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Reliable animal identification in livestock husbandry is essential for various applications, including 
behavioral monitoring, welfare assessment, and the analysis of social structures. Although recent 
advancements in deep learning models have improved animal identification using biometric markers, 
their applicability remains limited for species without distinctive traits like pigs. Consequently, 
synthetic features such as ear tags have become widely adopted. However, challenges such as poor 
lighting conditions and the complexity of ear tag coding continue to restrict the effectiveness of 
Computer Vision and Deep Learning techniques. In this study, we introduce a robust, lighting-invariant 
method for individual pig identification that leverages commercially available ear tags within a 
sequential detection pipeline. Our approach employs four object detection models in succession to 
detect pigs, localize ear tags, perform rotation correction via pin detection, and recognize digits, 
ultimately generating a reliable ID proposal. In a first evaluation stage, we assessed the performance 
of each model independently, achieving a mAP0.95 value of 0.970, 0.979, 0.974 and 0.979 for the 
pig detection, ear tag detection, pin detection and ID classification model, respectively. In addition, 
our method was further evaluated in two different camera environments to assess its performance 
in both familiar and unfamiliar conditions. The results demonstrate that the proposed approach 
achieves a very high precision of 0.996 in a familiar top-down camera scenario and maintained a strong 
generalization performance in an unfamiliar, close-up setup with a precision of 0.913 and a recall of 
0.903. Furthermore, by publicly proposing three custom datasets for ear tag, pin, and digit detection, 
we aim to support reproducibility and further research in automated animal identification for precision 
livestock farming. The findings of this study demonstrate the effectiveness of ID-based animal 
identification and the proposed method could be integrated within advanced multi-object tracking 
systems to enable continuous animal observation and for monitoring specific target areas, thereby 
significantly enhancing overall livestock management systems.
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Modern livestock farming is characterized by an increasing animal-to-staff ratio and a growing use of both 
manual and sensor-based data, which emphasizes the importance of gathering information specific to individual 
animals. In recent years, many studies have focused on automatic animal identification methods using various 
approaches for instance the recognition of biometrical features like fur characteristics1,2 and facial patterns3,4 or 
the usage of RFID technology5,6. However, these identification methods also have certain limitations. Biometric 
approaches are ineffective for animals that lack distinctive fur markings or body characteristics such as pigs of 
frequently commercially used genetics. Additionally, proposed methods for facial recognition often require a 
predefined camera angle for accurate identification, which can be challenging in dynamic farm environments 
and limits the scope of this approach in terms of generalization. Furthermore, although RFID technology is 
effective for automated identification in many applications–such as access control and gating systems–its utility 
is limited by a short functional range, necessitating that animals remain in close proximity to the reader, which 
diminishes its suitability for continuously monitoring of free-ranging species. In this regard, many studies focus 
on the application of computer vision (CV) techniques and artificial intelligence (AI) for image-based ear tag 
identification7–9.
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In the domain of computer vision and livestock husbandry, the literature highlights two primary research 
approaches for automatic ear tag identification. The first approach utilizes distinct ear tag coding systems to 
achieve a bijective form of animal identification. The second approach employs human-readable digit IDs, 
facilitating both direct animal assignment within the working routine of the farm staff and the potential for 
automated recognition. Following the first approach, Psota et al. (2020)7 introduced an alphanumeric coding 
system integrated with colored ear tags to enable the identification of individual pigs. While this method attained 
an average precision exceeding 95%, it was constrained to recognizing only 16 animals due to the combinatorial 
limitations of the coding system and the fact that the detector had prior knowledge of the total number of 
animals. Furthermore, Fruhner et al. (2022)10 implemented a data matrix coding system to re-identify individual 
pigs within a conventional housing setup. Although inherently rotationally invariant, this technique encounters 
difficulties when viewed from a top-down perspective at greater distances, as increased pixelation and blurring 
negatively impact recognition accuracy. The second approach adopts a more straightforward methodology by 
employing integer ear tag IDs. In this context, Gao et al. (2024)11 propose a vision-based ear tag detection system 
for dairy cows, utilizing a lightweight Small-YOLOv5 s model to detect ear tags with black digits, alongside a 
combination of a scene text detection network and a recurrent Network for tag number recognition, aiming 
to enhance precision livestock management. However, a notable limitation of this approach is the absence of 
explicit skewness or rotation correction, which can compromise detection accuracy when ear tags are viewed 
from varying camera angles, potentially leading to an increased rate of false predictions in diverse real-world 
conditions. Bastiaansen et al. (2022)8 focus on real-time cow identification by detecting ear tags in live-stream 
videos, leveraging yellow color filtering for segmentation and a retrained CNN model for digit recognition. 
A significant drawback of this method is its dependence on a predefined threshold of yellow pixels to filter 
detection results, which limits its applicability to environments with controlled lighting and specific camera 
configurations. Moreover, this color-based filtering approach is ineffective in low-light or nighttime conditions, 
reducing the system’s reliability for continuous monitoring.

The objective of this study is to overcome the limitations of previous research by introducing a lighting-
invariant, image-based animal identification method utilizing commercially available, low-cost ear tags. To 
achieve this, we propose a processing pipeline in which four distinct object detection models sequentially analyze 
and filter ear tag information, ultimately producing an ID proposal in the final stage. This work offers two key 
contributions. First, we present a method that mitigates the shortcomings of existing studies by eliminating 
dependence on specific color information or intricate ear tag coding systems. Consequently, the proposed 
approach remains effective for both daytime and nighttime imaging and is adaptable to various scenarios, 
including both close-range and long-distance identification. Second, due to the scarcity of relevant datasets–
particularly for detecting ear tags, pins, and digits–we have developed three distinct datasets and made them 
publicly available. These datasets can be leveraged to retrain the respective object detection models, ensuring the 
reproducibility of our approach and fostering further research in this domain.

The remainder of this study is structured as follows. The Materials and methods Section provides a detailed 
description about the underlying processing pipeline, the data acquisition process and the model training and 
evaluation rationale. In the Results and Discussion Section, the performance of each detection model is first 
presented and discussed independently, followed by an holistic assessment of the proposed method for the step 
wise detection of ear tags and the identification of animal individual IDs using two distinct use case datasets. 
Finally, this study is concluded by a short summary and an outlook for future research.

Materials and methods
Ethics declarations
The study was conducted at the experimental station for pig farming of the Chamber of Agriculture Lower 
Saxony in Bad Zwischenahn-Wehnen in north-west Germany from March 2024 until September 2024. All 
experiments were performed and all animals were housed strictly in accordance with European guidelines (EU 
Council Directive 2008/120/EC), German legislation (German Animal Welfare Act and German Order for the 
Protection of Production Animals Used for Farming Purposes and Other Animals Kept for the Production 
of Animal Products) and complied with the ARRIVE guidelines (Animal Research: Reporting of In Vivo 
Experiments). The trials were reviewed and approved by the Ethics Committee of the Chamber of Agriculture 
Lower Saxony (approval number: A21-TS21923-LWK-3031-1)

Data aquisition and processing
In this study, an extensive video dataset was collected between March 2024 and September 2024 as part of 
the two collaborative projects DigiSchwein (funding code: 28DE109G18) and Transparency in Pig Production 
(TiPP) (funding code: 2823ZR016) at the research farm of the Chamber of Agriculture Lower Saxony in Bad 
Zwischenahn-Wehnen, Germany. Static cameras of the type AXIS M3206-LVE (Axis Communications AB, 
Lund, Sweden) have been assembled 2.8 m above the ground in each of the six weaning pens used in this study 
with 24 pigs per pen. The piglets (Pietrain x [Large White x Landrace]) have been born on the farm under 
conventional housing conditions, and tails were kept undocked. With an average age of 26.48 ± 1.67 days the 
piglets were moved to the rearing area, where they remained for 39 days. At weaning the piglets received a 
commercially available yellow ear tag (Primaflex, size 2, Caisley, Bocholt, Germany), which were printed with 
a two-digit animal ID ranging from 10 to 99. Figure 1 shows an image of a pen area as well as four examples of 
human readable ear tags and two examples of unreadable ear tags.

During the data collection period, each pen was continuously recorded, with each video file having a runtime 
of one hour and a frame rate of 20 frames per second (FPS). To enhance processing efficiency and to reduce 
computation time during model training the original image resolution of 1920∗1080 pixels was adjusted to 
640∗640 pixels. As the proposed method aims to be operational under practical conditions both during the day 
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and at night, we followed earlier studies and grayscaled each input image to avoid a potential bias between RGB 
color images and infrared night images12,13.

ID identification framework
In this study, a sequential approach of multiple object detection models is proposed, where the results of a specific 
model are passed on to the subsequent model for further analysis. In detail, the ear tag identification process 
consists of four processing stages: (I) individual pig detection, (II) ear tag localization, (III) rotation correction 
and (IV) ID determination. Since an independent model instance is utilized at each stage, four separate object 
detection models are used for the overall process, which are hereafter referred to as pig detection model, ear 
tag detection model, pin detection model and digit detection model. In this regard, the task of object detection 
refers to the process of locating the position and the class membership of an object of interest within an image or 
video14. Figure 2 illustrates the processing pipeline of the proposed method, where each object detection model 
targets a specific focus class.

As depicted in Figure 2, the process of ID identification begins with extracting all video frames from the 
source video and converting each frame into a grayscale format with dimensions of 640∗640 pixels. This 
grayscale image is then fed into the pig detection model, which outputs the bounding box coordinates for all 
visible pigs within the pen. Based on these coordinates, each detected pig is cropped from the original frame to 
create individual images, each containing a single pig. As the dimensions of these cropped images vary, they are 
brought back to the squared input dimension. At the second stage, the resized pig images are processed by the ear 
tag detection model to identify the presence of ear tags. If an ear tag is detected, the model outputs bounding box 

Fig. 1.  (A) Example image of one of the six rearing pens used in this study with four readable (orange) and 
two unreadabel (blue) ear tags highlighted. (B) Four human-readable ear tags before rotation correction. 
(C) Illegible ear tags due to pixelation and occlusion. (D) Four human-readable ear tags after processing and 
rotation correction by the proposed pipeline.
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coordinates, enabling the extraction of a cropped image focused solely on the corresponding ear tag. To ensure 
the ear tag is properly aligned for the ID identification, the ear tag crop is rotated using the detected ear tag 
pin, aligning the pin horizontally to the horizontal geometric center of the image by minimizing the Euclidean 
distance (see Figure 3. In the final stage, the rotation-corrected ear tag image is fed into the digit detection 
model, which produces bounding box estimates for each digit class, ranging from zero to nine. By arranging 
the horizontal center coordinates of these estimations in sequential order, the final ID proposal is constructed.

Datasets
The following subsection provides an overview of the underlying datasets used in this study. Since the proposed 
method follows a hierarchical model ensemble strategy using four distinct object detection models, each model 
was trained and evaluated independently with its own data. Figure 4 presents an example image from each of 
the four training datasets, organized in the same hierarchical sequence as the model structure employed in this 
study, starting with the pig detection stage and concluding with the digit detection stage.

The application of object detection techniques in livestock farming has gained considerable attention in 
recent years. As detecting animal instances is often an initial step in the analysis process, an increasing number 
of datasets are nowadays available to address various research questions16. In the course of this study, the publicly 
available dataset proposed by Witte et al. (2024) was used for the first processing stage to localize individual 
animals in the video frame15. This pig detection dataset contains a total of 9,281 images from different housing 
environments, pig breeds, ages and production phases. For each image, the spatial position as well as the 
associated object class was highlighted using a bounding box annotation. The high heterogeneity of the image 
material in this diverse dataset therefore allows the adaption of a pig detection model even under changing 
husbandry environments or breed specific factors. As this dataset was published as part of an earlier study in the 

Fig. 3.  Illustration of a rotation correction for an ear tag with ID “57”. (Step 1) The pin area and the 
corresponding center point (c1) are detected using the pin detection model. (Step 2) The Euclidean distance 
(D) between c1 and the center of the upper horizontal image boarder (c2) is calculated. (Step 3 and 4) The ear 
tag image is rotated until the distance D between c1 and c2 is minimized.

 

Fig. 2.  Overview of the proposed analysis pipeline.
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DigiSchwein project15, the specific pen environment was already included in the data and no additional image 
annotations had to be generated in the course of this work.

In contrast to the pig detection dataset, which is a more general dataset for detecting whole pig instances 
across multiple camera environments, the availability of more specific image data is often significantly limited. 
This scarcity frequently hampers the reproducibility of published studies and necessitates the creation of custom 
datasets. Similarly, no additional usable image data were available for the present study. Consequently, three 
extensive datasets were developed as part of the data annotation process to support the subsequent processing 
steps for ear tag detection, pin detection, and ID determination using a bounding box annotation style. While 
the ear tag and pin detection datasets are single-class datasets containing 4,103 and 13,776 images, respectively, 
the ID determination dataset consists of 16,391 images and is structured as a multi-class dataset, with a distinct 
class assigned to each digit in the range of 0 to 9.

To effectively monitor the learning progress and identify potential overfitting during the training of an object 
detection model, the underlying dataset is typically partitioned into separate training and validation sets. The 
training set is used to optimize the model’s parameters, while the validation set allows for an ongoing assessment 
of its generalization ability throughout the training process. Furthermore, to provide an objective evaluation of 
the final model performance, an additional independent test set is utilized after training is complete. Following 
previous studies, we applied a standard dataset splitting approach, using an 8:1:1 ratio to divide all datasets 
into training, validation, and test subsets17–19. Table 1 presents a comprehensive overview of the distribution of 
images across these subsets, including details on image dimensions and class specifications. An illustration of 
the training progress using the training and validation sets, as well as the final model evaluation based on the test 
sets, is provided in the Results Section.

To overcome the challenge of limited data accessibility in machine learning and animal science, and to support 
further research while ensuring the reproducibility of our approach, we have publicly released all three annotated 
custom datasets developed in this study. By making these datasets available, we aim to facilitate the retraining 
and optimization of object detection models for ear tag, pin, and digit recognition, thereby contributing to the 

Dataset Nr. of images (train) Nr. of images (val) Nr. of images (test) Image width Image height Color mode Annotated classes

Pig detection 7423 929 929 1920 1280 RGB pig

Ear tag detection 3281 411 411 640 640 RGB ear tag

Pin detection 11000 1388 1388 320 320 RGB pin

Digit detection 13111 1640 1640 120 120 RGB Integer digits ranging from 0 to 9

Table 1.  Data distribution and image information for the individual datasets used in this study, divided into 
the three subsets used for model training (train), validation (val) and evaluation (test).

 

Fig. 4.  Example images from the individual training datasets used in this study. The top row displays the 
original RGB color images and the bottom row shows the grayscale images used for model training, with the 
objects of interest highlighted (green bounding box). While the pig detection dataset published by15 is publicly 
available, the other three datasets were developed in the course of this study.
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advancement of automated animal identification methods. The datasets can be accessed at the following link: ​
h​t​t​p​s​:​​/​/​o​p​e​n​​d​a​t​a​.​u​​n​i​-​k​i​e​​l​.​d​e​/​​r​e​c​e​i​v​​e​/​f​d​r​_​​m​o​d​s​_​0​​0​0​0​0​1​​1​5​?​a​c​c​​e​s​s​k​e​y​​=​p​8​m​e​P​​t​8​l​B​8​R​n​v​e​Y​n​I​j​C​t​R​8​S​O​5​o​8​e​q​o​t​8.

Model training and evaluation
All models used in this study are trained using the the YOLOv10 object detection framework proposed by 
Ultralytics20 in 2024 with the largest available model version (YOLOv10X). Given the need for fast, accurate, 
and deployable detection systems in livestock environments, we selected the YOLOv10 architecture as the 
core of our identification pipeline due to its balance of state-of-the-art performance and real-time efficiency. 
While its predecessor YOLOv8 remains highly popular due to its strong performance and ease of use, YOLOv10 
introduces significant architectural improvements, including the elimination of Non-Maximum Suppression via 
a dual assignment strategy and an efficiency-accuracy optimized design, resulting in faster and more accurate 
inference21. Compared to transformer-based models like Grounding DINO22, which is an effective zero-shot 
detection approach, YOLOv10 offers lower inference latency and computational overhead, making it more 
suitable for real-time applications such as livestock monitoring, where deployment on edge devices and practical 
efficiency can be critical23.

The training and evaluation process were conducted on a workstation equipped with an AMD Ryzen 
Threadripper PRO 5945 WX CPU, 512 GB RAM, and a NVIDIA RTX A6000 GPU. We trained all models with 
a batch size of 16 images per iteration for 250 epochs, except for the pin detection model, which was extended to 
500 epochs based on empirical evidence suggesting improved performance with a longer training duration. We 
followed previous studies and used the Stochastic Gradient Descent optimizer with a learning rate of 0.0124–26. 
The models have been implemented using the programming language Python (version 3.9), the Deep Learning 
framework Pytorch (version 2.0.1) and Ubuntu 22.04.3 as the operating system. Each model was trained with 
various data augmentation techniques including geometric transformations and color space operations like 
hue, saturation or brightness adjustments, using the default augmentation values. An extensive overview of all 
augmentations parameters is provided in the Ultralytics documentation20.

To assess the computational performance, all video evaluations in this study have been conducted with an 
FPS rate of one frame in order to take into account the different frame rates of the video data from the respective 
scenarios. Despite using a sequential model architecture, the proposed method achieves an inference speed 
of 1.375 frames per second, enabling real-time video analysis without causing any processing delays. Since 
this study primarily aimed to evaluate the methodological suitability rather than to develop a market-ready, 
efficiency-optimized application, future enhancements could explore the potential of parallelized approaches in 
more detail, which may prove particularly beneficial for practical applications on standard consumer devices.

To evaluate the general performance of the proposed method comprehensively, we conducted a two-stage 
assessment. At the first stage, each model was evaluated independently using its respective test dataset to 
assess the individual performance of each model. Subsequently, for the second stage we assessed the overall 
performance of the proposed method for detecting and identifying individual animals within two distinct use 
case scenarios and specific camera perspectives.

In use case scenario 1, we used new data samples captured from the top-down camera perspective – the 
same perspective employed during the training of the object detection models (see Figure 1A) – to identify ear 
tag IDs. In addition, to evaluate the generalizability of our method, the second use case was considered. Here, 
we collected new video data from the same husbandry environment but a completely new perspective using 
a common trail camera of the type A323 positioned near a drinking station. This second use case allowed us 
to assess the method’s ability to perform under conditions not encountered during training, where we kept 
all model parameter settings the same. Furthermore, the detailed video footage captured by the trail camera 
enabled us to manually determine the exact number of ear tags that should be detected in each video. This 
second scenario provided the necessary ground truth data to compute both Recall and Precision values. In 
addition, since the data and camera perspective from this scenario were not included in any of the training sets, 
it allowed us to evaluate the level of generalizability of our approach Two example images from both use cases 
are provided in Figure 5.

For the first evaluation stage, the independent model evaluation, we used the well-established performance 
metrics Precision, Recall, mean Average Precision (mAP) at an Intersection over Union (IoU) value of 0.5 
(mAP0.5) as well as the mAP with an IoU threshold ranging from 0.5 to 0.95, with a step size of 0.05 (mAP:0.95). 
The metrics are defined as follows:

	
Recall = T P

T P + F N
� (1)

	
P recision = T P

T P + F P
� (2)

	
mAP 0.5 = 1

n

n∑
c=1

APc � (3)

	
mAP : 0.95 = 1

T

T∑
t=1

1
n

n∑
c=1

APc(t) � (4)

where n is the number of classes in the respective task (e.g. pig detection or ear tag detection), T is the total 
number of IoU thresholds, TP is the number of true positive predictions, FP is the number of false positive 
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predictions, FN is the number of false negative predictions and APc is the average precision for class c. The 
AP value summarizes the precision-recall curve into a single value by calculating the area under the curve. It is 
defined as:

	
APc =

m−1∑
k=0

[Recall(k) − Recall(k + 1)] × Precision(k)� (5)

where m is the number of confidence thresholds and k is the threshold index with Recall(m) = 0 and 
P recision(m) = 127.

For the second assessment stage, we again computed the number of TP and FP, where a TP was assigned 
when an ID was correctly identified, and an FP was assigned when an ear tag was correctly detected, but the 
corresponding ID was incorrect. Based on this information, we calculated the Precision metric for both use cases 
and furthermore computed the number of FN and the Recall metric for the second use case only. This is because, 
in the first use case, the camera perspective makes it difficult even for a human evaluator to consistently pinpoint 
the exact moment when an ear tag ID should be recognized. Consequently, the number of FNs and, by extension, 
the recall metric could only be assessed in the second use case.

Results and discussion
For the first assessment stage, the training process of each model as well as the results of the model evaluation 
using the independent test datasets of each model are presented in Figure 6 and Table 2, respectively.

Monitoring the training process is crucial for detecting overfitting, a phenomenon where the model performs 
exceptionally well on the training data but shows decreased generalization performance on new data samples28. 
Measuring the model performance after each training cycle using the validation data reveals a steady increase 
in performance over time, excluding the presence of overfitting in the proposed work. In addition, the test data 
is used to evaluate the trained model’s performance on completely unseen data samples, ensuring an unbiased 
assessment, as the validation dataset is utilized for hyperparameter tuning and performance monitoring during 
the training process29. As can be seen in Table 2, all detection models achieve very high performance values in 
their respective tasks on the test data, consistently falling within the upper 0.9 range. This indicates a sufficient 
model state that can be further applied within the ID identification process.

Following the first evaluation stage, we proceeded to assess the combined model performance in the second 
evaluation stage, focusing on the two use case scenarios (see Section Model training and evaluation). Specifically 
for use case 1, we randomly selected and analyzed 500 ten-minute video sequences recorded at one frame per 
second (FPS), resulting in a total of 30,000 frames. Each frame was manually inspected to verify the correctness 
of the identified ear tag IDs. This evaluation focused on Precision, defined as the proportion of correctly detected 
and identified IDs (true positives) out of all detected IDs (true positives + false positives). Due to occlusion and 
pixelation, it was not feasible, even for human observers, to assess the Recall value in this scenario. Occlusion 
occurred naturally due to the animals’ behavior and posture, leading to partial or complete obstruction of 

Fig. 5.  Sample images of a daytime (A1 and B1) and a nighttime (A2 and B2) scene from the first (A1 and 
A2) and second (B1 and B2) use case scenario, respectively. The images in the second use case show the new 
camera perspective unknown to the trained models, captured using an autonomous trail camera.
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objects, while pixelation resulted from the top-down camera perspective and the distance between the camera 
and the ear tags. These factors made it inevitable that not all ear tags were visible in every frame. In contrast, the 
second use case utilizes video data from an autonomous trail camera positioned at a close-up perspective. For 
this evaluation step, we again analyzed 500 randomly selected videos with a length of ten seconds and an FPS 
rate of 20 frames. The results of both use case scenarios are presented in Table 3.

As shown in Table 3, when focusing on use case scenario 1, the proposed method achieves a high Precision 
value of 0.996, demonstrating that the majority of ID proposals were correctly identified. In the rare instances 
where an ear tag was detected but assigned an incorrect ID, we manually reviewed the model’s output and 
compared it with the ground truth image. In these cases, motion blur due to heavy animal movement and the 
distance of the camera to the ear tag was identified as the primary cause of unsuccessful identification (see Figure 
7 F1 and F2). Nevertheless, in practical applications, it is essential that all animals are identified within a specific 
time window, as missed detections can result in a biased data representation and overlooked critical situations, 
ultimately leading to incorrect decisions at the management level. To tackle this issue–and considering that the 
Recall could not be calculated for Use Case 1–we analyzed ten one-hour recordings from a single pen taken over 
ten consecutive days (one recording per day; each video with an FPS rate of one frame). During this ten-hour 
observation period, we first calculated the frequency of occurrence of individual IDs and the average frame gap 
between consecutive detection events for each ID. To obtain the overall statistics, we summed the total frequency 
of each ID and computed the overall average interval as the mean of all individual intervals across IDs, which 
allowed us to further evaluate the detection performance of the proposed method for each ID. For the selected 
pen, a total of 24 animals were present, each assigned a consecutive ID ranging from 26 to 49. The corresponding 
results are presented in Table 4.

In contrast, when focusing on the identification results of use case scenario 2 (Table 3), both the Recall and 
the Precision metric could be computed, as for this perspective it was possible to manually determine whether an 
ear tag ID should have been identified. Although this perspective was not learned during training the proposed 

Use Case # IDs total # IDs correct (TP) # IDs incorrect (FP) # IDs not detected (FN) Precision Recall

#1 45,515 45,410 104 - 0.996 -

#2 1,130 1,020 97 110 0.913 0.903

Table 3.  Identification results for the two use case scenarios.

 

Model evaluation Precision Recall mAP0.5 mAP:0.95

Pig detection 0.994 0.993 0.995 0.970

Ear tag detection 0.999 0.998 0.995 0.979

Pin detection 0.998 0.999 0.995 0.974

Digit detection 0.998 0.997 0.995 0.979

Table 2.  Results of the model evaluation using the independent test datasets.

 

Fig. 6.  Model performances during training, assessed on the validation data after each training epoch.
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method achieved Precision and Recall values of 0.913 and 0.903, respectively. Examples of successful and failure 
cases of both use cases are presented in Figure 7 and Figure 8, respectively.

When evaluating the method’s practical applicability, an important factor is its ability to cope with situations 
in which ear tags are placed in very close proximity – a circumstance frequently observed when animals rest 
closely together. Two examples of this behavior are shown in Figure 7 (S1 and S2) for the ID combinations 41 
and 47 as well as 41 and 39, respectively. In such cases, multiple animals may lie together in a group, resulting 
in cropped body regions that contain more than one ear tag. The proposed approach is not constrained to a 
strict one-to-one mapping between pig detection and ear tag detection; instead, it accommodates the presence 
of multiple ear tags within a single cropped image. Each detected ear tag is individually processed for rotation 
correction and ID identification. In instances where duplicate IDs are identified over multiple pig instance 
detections, the system retains only the prediction with the highest confidence score. While this strategy does 
increase inference time, it enhances the method’s flexibility and applicability in real-world conditions.

Furthermore, since video data collected in practical husbandry environments is often affected by fluctuating 
lighting conditions30 – and because many CV methods are especially sensitive to such variations31 – we 
intentionally created overexposed and underexposed versions of the original test datasets. This served as an 
additional robustness check, allowing us to assess the performance of each analysis step in our approach under 
suboptimal lighting conditions. In this way, the individual model performance can be recorded and critical 
bottlenecks within the pipeline can be identified and directly addressed. To generate these variants, we employed 
a systematic image processing workflow: images were randomly modified by simulating either underexposure 
(by scaling pixel values with a factor between 0.4 and 0.6) or overexposure (by amplifying them with a factor 

Fig. 7.  Examples of successful (S1–S4) and failed ID identification (F1 and F2) of images from Use Case 1. 
For illustration purposes, each subfigure displays the original RGB frame on the left, including detected IDs, 
and the rotation-corrected ID crops on the right, annotated with the ID prediction, center coordinates, and 
confidence score of each proposal. In failure cases, highlighted by the green box, motion blur was identified as 
the primary cause in most instances.
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between 1.1 and 1.3). As an additional variant, we changed the image structure and illumination characteristics 
of an image by applying a Single Scale Retinex (SSR)32,33 technique to enhance contrast and correct uneven 
illumination settings. In SSR, the logarithm of the original image is compared against the logarithm of its 
Gaussian-blurred counterpart, effectively normalizing lighting inconsistencies while preserving essential 
structural details. Example images for each dataset are provided in Figure 9 and the results of this additional 
robustness evaluation are shown in table 5.

As shown in Table 5, each model continues to achieve high performance values across all evaluation metrics 
even when illumination conditions are altered, with some results even slightly surpassing those obtained using 
the original, unaltered test data. One possible explanation for this enhanced performance is that the models 
were trained using augmented data, which involved random modifications to hue, saturation, brightness, and 
contrast, while evaluation was conducted on unaltered images. As a result, the models may have developed 
greater robustness to a range of lighting variations during training, enabling effective generalization to conditions 
such as overexposure, underexposure, and broader changes in image composition. Consequently, as part of their 
generalization ability, the object detection models may be better equipped to focus on invariant, task-relevant 
features. In addition, this improvement could be due to the fact that certain illumination adjustments - such as 
over- or underexposure or the application of SSR - could help improve visual discriminators or reduce noise in 
low-light situations or scenes with already inconsistent lighting conditions, which are also part of the original 
test dataset.

In contrast to alternative animal identification methods that rely on color filtering of the ear tag itself, which 
is often unsuitable under low-light or nighttime conditions, or approaches based on more specialized ear tag 

Fig. 8.  Example frames of a successful (S1) and a failed ID identification (F1) taken from Use Case 2. (S1) On 
the right side, two ear tag crops with ID proposals and confidence values in parentheses below the crop are 
shown. (F1) The ear tag with ID 96 was not detected due to a combination of overexposure of the image and 
motion blur of the animal.

 

ID Frequency Avg. Frame Gap ID Frequency Avg. Frame Gap

26 5346 112 38 2919 18

27 1345 49 39 3245 13

28 4799 183 40 3995 17

29 2502 26 41 5323 17

30 7975 9 42 5985 10

31 4196 17 43 3645 25

32 909 61 44 3540 384*

33 3177 68 45 4052 12

34 4529 18 46 1707 36

35 4734 13 47 4784 13

36 4800 12 48 2581 388*

37 2409 26 49 3385 20

Table 4.  Detection frequency and average frame gaps for a single pen from use case scenario 1. During the 
ten-hour observation period the majority of the animal IDs have been detected. IDs 44 and 48 (marked with *) 
were undetected in one video, which led to a considerable increase in the average frame gap.
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codings, which increase complexity and require an additional matching step of the ear tag and ID information, 
the proposed method leverages only grayscale information and a refined CNN-based feature extraction pipeline, 
allowing the continuous monitoring of specific pen areas and the direct determination of animal specific IDs. 
Although other identification strategies, such as facial recognition34 or muzzle-print analysis35, have shown 
promising potential for certain species like cattle, they can be impractical for species with less-prominent features 
or in settings that require strict camera angles. Additionally, incorporating more sophisticated sensors or higher-
resolution cameras to tackle these drawbacks further increases complexity and cost36. In this regard, our method 
remains robust across various lighting conditions, does not require specialized tag geometry, and thus represents 
a practical, cost-effective solution for commercial pig farms seeking reliable individual identification.

One of the main challenges encountered in the proposed ear tag detection method is motion blur, which 
increases the number of unreadable ear tags, particularly when using the top-down camera perspective. In such 
cases, most false positive results stem from the misinterpretation of the digits zero and eight, as their similar 
shapes make them difficult to distinguish under blurred conditions. However, despite this limitation, the overall 
detection performance remains strong. Since the current system employs two-digit IDs but could theoretically 
be extended to more digits, future work could mitigate this issue by either excluding one of the two problematic 
digits or modifying their visual design to enhance their distinctiveness and reduce confusion.

Since one of the goals of this study is to provide the underlying datasets, further research should be encouraged 
to expand the scale of ear tag-based animal identification. A robust animal detection and identification system 
has the potential to facilitate more advanced applications, such as longterm animal tracking in precision 
livestock farming. Here, maintaining consistent animal identities in video-based monitoring remains one of 
the most critical challenges in precision livestock farming, as individuals can undergo substantial appearance 
changes, suffer frequent occlusions, and exhibit complex group dynamics. This limitation directly impacts the 
reliability and scalability of automated systems aimed at continuously tracking individual animals’ health and 
behavior. Therefore, the development of consistent re-identification methods is a major task in the computer 
vision area37,38. As illustrated in the first use case scenario, the robust identification of ear tag IDs can serve as 
an additional step within a multi-object tracking system to validate the accuracy of existing tracks, detect false 
tracks, and determine ID-switches.

Future work could explore the modularity of the proposed pipeline, which consists of four distinct object 
detection models designed to detect different aspects of the image. This modular structure allows for the 

Model evaluation Precision Recall mAP0.5 mAP:0.95

Pig detection 0.997 0.996 0.995 0.976

Ear tag detection 0.986 0.963 0.989 0.891

Pin detection 0.996 0.991 0.995 0.888

Digit detection 0.998 0.996 0.995 0.970

Table 5.  Results of the performance assessment for challenging lighting conditions.

 

Fig. 9.  Example images from each test set showing the original image (top row) and the augmented images 
used to assess the model performance under challenging lighting conditions (bottom row).
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replacement of specific components, such as the pig detection model, to extend the approach to other livestock 
species, including cattle, sheep, and goats. By adapting the detection models, this framework can be generalized to 
a broader range of animal identification applications. Furthermore, upcoming research will focus on integrating 
this method within tracking applications to address the challenge of re-identification. By incorporating temporal 
data and movement patterns, the system can enhance its ability to track individual animals over time, ensuring 
consistent identification even in dynamic farm environments. This integration will be crucial for improving 
livestock monitoring systems, supporting real-time animal tracking, and enhancing overall farm management 
efficiency.

Conclusion
This study leverages the efficient feature extraction capabilities of convolutional neural networks to analyze 
animal and ear tag information, ultimately generating an ID proposal for identifying individual pigs. By 
utilizing grayscale image data and incorporating an additional detection step for the ear tag pin, the proposed 
method remains effective for both daytime and nighttime applications, enabling continuous monitoring from 
various camera angles and distances. Additionally, a key contribution of this work lies in the publication of the 
underlying datasets, particularly for ear tag, pin, and digit detection. By making these datasets publicly available, 
this study supports the research community by providing valuable resources for training and benchmarking 
object detection models, fostering further advancements in animal identification and precision livestock farming.

Data availability
The datasets generated in the course of this study are available at the opendata@uni-kiel research data repository 
of the Christian-Albrechts-University Kiel. They are accessible through the following link: ​h​t​t​p​s​:​​​/​​/​o​p​e​n​d​a​t​​a​.​u​n​​
i​-​k​i​​​e​l​.​​d​​e​/​r​e​c​e​​​i​v​e​/​​f​​d​r​_​​m​o​​d​s​_​0​0​0​​0​​0​1​1​5​​?​a​c​c​e​​s​​s​k​e​y​=​​p​8​m​e​P​t​8​l​B​8​R​n​v​e​Y​n​I​j​C​t​R​8​S​O​5​o​8​e​q​o​t​8.
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