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Pipelines in soft soil are prone to deformation and failure under traffic loads. Therefore, it is highly 
important to accurately characterize the dynamic response of pipelines under traffic loads and 
reasonably evaluate their operational status. First, for rigid pipelines, a Dload subroutine is written in 
the FORTRAN language to accurately characterize traffic loads, and a 3D numerical analysis model of 
the rigid pipe‒soil system is established using ABAQUS software to simulate the dynamic response 
of rigid pipelines in soft soil under traffic loads. The simulation results are validated against data 
from field tests. Second, an improved particle swarm optimization (PSO) algorithm is introduced 
to optimize the weights and thresholds of a backpropagation neural network (BPNN). An improved 
PSO-BPNN method for predicting the dynamic response of pipelines is proposed, and the accuracy 
and applicability of the method are verified. Finally, using the prediction model, a reliability analysis is 
conducted on the dynamic response of rigid pipelines in soft soil under traffic loads. The results show 
that compared with smaller-diameter pipelines, larger-diameter pipelines exhibit lower axial stress 
and vertical displacement, with more concentrated distributions. During pipeline construction, larger-
diameter pipelines should be chosen whenever possible to reduce the adverse impact of factors such 
as traffic loads on the dynamic response of pipelines. These research results provide a new theoretical 
basis and technical support for enhancing the reliability of rigid pipelines in soft soil and conducting in-
depth safety assessments of pipelines under traffic loads.
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Pipelines, along with railways, highways, air transportation, and water transportation, are known as the five 
major means of transportation. They are important infrastructures for urban development as well as vital 
“lifeline engineering” for improving people’s quality of life and ensuring social stability and security. By the end 
of 2023, the total mileage of various types of pipelines in China had exceeded 3.5 million kilometres. Among 
them, rigid pipelines have become one of the main types of pipelines for oil and gas as well as water supply and 
drainage applications because of their advantages of small deformation, stable performance, long service life, 
ease of repair, and wide applicability.

For a long time, pipeline network construction in China has faced the problem of “emphasizing construction 
while neglecting maintenance.” In addition, since pipelines are concealed structures, it is difficult to detect 
damaged or destroyed areas in a timely manner during pipeline construction and operation. Moreover, with 
the rapid social and economic development and the accelerated urbanization in China, underground pipeline 
networks often cross soft soil layers such as mud and swamps. These layers have a high water content, poor 
permeability, low strength, and high compressibility, and their strength decreases sharply when disturbed, 
resulting in poor geotechnical properties. Pipelines laid on soft soil foundations are highly susceptible to 
structural issues such as settlement, warping, and cracking. In addition, with the gradual expansion of highway 
and railway transportation networks, increasingly more underground pipeline networks intersect with surface 
transportation lines. Under high traffic volume and frequency, pipeline foundations are prone to long-term 
uneven settlement and deformation, altering the pipe‒soil interaction and further aggravating pipeline 
deformation, damage, and failure.
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Many researchers have studied the mechanical response of buried pipelines under traffic loads using theoretical 
analyses, model tests, and numerical simulations. In the 1970s, Parmelee and Ludtke1 proposed the Winkler 
model for beams on elastic foundations. Later, Rajani and Tesfamariam2, based on the Winkler theory, developed 
a model for calculating the longitudinal force on pipelines considering temperature and internal pressure. Li et 
al.3 used the Winkler model to propose a simplified model for calculating pipeline longitudinal force and verified 
it through numerical simulations and field tests. Fernando and Sérgio4 systematically studied the deformation 
patterns of pipelines in cohesionless soil under moving loads through centrifuge model tests and modified the 
theoretical formulas of Spangler and Boussinesq. Wang and Xiao5 conducted laboratory model tests to study 
the relationships between the mechanical properties and deformation characteristics of surrounding soil and a 
pipeline and verified the model test results using theoretical formulas. Based on laboratory model tests, Shi et al.6 
analysed the inherent relationship and influencing factors of road surface collapse under pipeline leakage and 
traffic loads based on laboratory model tests. Hyodo and Yasuhara7 showed through field tests that the additional 
stress on soil by traffic loads can be represented by a pulse curve. Li8 simplified the traffic load model and 
analysed the dynamic response of buried pipelines using numerical simulation software. Xie9 used a half-wave 
sinusoidal curve to characterize the fluctuation of traffic loads by modulating the amplitude function in ABAQUS 
software and analysed the dynamic response of concrete pipelines under traffic loads. However, traffic loads vary 
with time and space and exhibit a certain degree of randomness. Xu et al.10 established a vehicle‒soil‒pipeline 
model, which used the temporal variation of loads in a specific area to describe the running process of a vehicle, 
and they studied the mechanical response of large-diameter pipelines. Jiang et al.11 used ADAMAS to extract 
the amplitude of moving loads and employed finite element software to simulate the dynamic response of a 
pipeline under traffic loads. It is clear that the existing research has mostly focused on rigid pipelines in sand or 
loess, and few studies have investigated rigid pipelines in soft soil. Traffic loads have uncertainties in magnitude, 
direction, and points of application, so it is clearly inaccurate to simplify them as static or pulse loads. Traditional 
deterministic analysis methods such as model tests and numerical simulations have certain limitations and are 
unable to scientifically and rationally characterize the influence of various uncertainty factors on the mechanical 
response of buried pipelines and perform quantitative evaluation.

In summary, to address the vulnerability of pipelines in soft soil to deformation and failure under traffic loads, 
the present study developed a traffic load subroutine using ABAQUS software and established a 3D numerical 
analysis model for a rigid pipeline‒soil system to accurately simulate the dynamic response of rigid pipelines in 
soft soil under traffic loads. In view of the defects of the traditional backpropagation neural network (BPNN), 
where the selection of initial weights and thresholds can easily lead to the local optimum of the trained model, 
the present study used an improved particle swarm optimization (PSO) algorithm to optimize the weights and 
thresholds of the BPNN, improving the prediction accuracy and efficiency of the model. The accuracy and 
applicability of the method were verified through actual engineering cases. A reliability analysis of the dynamic 
response of rigid pipelines in soft soil under traffic loads was performed using the prediction model, and the 
differences in the dynamic response reliability of rigid pipelines with different pipeline diameters under traffic 
loads were compared.

Methods for pipeline dynamic response prediction and reliability analysis
BPNN algorithm
The BPNN is an error backpropagation neural network that mainly consists of two learning processes, i.e., 
forward propagation of the input signal and backpropagation of the error signal. Its structure is divided into 
three layers: an input layer, a hidden layer, and an output layer. During forward propagation, the input data flow 
from the input layer through the hidden layer and finally to the output layer, where the neurons in the previous 
layer affect the neurons in the next layer, and the neurons are determined by inputs, activation functions, and 
thresholds. When the error in the output layer is large, backpropagation is performed, and the objective function 
with the minimum error is obtained by repeatedly modifying and adjusting the weights and thresholds of the 
neurons (Fig. 1).

The BPNN algorithm is a nonlinear space mapping method for solving nonlinear optimization problem. It 
has strong capabilities in nonlinear mapping, generalization, and fault tolerance. However, this method is based 
on the gradient descent principle, resulting in slow convergence and issues with local minima, which can cause 
the algorithm to be easily trapped in local extrema, severely limiting its application.

Improved PSO algorithm
PSO is an intelligent global optimization algorithm. It implements swarm iteration by simulating bird flock 
foraging, searching for the optimal region in the space among swarm particles, and eventually obtaining the 
optimal particle in the target solution space. The solution of each optimization problem is a particle, that is, 
a flying bird in the space discovering and exploring the individual and global optimal solutions. During the 
training of model parameters in the PSO-BPNN algorithm, the network weights and thresholds are treated as 
particles, and particles can uniquely determine the network weights and thresholds. The goal of optimizing the 
network is ultimately achieved by continuously updating the particle positions, i.e., the weights and thresholds 
of BPNN. However, the inertia weight in the standard PSO algorithm is linearly related to the number of particle 
swarm iterations, and the integration of PSO with BPNN can easily cause the “clustering” of the particles in the 
particle swarm, leading to the “prematurity” of particles and the calculation result being trapped in local minima.

Therefore, to overcome the above problems and enhance the global search capability of the whole algorithm, 
the standard PSO algorithm is improved by introducing two variables, the evolution degree and the aggregation 
degree, into the particle swarm to enable the dynamic change in the inertia weight. The two variables are 
expressed as follows:
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where e is the evolution degree of the particle swarm, characterizing the degree of evolution and convergence of 
the particle swarm; at the beginning of the iteration, it has a small value, indicating a fast evolution speed. Later, 
its value decreases, and the evolution speed slows down; when this value becomes 1 and remains unchanged, 
the algorithm has stagnated or found an optimal solution. Ej(t−1) represents the particle fitness of the global 
optimal solution in the previous iteration, and Ej(t) is the particle fitness of the current global optimal solution. 
a is the aggregation degree of the particle swarm, with a smaller value indicating a more dispersed particle 
distribution; when it is 1, all the current particles are optimal, and the particle swarm has aggregated into one 
point. M is the particle swarm size, also known as the number of particles.

Implementation steps of the improved PSO-BPNN
The specific steps of the improved PSO-BPNN algorithm are as follows: 

	(1)	 Initialize the BPNN by determining the number of neurons in the input layer, hidden layer and output layer.
	(2)	 Determine the particle swarm size M, the dimension n, and the velocity vector and the displacement vector 

of the particles in the initial particle swarm.
	(3)	 Input the sample data and perform the BPNN forward propagation calculation to obtain the training error 

and the fitness values of the particles.
	(4)	 Compare the fitness values to determine the individual optimal solutions of all particles and the global 

optimal solution.
	(5)	 Iteratively update the individual optimal solutions of all particles and the global optimal solution through 

the BPNN algorithm.
	(6)	 Continuously update the velocity vectors and position vectors of all particles in the particle swarm.
	(7)	 To determine if the termination condition is met, check whether the number of iterations satisfies the 

required criterion or whether the mean square error of the objective optimization function meets the accu-
racy threshold.

The specific process of the improved PSO-BPNN algorithm is shown in (Fig. 2). This method integrates the 
advantages of the BPNN and PSO algorithms. By improving the standard PSO algorithm and combining it 
with the BPNN algorithm, the “clustering” of particles in the particle swarm can be effectively prevented, thus 
overcoming the “prematurity” of particles and ultimately making the optimal solution a global optimum.

Reliability analysis of pipeline response based on BPNN with improved PSO
The reliability analysis of the dynamic response of pipelines based on the BPNN with improved PSO includes 
three main parts. (1) Generating sample data: experimental design methods such as importance sampling, Latin 
hypercube sampling, and factorial design are used to generate sample data that can uniformly cover the entire 
random variable interval, thereby overcoming the issue of the large sample size in Monte Carlo simulation 
(MCS) methods, reducing the number of samples, and improving the computational efficiency. (2) Based on the 
BPNN prediction model with improved PSO, which fully integrates the advantages of improved PSO and BPNN, 
the prediction model is established using a nonlinear method with strong applicability, high fault tolerance, and 

Fig. 1.  Schematic diagram of the BPNN structure. This figure was drawn using Microsoft PowerPoint 2016. 
(Software: Microsoft PowerPoint 2016)
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high global search capability. (3) Calculating system reliability: based on the prediction model, the reliability 
of the dynamic response of rigid pipelines under traffic loads is calculated using the MCS method for random 
variable sampling. Figure 3 shows the flowchart for the reliability analysis of the dynamic response of pipelines 
based on the BPNN with improved PSO.

Numerical example
Calculation models and parameters
An actual engineering project is used for the calculation example. The project is located in the Wenzhou 
Technology Development Zone, Zhejiang Province. The soil layer consists of dredger-filled soft soil, which is 
highly compressible, underconsolidated, and has a high water content. The overall size of the model is more 
than five times the size of the pipeline, meeting the requirements for the model boundary effect. The calculation 
model has a length, width, and height of 20 m, 6 m, and 8 m, respectively. The pipeline is a made of ductile iron 
with a length of 6 m. C3D8R elements are used to mesh both the rock–soil mass and the pipeline, with the rock–
soil mass having a grid size of approximately 0.45 m, which is refined to 0.1 m for the load area, and the pipeline 
having a grid size of 0.05 m, resulting in a total of 88,510 nodes and 76,560 elements, as shown in (Fig. 4). The 
contact interface model can effectively describe the nonlinear response of pipe-soil interaction. Therefore, in this 
section, the soil is modeled using continuum solid elements, and the general contact algorithm in ABAQUS is 
adopted to simulate the pipe-soil interaction. The normal direction is defined with a hard contact formulation, 
while the tangential direction employs a penalty-based friction formulation. The bottom of the model is fully 
fixed, and the normal displacement of the lateral sides is constrained. The Mohr‒Coulomb model is used to 
characterize the elastic‒plastic mechanical behaviour of the rock–soil mass, and the Ramberg–Osgood model 
is used to characterize the stress‒strain relationship of the pipeline material, with a yield stress of 450 MPa. The 
material parameters are shown in (Table 1).

Since the burial depth and vehicle load have a great impact on buried pipelines in soft soil, in the present 
study, the two parameters are discretized to analyse the mechanical response of rigid pipelines with different 
diameters under traffic loads. The sample parameters are generated using the Latin hypercube sampling method. 
Studies have shown12–14 that a sample size of N = 15 D (D represents the number of parametric variables; D = 2 
in this example) can achieve satisfactory calculation results, with the test sample size being 15 or 20. To better 
verify the accuracy of the method, the sample size in this numerical example is set to 60 (which is greater than 
N = 15 D = 30), and 20 sets of data are taken as test samples. The sample interval for parameters with normal 
distribution and lognormal distribution is (µx − 4σx, µx + 4σx) (µx, σx are the mean and standard deviation 
of the random variable parameter, respectively).

Fig. 2.  Flowchart of the improved PSO-BPNN algorithm. (Software: Microsoft PowerPoint 2016)
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Fig. 4.  Schematic diagram of the finite element model.(Software: Abaqus/CAE 2020).

 

Fig. 3.  Flowchart for the reliability analysis of the dynamic response of pipelines based on BPNN with 
improved PSO. (Software: Microsoft PowerPoint 2016)
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Traffic load model
The existing studies usually simplify vehicle loads as static loads or half-wave sinusoidal curves7. This method 
can only be used to apply loads in specific areas and is unable to realistically represent dynamic changes in 
the magnitude, direction, and application points of traffic loads of running vehicles. In this study, a Dload 
subroutine was developed and used in combination with ABAQUS software to accurately simulate the real 
process of running vehicles.

During the running process of a vehicle, the pressure exerted by the vehicle on the road surface can be 
characterized by the contract pressure between the wheels and the ground. Based on actual engineering vehicles 
and field measurements, the basic dimension of the contact area between a single wheel of a large freight vehicle 
and the ground is 0.3 × 0.25 m2. The vehicle has a total of four axles and 12 wheels, with a total contact area of 0.9 
m2 between the wheels and the ground, The vehicle width of the vehicle is 2 m, the wheelbase of the front axle 
is 1.8 m, and the wheelbase of the rear axle is 1.4 m. as shown in (Fig. 5).

Validation of numerical simulation results
Vehicle loads are applied to the top of the model, and the vehicle travels straight from the left end to the right 
end of the model. During the driving process of the vehicle, the pipeline undergoes four processes (Steps 1 to 
4). The circumferential and axial stresses during the driving process are extracted and compared with the field-
measured values, as shown in (Fig. 6).

Figure  6 shows the steps. Step 1: The pipeline stress gradually increases as the vehicle moves to the right at a 
constant speed, and the axial and circumferential stresses of the pipeline reach their first peaks when the front 
axle in the front of the vehicle is directly above the pipeline. Step 2: When the front axle leaves the top of the 
pipeline, the pipeline stress decreases to some extent. However, the pipeline stress reaches the second peak when 
the rear axle in the front of the vehicle is directly above the pipeline. Due to the short distance between the front 
and rear axles, a certain stress accumulation effect occurs, making the second peak slightly higher than the first 
peak. Step 3: When the rear axle in the front of the vehicle leaves, the circumferential and axial stresses of the 
pipeline decline sharply, and when the rear of the vehicle drives above the pipeline, both circumferential and 
axial stresses reach the maximum peaks. Since the weight of the vehicle is mainly concentrated on the rear of the 
vehicle and the distance between the front and rear axles in the rear of the vehicle is small, the two axles can be 
considered to act at the same time. Step 4: The pipeline stress gradually decreases after the rear axle in the rear of 
the vehicle moves away from the top of the pipeline until it stabilizes in the numerical simulation. The numerical 
simulation results generally agree with field measurement data, with maximum errors of 8.52% and 5.39% for 
circumferential and axial stresses, respectively.

We select one set of working conditions and extract the pipeline axial stresses from numerical simulations and 
field measurements for comparison. As shown in (Fig. 7). The figure shows that, the axial stress along the axis of 
the pipeline from numerical simulations is in high agreement with that from field measurement. Therefore, the 
traffic load model and the numerical calculation model developed in this study have high accuracy.

Prediction and reliability analysis of the mechanical response of the pipeline
By performing deterministic numerical simulations on 60 sets of sample data, the dynamic response of the rigid 
pipeline in soft soil under traffic loads, such as the stress‒strains and displacement of the pipeline, are obtained 
(Fig. 8). Here, the vertical displacement of the rigid pipeline is taken as an example to perform statistical analysis 
on the 60 sets of randomly obtained sample data. With the pipeline burial depth and vehicle load as inputs, 
the vertical displacement of the rigid pipeline is predicted using the BPNN with improved PSO. Figures 9, 10 
compares the measured and predicted values using the training and test set samples, respectively. As shown in 
the figure, the predicted values for both the training and test sets exhibit a high degree of consistency with the 

Fig. 5.  Schematic diagram of the vehicle load model. (Software: Microsoft PowerPoint 2016)

 

Material Density (kg/m3) Elastic modulus (MPa) Poisson’s ratio µ Internal friction angle (°) Cohesion (KPa)

Soft soil 1850 10 0.3 8 5.0

Ductile iron pipe 7300 1.6 × 105 0.3 – –

Table 1.  Material parameters.

 

Scientific Reports |        (2025) 15:22857 6| https://doi.org/10.1038/s41598-025-05335-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 6.  Comparison of circumferential and axial stress time history curves of the pipeline between field tests 
and numerical simulations. (3D model: Abaqus/CAE 2020; Data visualization: OriginLab Origin 2018, 64-bit 
version)
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measured values, with data points densely distributed along the diagonal. The training set achieves an R2 of 0.9839 
(ERMS = 0.08288), while the testing set yields an R2 of 0.9541 (ERMS = 0.12615), indicating that the model does 
not exhibit significant overfitting during training. The absence of systematic bias and the uniform distribution of 
data points on both sides of the diagonal further validate the effectiveness of the improved PSO-BPNN model in 
capturing the nonlinear characteristics of rigid pipeline responses in soft soil. The model demonstrates reliable 
generalization capability for unknown conditions while maintaining high accuracy in the training set.

Table  2 lists the evaluation metrics for the prediction results corresponding to the training and test sets, 
respectively. ERMS values are all less than 0.2, and the goodness of fit R2 values are greater than 0.95, indicating 
an overall small prediction error and a high prediction accuracy. As shown in the table, the prediction accuracy 
of the training set is slightly higher than that of the test set, indicating that the established prediction model 
can fully identify the sample data characteristics of the training set, has strong generalizability, and can be well 
applied to prediction of the dynamic response of rigid pipelines in soft soil under traffic loads.

Fig. 8.  Contours of pipeline stress and displacement. (Software: Abaqus/CAE 2020)

 

Fig. 7.  Comparison of axial stresses along the pipeline axis between field tests and numerical simulations. (3D 
model: Abaqus/CAE 2020; Data visualization: OriginLab Origin 2018, 64-bit version)
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Based on the prediction model established above, a reliability analysis is performed on the dynamic 
response of the rigid pipeline in soft soil under traffic loads. The calculation results are shown in (Figs. 11, 12). 
Figure 11 shows that, under the same loads and burial depth, a smaller pipe diameter leads to a more widely 
distributed axial stress and a lower concentration of stress values; conversely, a larger pipe diameter results in a 
more narrowly distributed axial stress and a higher concentration of stress values. The distribution is relatively 
concentrated. The above conclusion is further verified from the perspective of pipeline vertical displacement in 

Fig. 9.  Comparison of measured and predicted results using the training sample set. (Software: OriginLab 
Origin 2018, 64-bit version)
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Fig. 10.  Comparison of measured and predicted results using the test sample set. (Software: OriginLab Origin 
2018, 64-bit version)
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(Fig. 12). Under the same loads and burial depth, larger-diameter pipelines have smaller vertical displacement 
with more concentrated distribution than smaller-diameter pipelines. Therefore, under the same load and burial 
depth, compared with smaller-diameter pipelines, larger-diameter pipelines experience lower force-induced 
displacement and are less likely to fail. During pipeline construction, given that economic and geological 
conditions are met, it is recommended to choose larger pipe diameters to reduce the unfavourable impact of 
factors such as traffic loads on the dynamic response of rigid pipelines.

Conclusions
In this study, based on ABAQUS software, the DLOAD subroutine was written in the FORTRAN language 
to accurately characterize the traffic load, and a 3D numerical analysis model for rigid pipeline–soil system is 
established to simulate the dynamic response of rigid pipelines in soft soil under traffic loads. The simulation 
results are compared with data from field tests to verify the accuracy of the method. Second, to address the defect 
that the selection of initial weights and thresholds in a traditional BPNN easily leads to the local optimum using 
the trained model, an improved PSO is used to optimize the weights and thresholds of the BPNN, improving 
the prediction accuracy and efficiency of the model. The feasibility and accuracy of the proposed method in 
predicting the dynamic response of pipelines are verified through an actual case example. Finally, based on 
the above prediction model, a reliability analysis is conducted on the dynamic response of rigid pipelines in 
soft soil under traffic loads. Under the same traffic loads and burial depth, compared with smaller-diameter 
pipelines, larger-diameter pipelines have lower axial stress and vertical displacement, with more concentrated 
distributions. During pipeline construction, as long as economic and geological conditions are met, large-
diameter pipelines should be chosen to reduce the adverse impact of factors such as traffic loads on the dynamic 
response of pipelines.

Dataset Sample size ERMS R2

Training set 40 0.08288 0.9839

Test set 20 0.12615 0.9541

Table 2.  Prediction accuracy of the vertical displacement of the rigid pipeline.
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Fig. 11.  Curves of the probability density function and cumulative distribution function of pipeline axial 
stress. (Software: OriginLab Origin 2018, 64-bit version). (a) The probability density function of pipeline axial 
stress. (b) The cumulative distribution function of pipeline axial stress.
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Fig. 12.  Curves of the probability density function and cumulative distribution function of pipeline vertical 
displacement. (Software: OriginLab Origin 2018, 64-bit version). (a) The probability density function of 
pipeline vertical displacement. (b) The cumulative distribution function of pipeline vertical displacement.
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Data availability
The datasets supporting the conclusions of this study are provided under license by Wenzhou University and 
are not publicly accessible. Access to these data may be granted to qualified researchers upon written request 
to the authors, subject to approval by Wenzhou University. For inquiries, please contact Professor Laifu Song at 
songlaifu_jia@wzu.edu.cn.
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