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The recent growth of single-cell transcriptomics has made single-cell RNA sequencing (scRNA-seq) 
into a near-routine technique. Breakthroughs in scalability have led to the creation of organism-
wide transcriptomic datasets, aiming to comprehensively profile the cell types and states within 
an organism throughout its lifecycle. However, the skeleton remains an underrepresented organ 
system in organism-wide atlases. Given the skeleton’s critical role as the central framework of the 
vertebrate body, its function in housing the hematopoietic niche, and its involvement in metabolic 
and homeostatic processes, its underrepresentation presents a significant gap in current reference 
atlas projects. To address this issue, we integrated ten separate murine, publicly available scRNA-seq 
datasets, which include limb skeletal cells and their developmental precursors, resulting in an atlas of 
133,332 cells. This limb skeletal cell atlas describes cells within the mesenchymal lineage, focusing on 
the process from limb induction to adult bone formation, and encompasses 39 well-characterized cell 
types and states. By expanding the repertoire of time points and cell types within a single dataset, 
we enable more complete analyses of cell-cell communication or in silico perturbation studies. 
Together, these efforts present a valuable resource for researchers in skeletal biology, metabolism, and 
regenerative medicine, filling an important gap in current atlas mapping projects.
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The skeleton is a highly advanced organ with a wide variety of functions, ranging from protection of the internal 
organs and supporting locomotion to calcium homeostasis, housing the hematopoietic system and serving 
an endocrine function1. In addition, some skeletal tissues possess remarkable regenerative properties, with 
bone being able to spontaneously regenerate after fracture with minimal scar formation2. While complex in 
its functions, the skeletal system is composed of a relatively limited set of core cell types, particularly within 
the structural and regulatory compartments of bone tissue, such as osteoblasts, osteocytes, chondrocytes, 
bone lining cells, and osteoclasts3. Its functional diversity appears to arise from a high degree of intrinsic 
heterogeneity within these cell types, allowing for regionalized specialization across skeletal sites. In contrast, 
non-mesenchymal compartments such as the bone marrow, harbor a much broader variety of hematopoietic 
and immune cell types4.

Advancements in ultra-high-throughput single-cell RNA sequencing (scRNA-seq) technologies, along 
with the development of computational algorithms to analyze the data, enable the creation of organism-wide 
transcriptome maps that are resolved in both time and space5–8. To provide a complete representation of a tissue, 
atlases must account for biological variability, including multiple models, strains, and diverse environmental 
conditions. This approach enhances the generalizability of atlas-based findings9. Several high-profile efforts, 
such as the Tabula Muris, Mouse Cell Atlas, and Human Cell Atlas, have successfully applied this principle, 
generating comprehensive references by integrating data across tissues, developmental stages, and experimental 
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conditions. These resources show how harmonized datasets can support automatic annotation and consistent 
classification across studies10–13.

However, the skeletal system remains underrepresented in most existing atlases, often lacking detailed 
annotation of skeletal lineages or user-friendly methods for interpretation. This results in a significant gap in 
the transcriptional characterization of the skeletal system. While large atlases contain abundant data, much 
of it remains unexplored due to imprecise annotations, whereas specialized datasets remain confined within 
their specific research domains. To address this gap, we reannotated and integrated publicly available datasets 
focused on murine mesenchymal and skeletal cell types and states. These datasets span various sexes, strains, 
and anatomical locations, allowing us to incorporate the natural biological variability within the skeletal system. 
Integrating this diversity is essential to create an atlas that reflects the full spectrum of skeletal cell phenotypes 
and is generalizable across experimental contexts. By combining these datasets into a single reference framework 
of 133,332 cells, we provide a more robust and inclusive foundation for skeletal cell classification. We ensured 
consistency across all datasets by using the original labels and enhancing them with more detailed annotations 
through the use of marker genes, creating the Limb Skeletal Cell Atlas (LSCA).

Following the generation of the LSCA, we explored its applicability and predictive value, as schematically 
represented in Fig. 1. We demonstrated the potential of the LSCA in intercellular communication analysis and 
pseudotemporal trajectory inference. The predictive capacity of the LSCA was further tested by simulation of 
SRY-box transcription factor 9 (Sox9) inactivation and the analysis of its consequences, which were in line with 
the in vivo phenotype14. Collectively, these results support the notion that the LSCA can be used, amongst others, 
as a reliable reference for the automated annotation of new skeletal scRNA-seq datasets.The name for the Atlas 
was chosen to emphasize the focus on mesenchymal and skeletal tissues of the limb while also including some, 
but not all, other cell types such as muscle, endothelial and hematopoietic lineages. To facilitate accessibility 
and reproducibility, all notebooks required to analyze the datasets, build the atlas and perform the subsequent 
analyses have been made available online.

Results
Dataset annotation and integration to produce a limb skeletal cell atlas
To build a reference atlas of the limb skeleton, we selected ten publicly available mouse scRNA-seq datasets 
containing cells from the onset of limb development to mature bone14–23. These datasets encompass a broad 
range of developmental stages (E10.5 to 16 weeks), anatomical sites (forelimb, hindlimb, femur, tibia, humerus, 
cortical bone, periosteum, endosteum, bone marrow, and synovium), and skeletal compartments (growth plate, 
epiphysis, bone marrow stroma). The majority of the datasets were derived from C57BL/6 strains, with some 
datasets also including transgenic reporter lines such as Osx-Cre: GFP and CTSK-mGFP (Sup. Table 1). A 
comprehensive analysis was conducted on a total of 133 332 individual cells that met the quality control filters. 
The individual datasets were manually reannotated based on the original labels and canonical marker gene 
expression (Sup. Figure 1, Sup. Table 2). Next, we selected four top-performing methods from the benchmarking 
study by Luecken et al. to determine the most suitable integration approach for our data24. We tested both an 
unsupervised (single-cell Variational Inference; scVI)25,26 and a semi-supervised (single-cell Annotation using 
Variational Inference; scANVI)25,27–30 integration model, selected based on their consistent performance in 
complex integration tasks24. The scVI model allowed us to infer the underlying structure of the data without prior 
labels, while scANVI leveraged both labeled and unlabeled data to improve annotation accuracy. Additionally, 
we evaluated Scanorama, which uses a method similar to computer vision algorithms for panorama stitching, 
identifying and merging images with overlapping content into a cohesive panorama31. We also considered 

Fig. 1.  Flow diagram of computation methods. (1) Publicly available datasets were preprocessed using Cell 
Ranger and Scater. (2) Individual datasets were then clustered and annotated using Seurat v4. (3) We tested 
scVI, scANVI, scGen and Scanorama and (4) evaluated them with the scIB benchmarking package. scANVI 
was used to create the final Limb Skeletal Cell Atlas. (5) Cell-cell interactions for early limb bud signaling 
pathways were predicted using CellPhoneDB and (6) the growth plate was reconstructed with the use of 
Monocle3 pseudotemporal ordering. (7) Finally, an in silico knockout simulation for Sox9 was performed with 
Monocle3 and CellOracle and (8) evaluated with in vivo wild-type and knockout data integrated/projected 
with Harmony and scvi-tools. WT wild-type, KO knockout

 

Scientific Reports |        (2025) 15:22514 2| https://doi.org/10.1038/s41598-025-05277-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


scGen, a generative model designed with a variational autoencoder architecture to achieve near-linear mappings 
for non-linear sources of variation, particularly useful for correcting batch effects using labeled data32.

To compare the effectiveness of these integration methods, we employed metrics focused on batch correction 
while preserving the biological variability inherently present in the data (scIB)24,25 (Sup. Figure  2). scANVI 
demonstrated a more favorable performance, achieving the highest label isolation score and effectively integrating 
the datasets without introducing cross-laboratory batch effects (Sup. Figure  3). The robust performance of 
scANVI ensured that the integration was cell-based, accurately representing 39 distinct cell states (Fig. 2a, b). 
Given the complexity of our data, this integration approach provides a reliable foundation for downstream 
analyses and applications. Twenty-six clusters originated from a mesenchymal lineage (Clusters #1–26) and 
encompassed mesenchyme, chondrocyte, osteoblast/osteocyte or fibroblast cell states. A further four states were 
associated with the muscle lineage (Clusters #27–30) and other clusters included endothelial (Clusters #31–32), 
epithelial (Clusters #33–34), hematopoietic (Clusters #35–37), neuronal (Cluster #38) and ectodermal (Cluster 
#39) cell states (Fig. 2a, b).

One of the drawbacks of single-cell RNA sequencing is the loss of spatial data. However, a pseudospatial 
context within the cells of the early limb bud can be reconstructed by identifying distinct gene expression 
patterns. For this purpose, we defined the proximal-distal axis by mapping the expression of the Hoxa/d9-13 

Fig. 2.  An integrated compendium of skeletal cell types with detailed annotation. a UMAP visualization of the 
scANVI latent space of 133 332 murine limb mesenchyme- and skeleton-derived cells, colored by annotation. 
b Dot plot showing the expression of one selected marker gene per cluster. The color of the dot represents 
the mean expression level and its size represents the percentage of cells within the cluster in which that gene 
was detected. For visual clarity, a single representative gene was chosen per cell type, prioritizing specificity 
over abundance. This visualization is intended to illustrate the distinctiveness of each cluster. Full marker 
combinations used for annotation are provided in Supplementary Table 2. BMSCs bone marrow-derived 
stromal cells, ZPA zone of polarizing activity, AER apical ectodermal ridge
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mRNAs, from the most proximal (Hoxd9) to the most distal (Hoxd13) (Fig.  2b)33. The expression of Sonic 
Hedgehog (Shh) mRNA was used to define the Zone of Polarizing Activity (ZPA) located at the posterior 
part of the limb bud34. A subset of ectodermal cells situated at the distal tip of the limb bud, called the Apical 
Ectodermal Ridge (AER), is a signaling center associated with proximal-distal limb growth. It could be identified 
by the expression of Fibroblast growth factor 8 (Fgf8) mRNA35.

To validate the cluster annotations in the LSCA, we compared the differentially expressed genes of specific 
cell populations—AER, distal mesenchyme and hypertrophic chondrocytes—with published experimental 
data. We focused on genes that are not widely recognized as traditional markers for limb development but 
nevertheless exhibited distinct expression patterns within the clusters. For each cluster, we identified a key gene: 
Sp836 for the AER, Hottip37 for the distal mesenchyme and Loxl438 for the hypertrophic chondrocytes in the 
growth plate (Sup. Figure 4). We then confirmed their expression in the corresponding tissues by consulting 
independent (whole mount) in situ hybridization data from the literature. While these genes are not established 
markers in the field, their specific expression patterns in the literature provided additional support for our cluster 
annotations and highlighted novel molecular features within these cell populations, further validating the LSCA.

Intercellular communication inference across the developing limb
Intercellular communication driven by ligand-receptor interactions is one of the mechanisms regulating cellular 
differentiation. Therefore, a wide variety of tools to infer intercellular signaling from scRNA-seq data has been 
developed39. Here, we used CellPhoneDB40 as it considers multimeric receptor complexes when inferring ligand-
receptor interactions. We analyzed Bone Morphogenetic Protein (Bmp) and Shh signaling taking place within 
the limb bud, the AER and the ZPA (Fig. 3a).

Bmps are members of the Transforming Growth Factor (Tgf) ligand superfamily and signal through a 
tetrameric receptor complex. Type I and Type II Bmp receptors are expressed across the limb mesenchyme41,42 
and AER41which also acts as a source of Bmps43. However, due to the multimeric character of the receptor 
complexes resulting in many different combinations, it is challenging to experimentally determine which ligand-
receptor pair is predominantly used. Screening with CellPhoneDB narrowed down the number of possible 
combinations. The analysis revealed that the AER mainly signals to the distal limb bud mesenchyme through 
Bmp4 and Bmp7, particularly at E11.5 (Fig. 3b, Sup. Figure 5–7) and that they appear to favor binding a receptor 
complex containing Bmpr1a. The regulation of the AER by Bmp signaling, whether from the AER itself, the 
mesenchyme, or both, remains a topic of ongoing discussion in the field43. Our analysis indicates that autocrine 
signaling is the primary mediator, particularly at E10.5. Additionally, we observed limited Bmp signaling from 
the limb mesenchyme towards the AER. Noteworthy is that the favored ligand-receptor combination is invariable 
over time (Fig. 3b, Sup. Figure 5–7).

Antero-posterior outgrowth and proximodistal polarization are interconnected to each other by a Shh 
epithelial-mesenchymal feedback loop44. Shh mRNA expression decreases as the limb bud grows, which explains 
the decrease in cell-cell communication from E10.5 to E11.5 and no Shh expression in E12.5. Shh signaling is 
regulated during limb development at many levels and one of them is a negative feedback loop involving binding 
of Shh to Hedgehog interacting protein (Hhip) which acts as a decoy receptor to inhibit Hedgehog signaling45. 
To demonstrate the usefulness of the LSCA, we investigated this regulatory loop and found that cell-cell 
communication is mostly limited to intermediate limb bud mesenchyme and chondroprogenitors (Fig. 3a, b).

Virtual reconstruction of the growth plate
Long bones are formed through the process of endochondral bone formation. Initially, mesenchymal cells 
condense and then undergo a series of differentiation steps going from resting chondrocytes over proliferating 
to pre-hypertrophic and hypertrophic chondrocytes. These cells form columnar structures that together make 
up the growth plate. The hypertrophic chondrocytes then either transdifferentiate into osteoblasts or undergo 
apoptosis and the space is replaced by the osteoblasts producing bone tissue46.

As a part of the validation of our atlas, we virtually restored the growth plate. To accomplish that, we used 
pseudotime analysis to reconstruct the transcriptional trajectories from resting to hypertrophy zone in silico 
(Fig. 4a, Sup. Figure 8). Cells were then binned by pseudotime and for each bin, we performed dimensionality 
reduction by t-distributed stochastic neighborhood embedding (t-SNE). Importantly, we imposed a circle as 
a boundary condition for each t-SNE. Alignment of these circular projections then recreated the cylindrical 
shape of the growth plate, while also visualizing transcriptional heterogeneity within the growth plate across 
bins of pseudotime (Fig. 4b). This approach provided an intuitive way to visualize gene expression patterns, 
allowing researchers, particularly those without bioinformatics expertise, to interpret the data in a 2D or 
3D-like reconstruction of the growth plate. Plotting gene expression along the pseudotime axis, combined with 
expression in pseudospace, artificially restored to a certain extent, the tissue architecture (Fig. 4c). While this 
reconstruction does not provide actual spatial data, it offers an easily interpretable representation of growth plate 
signaling. Future iterations of the LSCA could integrate spatial transcriptomics data to provide a more precise 
and spatially resolved view of the growth plate.

Simulation of transcription factor perturbation
Developmental biology has been a key field for studying gene regulatory networks (GRNs)47. Traditionally, this 
involved a series of experiments where transcription factor activity is altered by gain- or loss-of-function and 
the resulting in vivo effects are analyzed. With the advances in bioinformatics, the CellOracle48 algorithm was 
developed to study GRN inference from scRNA-seq data. In addition, it allows us to explore in silico the effects of 
the perturbation of transcription factor expression on target gene expression. To test if our dataset was amenable 
to this type of analysis, we decided to compare an in silico prediction to published in vivo knock-out data14.

Scientific Reports |        (2025) 15:22514 4| https://doi.org/10.1038/s41598-025-05277-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 3.  BMP and SHH signaling case study between AER, ZPA and mesenchyme. a Schematic illustration for 
visualizing AER and ZPA signaling. b Predicted ligand-receptor interactions across developmental timepoints 
(E10.5, E11.5 and E12.5). The dot plot illustrates ligand-receptor interactions between sender and receiver 
cell types (y-axis) and ligand-receptor pairs (x-axis). Dot color indicates mean gene expression, while dot size 
represents the proportion of cells within each cell type expressing the gene. Translucency reflects interaction 
specificity and differentially expressed genes are marked with an outer red ring. DEG differentially expressed 
genes, AER apical ectodermal ridge, PLBM proximal limb bud mesenchyme, ILBM intermediate limb bud 
mesenchyme, DLBM distal limb bud mesenchyme, CP chondroprogenitors, RZC resting zone chondrocytes, 
PC proliferative chondrocytes, PHC pre-hypertrophic chondrocytes, JP joint precursors, ZPA zone of 
polarizing activity
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Sox9 is involved in many stages of chondrogenesis, from regulating the initial mesenchymal condensation 
to maintaining the proliferation of columnar chondrocytes and preventing their premature transdifferentiation 
into osteoblasts. It also plays a crucial role in inducing chondrocyte hypertrophy, making it indispensable for 
the proper formation and maintenance of functional growth plates. Inactivation of Sox9 leads to a shortening 
of the columnar and hypertrophic zones in the growth plate and accelerates ossification due to premature pre-
hypertrophy and matrix mineralization14,49.

Here, we demonstrate that the LSCA can be used to generate in silico gene knockouts, which can then 
be compared directly to single-cell in vivo knockout datasets and phenotypic observations, offering a robust 
framework to explore developmental and regulatory disruptions. To evaluate the effectiveness of the Atlas in 
exploring the consequences of targeted gene inactivation, we applied the CellOracle algorithm to create a virtual 
Sox9 knockout and compared our in silico predictions to data from an in vivo knockout study (Fig. 5a, b). For 
this analysis, we subsetted the LSCA to include time points between E10.5 and P21, focusing on relevant cell 
types such as periosteal cells, chondrocytes at various differentiation stages, osteogenic cells, endothelial cells 
(vascular and lymphatic), limb bud mesenchymal populations, and myogenic cells. We modeled the data of late 
inactivation of Sox9, driven by the Acan-Cre expressed in the growth plate. We defined the accessible cell states 
as those that cells can differentiate under the current regulatory conditions, while inaccessible states cannot be 

Fig. 4.  Pseudospatiotemporal reconstruction of the transcriptional dynamics within the growth plate. a 
UMAP visualization of the scANVI latent space of the integrated growth plate data subset from the main atlas, 
colored by annotation (left), developmental timepoint (middle) and Monocle 3 pseudotime value (right). b 
Growth plate chondrocytes were grouped in 50 bins based on similar pseudotime values. t-SNE dimensional 
reduction was performed on each bin, using a circle with a radius of 20 as the boundary condition for gradient 
descent, thus reconstructing the cylindrical shape of the growth plate upon stacking the bins. c Expression of 
known marker genes across different growth plate zones in pseudotime and pseudospatial dimensions
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reached due to the absence or inactivation of essential transcription factors. Using the Atlas, we identified regions 
within the dataset that are either developmentally accessible or inaccessible to Sox9’s regulatory influence.

The simulations showed that upon removal of Sox9, most mesoderm-derived cells failed to contribute to 
cartilage formation, while myogenesis, osteogenesis, and endothelial differentiation remained largely unaffected 
(Fig. 5c, Sup. Figure 9, 10). Specifically, in the virtual Sox9 inactivation model, cell type 11—pre-hypertrophic 
chondrocytes—is represented as a blue region, indicating that mesenchymal cells cannot access this cell 
state. These results are supported by the in vivo findings, where Sox9 inactivation prevents mesodermal cells 
from differentiating into chondrocytes, leading to an accumulation of cartilage precursors and osteogenic 

Fig. 5.  In silico predictions of Sox9 knockout (KO) compared to in vivo data. a Reference annotation of the 
subsetted atlas, which includes only the relevant cell types from developmental stages E10.5 to P21, used for 
knockout analysis. b UMAP plot integrating WT and Sox9 KO in vivo data. c Inner vector product of two 
vector fields: the pseudotime gradient from unperturbed conditions and the cell state transition probability 
following in silico Sox9 perturbation. Red regions indicate accessible cell states, while blue regions represent 
inaccessible cell states. The loss of chondroprogenitor and prehypertophic chondrocyte cell identities as 
accessible states reflects the biological profile of the ground truth shown in d. Myogenic, osteogenic and 
endothelial differentiation are largely unaffected. D, UMAP of integrated Sox9 KO and WT in vivo data, 
representing ground truth affected cell identities colored by condition (red: Sox9 KO, blue: WT)
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cells (Fig.  5d). Phenotypically, the absence of Sox9 in early limb buds disrupts mesenchymal condensation, 
chondrocyte differentiation, and the establishment or differentiation of the osteoblast lineage50. This is reflected 
in our in silico Sox9 knockout, where the distal mesenchyme predominantly remains in an inaccessible state, 
indicating impaired mesenchymal condensation and chondrogenic cell fate commitment. Chondrocytes, 
including proliferating and pre-hypertrophic populations, as well as a substantial portion of osteoblasts are 
predicted to be inaccessible states, mirroring the absence of their differentiation (Fig. 5c, Sup. Figure 9, 10). 
Together, these findings underscore the value of the LSCA as a powerful tool for in silico modeling, enabling 
a deeper understanding of the mechanisms underlying gene function and their developmental consequences.

A limitation of the virtual knockout is that it accounts only for a neighborhood developmental flow but not 
lineage dependency. As a result, it will mark a region as an inaccessible cell state if its development depends on 
Sox9, however, it will mark regions dependent on this (inaccessible) cell type as accessible. For instance, cell 
type 12—hypertrophic chondrocytes—is shown as a red region in the virtual knockout, indicating that this cell 
state is predicted to be present in Sox9-perturbed situations. However, the in vivo data show that this cell type is 
absent in the knockout (red) because it originates from pre-hypertrophic cells.

Discussion
We have generated a Limb Skeletal Cell Atlas (LSCA) representing a manually curated compendium of 133,332 
cells across ten datasets and explored its applicability in both data- and hypothesis-driven analyses. To assemble 
the LSCA, we curated data from ten publicly available datasets14–23representing murine cells spanning various 
developmental stages and tissues. The integration of these datasets was carefully performed using advanced 
computational methods, including normalization, dimensionality reduction, clustering, and multiple integration 
techniques (scVI, scANVI, Scanorama, and scGen). A flow diagram summarizing the methodology used to 
construct the Atlas outlines each step of the preprocessing, clustering, integration, and validation processes 
(Fig. 1).

First, analysis of intercellular communication by Bmp signaling sheds light on a longstanding question in the 
field of limb development. Specifically, it is known that Bmp signaling is required for AER regression, but not 
whether the AER, the mesenchyme or both act as the source of those BMPs43. Based on CellPhoneDB’s cell-cell 
communication inference, considering the subunit architecture of both ligands and heteromeric receptors39,40. 
Our case study suggests the AER to be the dominant source of Bmp. This finding does, however, require further 
in vivo validation.

Next, we constructed the spatiotemporal map of the growth plate that recapitulated the in vivo situation. We 
achieved that by imposing boundary conditions on the gradient descent of t-SNE dimensionality reduction with 
pseudotime calculations, which revealed a progression through distinct chondrocyte subtypes. Similar results 
have been obtained previously by warping the principal component space51.

Finally, we demonstrated that the in silico inactivation of Sox9 aligns with in vivo results, showing the absence 
of cells dependent on Sox9 for differentiation into chondrocytes14,52. While these findings align with established 
in vivo observations, the LSCA should be considered primarily as a tool to explore hypotheses that will require 
further experimental validation. Given that we can assess the developmental outcome of computationally 
simulated transcription factor knockouts, the LSCA represents a valuable resource for both limb developmental 
biologists and skeletal biology researchers.

The current release is restricted to the healthy murine skeleton, with gaps in limb sites and developmental 
stages, as well as factors such as genetic background, sex, and the enrichment of sub-populations, which 
may influence the census and its downstream applications. These limitations highlight opportunities for 
future research to build upon our findings, addressing these gaps and expanding our understanding. We will 
continuously update and extend the LSCA (made available through the LSCA Github and web app, cfr infra), 
as data availability permits, toward the entire limb skeleton in health and disease. The goal of this study was to 
provide an initial reference of the skeletal system of the limb, which will serve as the basis for a collaborative 
effort to expand the Atlas.

While our murine LSCA offers a detailed view of limb and skeletal populations, direct comparisons to human 
data remain limited due to species-specific differences in development and annotation. Recent human limb 
single-cell atlases provide valuable opportunities for cross-species comparisons, and future work could integrate 
human datasets to enhance cross-species analyses and expand the LSCA’s utility for developmental and disease 
research53–55.

In our study, we employed three robust methods to validate our atlas and demonstrate its practical 
applications, each with its own limitations. CellPhoneDB effectively infers cell-cell interactions from single-
cell RNA sequencing data, though it faces challenges with indirect protein abundance measurements and the 
use of different names for the same receptor or ligand. Monocle3 excels in resolving detailed pseudotemporal 
trajectories, although handling large, complex datasets could be better suited with alternative graph-based 
methods. CellOracle performs well calculating in silico gene perturbations, but a recent critique highlights its 
failure to account for distal regulatory interactions and a flaw that skews benchmarking scores56. Importantly, all 
data, analyses, and codes required to replicate the results are freely available via GitHub. Users can easily adjust 
analysis choices by modifying the provided code to incorporate alternative methods or algorithms that best fit 
their needs, ensuring our Atlas can be tailored to a wide range of research applications.

As a part of our effort, we created a web portal to allow browsing of the data. This interactive web-based 
resource makes the mRNA expression data easily accessible, allowing users to explore cell types expressing genes 
of interest or uncover transcriptomic subpopulations within a cell type. Cells can be filtered by cell type and by 
metadata from the original studies, such as sequencing technique, developmental timepoint or age, tissue origin, 
and study ID. Gene expression can be visualized, with options to download results and access the full atlas for 
further analysis.
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Importantly, while the manuscript presents a fixed, representative subset of datasets to build and validate the 
Limb Skeletal Cell Atlas, the web portal is designed as a dynamic and continuously evolving resource. We will 
regularly update the portal to incorporate newly published datasets, thereby expanding the repertoire of tissues, 
developmental stages, and cell types represented. This ensures that the atlas remains current and increasingly 
comprehensive for the research community.

In short, the Limb Skeletal Cell Atlas provides a robust and flexible framework for the characterization of 
most known cell populations in the limb skeleton and serves as a foundation for future studies in a wide variety 
of disciplines.

Materials and methods
Data preprocessing
We selected ten publicly available scRNAseq datasets containing wild-type murine cells spanning limb and 
skeletal tissues during development and adulthood14–23. or datasets where aligned count matrices were not 
provided, raw sequencing files were processed using Cell Ranger to generate gene expression matrices57. Initial 
Quality control (QC) of the raw count matrices was performed independently for each dataset using the Scater 
package58. QC metrics were computed per cell, including total UMI counts (library size), the number of detected 
genes, and the proportion of reads mapping to mitochondrial genes. Cells were excluded if they exhibited a 
library size or number of detected genes deviating by more than three median absolute deviations (MADs) 
from the median of their respective distributions. Similarly, cells with a mitochondrial read fraction exceeding 
three MADs above the median were removed, as these likely represent damaged or dying cells. Genes with low 
abundance (expression below 1E-3) were excluded, and duplicate gene entries, if present, were removed.

Clustering and dimensionality reduction
All datasets were analyzed individually prior to integration. The filtered count matrices were imported into 
Seurat v459. Normalization was performed using the LogNormalize parameter and a scale factor of 1E4. 
Subsequently, the data was centered and scaled using all genes followed by a calculation of principal components 
(PCs) using the top 2000 highly variable genes selected by the “vst” method. The optimal number of PCs to 
construct the Shared Nearest Neighbor (SNN) graph was visually determined based on the elbow plot and varied 
for each dataset. Clustering was performed using the Louvain algorithm. The resolution was adapted to the 
individual dataset, where we defined the optimal number of clusters as the maximum number of cell states that 
could confidently be labeled based on marker gene expression. These marker genes were obtained from the 
FindMarkers function using the default settings.

Integration with scvi-tools, scanorama and ScGen
The integrated atlas was constructed using scVI26 and scANVI27–30selected for their strong performance across 
complex datasets and compatibility with downstream analyses24. For preprocessing the datasets, we filtered for the 
5000 most variable genes. First, we used scVI as an unsupervised tool to find common axes of variation between 
the datasets, helping to capture underlying data structures without prior labels(19). To refine the integration 
further, we then used scANVI, a semi-supervised tool, leveraging both labeled and unlabeled data to improve 
the accuracy of integration. scANVI builds on the shared axes of variation found by scVI and integrates cell type 
information, allowing for a data manifold that better represents the latent biological structure. The parameters 
were used as described in the scvi-tools25 tutorial of ‘Atlas-level integration of lung data’. For Scanorama, we 
used parameters from the step-by-step tutorial provided by the National Bioinformatics Infrastructure Sweden 
(NBIS), as described on the Scanorama GitHub page31. We used the scGen batch removal tutorial with standard 
parameters from the scGen documentation page (readthedocs)32.

Integration metrics
To calculate integration metrics, the scIB-metrics package was used24which contains scalable implementations 
of the metrics used in the scIB benchmarking suite60–63. Bio conservation was captured with the use of classical 
label conservation metrics, which assess local neighborhoods (graph cLISI, extended from cLISI), global cluster 
matching (Adjusted Rand Index: ARI, normalized mutual information: NMI) and a metric evaluating rare cell 
identity annotations (isolated label scores). Batch correction scores were measured via the k-nearest-neighbor 
batch effect test (kBET), k-nearest-neighbor (kNN) graph connectivity and the average silhouette width (ASW) 
across batches. Independently of cell identity labels, batch removal is measured using the graph integration local 
inverse Simpson’s Index (graph iLISI, extended from iLISI) and PCA regression.

Validation of differentially expressed genes
To validate the cell annotation and evaluate the potential of the LSCA for novel marker gene detection, 
differential expression analysis was performed for all cell identities, retaining the top 10 results returned by 
the FindMarkers() function. As these genes are statistically the most specific for their respective cell state, they 
represent prime candidate biomarkers. Reassuringly, known canonical marker genes were present for each 
annotation. We then focused on the DEG lists of the Apical Ectodermal Ridge (AER), distal limb mesenchyme, 
and hypertrophic chondrocyte clusters. An extensive literature search was performed for the expression patterns 
of DEGs not considered canonical markers for these cell types. Based on this search, we were able to confirm the 
specific expression of Sp8 in the AER, Hottip in the distal mesenchyme and Loxl4 in hypertrophic chondrocytes 
as shown by (whole mount) in situ hybridization experiments on mouse embryos (Supp. Figure 4). These genes 
showed clear and specific expression patterns, supporting the accuracy of the cluster.
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Cell-cell interaction prediction
Prediction of cell-cell communication by ligand-receptor interactions between cell types was performed using 
CellPhoneDB v540. CellphoneDB is an open-access resource that provides a curated collection of receptors, 
ligands, and their interactions. The atlas was subsetted for each developmental time point before downstream 
cell-cell communication analysis. For each subset, the translate function was used to humanize the data and 
normalized. Differentially expressed genes were computed for each cell type and used as input for ligand-
receptor pair calculations.

Virtual growth plate reconstruction
We first subsetted the atlas for growth plate chondrocytes: Resting, Proliferative, Pre-hypertrophic and 
Hypertrophic chondrocytes. This subset within the latent space of the scANVI integration was then passed to 
Monocle 364. Clustering was performed on the resulting CellDataSet (CDS) object using the default parameters. 
The trajectory graph was learned on the monocle-derived clusters by calling learn_graph. Roots were manually 
chosen with order_cells. The resulting pseudotime was added to the metadata of the growth plate subset 
within the latent space of scANVI and used as input for the growth plate reconstruction. Cells were binned by 
pseudotime using the cut function from- pandas65,66. Upon each bin, we performed dimensionality reduction 
by t-distributed stochastic neighborhood embedding (t-SNE). We imposed a circle as a boundary condition on 
the gradient descent function of each t-SNE. With the concatenation function, we were able to stack the circular 
projections in an ordered way to recreate the cylindrical shape of the growth plate.

Knockout simulation
For in silico knockout experiments in CellOracle48 the atlas was subsetted to only include time points 
E10.5-P21 and relevant cell types (Periosteal progenitors, Periosteum, Endosteum, Resting zone chondrocytes, 
Proliferative chondrocytes, Pre-hypertrophic chondrocytes, Hypertrophic chondrocytes, Chondrocytes, 
Chondroprogenitors, Osteoprogenitors, Pre-osteoblasts, Osteoblasts, Osteocytes, Vascular endothelial cells, 
Lymphatic endothelial cells, Proximal limb bud mesenchyme, Intermediate limb bud mesenchyme, Distal limb 
bud mesenchyme, Myogenic stem cells, Muscle progenitors and Skeletal muscle cell). This subset within the 
latent space of the scANVI integration of the atlas was then passed to Monocle 364. Clustering was performed 
on the resulting CellDataSet (CDS) object using the default parameters. The trajectory graph was learned on 
the monocle-derived clusters by calling learn graph. Roots were manually chosen with order cells. The resulting 
pseudotime was added to the metadata of the knockout subset within the latent space of scANVI and used 
as input for the virtual knockout. To reduce the amount of computational time and resources required by a 
large dataset, 20,000 cells were randomly selected and only highly variable genes (n = 5000) were included. For 
gene regulatory network (GRN) inference, we used the built-in base GRN made from the mouse sci-ATAC-seq 
atlas67 CellOracle offers several pre-built base GRN options and provides pipelines to create a custom base GRN 
using your own scATAC-seq data. For mouse analyses, they recommend using the GRN built from the mouse 
sciATAC-seq Atlas dataset, which includes a variety of tissues and cell types. Following k nearest neighbors 
(KNN) imputation based on the first 27 PCs, GRNs were imputed for each cluster. To simulate the knockout of a 
transcription factor, its expression was set to 0. After this knockout, GRN inference was performed again. Signal 
perturbation propagation and transition probabilities were calculated using the standard settings. Visualization 
of the pseudotime gradient, simulation vector field and their inner product was performed as described in the 
CellOracle online documentation.

In vivo Sox9 knockout and WT data analysis and integration
Both wild-type (WT) and Sox9 knockout (KO) dataset of Haseeb et al.14were preprocessed separately to 
ensure high-quality data for subsequent analyses. The preprocessing steps included quality control measures 
to remove low-quality cells, as described in “Data preprocessing”. Following preprocessing, cells from both WT 
and Sox9 KO datasets were clustered and labeled independently. Clustering was conducted to identify distinct 
cell populations within each condition, and labels were assigned based on known cell markers, as described in 
“Clustering and dimensionality reduction”.

To integrate the WT and Sox9 KO datasets, the Harmony package60 was employed. Harmony facilitates the 
integration of multiple datasets by correcting batch effects and aligning data across different conditions. This 
integration enabled a comprehensive comparison of cell populations and gene expression profiles between WT 
and Sox9 KO conditions. Harmony is particularly suited for integrating datasets from the same study with well-
defined batch and biological structures, making it ideal for this analysis24.

As an additional validation step, we employed reference mapping using scANVI to align the in vivo data with 
the reference latent space of the Atlas (Sup. Figure 9). We followed the ‘Reference mapping with SCANVI’ tutorial, 
utilizing the scANVI model trained for integration to predict cell type labels25,30.

Data availability
The datasets analyzed for this study can be found in Sup. Table 1. The Limb Skeletal Cell Atlas can be download-
ed or interactively explored at www.skeletalcellatlas.org. All code used to perform the analyses and notebooks to 
generate the figures is available at https://github.com/TElabSBE/LimbSkeletalCellAtlas.
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