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The development of urban agglomerations driven by the mining industry inevitably impacts regional 
habitat quality. Understanding how habitat quality evolves over time and space, as well as identifying 
the key driving factors in mining urban agglomerations, is essential for developing sustainable policies 
and maintaining ecological security. This study evaluates the spatiotemporal changes in habitat quality 
from 1990 to 2020 via the InVEST model, forecasts habitat quality in 2040 under various development 
scenarios via the PLUS model, and investigates the factors contributing to these changes. The results 
revealed that from 1990 to 2020, areas of forestland, cultivated land, and grassland initially increased 
before declining, whereas areas of construction land and water bodies continuously expanded, with 
construction land primarily replacing cultivated land and forestland. The average habitat quality 
ranged from 0.72 to 0.82 during this period, showing an overall increase followed by a decline, 
with lower habitat quality found in the central areas and higher quality in the surrounding regions. 
Additionally, habitat quality exhibited significant spatial autocorrelation, with a slow expansion of 
low-habitat-quality clusters. Under all three development scenarios for 2040, the region is expected 
to remain dominated by cultivated land and forest, but with a notable expansion of built-up areas 
compared with that in 2020. Habitat quality is predicted to decrease by 2040, with an increase in 
worst-grade areas. On the basis of random forest and geodetector analyses, the main drivers of habitat 
quality are elevation, slope, and population density, with the most significant interactions occurring 
between population density and elevation, followed by interactions between nighttime light intensity 
and elevation and between population density and slope. These results suggest that habitat quality in 
the region is influenced primarily by the interplay of topography, human development, and economic 
activities. This study provides valuable insights for the construction of an ecological security framework 
for mining urban agglomerations.
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agglomerations

The global surge in resource extraction has intensified ecological changes in mining regions, prompting widespread 
scholarly focus on habitat quality (HQ)1. The mining sector, while pivotal for economic advancement, has 
concurrently caused profound ecological challenges2. Studies indicate that mining-centric urban clusters exhibit 
distinctive aggregation effects, where the intensive extraction of minerals leads to an expansion of associated 
industrial and residential land, consequently diminishing agricultural land, reducing wildlife habitats, and 
posing threats to biodiversity3. Globally, mining centers such as the Amazon Basin and the Witwatersrand Basin 
are already experiencing similar problems, where uncontrolled exploitation has led to irreversible ecological 
damage4,5. In light of increasing ecological conservation awareness, global attention to HQ has intensified. This 
focus is driven by the understanding that HQ not only is critical for species survival and reproduction but 
also directly influences human health and quality of life6. Consequently, examining the changes in HQ within 
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mining cities, understanding their spatial and temporal dynamics, and identifying their underlying drivers 
are essential. Such research can inform the creation of evidence-based strategies for sustainable development, 
thereby bolstering biodiversity conservation, ecological balance, and stability in these regions.

HQ indicates a region’s capacity to offer appropriate living conditions for species and populations7. High-
quality habitats can increase ecological stability and resilience to external disturbances8,9. Current methods 
for assessing HQ at the regional scale involve primarily field surveys and ecological assessment models10. 
Field surveys are mainly applicable to small-scale regional assessments11but they are time-consuming and 
labor-intensive, and obtaining long-term species data poses a significant challenge12often making it difficult 
to evaluate the spatiotemporal dynamics of ecological functions such as biodiversity13. In order to overcome 
these limitations, ecological assessment models that utilize multi-source remote sensing data for spatial and 
visual representation of HQ have emerged as powerful tools to characterize spatial and temporal variations 
in HQ in a vivid way14,15. These models include SolVES, HSI, and InVEST, among others16–18. Notably, the 
InVEST model boasts advantages such as ease of data acquisition, high accuracy, and strong spatial expression 
capabilities19enabling the reflection of habitat distributions and degradation patterns in different landscape types, 
and thus has garnered widespread attention20. Unfortunately, the application of the model in HQ assessments 
of mining urban agglomerations where mining development, rapid urbanization and fragile ecosystems coexist 
is still limited.

Mine HQ is influenced by a combination of economic, social, and natural geographic factors at various 
scales21. Economic and social factors include land use, population density, gross domestic product (GDP), 
industrial activities, and commercial operations, whereas natural geographic factors include elevation, slope, 
vegetation, temperature, precipitation, and others22,23. Studies have shown that changes in land use significantly 
affect HQ, with the expansion of construction land for industry, commerce, and residential areas leading to 
shifts in land use patterns that result in habitat degradation, particularly the decline of ecological forests and 
grasslands24. However, owing to the complexity of ecosystems, HQ is shaped not only by land use changes but 
also by multiple interrelated factors19,25. In natural environments, HQ is heavily influenced by topography, with 
higher elevations in mountainous regions generally associated with better HQ26. Social factors, such as high 
population density and intensive mining activities, further exacerbate pressures on native species, resulting in 
habitat fragmentation and a prolonged decline in HQ27. Thus, natural geographic factors establish the spatial 
variation in HQ, whereas economic and social factors drive temporal trends28. Although previous studies have 
investigated these drivers individually, few have holistically examined their synergistic impacts over extended 
periods. Understanding the key drivers of HQ remains critical for formulating sustainable strategies in ecological 
planning and biodiversity conservation.

Against this backdrop, this study focuses on South Hunan, a region emblematic of China’s resource-driven 
growth-ecology dilemma. In the past 30 years, the region has experienced considerable influxes of population, 
capital, and industry, driven by its abundant reserves of rare earth, manganese, and iron ores29. This has led to 
the emergence of a resource-driven urban agglomeration, where mining and related chemical industries play 
a central role. However, as a critical source for multiple water systems and characterized by widespread hilly 
terrain, the region also has a highly sensitive and fragile ecological environment30. The excessive extraction 
and mismanagement of mineral resources have caused severe damage to local natural habitats, leading to 
fragmentation and degradation. In response, local governments and enterprises have started regulating mining 
activities and implementing ecological restoration measures31. Nevertheless, balancing mining development 
with the improvement of HQ remains a pressing challenge because of the long-standing dominance of the 
mining economy. This study aims to (1) investigate the spatiotemporal patterns and dynamic trends of HQ in 
the South Hunan Mining Urban Agglomeration over the past 30 years; (2) predict future HQ scenarios for the 
region; and (3) analyze the primary drivers of HQ changes in the area. These analyses generate novel datasets 
and actionable insights to advance ecological planning in mining city clusters. This study not only addresses 
critical gaps in regional ecological security but also establishes a transferable framework for reconciling resource 
extraction with habitat conservation in global mining hotspots.

Materials and methods
Research area
The research area is situated in the southern portion of the middle Yangtze River Basin in China (Fig. 1), with 
geographical coordinates spanning from 109° 15′ to 114° 40′ E and 24° 25′ to 27° 50′ N, covering a total area 
of approximately 1.06 × 105 km2. The region comprises 59 county-level cities and is characterized by terrain 
dominated by mountains and hills, serving as the source of multiple river systems. The region’s climate is 
classified as a subtropical monsoon climate, with an annual precipitation of approximately 1200–1800 mm32. The 
South Hunan region is rich in mineral resources, including colored metals and nonmetallic minerals, with many 
deposits (such as tungsten, bismuth, rare earth, manganese, microcrystalline graphite, and fluorite) ranking 
among the top in the country in terms of reserves and grade33. The primary industries in the region include the 
extraction and processing of colored metals and nonmetallic minerals, mineral smelting and extension, and the 
manufacture of chemical raw materials and products.

Data sources and processing
This study relies primarily on the following data sources: (1) Land use data were obtained from the Resource and 
Environment Science Data Center, Chinese Academy of Sciences (http://www.resdc.cn). This land use dataset 
adopts a two-level classification system, with the first level categorizing land into six types and the second level 
dividing land into 19 types (Table S1). (2) DEM data were sourced from the NASA-released SRTM global DEM 
(https://lpdaac.usgs.gov/), and the study area DEM was extracted via ArcGIS 10.8 software. (3) Meteorological 
data were obtained from the China Meteorological Data Network (http://data.cma.cn/), and the raster data 
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were spatially interpolated by ArcGIS 10.8 software. (4) River distribution, road distribution, soil type data, 
population density and GDP data were sourced from the Resource and Environment Science Data Center, 
Chinese Academy of Sciences (https://www.resdc.cn). (5) Mining industry data were sourced from the statistical 
yearbooks of the study area’s municipalities and counties for the years 1990–2020. (6) Nighttime light brightness 
data were obtained from the National Tibetan Plateau Environment Data Center (https://data.tpdc.ac.cn). Data 
types, original resolution, processes and sources are detailed in Table 1. Following preprocessing, all grid data 
were standardized to a 100 m × 100 m resolution and projected in the WGS_1984_Albers coordinate system.

Research framework
This study employed a systematic research framework (Fig. 2) integrating spatial analysis, scenario simulation, 
and statistical modeling to investigate the spatiotemporal dynamics of HQ and its drivers in the South Hunan 
Mining Urban Agglomeration. The workflow comprised four stages: (1) land use change analysis, (2) HQ 

Data type Original resolution Processing Data source

Land use data 30 m Data for 1990, 1995, 2000, 2005, 2010, 2015, and 2020 The Resource and Environment Science Data Center, 
Chinese Academy of Sciences (http://www.resdc.cn)

DEM 30 m The study area DEM was extracted via ArcGIS 10.8 software The NASA-released SRTM global DEM (https://
lpdaac.usgs.gov/)

Precipitation
Point data Data for 1990, 1995, 2000, 2005, 2010, 2015, and 2020 The China Meteorological Data Network (http://

data.cma.cn/)Temperature

River distribution 100 m Data for 2000, 2005, 2010, 2015, and 2020

The Resource and Environment Science Data Center, 
Chinese Academy of Sciences (https://www.resdc.cn)

Road distribution 100 m Data for 2000, 2010, and 2020

Soil type data 1000 m The study area soil type data was extracted via ArcGIS 10.8 
software

Population density 1000 m
Data for 1990, 1995, 2000, 2005, 2010, 2015, and 2020

GDP 1000 m

Mining industry data Point data Data for 1990–2020 The statistical yearbooks of the study area’s 
municipalities and counties for the years 1990–2020

Nighttime light brightness 500 m Data for 1990, 1995, 2000, 2005, 2010, 2015, and 2020 The National Tibetan Plateau Environment Data 
Center ​(​​​h​t​t​p​s​:​/​/​d​a​t​a​.​t​p​d​c​.​a​c​.​c​n​​​​​)​​

Table 1.  Data types, processes and sources.

 

Fig. 1.  Overview map of the study area. Generated in the ArcGIS 10.8 sofware (www.esri.com).
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assessment and trend quantification, (3) future scenario projections, and (4) driver identification. Below, we 
elaborate on each component, with justifications for model selection and parameterization.

Land use transition analysis
The land use transfer matrix is used to quantify the dynamic transitions and quantitative variations among land 
use categories34. Theoretically grounded in Markov chain principles, this matrix formulation characterizes the 
state transition process of quasi-stable systems between discrete temporal intervals (from time K to K + 1), thereby 
providing spatiotemporal visualization of land use dynamics within the study area35. This investigation employs 
the land use transfer matrix methodology to conduct a comprehensive analysis of land use transformations 
occurring in the study region during the 1990–2020 period.

The concept of the “center of gravity”, originating from physics, represents the equilibrium point of an 
object’s mass distribution36. This principle has been extended to geographical studies to quantify the spatial 
concentration and dynamic shifts of land-use types37. The gravity model can provide some insight into the 
distributional characteristics of spatial changes in land use types by analyzing the direction and distance of the 
shift in the center of gravity of each land use type38. In this study, we employ centroid migration analysis of 
construction land to delineate the spatiotemporal evolutionary trajectory of urbanization patterns within the 
research area. By tracking the shifting coordinates of the center of gravity, we elucidate the directional bias and 
intensity of the expansion of mining city clusters.

Habitat quality assessment
We applied the InVEST model to evaluate HQ. The HQ index, which ranges from 0 to 1, reflects the ecological 
quality of an area, with higher values indicating better quality39. The formula is as follows:

	
HQxj = Hxj

(
1 −

(
Dz

xj

Dz
xj + kz

))
� (1)

.
where HQxj represents the HQ of pixel x in land use type j; Hxj denotes the habitat suitability of pixel x in land 

use type j; z is a normalization constant; k is the half-saturation constant, typically set to 0.5; and Dxj indicates 
the degree of habitat degradation of pixel x in land use type j. The formula is as follows:
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∑
R
1

∑
Yr
1

(
wr∑

R
1 wr

)
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Fig. 2.  Research framework.
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.
where irxy is the effect of threat factor r in image y on image x, wr is the weight of the threat factor, ry is the 

intensity of the threat factor, βx is the resistance of the habitat to interference, and Sjr is the sensitivity of the 
different habitats to the different threat factors.

In this study, on the basis of the InVEST guidelines, which refer to the research of related scholars26,39–41 
and synthesize the opinions of experts in the field of ecology for optimization, the final selection of cultivated 
land, urban land, rural settlements, other construction land, and unutilized land as threat factors, the weights 
of the factors and the distances of the impacts are shown in Table 2, and the suitability of the habitats and their 
sensitivity to the factors are shown in Table S2.

To more accurately describe the spatiotemporal changes in HQ in the South Hunan Mining Urban 
Agglomeration, we categorized the HQ grades into worst (0-0.2), worst (0.2–0.4), moderate (0.4–0.6), good (0.6–
0.8), and excellent (0.8-1.0) grades on the basis of the actual situation of the study area via the reclassification tool 
of the ArcGIS 10.8 software platform.

Trend analysis
The Theil-Sen median trend analysis and Mann‒Kendall test are commonly used to identify trends in long-
term time series data42. The Theil–Sen method is a reliable nonparametric approach for trend estimation and is 
calculated via the following formula:

	
β = median

(
Hj − Hi

j − i

)
(1990 ≤ i ≤ j ≤ 2020)� (3)

.
where Hj and Hi represent the HQ values in years j and i, respectively, and β represents the trend of 

change in HQ; when β > 0, it indicates a decreasing trend in HQ; conversely, it indicates an increasing trend. 
The Mann‒Kendall test is a nonparametric statistical test suitable for testing the significance of trends via the 
following formula43:

	
S =

∑
n−1
i=1

∑
n
j=i+1sgn (Hj − Hi)� (4)

	
sgn (Hj − Hi) =

{
1, Hj − Hi > 0
0, Hj − Hi = 0
−1, Hj − Hi < 0

� (5)

	
Vs = n (n − 1) (2n + 5)

18
� (6)

	

Z =




S−1√
Vs

, S > 0
0, S = 0

S+1√
Vs

, S < 0
� (7)

.
where sgn represents the sign function, n is the number of data points in the time series, and Vs is the variance 

of the S statistic. At the α level, a significant trend in HQ is indicated if Z > Z - α/2, with α commonly set at 0.05. 
If |Z| > 1.96, the trend is considered statistically significant at the 95% confidence level; otherwise, it is not44.

Spatial autocorrelation
HQ has a certain regularity in spatial distribution, and spatial autocorrelation modeling can respond to the 
correlation between variables in a region and can be used to describe whether HQ has a clustering effect on the 
whole study area45. In this study, the global Moran’s I index was used to estimate the degree of clustering of HQ 
via the following formula:

	
I =

n
∑

n
i=1

∑
n
j=1ω ij (xi − x) (xj − x)

S2
∑

n
i=1

∑
n
j=1ω ij

� (8)

.

Threat factors Maximum influence distance (km) Relative weight Types of spatial decline

Cultivated land 1 0.7 Linear

Urban land 10 1.0 Exponential

Rural settlements 5 0.6 Exponential

Other construction land 8 0.7 Exponential

Unutilized land 1 0.5 Linear

Table 2.  Maximum influenced distance and weight of threat factors.
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where n represents the total number of grids, wij is the spatial weight matrix, and xi and xj are the HQ values 
of grids i and j, respectively. where x is the average HQ value. Moran’s I index quantifies spatial dependence 
by evaluating whether HQ are clustered (positive autocorrelation), dispersed (negative autocorrelation), or 
randomly distributed (no autocorrelation). A value closer to 1 indicates strong clustering of similar HQ values 
(e.g., hotspots of high HQ or coldspots of low HQ), while a value closer to − 1 suggests spatial dispersion (e.g., 
alternating high and low HQ patches).

Cold hotspot analysis mainly uses the Getis‒Ord Gi∗ (G coefficient) provided by the Arc GIS platform to 
perform local statistics of spatial heterogeneity46. This method helps identify statistically significant high and low 
values in the HQ distribution. Significantly positive Gi∗ values indicate high aggregation and hotspots, whereas 
significantly negative Gi∗ values suggest low aggregation and cold spots.

Future scenario projections
The PLUS model is an advanced land-use change simulation model developed on traditional cellular automata47 
and is composed of two major modules: the land expansion analysis strategy module and the Cellular Automata 
model, which is based on multiclass random seed blocks48. The study simulated the land use situation in 2020. 
The overall simulation accuracy is 0.904, and the kappa coefficient is 0.863, indicating that the model parameters 
are reasonable (Table S3 and Fig. S1). On the basis of feasible conditions and future development requirements, 
this study subsequently establishes three distinct future scenarios for 2040:

Natural development scenario: This scenario simulates the South Hunan Mining Urban Agglomeration 
via the PLUS model, which is based on land use changes from 1990 to 2020, without considering additional 
constraints.

Ecological Protection Scenario: In this scenario, the South Hunan Mining Urban Agglomeration pursues 
green development and builds an ecologically friendly city group. The focus is on ecological protection, reducing 
resource development, and conserving regional biodiversity.

Economic development scenario: In this scenario, the South Hunan Mining Urban Agglomeration aims for 
economic growth and expansion of the industrial scale. It innovates and develops mining and related deep 
processing industries to drive economic development.

Random forest
The random forest model is based on decision tree classifiers and is capable of effectively handling various data 
types and assessing the importance of variables, thereby exhibiting strong predictive power49,50. This study selected 
several environmental factors influenced by natural processes and human activities, including precipitation, 
temperature, DEM, slope, soil type, mineral distribution density, river distance, mining development index, road 
distance, population density, GDP, and nighttime light brightness. Using R software, a random forest analysis 
was conducted to identify the key drivers impacting the spatiotemporal changes in HQ within the study area.

Geodetector model
The geodetector model is a statistical approach used to identify the similarity in spatial differentiation among 
geographic elements and the factors driving the spatial variation in the dependent variable51. Its interaction 
detection module can further examine how different drivers interact to influence the spatial differentiation of 
HQ within a specific area52. In this study, we applied the interaction detection module of Geodetector to explore 
the roles and interactions of factors.

The factor detector quantifies the explanatory capacity of spatial determinants in accounting for HQ variance, 
operationalized through the q-value (0,1). This parametric metric demonstrates strict monotonicity, where 
higher values indicate greater explanatory power53. The formula is as follows:

	
q = 1 −

∑
L
h=1Nhσ 2

h

Nσ 2 = 1 − SSW

SST
� (9)

	
SSW =

∑
L
h=1Nhσ 2

h� (10)

	 SST = Nσ 2� (11)

.
where h is a specific type, h = 1, 2, ., L is the number of categories of variable Y or factor X; Nh and N represent 

the number of h-category and the number of region-wide, respectively; and σ 2
h and σ 2 represent the h-

category and intra-region variance, respectively. SSW and SST are the sum of the variances of the L-categories 
and the total regional variance, respectively. The interactive detector identifies the interactions among different 
independent variables X, responding to whether the influence of two factors on Y is correlated or independent 
when acting together, and is derived from the q-value [ q (X1∩ X2)]54as shown in Table 3.

Results
Evolution of Spatial and Temporal patterns of land use types
The South Hunan Mining Urban Agglomeration exhibits diverse and complex land use patterns. From 1990 to 
2020 (Table 4), forestland (over 66%) and cultivated land (approximately 26–28%) were the predominant land 
use types. Collectively, forestland and cultivated land occupied 93% of the study area, significantly influencing 
the overall landscape. Conversely, construction land, water bodies, and unutilized land constituted a minor 
fraction, only 7% of the total area. A key trend during this period was the decline in forestland, cultivated 
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land, and grassland within the region, while construction and water body areas steadily increased. Notably, the 
construction land area expanded considerably, from 933.87 km2 in 1990 to 2313.45 km2 in 2020.

Figure 3 illustrates the dynamics of land use changes in the South Hunan Mining Urban Agglomeration. From 
1990 to 1995, alterations predominantly occurred between cultivated land, grassland, and forestland, with the 
largest reciprocal exchange observed between cultivated land and forestland, followed by a 277.90 km2 transfer 
from grassland to forestland. In the subsequent periods from 1995 to 2000 and from 2000 to 2005, the transfer 
between cultivated land and forestland continued to exhibit the most significant changes, with the inflow and 
outflow of these two land types largely balanced. From 2005 to 2010, the areas converted from cultivated land to 
forestland and from forestland to cultivated land were 2015.01 km2 and 1940.23 km2respectively. Additionally, 
638.10 km2 of both cultivated land and forestland were converted to construction land, indicating a crucial shift 
in resource availability. From 2010 to 2015, the area of mutual transfer between cultivated land and forestland 
exceeded 3000 km2highlighting substantial fluctuations in these resources within the region. Finally, from 2015 
to 2020, the conversions of cultivated land and forestland to construction land reached 501.71 km2 and 369.83 
km2respectively, highlighting a pivotal phase for construction land expansion. Therefore, the expansion of 
construction land has originated primarily from reductions in cultivated and forest lands, with the decline in 
forestland largely driven by reciprocal changes with cultivated land.

Analyzing the spatial changes in construction land reveals the urbanization pattern of the South Hunan 
Mining Urban Agglomeration. We examined the distribution of the center of gravity of construction land in 
the study area from 1990 to 2020 via the standard deviation ellipse method. As shown in Fig. 4, the center of 
gravity followed a recurring southeast‒northwest movement, with the ratio of the long axis to the short axis 
of the standard deviation ellipse initially decreasing and then increasing. Specifically, in 1990, 1995, and 2000, 
the center of gravity was concentrated in the middle, with long-to-short axis ratios of 1.615, 1.617, and 1.609, 
respectively. By 2005, it had shifted northwestward, with the ratio reaching 1.617. In 2010, the center moved 
southeast again, causing the ratio to decrease to 1.575. In 2015 and 2020, the center shifted back northwest, 
with the ratio increasing to 1.631 and 1.646, respectively. This suggests that the mining urban agglomeration is 
transitioning toward a more dispersed development model.

Evolution of spatial and temporal patterns of HQ
Figure 5 shows that the average HQ in the South Hunan Mining Urban Agglomeration ranged from 0.72 to 
0.82 between 1990 and 2020, indicating that an overall high level of ecological quality was sufficient to support 
biodiversity. However, a significant trend of initial increase followed by a sustained decline (R2 = 0.897) was 
observed. The maximum was recorded in 1995 (0.794), whereas the minimum was observed in 2020 (0.749).

Land use 
types Cultivated land Forestland Grassland Water body Construction land Unutilized land

1990
Area 29544.31 71260.78 3226.10 1146.12 933.87 10.61

Ratio 27.84 67.15 3.04 1.08 0.88 0.01

1995
Area 29151.66 71430.58 3183.65 1273.46 1061.22 21.22

Ratio 27.47 67.31 3.00 1.20 1.00 0.02

2000
Area 29342.67 71101.60 3194.27 1390.20 1071.83 21.22

Ratio 27.65 67.00 3.01 1.31 1.01 0.02

2005
Area 29215.33 71112.21 3183.65 1400.81 1188.56 21.22

Ratio 27.53 67.01 3.00 1.32 1.12 0.02

2010
Area 28801.45 71218.33 3003.25 1432.64 1655.50 21.22

Ratio 27.14 67.11 2.83 1.35 1.56 0.02

2015
Area 28652.88 71133.43 2971.41 1432.64 1910.19 21.22

Ratio 27.00 67.03 2.80 1.35 1.80 0.02

2020
Area 28419.41 70984.86 2939.57 1453.87 2313.45 10.61

Ratio 26.78 66.89 2.77 1.37 2.18 0.01

Table 4.  Area (km2) and ratio (%) of land use types in mining urban agglomerations from 1990–2020.

 

Criterion of interval Interaction

q (X1∩ X2) < Min [q (X1) , q (X2)] Nonlinear weakening

Min [q (X1) , q (X2)] < q (X1∩ X2) < Max [q (X1) , q (X2)] Unilinear reduction

q (X1∩ X2) > Max [q (X1) , q (X2)] Bilinear enhancement

q (X1∩ X2) = q (X1) + q (X2) Mutual independence

q (X1∩ X2) > q (X1) + q (X2) Nonlinear enhancement

Table 3.  Model driving force size criterion of interval and interaction.
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The area of different grades of HQ in the South Hunan Mining Urban Agglomeration from 1990 to 2020 
also underwent large temporal changes (Fig. 5). The results revealed that the area proportion of the excellent 
grade of HQ was as high as 63.8% and 63.71% in 1990 and 1995, respectively, in the South Hunan Mining Urban 
Agglomeration; however, the area proportion of the excellent grade continued to decrease over time, and the 
area proportion of the excellent grade decreased to 54.80% in 2020. In addition, the greatest change was in the 
proportion of good-grade HQ areas, which increased in volatility from 6.62% in 1980 to 12.63% in 2020. In 
contrast, the proportion of areas in the moderate, poor, and worst grades only slightly increased between 1990 
and 2020.

The spatial distribution of HQ in the South Hunan Mining Urban Agglomeration from 1990 to 2020 revealed 
an overall distribution pattern of lower HQ in the center and higher HQ in the surrounding areas (Fig.  6). 
Specifically, the central part of Hengyang, the central part of Loudi, and the northern part of Shaoyang have 
a spatial distribution pattern of lower HQ and are clustered. On the other hand, high HQ were distributed 
mainly in Huaihua, southern Shaoyang, and central and southern Yongzhou but with a decentralized spatial 
distribution. In addition, after 2010, patches with lower HQ in central Hengyang, central Loudi, and northern 
Shaoyang showed an expanding distribution trend, indicating that habitat fragmentation and degradation in 
these areas gradually increased.

The trend analysis of HQ in the South Hunan Mining Urban Agglomeration from 1990 to 2020 revealed 
(Fig. 7) that 93.58% of the area of the study area tended to degrade HQ, among which a serious degradation 
trend occurred in the central part of Hengyang, Chenzhou, the northern part of Shaoyang, and Yongzhou, which 
accounted for 0.80% of the area of the study area. Moreover, the area with improved HQ is only 6815.40 km2 
which is distributed mainly in the intersection area of Huaihua, Yongzhou, and Loudi, among which the HQ 
of approximately 19.71 km2 in the central part of Huaihua has a strong trend of improvement, accounting for 
0.02% of the study area.

Spatial correlation characteristics of HQ
We employed the global Moran’s I index to analyze the spatial association features of the HQ in the South Hunan 
Mining Urban Agglomeration (Table 5). We established a 4 × 4 km grid for the study area and allocated the HQ 
within each grid cell on the basis of the average values. The results revealed that the annual global Moran’s I 
indices for the study area from 1990 to 2020 ranged from 0.296 to 0.365, all of which were significantly greater 
than 0. This indicated that there was positive spatial autocorrelation and agglomeration of HQ, reflecting the 
continued aggregation of degraded habitats in the central region and high-quality habitats in the surrounding 

Fig. 3.  Land use transfer in mining urban agglomeration from 1990 to 2020. Changes in the color scale of the 
figure indicate the area transferred between different land-use types.
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Fig. 5.  Temporal changes in HQ (A) and changes in the area of different grades of HQ (B) in mining urban 
agglomeration from 1990 to 2020. I: Worst; II: Poor; III: Moderate; IV: Good; V: Excellent.

 

Fig. 4.  Transfer trajectories of the center of gravity of construction land and standard deviational ellipse in 
mining urban agglomeration from 1990 to 2020. Generated in the ArcGIS 10.8 sofware (www.esri.com).
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Fig. 7.  Trends of HQ in mining urban agglomeration from 1990 to 2020. Generated in the ArcGIS 10.8 
sofware (www.esri.com).

 

Fig. 6.  Spatial pattern of HQ in mining urban agglomeration from 1990 to 2020. Generated in the ArcGIS 10.8 
software (www.esri.com).
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mountains. Furthermore, the Z scores were consistently above 2.58, and the P values were below 0.01, confirming 
that the global Moran’s I index is significant at the 1% confidence level. Moreover, the index increased from 0.296 
in 1990 to 0.365 in 2020, indicating that habitat degradation is increasingly concentrated in specific areas under 
the pressure of urbanization and industrial and mining development.

Figure 8 shows the spatial distributions of HQ hotspots and coldspots in the South Hunan Mining Urban 
Agglomeration from 1990 to 2020. During this period, the hotspots of HQ in the study area were primarily 
concentrated in the Huaihua, southern Shaoyang, and southeastern Yongzhou and Chenzhou regions. These 
areas are rich in mountainous forest resources and have good ecological environments, serving as the main 
sources of high HQ for the South Hunan Mining Urban Agglomeration. In contrast, the cold spots of HQ 
were located mainly in the plains and low hill areas of central and northern Shaoyang, Loudi, Hengyang, and 
Yongzhou. Frequent mining activities, expansion of construction land, and agricultural cultivation in these areas 
may have contributed to the clustering of low HQ zones. Furthermore, over the past 30 years, the proportions of 
cold spots in the study area were 14.69% (1990), 14.87% (1995), 14.79% (2000), 15.14% (2005), 15.50% (2010), 
14.99% (2015), and 15.08% (2020), indicating a gradual increase in the extent of low HQ clusters.

Future scenario projections of HQ
As shown in Fig. 9, under the three development scenarios, the spatial distribution of land use in the South 
Hunan Mining Urban Agglomeration in 2040 is consistent with the characteristics of 2020 and is still dominated 
by cultivated land and forestland, with forestland being the most extensive. Under the natural development 
scenario, construction land expanded significantly beginning in 2020, with an increase of 872.90 km2 and a 
significant decrease in the area of cultivated land and grassland. Under the ecological protection scenario, 
forestland expanded significantly beginning in 2020, with an increase of 1283.49 km2whereas the area of 
construction land increased by only 69.77 km2. Under the economic development scenario, construction land 
expanded significantly from 2020, with an increase of 1229.78 km2and the areas of cultivated land and grassland 
decreased by 130.82 and 1116.04 km2respectively.

Under the three development scenarios, the HQ of the South Hunan Mining Urban Agglomeration exhibited 
a distribution pattern characterized by lower quality in the center and higher quality in the surrounding areas, 
which was consistent with the observations from 2020 (Fig. 9). Under the natural development scenario, the 
average HQ was 0.738, with the area of the worst-grade patches increasing by 875.35 km2 compared with that 
in 2020. These patches were located primarily in the central cities and surrounding townships of Shaoyang, 
Hengyang, and Yongzhou, indicating that the unchecked expansion of construction land has led to habitat 
degradation. Conversely, under the ecological protection scenario, which prioritized ecological conservation 
and limited resource development, the average HQ improved slightly to 0.743. In this scenario, the area of 
the worst grade patches increased by only 84.05 km2 compared with that in 2020, suggesting that ecological 

Fig. 8.  Hotspots analysis of HQ in mining urban agglomeration from 1990 to 2020. Generated in the ArcGIS 
10.8 sofware (www.esri.com).

 

Year 1990 1995 2000 2005 2010 2015 2020

Moran’s I 0.296 0.301 0.305 0.317 0.344 0.339 0.365

Z score 33.643 34.210 34.691 35.986 39.103 38.507 41.464

P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.  Moran’s I index values of HQ in mining urban agglomerations from 1990–2020.
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management measures effectively mitigated habitat degradation. Under the economic development scenario, the 
average HQ declined to 0.726, with the area of the worst grade patches increasing significantly by 1240.26 km2 
relative to the other two scenarios, whereas the area of the excellent grade patches decreased markedly.

Drivers of spatial and temporal patterns of HQ
We utilized the mean decrease accuracy (MDA) method to obtain the importance ranking of the influencing 
factors of the random forest classification. The results are shown in Fig. 10. The three drivers influencing the 
spatiotemporal patterns of HQ in the South Hunan Mining Urban Agglomeration were DEM, slope and Popu 

Fig. 10.  (A) Importance of influencing factors the HQ. (B) Interactions in drivers of HQ. *Bilinear 
enhancement. **Nonlinear enhancement. Prec precipitation, Temp temperature, Soil soil type, MDD mineral 
distribution density, River river distance, MDI mining development index, Road road distance, Popu 
population density, NLB nighttime light brightness.

 

Fig. 9.  Simulation of spatial distribution of land use types (ABC) and HQ (DEF) under different scenarios 
for mining urban agglomeration in 2040. (A,D) natural development scenario; (B,E) ecological protection 
scenario; (C,F) economic development scenario. Generated in the ArcGIS 10.8 sofware (www.esri.com).
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(population density). Specifically, topographic and geomorphic factors such as elevation and slope significantly 
drove the spatial and temporal distributions of HQ in the study area, followed by anthropogenic factors such as 
population concentration (Popu) and industrial and mining development (MDI).

The Geodetector factor interaction (Fig. 10) revealed that the driver interaction in the study area mainly 
exhibited nonlinear enhancement and bilinear enhancement, with no instances of mutual independence or 
reduction observed. Among them, the interaction between Popu and the DEM was the most obvious, with an 
explanatory power of 0.335, indicating that the interaction between the two significantly affected the spatial 
pattern of HQ in the study area. Moreover, the explanatory power of the interaction between the NLB and 
the DEM, Popu and Slope was also high, at 0.333 and 0.327, respectively. Furthermore, the explanatory power 
of the interaction between the NLB and slope, slope and DEM, and road and DEM was ≥ 0.320. Notably, the 
interaction between the MDI and DEM reached an explanatory power of 0.317. These results suggest that 
the spatial variation in HQ in the South Hunan Mining Urban Agglomeration was influenced mainly by the 
interaction of factors such as topography and geomorphology, human growth, and economic activities.

Discussion
This study employed a suite of analytical methods, including the InVEST model, PLUS model, random forests, 
and geodetector, to comprehensively assess the spatial and temporal dynamics of HQ within the South Hunan 
Mining Urban Agglomeration. We analyzed both historical trends and projected future scenarios. Furthermore, 
we investigated the key drivers influencing HQ. These findings are crucial for informing ecologically sound land-
use policies and promoting the sustainable development of mining urban agglomerations.

Response of HQ to land use type change
The InVEST model evaluates the spatial and temporal changes in regional HQ, primarily using land-use data 
as its input source55. The results of studies in the Loess Hilly Gully region and the Swiss Alps have shown 
that land use change affects ecosystem dynamics56,57and that land use type is a key factor in determining the 
ecological carrying capacity of a region and influences the distribution patterns of different ecosystems58. Thus, 
the spatiotemporal pattern of HQ mirrors the process of land use transformations driven by socioeconomic 
development12. Similar to the findings on landscape fragmentation in traditional orchard systems of central 
Germany, where urban construction land expansion has been shown to disrupt multi-functional ecological 
pattern, our study highlights that construction land expansion in the South Hunan Mining Urban Agglomeration 
acts as a critical pressure axis, reducing regional ecological carrying capacity58,59. The primary land-use types 
in the South Hunan Mining Urban Agglomeration are cultivated land and forestland, which significantly affect 
the overall landscape (Table 2). However, since 1990, forested land and cropland have decreased by 148%. In 
contrast, the area of construction land continued to increase with economic development and urban expansion 
(Fig. 3), which was basically consistent with the temporal trend of the HQ of the study area increasing and then 
continuing to decrease from 1990 to 2020 and the continuous expansion of patches of lower HQ (Fig. 5).

HQ exhibited a strong spatial correlation with land use patterns (Figs. 6, 7 and 8). High HQ was observed 
in the northwestern and southwestern portions of the study area, largely attributed to the predominance of 
forested land, complex forest ecosystem structure, and relatively low human impact. Conversely, the central 
and northeastern areas displayed significant habitat degradation, characterized by a dense distribution of low-
quality patches. This degradation is likely driven by the concentration of urban and rural settlements, which 
primarily consist of construction land and cultivated land. The aggregation of cultivated land and the growth of 
construction areas have decreased habitat connectivity, intensifying habitat fragmentation60similar to findings 
in other landscapes61,62. Furthermore, agricultural settlements, population density, and industrial activities such 
as mining and chemical production consume significant amounts of natural resources and generate substantial 
pollution, causing ecosystem damage and resulting in HQ decline63,64.

In addition, projections for all three future scenarios (Fig.  9) indicated a decline in HQ compared with 
that in 2020, with varying increases in the areas of very poor-quality patches. This is consistent with research 
that generally recognizes that sprawling development tends to lead to habitat degradation65,66. This highlights 
the region’s vulnerability to habitat degradation. Future expansion of construction land and encroachment on 
forests and farmland are likely to accelerate this decline, particularly given the status of the study area as a 
typical industrial-mining urban agglomeration. Within this context, the development of the mining, smelting, 
and chemical industries poses a significant threat to HQ, exceeding the impact of agricultural resettlement and 
cultivated land expansion.

Drivers of spatial and temporal changes in HQ
This study employed random forest and geodetector analyses to investigate the drivers of spatial and temporal 
HQ dynamics within the South Hunan Mining Urban Agglomeration (Fig.  10). Our findings revealed that 
elevation (DEM), slope, population density, GDP, and the mining development index (MDI) all exhibited 
relative importance values exceeding 9.4%, and significant interactions with other factors were observed.

The southern Hunan mining urban agglomeration is located in the hilly region of south-central China, where 
elevation and slope are major constraints to human activities and have a strong influence on HQ, consistent 
with global studies correlating elevation gradients and habitat resilience11,67. For example, a study in Ontario, 
Canada, found that elevation factors significantly influenced Dynamic habitat index68similar to what we found in 
southern Hunan, where high elevation maintained high HQ despite pressure from mining development. Human 
settlements and economic development in the South Hunan Mining Urban Agglomeration are concentrated in 
low-elevation, gently sloping areas, resulting in lower HQ. Conversely, steeper areas maintain relatively higher 
HQ due to reduced human impact and prevalent forest cover, highlighting the direct influence of topography 
on spatial HQ variation.
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The population density, GDP, mining development index, and nighttime light intensity showed 
significant nonlinear positive interactions with topographic factors, which highlights the compound effect of 
industrialization and topography in mountainous mining areas. High population density, high GDP, and intense 
nighttime lighting result in intensive human activity, potentially leading to habitat loss, pollution, and reduced 
ecosystem functioning within parts of the cluster69–71. The mining development index, in particular, directly 
reflects the negative impacts of the mining, smelting, and processing industries on land use, soil erosion, and 
heavy metal contamination72thus contributing to a decreased HQ. As an urban agglomeration dominated by 
the mining industry, we observed that the mining development index had a less significant effect than did the 
interactions between population density and GDP. This could be attributed to the fact that open-pit and shallow 
mineral extraction may negatively affect surface habitat quality, whereas deep underground mining tends to have 
a more direct impact on deep groundwater and soil, with a slower influence on surface habitats73. However, we 
note that this possibility phenomenon has been relatively understudied in existing mining habitat conservation 
frameworks and deserves further in-depth exploration. Additionally, as mining and smelting technologies 
advance, the implementation of precision mining methods, mine reclamation efforts, and pollutant control 
measures could help mitigate fluctuations in habitat quality, reducing their overall impact10,74. In addition, we 
observed significant interactions of temperature, precipitation, and mineral distribution density with elevation 
and slope that showed a bilinear enhancement, reflecting the fact that the quality of mountain mining habitats 
may also be protected and limited by the coupling of climate, resource distribution, and topographic factors.

In conclusion, our results suggest that the spatial and temporal patterns of HQ in the South Hunan Mining 
Urban Agglomeration are mainly directly influenced by topographic factors such as DEM and slope. Meanwhile, 
the interactions between anthropogenic factors, including population density, GDP, and mining development 
index, and topographic factors further reflect that urbanization and industrialization development have 
exacerbated habitat pressure in fragile terrain, and thus we emphasize the need for spatially targeted habitat 
conservation.

Innovations and shortcomings of this study
This study investigated the evolutionary dynamics of land use and HQ in the South Hunan Mining Urban 
Agglomeration from 1990 to 2020. We employed a suite of methods, including land use transfer matrices, the 
InVEST model, trend analysis, and spatial autocorrelation, to analyze spatial and temporal patterns. Furthermore, 
we projected land use and HQ for 2040 under three scenarios via a combined PLUS-InVEST model. The 
driving factors of HQ dynamics were explored via random forests and geo-probes. By explicitly considering 
the region’s unique characteristics as an industrial and mining urban agglomeration and integrating data on 
mineral distribution and industrial development into our driver assessment model, our findings provide a more 
comprehensive understanding of HQ changes and a more robust scientific basis for sustainable development 
planning in the South Hunan Mining Urban Agglomeration.

However, this study has several limitations. First, data acquisition in the South Hunan Mining Urban 
Agglomeration, a region with potentially high ecological risk, presented challenges. The scarcity of long-term, 
continuous environmental monitoring and socioeconomic data potentially limits the accuracy and reliability of 
our results. Second, future projections, which are based on scenario simulations, inherently involve assumptions 
and parameters subject to uncertainty, potentially introducing bias. The influence of future policy changes and 
socioeconomic developments on HQ is significant but difficult to fully incorporate into scenario simulations, 
leading to model imperfections. In addition, the reliance on 100 m resolution raster data may overlook fine-
scale fragmentation, a limitation highlighted in a study in the Zagros Mountains where 10 m resolution raster 
data better resolved landscape function indices75. Therefore, future research should focus on extending the 
modeling framework, refining parameters, enhancing the indicator system, and finer resolution raster data to 
more robustly explore spatial and temporal patterns and driving mechanisms of HQ at multiple spatial and 
temporal scales.

Suggestions
By coupling the PLUS and InVEST models, we established a dynamic framework to simulate HQ under 
contrasting development scenarios, addressing gaps in mining urban agglomeration studies that often overlook 
spatially explicit interactions between industrial expansion and habitat degradation. While prior research 
emphasized land use change as the primary HQ driver, our geodetector analysis revealed that topography 
moderates human impacts particularly population density that exacerbates habitat loss at low elevations. This 
refines theoretical models of ecological vulnerability in mountainous mining regions. The findings advocate 
for zoning policies that restrict construction land expansion in ecologically sensitive low-elevation plains. 
Scenario projections suggest prioritizing the ecological protection scenario, which limits HQ decline to 0.743, 
offering a viable pathway to balance mining economies with habitat integrity. Local governments should enforce 
stricter mining reclamation regulations and incentivize agroforestry in degraded areas. Urban planners must 
integrate HQ hotspots into ecological redlines to prevent fragmentation. Researchers should focus on long-term 
monitoring of the interactive effects of nighttime light intensity, slope and other factors to refine the complete 
assessment of HQ.

Conclusions
This study examined the spatial and temporal changes in land use and HQ from 1990 to 2020 in the South 
Hunan Mining Urban Agglomeration, projected future HQ scenarios for 2040, and identified key drivers of HQ 
dynamics. The key findings: (1) From 1990 to 2020, forestland and cultivated land dominate (93% combined), but 
construction land increases by 148%, with construction land replacing mainly forestland and cultivated land. At 
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the same time, the trajectory of the centre of gravity of construction land shows a trend of “southeast-northwest” 
movement, and a shift from centralized mining-driven clusters to decentralized urban sprawl, reflecting 
intensifying pressures of industrialization and urbanization. (2) Over the period from 1990 to 2020, the average 
HQ in the study area ranged from 0.72 to 0.82, with an initial increase followed by a decline. HQ was generally 
lower at the center of the study area and higher at the periphery, with high-quality habitats being dominant. 
However, the area of low-quality habitats gradually expanded. Notably, global Moran’s I indices (0.296–0.365) 
confirmed strong spatial autocorrelation, highlighting persistent clustering of degraded habitats. (3) By 2040, 
all scenarios (natural development, ecological protection, economic development) predict further HQ declines. 
Under the economic development scenario, worst-grade habitats will increase by 1240.26 km2underscoring 
the ecological cost of unregulated mining and urban expansion. (4) Topography (DEM, slope) and human 
activities (population density, nighttime light intensity) synergistically shaped HQ. Interactions between 
population density and elevation (explanatory power: 0.335) dominated, emphasizing the compounded effects 
of anthropogenic pressures on fragile ecosystems. Our findings provide critical guidance for sustainable land-use 
planning and ecological management in the South Hunan Mining Urban Agglomeration. Prioritizing ecological 
conservation measures is vital to mitigate degradation and enhance habitat quality. We urge policymakers to 
integrate these insights into strategies that balance economic growth with biodiversity preservation. Meanwhile, 
future studies could incorporate high-resolution pollution data on heavy metal concentrations, socio-economic 
survey data combined with macro-ecological modeling, which may enhance the realism of the HQ assessment 
and simulation scenarios, and thus better predict the HQ changes in mining city clusters.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 1 January 2025; Accepted: 2 June 2025

References
	 1.	 Dai, X. et al. Ecological vulnerability assessment of a china’s representative mining City based on hyperspectral remote sensing. 

Ecol. Ind. 145, 663. https://doi.org/10.1016/j.ecolind.2022.109663 (2022).
	 2.	 Shen, H. & Liu, Y. Circular Economy Legislation and Environmental Pollution: Evidence from Urban Mining Pilot Cities in China 

(2020).
	 3.	 Yu, J., Zhang, Z. & Zhou, Y. The sustainability of china’s major mining cities. Resour. Policy. 33, 12–22 (2008).
	 4.	 Moulatlet, G. M. et al. A systematic review on metal contamination due to mining activities in the Amazon basin and associated 

environmental hazards. Chemosphere 339, 139700–139700. https://doi.org/10.1016/j.chemosphere.2023.139700 (2023).
	 5.	 du Preez, G., Wepener, V. & Dennis, I. Metal enrichment and contamination in a karst cave associated with anthropogenic activities 

in the Witwatersrand basin, South Africa. Environ. Earth Sci. 75, 2. https://doi.org/10.1007/s12665-016-5455-2 (2016).
	 6.	 Bai, L., Xiu, C., Feng, X. & Liu, D. Influence of urbanization on regional habitat quality: a case study of Changchun City. Habitat 

Int. 93, 42. https://doi.org/10.1016/j.habitatint.2019.102042 (2019).
	 7.	 Li, W., Wang, Y., Xie, S. & Cheng, X. Coupling coordination analysis and Spatiotemporal heterogeneity between urbanization and 

ecosystem health in Chongqing municipality, China. Sci. Total Environ. 791, 311. https://doi.org/10.1016/j.scitotenv.2021.148311 
(2021).

	 8.	 Hillard, E. M., Nielsen, C. K. & Groninger, J. W. Swamp rabbits as indicators of wildlife habitat quality in Bottomland hardwood 
forest ecosystems. Ecol. Ind. 79, 47–53. https://doi.org/10.1016/j.ecolind.2017.03.024 (2017).

	 9.	 Xie, X. & Zhu, Q. Research on the impact of urban expansion on habitat quality in Chengdu. Sustainability 15, 271. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​
g​/​1​0​.​3​3​9​0​/​s​u​1​5​0​7​6​2​7​1​​​​ (2023).

	10.	 Zhang, H., Wang, F., Zhao, H., Kang, P. & Tang, L. Evolution of habitat quality and analysis of influencing factors in the yellow river 
Delta wetland from 1986 to 2020. Front. Ecol. Evol. 10, 914. https://doi.org/10.3389/fevo.2022.1075914 (2022).

	11.	 Xiao, P., Zhou, Y., Li, M. & Xu, J. Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province 
based on the invest model. Environ. Dev. Sustain. 25, 6419–6448. https://doi.org/10.1007/s10668-022-02310-w (2023).

	12.	 Zhang, X. et al. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 
2010. J. Geog. Sci. 30, 601–620. https://doi.org/10.1007/s11442-020-1745-4 (2020).

	13.	 Lee, D. J. & Jeon, S. W. Estimating changes in habitat quality through land-use predictions: case study of roe deer (Capreolus 
pygargus tianschanicus) in Jeju Island. Sustainability 12, 123. https://doi.org/10.3390/su122310123 (2020).

	14.	 Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang 
mountains in Hebei province, China. Ecol. Ind. 129, 967. https://doi.org/10.1016/j.ecolind.2021.107967 (2021).

	15.	 Zhu, P., Huang, L., Xiao, T. & Wang, J. Dynamic changes of habitats in china’s typical National nature reserves on Spatial and 
Temporal scales. J. Geog. Sci. 28, 778–790. https://doi.org/10.1007/s11442-018-1504-y (2018).

	16.	 Zhang, X., Wan, W., Fan, H., Dong, X. & Lv, T. J. J. F. N. C. Temporal and Spatial responses of landscape patterns to habitat quality 
C.anges in the Poyang lake region, China. J. Nat. Conserv. 77, 126546 (2024).

	17.	 Sherrouse, B. C., Semmens, D. J. & Clement, J. M. An application of social values for ecosystem services (SolVES) to three National 
forests in Colorado and Wyoming. Ecol. Ind. 36, 68–79. https://doi.org/10.1016/j.ecolind.2013.07.008 (2014).

	18.	 Lewis, N. S., Fox, E. W. & DeWitt, T. H. Estimating the distribution of harvested estuarine bivalves with natural-history-based 
habitat suitability models. Estuar. Coastal. Shelf Sci. 219, 453–472. https://doi.org/10.1016/j.ecss.2019.02.009 (2019).

	19.	 Terrado, M. et al. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. 
Total Environ. 540, 63–70. https://doi.org/10.1016/j.scitotenv.2015.03.064 (2016).

	20.	 Zhao, B., Li, S. & Liu, Z. Multi-scenario simulation and prediction of regional habitat quality based on a system dynamic and patch-
generating land-use simulation coupling model—A case study of Jilin Province. Sustainability 14, 303. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​s​u​1​
4​0​9​5​3​0​3​​​​ (2022).

	21.	 Chen, S. & Liu, X. Spatio-temporal variations of habitat quality and its driving factors in the Yangtze river Delta region of China. 
Global Ecol. Conserv. 52, 978. https://doi.org/10.1016/j.gecco.2024.e02978 (2024).

	22.	 Wu, L., Sun, C. & Fan, F. Estimating the characteristic Spatiotemporal variation in habitat quality using the invest Model—A case 
study from Guangdong-Hong Kong-Macao greater Bay area. Remote Sens. 13, 8. https://doi.org/10.3390/rs13051008 (2021).

	23.	 Janus, J. & Bozek, P. Land abandonment in Poland after the collapse of socialism: over a quarter of a century of increasing tree cover 
on agricultural land. Ecol. Eng. 138, 106–117. https://doi.org/10.1016/j.ecoleng.2019.06.017 (2019).

Scientific Reports |        (2025) 15:30241 15| https://doi.org/10.1038/s41598-025-05369-3

www.nature.com/scientificreports/

https://doi.org/10.1016/j.ecolind.2022.109663
https://doi.org/10.1016/j.chemosphere.2023.139700
https://doi.org/10.1007/s12665-016-5455-2
https://doi.org/10.1016/j.habitatint.2019.102042
https://doi.org/10.1016/j.scitotenv.2021.148311
https://doi.org/10.1016/j.ecolind.2017.03.024
https://doi.org/10.3390/su15076271
https://doi.org/10.3390/su15076271
https://doi.org/10.3389/fevo.2022.1075914
https://doi.org/10.1007/s10668-022-02310-w
https://doi.org/10.1007/s11442-020-1745-4
https://doi.org/10.3390/su122310123
https://doi.org/10.1016/j.ecolind.2021.107967
https://doi.org/10.1007/s11442-018-1504-y
https://doi.org/10.1016/j.ecolind.2013.07.008
https://doi.org/10.1016/j.ecss.2019.02.009
https://doi.org/10.1016/j.scitotenv.2015.03.064
https://doi.org/10.3390/su14095303
https://doi.org/10.3390/su14095303
https://doi.org/10.1016/j.gecco.2024.e02978
https://doi.org/10.3390/rs13051008
https://doi.org/10.1016/j.ecoleng.2019.06.017
http://www.nature.com/scientificreports


	24.	 Wu, J., Hou, Y. & Cui, Z. Coupled InVEST–MGWR modeling to analyze the impacts of changing landscape patterns on habitat 
quality in the Fen river basin. Sci. Rep. 14, 1 (2024).

	25.	 Qamer, F. M. et al. Mapping deforestation and forest degradation patterns in Western himalaya, Pakistan. Remote Sens. 8, 385. 
https://doi.org/10.3390/rs8050385 (2016).

	26.	 Li, M. et al. Evolution of habitat quality and its topographic gradient effect in Northwest Hubei Province from 2000 to 2020 based 
on the invest model. Land 10, 857. https://doi.org/10.3390/land10080857 (2021).

	27.	 Tang, F. et al. Spatio-temporal variation and coupling coordination relationship between urbanisation and habitat quality in the 
grand canal, China. Land. Use Policy. 117, 119. https://doi.org/10.1016/j.landusepol.2022.106119 (2022).

	28.	 Wang, Y. et al. Characterization and multi-scenario prediction of habitat quality evolution in the Bosten lake watershed based on 
the invest and PLUS models. Sustainability 16, 202. https://doi.org/10.3390/su16104202 (2024).

	29.	 Hongying, C., Ziwei, W., Xiaoyong, L., You, L. & Yongbing, Z. Research on the regional environmental impact and risk assessment 
affected by mineral resource development: A case study of the Taojia river watershed in Hunan. Front. Ecol. Evol. 10, 1 (2022).

	30.	 Bohan, W. et al. Effects of environmental factors on soil bacterial community structure and diversity in different contaminated 
districts of Southwest China mine tailings. Sci. Total Environ. 802, 149899–149899 (2022).

	31.	 Zhang, T. L. et al. Spatial distribution, speciation, and ecological risk assessment of heavy metals in surface sediments of Dongjiang 
lake, Hunan Province. Huanjing Kexue. 44, 4896–4905. https://doi.org/10.13227/j.hjkx.202209060 (2023).

	32.	 Li, Z., Zheng, K. & Zhong, Q. Comprehensive evaluation and spatial-temporal pattern of green development in Hunan province, 
China. Sustainability 14, 19. https://doi.org/10.3390/su14116819 (2022).

	33.	 Peng, X. L. Studies on the Integrative Development of Hunan Use Mineral Resources and Eco-environment (2011).
	34.	 Xiong, Q., Hong, Q. & Chen, W. Temporal and Spatial response of ecological environmental quality to land use transfer in Nanling 

mountain region, China based on RSEI: A case study of Longnan City. Land 13, 675. https://doi.org/10.3390/land13050675 (2024).
	35.	 Yang, L., Shi, L., Li, J. & Kong, H. Spatio-temporal pattern change of LULC and its response to climate in the loess plateau, China. 

Sci. Rep. 14, 1. https://doi.org/10.1038/s41598-024-73945-0 (2024).
	36.	 Wang, Y., Xia, T., Shataer, R., Zhang, S. & Li, Z. Analysis of characteristics and driving factors of land-use changes in the Tarim river 

basin from 1990 to 2018. Sustainability 13, 263. https://doi.org/10.3390/su131810263 (2021).
	37.	 Gao, X. et al. Spatio-temporal distribution and transformation of cropland in geomorphologic regions of China during 1990–2015. 

J. Geog. Sci. 29, 180–196. https://doi.org/10.1007/s11442-019-1591-4 (2019).
	38.	 Chen, P., Duan, J. & Wang, Y. Spatio-temporal evolution and driving forces of urban gravity centers and ecological security risk 

gravity centers in China. Ecol. Ind. 170, 25. https://doi.org/10.1016/j.ecolind.2024.113025 (2025).
	39.	 Zheng, G. et al. Spatio-temporal evolution analysis of landscape pattern and habitat quality in the Qinghai Province section of the 

yellow river basin from 2000 to 2022 based on invest model. J. Arid Land. 16, 1183–1196. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​4​0​3​3​3​-​0​2​4​-​0​1​0​
7​-​y​​​​ (2024).

	40.	 Wu, J., Hou, Y. & Cui, Z. Coupled InVEST-MGWR modeling to analyze the impacts of changing landscape patterns on habitat 
quality in the Fen river basin. Sci. Rep. 14, 9. https://doi.org/10.1038/s41598-024-64012-9 (2024).

	41.	 Yang, F., Yang, L., Fang, Q. & Yao, X. Impact of landscape pattern on habitat quality in the Yangtze river economic belt from 2000 
to 2030. Ecol. Ind. 166, 480. https://doi.org/10.1016/j.ecolind.2024.112480 (2024).

	42.	 Zhao, G., Hoermann, G., Fohrer, N., Zhang, Z. & Zhai, J. Streamflow trends and climate variability impacts in Poyang lake basin, 
China. Water Resour. Manage. 24, 689–706. https://doi.org/10.1007/s11269-009-9465-7 (2010).

	43.	 Liu, Y., Li, Y., Li, S. & Motesharrei, S. Spatial and Temporal patterns of global NDVI trends: correlations with climate and human 
factors. Remote Sens. 7, 13233–13250. https://doi.org/10.3390/rs71013233 (2015).

	44.	 Ban, Y. et al. Effect of urbanization on aerosol optical depth over beijing: land use and surface temperature analysis. Urban Clim. 
51, 655. https://doi.org/10.1016/j.uclim.2023.101655 (2023).

	45.	 Wang, W., Wen, Y., Chen, W. & Qu, Y. Spatial-temporal coupling coordination relationship between urban green infrastructure 
construction and economic development in China. Land 13, 95. https://doi.org/10.3390/land13071095 (2024).

	46.	 Liao, C. et al. Influencing factors, and development paths of rural tourism resources in Guangdong Province. Land 11. ​h​t​t​p​s​:​/​/​d​o​i​
.​o​r​g​/​1​0​.​3​3​9​0​/​l​a​n​d​1​1​1​1​2​0​4​6​​​​ (2022).

	47.	 Liang, X. et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) 
model: A case study in wuhan, China. Computers Environ. Urban Syst. 85, 69. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​1​0​​1​​​6​/​j​.​c​​o​m​p​e​n​v​​u​r​b​​s​y​​s​.​​2​0​2​​0​.​1​0​1​5​
6​9 (2021).

	48.	 Xu, L. et al. Forecasting urban land use change based on cellular automata and the PLUS model. Land 11, 52. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​
3​9​0​/​l​a​n​d​1​1​0​5​0​6​5​2​​​​ (2022).

	49.	 Xu, X., Yu, J. & Wang, F. Analysis of ecosystem service drivers based on interpretive machine learning: a case study of Zhejiang 
province, China. Environ. Sci. Pollut. Res. 29, 64060–64076. https://doi.org/10.1007/s11356-022-20311-0 (2022).

	50.	 Cao, S. et al. Understanding spatial–temporal interactions of ecosystem services and their drivers in a multi-scale perspective of 
Miluo using multi-source remote sensing data. Remote Sens. 15, 479. https://doi.org/10.3390/rs15143479 (2023).

	51.	 Huang, J. et al. Spatial and Temporal characterization of critical ecosystem services in china’s terrestrial area, 2000–2020: trade-off 
synergies, driving mechanisms and functional zoning. Front. Ecol. Evol. 12, 683. https://doi.org/10.3389/fevo.2024.1443683 (2024).

	52.	 Chen, S., Liu, X., Yang, L. & Zhu, Z. Variations in ecosystem service value and its driving factors in the Nanjing metropolitan area 
of China. Forests 14, 113. https://doi.org/10.3390/f14010113 (2023).

	53.	 Chen, J. et al. Spatial and Temporal heterogeneity analysis of water conservation in Beijing-Tianjin-Hebei urban agglomeration 
based on the geodetector and Spatial elastic coefficient trajectory models. Geohealth 4, 248. https://doi.org/10.1029/2020gh000248 
(2020).

	54.	 Li, X. et al. Precipitation and soil texture dominate the Spatiotemporal changes in the carbon-water coupling coordination in 
Taihang mountains, China. J. Geog. Sci. 35, 521–551. https://doi.org/10.1007/s11442-025-2333-4 (2025).

	55.	 Li, W. et al. Spatial and Temporal evolution patterns of habitat quality under tea plantation expansion and multi-scenario simulation 
study: Anxi County as an example. Land 12, 1308 (2023).

	56.	 Liu, Y., Huang, X. & Liu, Y. Detection of long-term land use and ecosystem services dynamics in the loess Hilly-Gully region based 
on artificial intelligence and multiple models. J. Clean. Prod. 447, 141560. https://doi.org/10.1016/j.jclepro.2024.141560 (2024).

	57.	 Briner, S., Elkin, C. & Huber, R. Grêt-Regamey, A. Assessing the impacts of economic and climate changes on land-use in mountain 
regions: A Spatial dynamic modeling approach. Agric. Ecosyst. Environ. 149, 50–63. https://doi.org/10.1016/j.agee.2011.12.011 
(2012).

	58.	 Zhu, Z., Mei, Z., Li, S., Ren, G. & Feng, Y. Evaluation of ecological carrying capacity and identification of its influencing factors 
based on remote sensing and geographic information system: a case study of the yellow river basin in Shaanxi. Land 11, 80. ​h​t​t​p​s​:​
/​/​d​o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​l​a​n​d​1​1​0​7​1​0​8​0​​​​ (2022).

	59.	 Liu, Y., Zuo, R. & Dong, Y. Analysis of Temporal and Spatial characteristics of urban expansion in Xiaonan district from 1990 to 
2020 using time series Landsat imagery. Remote Sens. 13, 99. https://doi.org/10.3390/rs13214299 (2021).

	60.	 Wang, D., Hao, H., Liu, H., Sun, L. & Li, Y. Spatial–temporal changes of landscape and habitat quality in typical ecologically fragile 
areas of Western China over the past 40 years: A case study of the Ningxia Hui autonomous region. Ecol. Evol. 14, 47. ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​0​0​2​/​e​c​e​3​.​1​0​8​4​7​​​​ (2024).

	61.	 Hu, L. et al. Impacts of land-use change on the habitat suitability and connectivity of giant panda. Global Ecol. Conserv. 53, e03019. 
https://doi.org/10.1016/j.gecco.2024.e03019 (2024).

Scientific Reports |        (2025) 15:30241 16| https://doi.org/10.1038/s41598-025-05369-3

www.nature.com/scientificreports/

https://doi.org/10.3390/rs8050385
https://doi.org/10.3390/land10080857
https://doi.org/10.1016/j.landusepol.2022.106119
https://doi.org/10.3390/su16104202
https://doi.org/10.13227/j.hjkx.202209060
https://doi.org/10.3390/su14116819
https://doi.org/10.3390/land13050675
https://doi.org/10.1038/s41598-024-73945-0
https://doi.org/10.3390/su131810263
https://doi.org/10.1007/s11442-019-1591-4
https://doi.org/10.1016/j.ecolind.2024.113025
https://doi.org/10.1007/s40333-024-0107-y
https://doi.org/10.1007/s40333-024-0107-y
https://doi.org/10.1038/s41598-024-64012-9
https://doi.org/10.1016/j.ecolind.2024.112480
https://doi.org/10.1007/s11269-009-9465-7
https://doi.org/10.3390/rs71013233
https://doi.org/10.1016/j.uclim.2023.101655
https://doi.org/10.3390/land13071095
https://doi.org/10.3390/land11112046
https://doi.org/10.3390/land11112046
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.3390/land11050652
https://doi.org/10.3390/land11050652
https://doi.org/10.1007/s11356-022-20311-0
https://doi.org/10.3390/rs15143479
https://doi.org/10.3389/fevo.2024.1443683
https://doi.org/10.3390/f14010113
https://doi.org/10.1029/2020gh000248
https://doi.org/10.1007/s11442-025-2333-4
https://doi.org/10.1016/j.jclepro.2024.141560
https://doi.org/10.1016/j.agee.2011.12.011
https://doi.org/10.3390/land11071080
https://doi.org/10.3390/land11071080
https://doi.org/10.3390/rs13214299
https://doi.org/10.1002/ece3.10847
https://doi.org/10.1002/ece3.10847
https://doi.org/10.1016/j.gecco.2024.e03019
http://www.nature.com/scientificreports


	62.	 Lv, Z. et al. Prioritizing green spaces for biodiversity conservation in Beijing based on habitat network connectivity. Sustainability 
11, 42. https://doi.org/10.3390/su11072042 (2019).

	63.	 Zhang, X., Qin, X., Alvarez, F., Chen, Z. & Wu, Z. Potential impact of land-use change on habitat quality in the distribution range 
of crocodile lizards in China. Ecol. Evol. 12, e9390. https://doi.org/10.1002/ece3.9390 (2022).

	64.	 Sonter, L. J. et al. Conservation implications and opportunities of mining activities for terrestrial mammal habitat. Conserv. Sci. 
Pract. 4, e12806. https://doi.org/10.1111/csp2.12806 (2022).

	65.	 Gontier, M. Scale issues in the assessment of ecological impacts using a GIS-based habitat model—A case study for the Stockholm 
region. Environ. Impact Assess. Rev. 27, 440–459. https://doi.org/10.1016/j.eiar.2007.02.003 (2007).

	66.	 Wang, B., Oguchi, T. & Liang, X. Evaluating future habitat quality responding to land use change under different City compaction 
scenarios in Southern China. Cities 140, 410. https://doi.org/10.1016/j.cities.2023.104410 (2023).

	67.	 Ahmadi Mirghaed, F. & Souri, B. Relationships between habitat quality and ecological properties across Ziarat basin in Northern 
Iran. Environ. Dev. Sustain. 23, 16192–16207. https://doi.org/10.1007/s10668-021-01343-x (2021).

	68.	 Michaud, J. S., Coops, N. C., Andrew, M. E. & Wulder, M. A. Characterising Spatiotemporal environmental and natural variation 
using a dynamic habitat index throughout the Province of Ontario. Ecol. Ind. 18, 303–311. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​e​c​o​l​i​n​d​.​2​0​1​1​.​
1​1​.​0​2​7​​​​ (2012).

	69.	 Yang, L. et al. Declining urban-rural population densities: how do they affect natural habitat? Land. Degrad. Dev. 36, 1939–1951. 
https://doi.org/10.1002/ldr.5473 (2025).

	70.	 Liu, Y. et al. Habitat quality assessment and driving factors analysis of Guangdong province, China. Sustainability 15, 15. ​h​t​t​p​s​:​/​/​d​
o​i​.​o​r​g​/​1​0​.​3​3​9​0​/​s​u​1​5​1​5​1​1​6​1​5​​​​ (2023).

	71.	 Xu, Y. et al. Spatial and Temporal analysis of habitat quality in the yellow river basin based on land-use transition and its driving 
forces. Land 14, 59. https://doi.org/10.3390/land14040759 (2025).

	72.	 Jarsjo, J., Chalov, S. R., Pietron, J., Alekseenko, A. V. & Thorslund, J. Patterns of soil contamination, erosion and river loading of 
metals in a gold mining region of Northern Mongolia. Reg. Envriron. Chang. 17, 1991–2005. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​0​1​1​3​-​0​1​7​-​1​
1​6​9​-​6​​​​ (2017).

	73.	 Nordstrom, D. K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine 
wastes and mineralized rock to surface waters. Appl. Geochem. 26, 1777–1791. https://doi.org/10.1016/j.apgeochem.2011.06.002 
(2011).

	74.	 Niningsih, L., Alikodra, H. S., Atmoko, S. S. U. & Mulyani, Y. A. Characteristic of orangutan habitat in coal mining rehabilition area 
in East kalimantan, Indonesia. Manajemen Hutan Tropika. 23, 37–49. https://doi.org/10.7226/jtfm.23.1.37 (2017).

	75.	 Safaei, M. et al. Spatial scale effect of Sentinel-2, Landsat OLI, and MODIS imagery in the assessment of landscape condition of 
Zagros mountains. Geocarto Int. 37, 5345–5362. https://doi.org/10.1080/10106049.2021.1914745 (2022).

Author contributions
Y.S. and X.L. conceived the study and wrote the manuscript. Y.Y., H.W., and C.Z. organized and analyzed the 
data. Z.C., Z.D., and Y.L. revised the manuscript. All the authors reviewed the manuscript.

Funding
This research was funded by the China Postdoctoral Science Foundation, Grant Number 2024M761587; the Key 
Research and Development Program of Hunan Province, Grant Number 2024JK2025.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​0​5​3​6​9​-​3​​​​​.​​

Correspondence and requests for materials should be addressed to Y.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:30241 17| https://doi.org/10.1038/s41598-025-05369-3

www.nature.com/scientificreports/

https://doi.org/10.3390/su11072042
https://doi.org/10.1002/ece3.9390
https://doi.org/10.1111/csp2.12806
https://doi.org/10.1016/j.eiar.2007.02.003
https://doi.org/10.1016/j.cities.2023.104410
https://doi.org/10.1007/s10668-021-01343-x
https://doi.org/10.1016/j.ecolind.2011.11.027
https://doi.org/10.1016/j.ecolind.2011.11.027
https://doi.org/10.1002/ldr.5473
https://doi.org/10.3390/su151511615
https://doi.org/10.3390/su151511615
https://doi.org/10.3390/land14040759
https://doi.org/10.1007/s10113-017-1169-6
https://doi.org/10.1007/s10113-017-1169-6
https://doi.org/10.1016/j.apgeochem.2011.06.002
https://doi.org/10.7226/jtfm.23.1.37
https://doi.org/10.1080/10106049.2021.1914745
https://doi.org/10.1038/s41598-025-05369-3
https://doi.org/10.1038/s41598-025-05369-3
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Spatiotemporal changes in habitat quality and driving factors in South Hunan mining urban agglomerations, China
	﻿Materials and methods
	﻿Research area
	﻿Data sources and processing
	﻿Research framework
	﻿Land use transition analysis
	﻿Habitat quality assessment
	﻿Trend analysis
	﻿Spatial autocorrelation
	﻿Future scenario projections
	﻿Random forest
	﻿Geodetector model

	﻿Results
	﻿Evolution of Spatial and Temporal patterns of land use types
	﻿Evolution of spatial and temporal patterns of HQ
	﻿Spatial correlation characteristics of HQ
	﻿Future scenario projections of HQ
	﻿Drivers of spatial and temporal patterns of HQ

	﻿Discussion
	﻿Response of HQ to land use type change
	﻿Drivers of spatial and temporal changes in HQ
	﻿Innovations and shortcomings of this study

	﻿Suggestions
	﻿Conclusions
	﻿References


