, destination IP address, destination port, and transport-layer protocol), producing individual flow 
pcaps. Each flow pcap is matched against the official CSV file by comparing the same quintuple fields, and labels 
are assigned based on the corresponding columns in the CSV. In cases where the official CSV does not include 
complete quintuple information and direct matching is not possible, we employ CICFlowMeter to extract flow 
features and segment the original pcap into flows; these flows are then aligned to CSV entries using protocol 
identifiers and timestamps to assign labels, and the remaining processing proceeds as in the first approach.

Multimodal data generation
For labeled data, multimodal data are generated through data heterogeneity while ensuring the anonymization 
of sensitive information. Based on the research by Xu et al.34 and Wang et al.35, the model’s performance is 
excellent when the number of packets ranges from 6 to 30 and the number of bytes per packet ranges from 100 
to 200. Therefore, this study selects the first 16 packets and the first 256 bytes as input data, which is considered 
sufficient and adequate. Initially, the first 256 bytes from the first 16 packets of each network flow are extracted, 
and the four-tuple information (source IP, destination IP, source port, destination port) is anonymized to mitigate 
biases stemming from IP address variations. This anonymization process preserves the structural integrity of the 
data while safeguarding privacy and reducing skew in the analysis. Subsequently, these bytes are transformed 
into a traffic feature graph (Modality 1). For ease of loading and processing, the selected 16 packets of 256 bytes 
each are sequentially reconstructed into a 64 × 64 8-bit grayscale image. Although this may lead to some loss 
of original data, it enhances the detection timeliness and reduces the sample size. In addition, detailed traffic 
feature sets (Modality 2), including the total packet numbers and flow duration, are extracted from the complete 
flow for in-depth analysis and model training36. These features, which are shown in Table 1, include continuous 
features such as total traffic and discrete features such as TCP flag combinations to explore specific distribution 
combinations and TCP transmission states. For convenience in downstream processing, discrete combination 
features are one-hot encoded, and all features are saved in CSV format. To maintain one-to-one correspondence 
with the grayscale images, we add an additional id column to the CSV, with each id matching its corresponding 
image filename, thereby ensuring that every row in the CSV aligns with the correct image and preventing any 
loss or mismatch during data cleaning.

Network feature set composition

Number of Packets Packet Size Distribution_3 TCP Flags Count_SA

Total Traffic Packet Size Distribution_4 TCP Flags Count_S

Duration Packet Size Distribution_5 TCP Flags Count_R

Average Packet Size Packet Size Distribution_6 TCP Flags Count_PA

Max Packet Size Inter Arrival Time Mean Packet Size Distribution Combination

Min Packet Size Inter Arrival Time Variance TCP Flags Combination

Packet Size Distribution_1 TCP Flags Count_A

Packet Size Distribution_2 TCP Flags Count_FA

Table 1.  Network feature set composition.
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Multimodal fusion framework
The proposed few-shot network intrusion detection system leverages multimodal feature fusion, where original 
traffic data is transformed into two types of data through data heterogeneity. Different data types reveal distinct 
characteristics of network traffic. Traffic feature graphs primarily contain spatial distribution and temporal 
sequence information, suitable for capturing the spatial correlations of traffic patterns; whereas the network 
feature set includes more abstract network information such as packet counts and traffic length, suitable for 
analyzing high-level features of network behavior. To effectively process these two modalities of data, we have 
designed two feature extraction models: the Traffic Feature Graph Feature Extraction Model (G-Model) and 
the Network Feature Set Feature Extraction Model (S-Model). The G-Model employs a CNN architecture to 
analyze and extract local patterns and spatial dependencies in traffic features. The S-Model uses a Transformer-
based architecture, which excels in handling long sequence data and can capture long-range dependencies in the 
network feature set, followed by feature fusion. Furthermore, transfer learning is introduced to adapt to few-shot 
scenarios. The overall framework is illustrated in Fig. 1.

The multimodal fusion framework, as shown in Algorithm 1, starts by loading a batch of traffic feature graphs 
GT  and network feature sets SF . For GT , it undergoes convolution processing in the Upper Layers before being 
flattened and passed to the Lower Layers for further processing, as detailed in lines 8 to 9. SF  is processed 
through steps, as detailed in lines 11 to 13. Finally, feature vectors ys and yg  are obtained from the S-Model and 
G-Model, respectively, and feature fusion is carried out in line 15 as Φ(·). For the Transfer-Enhanced Model, 
a transition from D1 to D2 is required, along with fine-tuning of the model, as depicted in lines 20 to 24, 
culminating in the output of the classification results.

Figure 1.  Overview of the multimodal fusion framework. The Self-Sufficient Model generates features from 
heterogeneous data sources through the G-Model and S-Model for feature extraction, followed by multimodal 
fusion and classification. The Transfer-Enhanced Model inherits and freezes these feature extractors, focusing 
on fine-tuning the multimodal fusion component.
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Algorithm 1.  Multimodal fusion framework

Data heterogeneity
To capture and analyze the complexity and diversity of network traffic thoroughly, this study introduces two 
distinct data representation methods: the traffic feature graph and network feature set. These methods aim to 
delve into the network activities from different dimensions.

Traffic Feature Graph: This representation focuses on the intrinsic connections among network packets by 
sequentially selecting the first 16 packets of each flow and stacking their contents. This micro-level view helps 
our G-Model to identify potential anomalies hidden within single or consecutive packets.

Network Feature Set: From a macro perspective, this method synthesizes key continuous features such as 
the packet count, total traffic, and session duration, along with key discrete features such as the packet size 
distribution and TCP flag distribution combinations. These data serve as inputs for the S-Model, enabling it to 
detect potential threats from broader network behaviors.

Each network flow corresponds to a unique traffic feature graph and network feature set. During data 
processing, we randomly shuffle the dataset to ensure a balanced data distribution. We then iterate through the 
shuffled dataset and load the corresponding two modalities of data: the network feature set, which comprises 
21 continuous features and 2 discrete features as structured data; and the traffic feature graph, which is a 
16 × 16 × 16 tensor reconstructed from the first 256 bytes of 16 pcap files. By employing this multimodal 
approach, the aim is to analyze network traffic at multiple levels, leveraging the complementary strengths of both 
models to enhance the detection comprehensiveness and accuracy.

G-Model
The G-Model is designed to process data from Modality 1 and the specific schematic of the framework, 
comprising an arrangement of the upper and lower layers, is shown in Fig. 2. The Upper Layers, specifically 
the first and second layers, as detailed in Table 2, utilize a three-dimensional (3D) convolution (Conv3d) with 
parameters indicating the input channels, output channels, number of kernels, stride, and padding. BatchNorm3d 

Figure 2.  Schematic of the G-Model framework.
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normalizes the specified number of feature channels. The MaxPool3d parameters define the number of kernels 
and stride. The flattened layer without learnable parameters converts the input dimensions into a 1D vector.

This 1D vector is then fed into the Lower Layers (layers 3 to 7), as detailed in Table 3, where the linear layers 
(dense layers) transform the input with specific dimensions, such as 4096 to 2048. The dropout layer, set to a rate 
of 0.1, randomly nullifies 10% of its inputs during training to prevent overfitting.

S-Model
The S-Model processes data from Modality 2 and handles continuous and discrete data separately, as shown in 
Fig. 3. First, discrete inputs are processed through an embedding layer that graphs discrete values to a continuous, 
high-dimensional space. Each categorical feature has a separate embedding matrix sized as the product of the 
number of categories and output dimension. The tensors from the embedding layer then enter a Transformer37 
block (Transf), as shown in Fig. 4, which includes self-attention, residual connections, normalization, fully 
connected feedforward layers, and multiple stackable layers based on the task requirements.

This model focuses on the relationships between different parts of the input features. Each encoder block has 
multiple self-attention heads that allow the model to learn the feature relationships in parallel subspaces. For 
continuous inputs, the initial processing step involves normalization (Norm), where the mean of each feature 

Figure 3.  Schematic of the S-Model framework.

 

Layers Parameters Output dimensions

Linear-3 (4096,2048) [− 1,2048]

Linear-4 (2048,1024) [− 1,1024]

Linear-5 (1024,512) [− 1,512]

Linear-6 (512,256) [− 1,256]

Linear-7 (256,128) [− 1,128]

BatchNorm1d-3 (2048) [− 1,2048]

BatchNorm1d-4 (1024) [− 1,1024]

BatchNorm1d-5 (512) [− 1,512]

BatchNorm1d-6 (256) [− 1,256]

BatchNorm1d-7 (128) [− 1,128]

ReLU (N/A) Same as above

Dropout (0.1) Same as above

Table 3.  Parameters and output dimensions of the lower layers in the G-Model.

 

Layers Parameters Output dimensions

Conv3d-1 (1,32,3,1,1) [− 1,32,16,16,16]

Conv3d-2 (32,64,3,1,1) [− 1,64,8,8,8]

BatchNorm3d-1 (32) [− 1,32,16,16,16]

BatchNorm3d-2 (64) [− 1,64,8,8,8]

ReLU-1 (N/A) [− 1,32,16,16,16]

ReLU-2 (N/A) [− 1,64,8,8,8]

MaxPool3d-1 (2,2) [− 1,32,8,8,8]

MaxPool3d-2 (2,2) [− 1,64,4,4,4]

Flatten (N/A) [− 1,4096]

Table 2.  Parameters and output dimensions of the Upper Layers in the G-Model.
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is subtracted and then divided by its standard deviation, as illustrated in Equation (1), where X represents 
the original data,µ is the mean of the original data,σ is the standard deviation, and X ′ is the data post-
standardization. This step helps to accelerate the training process and improves the performance of the model. 
Standardized continuous features are then concatenated with discrete features processed using Transf, forming 
a hybrid input from both modalities.

	
X ′ = X − µ

σ
� (1)

Specifically, we first categorize the input data into discrete and continuous features based on their attribute 
types. For continuous features, we compute their mean and variance for standardization; for discrete features, 
we embed them into predetermined feature dimensions, as shown in Table 4. These feature dimensions comprise 
shared embeddings and independent embeddings. Considering that a single column may contain multiple 
categorical values, which often share common or structural relationships, shared embeddings of the same type 
are maintained consistently. These shared embedding vectors are randomly initialized and serve as trainable 
parameters of the model. For the Transformer layer input with a dimension of 128, it is formed by concatenating 
16 shared embeddings with 112 independent embeddings. The concatenated feature sequence is then fed into 
the Multi-Attention and Feed Forward modules, both of which utilize the standard Transformer architecture 
and are stackable.

For continuous features, taking into account the continuity of their distribution, we apply Layer Normalization 
solely to the standardized data and then concatenate the normalized output with the discrete feature vectors. Here, 
the 277-dimensional vector represents the concatenation of two expanded 128-dimensional continuous features 
and 21 continuous features, resulting in the final 277-dimensional feature representation. Finally, dimensionality 
reduction is performed through a Multi-Layer Perceptron (MLP). The MLP structure is also stackable, with 
each continuous hidden layer’s size being four and two times that of the previous layer, respectively. The input 
dimensions sequentially change as [277, 1108, 2216, 128], ultimately reducing to 128 dimensions, consistent 
with the output feature dimension of the G-Model.

Feature fusion methods
In this study, we delve into the fusion effects of different modal data at various interaction depths to maximize 
the information quantity and quality extracted from limited samples. Specifically, we have designed three feature 

Layer Input shape Output shape Description

Embedding [− 1, 2] [− 1, 2, 128] 2 discrete features are embedded into 128 dimensions.

   Shared [− 1, 2] [− 1, 2, 112] Captures common relationships among categorical values.

   Independent [− 1, 2] [− 1, 2, 16] Captures unique characteristics of each categorical value.

Transformer [− 1, 2, 128] [− 1, 2, 128] 128 represents 112 independent and 16 shared embeddings.

   Multi− head Attention [− 1, 2, 128] [− 1, 2, 128] Performs multi-head attention processing.

   Feed Forward [− 1, 2, 128] [− 1, 2, 128] Performs feed-forward neural network processing.

Layer Norm [− 1, 21] [− 1, 21] 21 continuous contents pass through Layer Norm.

MLP [− 1, 277] [− 1, 128] 277 represents all input embeddings, 2*128 + 21 inputs.

Table 4.  Layer structure with input and output shapes and descriptions for the S-model.

 

Figure 4.  Processing flowchart for discrete and continuous features in the S-Model.
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fusion methods, each corresponding to different interaction depths to enhance the model’s capability to recognize 
complex network attacks: bilinear fusion (BF), self-attention fusion (SAF), and higher-order interaction fusion 
(HIF). Let α ∈ Rd1  represent the vector processed by the G-Model and β ∈ Rd1  represent the vector processed 
by the S-Model, where d1 and d2 are the output dimensions, with the default setting d1 = d2 = d. 

	(a)	 BF This method adopts a bilinear form to integrate features from two modalities. For each output dimen-
sion i, a unique weight matrix W (i) ∈ Rd1×d2  is specifically designed to handle the pairwise product of 
corresponding elements in the two input feature vectors. Since it only considers pairwise interactions and 
does not involve higher-order or deeper relationships, it can be viewed as a single-layer deep interaction. 
In our framework, BF serves as a fundamental approach by directly using a bilinear mapping to combine 
features from the two modalities. Let α ∈ Rd1  and β ∈ Rd2  be the feature vectors of the two modalities, 
respectively. For each output dimension i, the bilinear interaction is computed via the distinct weight matrix 
W (i). An activation function ϕ(·)( e.g., ReLU) can be applied to enhance nonlinearity. The calculation is 
given by 

	
outputi = ϕ

(
αT W (i) β + bi

)
,� (2)

	 where bi is the bias term, and the final output vector has dimension o. By merging the weight matrices of all 
output dimensions, we obtain a three-dimensional tensor W ∈ Ro×d1×d2 .

	(b)	 SAF SAF first concatenates the two modality vectors into X ∈ Rd1+d2 , and then employs learnable ma-
trices W Q, W K , W V ∈ R(d1+d2)×(d1+d2) to project X into the query Q, key K, and value V. This self-at-
tention mechanism can dynamically compute interaction weights among different features, thus enabling 
more flexible information integration. Its core formula is 

	
output = softmax

(
QKT√

dk

)
V,� (3)

	 where 
√

dk  serves as a scaling factor to balance the magnitude of the dot product and stabilize gradients. To fur-
ther enhance representation capability, multi-head attention is introduced. It concatenates multiple parallel 
self-attention heads and then applies a linear transformation, as defined by 

	 MultiHead(Q, K, V ) = Concat
(
head1, . . . , headh

)
WO,� (4)

	 where each attention head is computed as 

	
headi = softmax

(
Q W

Q
i

(
K W K

i

)T

√
dk

) (
V W V

i

)
, i = 1, . . . , h.� (5)

	 Here W Q
i , W K

i , W V
i ∈ R(d1+d2)×dk  are learnable matrices, and WO ∈ R(h dk)×(d1+d2) is used to map the 

concatenated heads to the output. This design allows the model to capture a variety of feature interactions 
from multiple subspaces.

	(c)	 HIF Unlike first-order approaches that only consider original features and their linear combinations, 
high-order interactions explicitly introduce richer feature transformations such as elementwise squares 
and elementwise products (also known as Hadamard products). This strategy can yield more powerful 
representational capacity. In this method, let α ∈ Rd1  and β ∈ Rd2  be the feature vectors from two modal-
ities. HIF further includes the elementwise squares α2, β2 as well as the elementwise product α ⊙ β. The 
elementwise Hadamard product can be defined as 

	 (α ⊙ β)i = αi βi,� (6)

	 which enriches the feature representation space. Therefore, the fused feature vector is 

	 output = [ α, β, α2, β2, α ⊙ β ].� (7)

	 Flattening this concatenated result and feeding it into a learnable linear layer can balance the modeling of 
high-order dependencies and computational efficiency.
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Experiments
This section validates the practical effectiveness and efficiency of the proposed method through experiments 
conducted on two widely recognized network traffic datasets, CICIDS2017 and CICIDS2018. We utilized the 
pcap files from the aforementioned dataset as the raw data. For each network flow, we selected the first 16 pcap 
packets and the first 256 bytes of each packet, reconstructing them into a 16 × 16 × 16 tensor to represent the 
traffic feature graph. Concurrently, we performed feature extraction on the pcap files as described in Table 1, 
resulting in the network feature set. To facilitate storage and usage, we saved the extracted network feature set 
in CSV format. We designed a series of experiments aimed at comprehensively evaluating the performance of 
the method using different evaluation metrics and hyperparameter settings. The experimental setup is divided 
into three main stages: first, the sample sensitivity experiments explore the model’s performance in a few-shot 
environment to assess its accuracy and adaptability with limited data support; second, the feature fusion strategy 
experiments examine the effects of different levels of modality fusion strategies, aiming to identify the optimal 
feature fusion method to enhance the overall performance of the model; and finally, the model performance 
analysis and comparison investigate the advantages and disadvantages of the proposed model in terms of 
practicality and complexity by comparing it with traditional DNN methods.

In few-shot scenarios, the scarcity of data makes traditional training and testing ratio splits (such as 8:2) 
unsuitable. To address this, we introduce four predefined parameters: ktrain, ktest, ksource, and nway, to clearly 
define the absolute sizes of the training and testing datasets. Specifically, for the Self-Sufficient Model, the setup 
is as follows: from each class in the dataset, ktrain samples are selected for training, covering nway classes, 
resulting in a total of ktrain × nway training samples. Simultaneously, ktest samples are selected from each class 
for testing, also covering nway classes, resulting in a total of ktest × nway testing samples. For the Transfer-
Enhanced Model, the training and testing data originate from different datasets (source domain and target 
domain). In this case, the source domain uses ksource × nway samples for pre-training, while the target domain 
uses ktrain × nway samples for fine-tuning and ktest × nway samples for testing. It is important to note that 
both ktrain and ktest are defined per class rather than as overall sample counts. This definition ensures that the 
number of attack samples during testing and evaluation is both clear and limited, thereby effectively validating 
the correctness of the experiments and the robustness of the model under few-shot conditions.

This study used two widely recognized network traffic datasets, CICIDS2017 and CICIDS2018, which are 
provided by CIC. These datasets include both normal and malicious traffic, simulating real-world network 
environments to evaluate the performance of NIDSs effectively. We excluded attack types with extremely small 
sample sizes that could not ensure statistical stability and meet model training requirements. Specifically, in 
CICIDS2017, we excluded Infiltration and Botnet types. In CICIDS2018, we excluded the Web Attack type. The 
attack types utilized in subsequent experiments and their descriptions are shown in Tables 5 and 6.

Evaluation metrics
In this study, we used the following evaluation metrics to assess the model performance comprehensively: 
accuracy rate (ACC), precision rate (PR), detection rate (DR), and F1-score. Macro-averaging was introduced to 
provide a more precise evaluation of multiclass problems. The specific formula is shown in Equation (5), where 
N represents the total number of categories,Cii represents the number of correct predictions,Cij  represents the 
total number of predictions, and T Pi, T Ni, F Pi, F Ni with the subscript i is used to distinguish between the 
different types.

Type Identifier Description

Botnet D1 Steals personal information by capturing browser user records and forms

DDoS D2 Distributed denial of service attacks making the target server or network resources unreachable

DoS D3 Denial of service attacks targeting web applications, including SQL injection, command injection, etc

Brute Force D4 Attempts to crack by trying multiple username and password combinations until successful

Normal D5 Represents normal network traffic without malicious activities

Table 6.  Types, identifiers, and descriptions of selected CICIDS2018 dataset.

 

Type Identifier Description

Brute force C1 Attempts to crack by trying multiple username and password combinations until successful

Port scan C2 Scans various ports on a server to discover open ports and services

Web attack C3 Attack targeting web applications, including SQL injection, command injection, etc

DDoS C4 Distributed Denial of Service attacks making the target server or network resources unreachable

Normal C5 Represents normal network traffic without malicious activities

Table 5.  Types, identifiers, and descriptions of selected CICIDS2017 dataset.

 

Scientific Reports |        (2025) 15:21986 10| https://doi.org/10.1038/s41598-025-05217-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	




ACC =

N∑
i=1

Cii

N∑
i=1

N∑
j=1

Cij

P recisioni = T Pi
T Pi+F Pi

Detectioni = T Pi
T Pi+F Ni

Macro-P R = 1
N

N∑
i=1

P recisioni

Macro-DR = 1
N

N∑
i=1

Detectioni

Macro-F 1 = 2 · Macro-P R×Macro-DR
Macro-P R+Macro-DR

� (8)

Hyperparameter settings
Table 7 details the baseline model architecture and its hyperparameter configurations. The parameter mlp_mults 
represents the multiplier factors used to determine the sizes of the hidden layers in the MLP, where (4, 2) indicates 
that each successive hidden layer is four and two times the size of the preceding one, respectively. Linear Fusion 
(LF) refers to the final feature fusion part that uses only a linear combination of vectors from the two modalities.

In the S-Model, heads indicate the number of heads in the multi-head attention mechanism, while depth 
refers to the number of layers to be stacked. fusion dim represents the dimension of the data after processing by 
the G-Model and S-Model, and epochs denote the total number of training rounds, noting that the mentioned 
epochs are default values. batch refers to the number of samples processed per batch. ktrain and ktest represent 
the number of samples per type in the training and testing phases, respectively. Considering the concepts of 
source and target domains in transfer learning, the number of training samples used in the source domain is 
denoted as ksource. nway specifies the number of categories in the classification problem.

Experimental setup
We designed three-phased experiments to evaluate and optimize our model thoroughly. Each phase examined 
the performance of different models within the detection system from various perspectives, identifying key 
strategies for improvement, and ultimately determining the best model combination.

Sample sensitivity
This experiment explored the sensitivity of the Self-Sufficient and Transfer-Enhanced models to different 
sample sizes. Using the CICIDS2017 and CICIDS2018 datasets, we aimed to evaluate the generalization and 

Model architecture (stacking times/fusion method) Hyperparameter Value

Upper Layers G-Model (2) Padding 1

Lower Layers G-Model (5) Dropout 0.1

S-Model-Transf. (6)

Heads 4

Dim 32

Depth 6

attn_dropout 0.1

ff_dropout 0.1

S-Model-MLP mlp_mults (4, 2)

Self-sufficient model (LF)

lr 0.001

Dropout 0.1

Optimizer adam

Loss function Cross entropy

Transfer-enhanced model (LF)
lr 0.0001

Dropout 0.3

Common settings

Batch size 32

Epochs 200

Fusion dim 128

ktrain [5, 10, 15]

ktest 30

ksource 100

nway 5

Table 7.  Baseline architecture and hyperparameter configurations.
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adaptability of the models using data collected at different times and in different network environments. This 
aids in understanding the performance of the models under various conditions, providing a basis for further 
optimization and application.

Feature fusion
In this section, we investigate the impact of three different feature fusion strategies on the model performance by 
comparing them with the baseline model. Comprehensive evaluations were conducted using the CICIDS2017 
and CICIDS2018 datasets to determine the most suitable fusion strategy for the model framework.

Model performance analysis and comparison
We compared our model with common DNN models using multiple metrics including the accuracy, floating-
point operations (FLOPs), and total parameters. These comparisons aimed to analyze the advantages of our 
model in terms of resource efficiency and performance relative to other methods, highlighting its potential 
application value.

Detection results
To investigate the impact of selecting an appropriate number of training epochs on model performance using the 
CICIDS2017 and CICIDS2018 datasets, we employed a Self-Sufficient Model under limited sample conditions 
and conducted experiments using the baseline model LF. We set K = 3 and nway = 5, and used ACC from 
Equation (5) as the evaluation metric to demonstrate the model’s performance convergence throughout the 
training process. As shown in Fig. 5, the model’s ACC was approximately 20% within the first 25 training epochs, 
indicating that the model had not yet learned effective features for the five-class classification problem. Between 
25 and 75 training epochs, the model’s accuracy rapidly increased, and it stabilized with minimal fluctuations 
between 75 and 200 training epochs. Considering both model performance and training time, we set 200 training 
epochs as the initial configuration for subsequent experiments.

Sample sensitivity experiment
To investigate the sensitivity of the self-sufficient and Transfer-Enhanced models to the sample size, the Transfer-
Enhanced Model was pre-trained with 100 samples on the baseline model. Specifically, if fine-tuning is required 
on CICIDS2017, the model is first pre-trained on CICIDS2018, and vice versa. We then determined the model 
accuracy for different sample sizes (K). The experimental results are shown in Figs. 6 and 7.

Figure 6 shows that the accuracy of the Self-Sufficient Model rapidly increased within 25 epochs, with 
the model quickly converging and exhibiting minor accuracy fluctuations. As the sample size increased, the 
accuracy on both the CICIDS2017 and CICIDS2018 datasets continued to improve. Similarly, the accuracy 
curve in Fig. 7 indicates that as the sample size increased, the overall accuracy of the Transfer-Enhanced Model 
also increased significantly. Additional metrics were used to provide a comprehensive evaluation, the results of 
which are presented in Tables 8 and 9.

The experimental results shown in Tables 8 and 9 indicate that ∆ ACC represents the performance 
improvement of the Transfer-Enhanced model over the Self-Sufficient model for the corresponding K values. 
For the CICIDS2017 dataset, the performance of the Self-Sufficient model gradually improved as the value of K 
increased, with ACC rising from 0.912 to 0.947. Simultaneously, the values of Macro-DR, Macro-F1, and Macro-
PR also increased, demonstrating the model’s adaptability to the target dataset. The performance of the Transfer-
Enhanced model was more complex. At K = 5, the ACC was 0.892, which is a 2.0% decrease compared to the 
Self-Sufficient model’s 0.912. However, as K increased, the Transfer-Enhanced model’s performance improved, 
with ACC rising to 0.951 at K = 10 and 0.960 at K = 15. Additionally, Macro-DR, Macro-F1, and Macro-PR 

Figure 5.  Performance of the Self-Sufficient Model on the CICIDS2017 and CICIDS2018 datasets.
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Model K ACC ∆ ACC (%) Macro-DR Macro-F1 Macro-PR

Self-sufficient

5 0.984 – 0.9844 0.9843 0.9842

10 0.984 – 0.9845 0.9844 0.9843

15 0.997 – 0.9970 0.9970 0.9970

Transfer-enhanced

5 0.920 − 6.4% ↓ 0.9242 0.9231 0.9221

10 0.971 − 1.3% ↓ 0.9712 0.9712 0.9711

15 0.988 − 0.9% ↓ 0.9881 0.9881 0.9880

Table 9.  Performance of two models on the CICIDS2018 dataset.

 

Model K ACC ∆ ACC (%) Macro-DR Macro-F1 Macro-PR

Self-sufficient

5 0.912 – 0.9143 0.9138 0.9132

10 0.938 – 0.9392 0.9399 0.9387

15 0.947 – 0.9495 0.9491 0.9486

Transfer-enhanced

5 0.892 − 2.0% ↓ 0.8840 0.8863 0.8865

10 0.951 +1.3% ↑ 0.9512 0.9506 0.9499

15 0.960 +1.3% ↑ 0.9631 0.9626 0.9621

Table 8.  Performance of two models on the CICIDS2017 dataset.

 

Figure 7.  Performance of the transfer-enhanced model on two datasets.

 

Figure 6.  Performance of the self-sufficient model on two datasets.
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also improved, suggesting that although the Transfer-Enhanced model performed worse in small sample sizes, 
its advantages began to show as the value of K increased, benefiting from pretraining. For the CICIDS2018 
dataset, the Self-Sufficient model performed exceptionally well, especially at K = 15, where ACC reached 0.997, 
and Macro-DR, Macro-F1, and Macro-PR were all 0.9970. The Transfer-Enhanced model performed slightly 
worse, but still showed certain advantages. At K = 5, the ACC was 0.920, which was a 6.4% decrease compared 
to the Self-Sufficient model, and at K = 10, the ACC decreased by 1.3%. However, as K increased, the Transfer-
Enhanced model’s performance steadily improved, particularly at K = 15, where the ACC reached 0.988, closely 
approaching the performance of the Self-Sufficient model.

Overall, the Transfer-Enhanced model performed poorly at small sample sizes (K = 5), likely due to the 
discrepancy between source and target domain data, which hindered effective feature transfer during fine-
tuning. However, as the sample size increased, the Transfer-Enhanced model gradually exhibited the advantages 
of pretraining, especially when the target domain dataset was larger, offering improved generalization. In 
contrast, the Self-Sufficient model showed more stable performance on the target dataset, particularly with fewer 
samples. However, its drawback lies in its potential inability to handle complex patterns and variations in the 
target dataset. The Self-Sufficient model may be more suitable when the data is limited or when the source and 
target domains are similar, while the Transfer-Enhanced model is better suited for scenarios with larger target 
domain data and significant differences between source and target domain distributions, leveraging the benefits 
of pretraining.

Feature fusion experiment
In this experiment, the accuracy and loss values of the final 100 epochs were collected to reflect the performance 
of the three feature fusion strategies compared with the baseline model. The results are shown in Fig. 8.The 
baseline model exhibited a low loss and an accuracy of approximately 90%. In contrast, BF and HIF exhibited 
greater loss fluctuations. The accuracy of SAF consistently remained above the baseline, SAF, and HIF, with loss 
values below 0.2.

In addition, we collected the performance results of these three methods over 100 epochs on the test set to 
explore the effectiveness of the various feature fusion methods, as shown in Fig. 9.

To reflect the performance of the models for the different types further, we repeated the experiments for 100 
epochs for the three methods and accumulated the corresponding confusion matrices, as shown in Fig. 10. The 
figure reveals that the baseline model performed poorly on the DDoS and port scanning types, which is an issue 
that extended to BF. However, all fusion methods showed an improvement in ACC compared with the baseline 
model, with increases of 0.11%, 2.86%, and 0.54%, respectively, and SAF showed the largest improvement.

Figure 9.  Performance of three feature fusion methods on various evaluation metrics.

 

Figure 8.  Performance of three feature fusion methods on the CICIDS2017 dataset.
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According to the detection results across various types, SAF effectively improved the detection of the DDoS 
and port scanning types, which were poorly handled by the baseline model. The experimental results indicate 
that SAF outperforms BF and HIF not only in overall accuracy but also in loss stability and its ability to detect 
DDoS and port scanning attacks. From these observations, we can infer that SAF is more robust in fusing 
different feature information, effectively mitigating redundancy and noise among features, thereby capturing 
target patterns more accurately. Overall, we selected SAF to replace the default LF for the following reasons: the 
accuracy improvement of SAF over the baseline model, as shown in Fig. 10, indicates that the model can extract 
and learn more complex patterns, supporting its suitability for few-shot environments. Moreover, this stability 
is not only evident in the numerical metrics but also reflects the model’s enhanced adaptability to variations 
in data distribution, which offers a stronger safeguard against the diverse attacks encountered in practical 
applications. We further speculate that the design philosophy of SAF enables the model to maintain a high level 
of generalization even when facing few-shot or abnormal data, thereby improving the overall practicality and 
reliability of the system. Figures 8 and 9 show that the SAF results were stable and enhanced the detection across 
different types, providing a robust basis for transfer-enhanced learning.

Comparison of evaluation metrics for different models
In this section, we compare the performance of various deep-learning models in network intrusion detection 
tasks by assessing their performance with different sample sizes and providing the FLOPs and total parameters. 
The FLOPs are represented in millions (M) and Total params denote the total number of model parameters.

Table 10 shows that the proposed models outperformed other DNN models with K = 5, achieving accuracies 
of 93.1% and 98.8% with K = 15. While AlexNet and GoogleNet achieved accuracies of 93.3% and 93.7%, 
their FLOPs were significantly higher, at 90.59M and 116.61M, respectively. This indicates that our framework 
maintains high accuracy while reducing the computational resource requirements, effectively improving the 
model efficiency.

Figure 10.  Confusion matrix of four feature fusion methods.
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Summary of results
The proposed Self-Sufficient Model effectively addressed few-shot multiclass network intrusion detection, 
achieving 91.2% accuracy with only five samples in the baseline model. Selecting an appropriate multimodal 
fusion method increased the accuracy to 92.8%, which was an improvement of 1.6%. Utilizing prior data for 
pretraining with the Transfer-Enhanced Model further boosted the accuracy to 93.4%, which was a 2.2% 
increase. Although the Transfer-Enhanced Model improves the accuracy of the Self-Sufficient Model, it may 
lead to performance degradation when the sample size is small (K = 5) due to the inability to effectively transfer 
features from the source domain to the target domain. The introduction of the SAF (Self-Attention Fusion) 
method effectively addresses this issue by improving the performance of the Transfer-Enhanced Model with 
multimodal feature fusion, increasing the accuracy by 1.6% at K = 5. This combined approach of pretraining and 
multimodal fusion not only shows advantages with larger sample sizes but also effectively enhances the model’s 
performance in few-shot settings, further demonstrating the potential of the Transfer-Enhanced Model. The 
following three conclusions can be drawn: 

	(1)	 The proposed multimodal feature extraction technique significantly improved the accuracy in few-shot 
environments. Even with a linear feature combination, it achieved 91.2% accuracy, outperforming other 
methods and demonstrating effective feature extraction.

	(2)	 The multimodal fusion method reduced model fluctuations while improving accuracy and requiring fewer 
computational resources. SAF achieved 92.8% accuracy, which was superior to the baseline accuracy of 
91.2%, with only 43.99M FLOPs, which was much lower than those of AlexNet (90.59M) and GoogleNet 
(116.61M).

	(3)	 Leveraging prior data with the Transfer-Enhanced Model further enhanced the accuracy from 92.8% to 
93.4% and from 92.9% to 95.2%, increasing it by 0.6% and 2.3%, respectively.

Discussion
In this section, we will explore the comparative results between the proposed model and other few-shot methods, 
as well as analyze the outcomes of the one-shot cases and ablation experiments. First, by comparing with the latest 
few-shot approaches, we will demonstrate the effectiveness and advantages of the multimodal method in network 
intrusion detection. Next, in the one-shot cases, we will test the model’s adaptability under extremely limited 
sample conditions, examining the impact of transfer learning and feature fusion in such extreme scenarios. 
Finally, in the ablation study, we will assess the influence of different modality interaction dependencies to gain a 
deeper understanding of how feature extraction modules work together to enhance overall system performance, 
revealing the key role each feature extraction module plays in boosting system efficiency.

Comparison with related work
To investigate the performance of the proposed model, we compared it with recent few-shot methods. Unlike 
many existing methods that use only one type of file, the datasets used include both CSV and pcap files. It is 
important to note that the CSV files used in this study were created by us through feature extraction from the 
original pcap files. These feature files were saved in CSV format for easier storage and accessibility, and are not 
the same as the CSV files provided by CIC. This multimodal approach is a key innovation in the field. In Table 11, 
we summarize each method’s sample size, type, dataset, accuracy, and three additional design dimensions: Feat. 
Ext., Data Type, and Learning Paradigm. Feat. Ext. indicates the backbone network used for feature extraction; 
Data Type indicates the form of input data; Learning Paradigm indicates the overall training strategy.

Table 11 shows selected similar works, where FE-MTDM used 1% of the CICIDS2017 dataset and GDE used 
a total of 140 samples. The sample sizes of the other models are shown per type, and not the total.The FSIDS-IOT3 
is a hybrid dataset that includes a mixture of five types of data from CICIDS2017 and CICIDS2018 datasets. The 
methods in the table mainly focus on different sample sizes (K values) and datasets. Our Self-Sufficient Model 
and Transfer-Enhanced Model show excellent performance. For example, on the CICIDS2017 dataset, the Self-
Sufficient Model (K = 5) achieved an accuracy of 92.80%, while the Transfer-Enhanced Model (K = 5) reached 

Feature extraction module

ACC (%) FLOPs
(M)

Params
(M)K = 5 K = 10 K = 15

CNN2D 83.6 89.3 91.4 38.97 0.13

CNN3D 84.4 92.3 89.7 43.69 11.24

ResNet18 88.4 90.0 92.6 142.43 11.17

VGG16 20.0 20.0 20.0 1367.65 134.27

AlexNet 82.2 92.5 93.3 90.59 57.01

GoogleNet 71.1 94.5 93.7 116.61 5.60

DenseNet 77.3 83.5 91.4 229.98 6.95

MobileNet 71.4 83.4 92.0 26.05 2.23

SqueezeNet 64.0 70.2 75.3 22.29 0.72

Self-Sufficient 92.8 92.9 93.1 43.99 11.45

Transfer-Enhanced 93.4 95.2 98.8 43.99 11.45

Table 10.  Comparison of metrics for different feature extraction modules.

 

Scientific Reports |        (2025) 15:21986 16| https://doi.org/10.1038/s41598-025-05217-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


93.40%. On the CICIDS2018 dataset, the Transfer-Enhanced Model (K = 5) achieved an accuracy of 98.50%, 
slightly higher than the Self-Sufficient Model (98.40%). In comparison with other methods, although our models 
are slightly lower than FE-MTDM (99.70%), the Transfer-Enhanced Model at K = 10 achieved 95.20% accuracy 
on the CICIDS2017 dataset, outperforming most similar models. Although FE-MTDM achieved a very high 
accuracy of 99.70% using only 1% of the CICIDS2017 dataset, its sample size is much larger than that in our 
experimental setup. Additionally, the performance of MAML+CNN on the FSIDS-IoT dataset indicates that 
while a smaller sample size can enhance generalization ability, there are still challenges in adaptability. To further 
explore the generalization ability of our model, we conducted a generalization analysis.

In terms of data types, existing methods can be grouped into four categories: the first uses only raw network 
traffic, including Meta-learning38, FS-IDS39, SPN40, MetaMRE43 and Res Natural GAN45, which preserve packet-
level timing and payload details to capture fine-grained attack patterns but lack flow-level global statistical 
information; the second relies solely on static statistical features, such as Siamese Network42, MAML+CNN3 
and FML44, using low-dimensional vectors such as packet counts, flow durations and byte distributions that 
are easy to interpret and computationally efficient but unable to model packet-level dynamics and therefore 
perform poorly in scenarios with brief spikes or similar statistical profiles; the third, exemplified by GDE41, 
maps traffic into Gramian Angular Field images with diffusion-based augmentation and achieves high accuracy 
on CICIDS2018 but its preprocessing pipeline is complex and time-consuming and thus unsuitable for online 
deployment; and the fourth fuses raw traffic with static features, as in FE-MTDM25 and our method, where 
FE-MTDM concatenates modalities at a high level and our approach employs multi-head self-attention for 
cross-modal interaction, enabling deeper dynamic-static integration and superior generalization in few-shot 
and cross-dataset transfer scenarios. In terms of backbone feature extraction, FE-MTDM uses a shallow neural 
network and random forest, which is lightweight and fast but limited in expressiveness; MAML+CNN3 and 
Siamese Network42 adopt convolutional architectures that excel at capturing local temporal patterns but struggle 
with long-range dependencies; SPN40 enhances convolutional networks by adding an attention mechanism 
to emphasize critical packets; and our approach combines a CNN for temporal feature extraction with a 
Transformer encoding of statistical vectors, thereby retaining packet-level dynamics and capturing flow-level 
distributions to deliver stronger representational power at the cost of increased complexity and computation. 
Regarding convergence speed and rapid adaptation, prototype networks such as those in Meta-learning38 require 
only prototype and classification-head learning to converge quickly and support incremental new classes; 
MAML-based methods like MetaMRE43 leverage meta-training and fine-tuning to adapt swiftly in extremely 
low-data regimes albeit with higher training overhead; and transfer learning, when source and target domains 
are similar and class distributions differ markedly, achieves fast convergence and strong adaptation through 
pretraining plus lightweight fine-tuning but under extreme few-shot conditions or significant distribution shifts 
it cannot match MAML’s rapid few-gradient-step adaptation.

One shot cases
We explored the performance of the models using only one sample and analyzed the impact of transfer learning 
and feature fusion in these extreme few-shot scenarios. The results are shown in Fig. 11 and Table 12, where S 
represents the Self-Sufficient Model and T represents the Transfer-Enhanced Model. The Self-Sufficient Model 

Model/method K Type Dataset ACC Feat. Ext. Data type Learning paradigm

Meta-learning (2022)38 10 Multi CICIDS2017 97.56% CNN Raw network traffic Prototypical network

FS-IDS (2022)39 5 Binary CICIDS2017 97.51% CNN Raw network traffic Metric learning

SPN (2023)40 5 Binary CICIDS2017 94.37% CNN + Attention Raw network traffic Supervised learning

GDE (2023)41 140 Multi CICIDS2018 99.13% CNN GAF image encoding Diffusion model

Siamese Network (2023)42 1 Multi CICIDS2017 80.81% ANN Statistical feature vectors Siamese network

MetaMRE (2023)43 10 Binary CICIDS2017 93.30% Dilated causal conv Raw network traffic MAML

MetaMRE (2023)43 10 Multi CICIDS2017 91.80% Dilated causal conv Raw network traffic MAML

FE-MTDM (2023)25 65341 (1%) Multi CICIDS2017 99.70% Shallow NN + RF Raw + statistical features Prototypical network

MAML+CNN (2023)3 5 Multi FSIDS IoT 89.64% CNN Statistical feature vectors MAML

FML (2024)44 10 Multi CICIDS2017 87.27% ResNet Statistical feature vectors Federated meta learning

Res-Natural GAN (2024)45 15 Binary CICIDS2018 95.75% GAN based CNN Raw network traffic Prototypical network

Self-Sufficient Model 5 Multi CICIDS2017 92.80% CNN + Transformer Raw + statistical features Supervised learning

Transfer-Enhanced Model 5 Multi CICIDS2017 93.40% CNN + Transformer Raw + statistical features Transfer learning

Self-Sufficient Model 10 Multi CICIDS2017 92.90% CNN + Transformer Raw + statistical features Supervised learning

Transfer-Enhanced Model 10 Multi CICIDS2017 95.20% CNN + Transformer Raw + statistical features Transfer learning

Self-Sufficient Model 5 Multi CICIDS2018 98.40% CNN + Transformer Raw + statistical features Supervised learning

Transfer-Enhanced Model 5 Multi CICIDS2018 98.50% CNN + Transformer Raw + statistical features Transfer learning

Self-Sufficient Model 10 Multi CICIDS2018 98.70% CNN + Transformer Raw + statistical features Supervised learning

Transfer-Enhanced Model 10 Multi CICIDS2018 99.50% CNN + Transformer Raw + statistical features Transfer learning

Table 11.  Comparison of sample size, classification type, dataset, accuracy, feature extractor, data type, and 
learning paradigm in similar works.
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achieved accuracies of 74.1% and 71.3%, respectively. Incorporating different fusion models yielded varied 
results: a 4.3% decrease on CICIDS2017 but an 18.5% increase on CICIDS2018, indicating the sensitivity of the 
model to datasets, particularly in extreme few-shot scenarios. The Transfer-Enhanced Model showed increases 
of 8.2% and 0.4%, respectively.

In the CICIDS2017 dataset, we replaced LF with SAF, which performed best in the Self-Sufficient Model, 
resulting in a 4.3% decrease in model performance. In the Transfer-Enhanced Model, using SAF instead of 
LF improved model performance by 3.9%. This indicates that SAF has a certain dependency on sample size 
and that the Attention mechanism requires more data to leverage its advantages. In contrast, the Transfer-
Enhanced Model utilized more data during training, thereby achieving performance gains. Under extremely 
small sample conditions, the Self-Sufficient Model combined with SAF failed to fully realize its performance 
and was even inferior to the LF-based model. For the CICIDS2018 dataset, SAF demonstrated significant 
performance improvements of 18.5% and 18.9% in both the Self-Sufficient Model and the Transfer-Enhanced 
Model, respectively. This suggests that under extremely small sample conditions, internal differences within 
the dataset are amplified, and the performance of the Attention mechanism varies significantly across different 
datasets. Additionally, compared to the Siamese Network in Table 11, the method proposed in this paper still has 
a 2.81% performance gap. This is also the direction for our future optimization efforts.

Ablation study
Finally, we designed specific feature extraction modules (G-Model and S-Model) to handle multimodal data. To 
investigate the impact of these modules on the model performance, we sequentially removed different feature 
extraction modules. This process helped us to understand the contribution and role of each module and how 
their interactions affected the overall experimental results. Specifically, we sequentially set the output dimensions 
of the G-Model and S-Model to zero to nullify the effects of each model. The experimental results are shown in 
Fig. 12, where S-Model + G-Model indicates the use of both models.

To evaluate the model thoroughly, we used additional evaluation metrics for the test set. The results are 
shown in Fig. 13.

Figures 12 and 13 show that removing the G-Model or S-Model resulted in significant declines in the ACC, 
Macro-F1, and Macro-PR metrics. Specifically, using only the S-Model resulted in decreases of 2.2%, 2.5%, and 
2.8%, respectively, whereas using only the G-Model resulted in decreases of 2.6%, 3.3%, and 4.0%, respectively. 
These experimental results demonstrate that the standalone use of either the G-Model or S-Model significantly 
diminishes key performance metrics, emphasizing the critical role of both modules in enhancing overall model 
performance. Our analysis suggests that the G-Model primarily captures global feature information, providing 
a macroscopic foundation for discrimination, while the S-Model extracts fine-grained local features, addressing 
any details that may be overlooked by the global representation. This complementary dynamic enables the model 
to maintain robust discrimination overall, while still ensuring precise recognition of fine details, even when 
confronted with complex and diverse attack types. This design not only validates the effectiveness of multimodal 
feature extraction but also offers a theoretical framework for tackling diverse and emergent attacks in real-

Model and sample CICIDS2017 CICIDS2018

SAF + S-1 69.8% 89.8%

SAF + T-1 78.0% 90.2%

LF + S-1 (baseline) 74.1% 71.3%

Table 12.  Effects of different models, sample sizes, and datasets on the test accuracy.

 

Figure 11.  Performance under different model, sample, and dataset combinations.
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world settings. Furthermore, the synergy between the two modules boosts the model’s adaptability to novel or 
unknown attack types, enhancing its competitiveness in few-shot scenarios.

In addition to the primary contributions of our work, we observe that the G-Model and S-Model, through 
their complementary relationship, further enhance the model’s robustness and generalization ability in few-shot 
tasks. While this observation is based on experimental results and intuitive reasoning, it provides an additional 
insight into the potential advantages of the multimodal approach. These results demonstrate that both the 
G-Model and S-Model are crucial components of the proposed method. Their combination effectively handled 
multimodal data, showing clear advantages over single-feature extraction modules across various evaluation 
metrics. The ablation study confirmed the importance of each component and its significant contribution to 
improving the overall system performance.

Generalization analysis
To further investigate the model’s generalization ability, specifically its adaptability to different attack types, we 
note that the CICIDS2017 and CICIDS2018 datasets contain the same attack types. This could cause the model 
to implicitly learn corresponding feature representations during training, which may affect its generalization 
performance. To address this issue, we merged these two datasets. Specifically, for attack types common to both 
datasets, we randomly selected half of the data from each dataset, resulting in a final dataset containing seven 
distinct attack types. To evaluate the model’s generalization to unseen attack types, we employed a source-target 
domain splitting strategy. In the source domain, we pre-trained using nway attack types, while in the target 
domain, we tested using the remaining 7 − nway attack types. In the experiments, the number of samples in the 
source domain was fixed at 100, while the number of samples in the target domain was varied with K = 5, K = 10, 
and K = 15. Additionally, we tested with nway = 2, 3, 4 to reflect the model’s generalization performance across 
different classification scenarios and sample sizes. The results are shown in Table 13.

From the results in Table 13, it can be observed that in the 2-class case, the accuracy continuously increases 
as K increases, reaching 95.9% at K = 15. In the case of nway = 3, since the source domain pre-training contains 
only 4 attack types, the target domain classification becomes a 3-class problem. This results in reduced pre-
training data and increased classification difficulty, leading to a slight decrease in accuracy at different K values. 
As nway further increases, this trend becomes more pronounced. Nevertheless, the model still achieves high 
accuracy in this scenario, with values of 88.9% and 92.6%, demonstrating that the proposed model retains strong 
generalization capabilities when faced with different classification tasks and attack types.

Figure 13.  Performance comparison of different models on various evaluation metrics.

 

Figure 12.  Accuracy across training epochs for different feature extractors.
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 Potential threats and assumptions
To more comprehensively evaluate the security and applicability of our proposed method in real-world 
scenarios, we present a set of assumptions regarding potential threat scenarios and possible defense strategies. 
We hypothesize that adversaries may alter network traffic features or execute data poisoning. In such cases, 
defense strategies could include anomaly detection46 to identify feature alterations and robust data validation 
methods, such as outlier detection, to mitigate the impact of data poisoning. We also consider different levels 
of adversarial information access. In black-box attacks, adversaries rely on system outputs, while in white-box 
attacks47, they can access internal model details. Potential countermeasures could involve model obfuscation 
techniques, like ensembling or gradient masking48, and robust training to improve generalization. Finally, we 
assume that datasets in network intrusion detection research typically have high integrity, but in real-world 
deployments, data may be subject to corruption or interference49. In response, we suggest that real-time anomaly 
detection and continuous learning50 could help the model adapt to evolving attack patterns and maintain 
performance in the presence of noise.

Regarding the detection of unseen attacks, we mainly focus on the few-shot scenario, in which the system 
encounters a novel attack type with only a very limited number of samples, whereas the completely zero-shot 
case belongs to a different research domain. In fact, in real-world environments, zero-day and real-time attack 
scenarios are often accompanied by an extremely limited number of attack samples, sometimes even only a 
single sample; in such one-shot cases, the detection challenge is particularly severe. Traditional methods that rely 
on large amounts of training data often struggle to adapt quickly to such extreme cases, whereas our algorithm is 
specifically designed for few-shot (and even one-shot) scenarios. Existing methods leverage pre-trained models 
with domain adaptation strategies51 to rapidly capture novel attack behaviors, enabling timely responses and 
real-time detection of zero-day attacks. While our approach does not currently incorporate this, it could benefit 
from this strategy in future work, thus extending its applicability to a broader range of practical scenarios.

As for the detection of encrypted traffic, although direct detection without decryption poses significant 
challenges, previous research has demonstrated that effective identification of malicious traffic can be achieved 
by extracting statistical features that remain invariant during the encryption process52,53. In summary, despite 
the valuable insights provided by our theoretical analysis, we currently lack experimental validation for these 
potential threats and defense strategies; in future work, we plan to design and implement systematic experiments 
to evaluate and enhance the robustness of our method against unseen attacks, interference from adversarial 
samples, encrypted traffic, and other complex scenarios.

Future work
In our future research, we plan to take the following measures to address the current challenges faced by our 
system: First, to tackle computational complexity, we will develop more streamlined model architectures and 
experiment with model compression techniques such as parameter pruning and quantization to reduce resource 
consumption. Simultaneously, we plan to leverage the latest hardware acceleration54 technologies and optimized 
distributed computing strategies to enhance our capability to process large-scale data. Regarding fusion 
strategies, we will explore methods that reduce computational burden without sacrificing prediction accuracy 
and investigate new lightweight fusion frameworks suitable for multimodal data. In terms of explainability, we 
will delve deeper into integrating advanced explainable artificial intelligence technologies55, such as feature 
attribution, visualization of attention mechanisms56, and surrogate models. This will enhance the transparency 
and trustworthiness of our models57, increasing security analysts’ reliance on our judgments. Through these 
measures, we aim not only to solve efficiency and performance issues but also to significantly enhance user 
acceptance and the practical value of our models. Furthermore, we will continue our research and technological 
innovations to further optimize our multimodal detection systems, making them more adaptable to the rapidly 
changing landscape of network security.

Conclusion
This study introduces a multimodal fusion NIDS to address the limitations of single-modality methods in 
detecting diverse and complex multiclass attacks. The system employs heterogeneous data generation techniques 
to produce multimodal data from different perspectives and integrates CNNs with the Transformer’s multi-
head attention for effective local and global information processing. Additionally, we implement three feature 
fusion strategies to integrate information from various modalities, enhancing detection performance and 
generalization. Experimental results on CICIDS2017 and CICIDS2018 datasets show that even with only five 
samples, our system achieves accuracies of 93.40% and 98.50%, surpassing existing technologies. In future 
work, further refinement of fusion strategies and system expansion will be required to counter evolving network 
threats more effectively.

nway

ACC (%)

K = 5 K = 10 K = 15

2 91.3 93.7 95.9

3 85.2 89.3 92.6

4 81.8 84.3 88.9

Table 13.  Generalization performance of the model under different attack types.
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Data availability
The two datasets and code used in this study can be accessed through the following links: the CICIDS2017 data-
set https://www.unb.ca/ cic/datasets/ids-2017.html and the CICIDS2018 dataset ​h​t​t​p​s​:​/​/​w​w​w​.​u​n​b​.​c​a​/​c​i​c​/​d​a​t​a​s​e​t​
s​/​i​d​s​-​2​0​1​8​.​h​t​m​l​​​​​. The code for this study can be found at https://github.com/cyxuzju/multimodal-IDS.
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