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Tongue diagnosis is a crucial component of the Four Diagnostic Methods in Traditional Chinese 
Medicine (TCM), which include observing, listening and smelling, inquiring, and palpation. Tongue 
image segmentation holds great significance in advancing the intelligentization of tongue diagnosis 
research. This paper introduces an improved model called Parallel Attention and Progressive 
Upsampling for Tongue Segmentation (PAPU_TonSeg), based on the Segformer architecture, 
to address the issues of inaccurate and blurred tongue edge segmentation in tongue semantic 
segmentation. The model incorporates three key enhancements: (1) the adoption of a Self-Attention 
Parallel Network that integrates the self-attention mechanism and residual modules to achieve 
simultaneous extraction of local and global features; (2) the integration of the Efficient Channel 
Attention(ECA) mechanism into the Mix-FFN component to enhance feature extraction efficiency; 
and (3) the utilization of Multi-dimensional Feature Progressive Upsampling to mitigate precision loss 
during the upsampling process. Evaluation results on the BioHit public dataset demonstrate that, 
compared to the original Segformer, PAPU_TonSeg achieves improvements of 2.42% in Mean Pixel 
Accuracy (MPA), 0.78% in Mean Intersection over Union (MIoU), and 2.02% in the Dice coefficient, 
while boasting a lower parameter count and computational complexity. On another dataset, PAPU_
TonSeg outperforms Segformer with an MPA increase of 0.64%, an MIoU increase of 0.33%, and a 
Dice coefficient increase of 0.4%. The improved model not only has fewer parameters but also exhibits 
a notably lower computational complexity compared to classical models. The PAPU_TonSeg model 
accurately segments tongue body details, such as tooth marks, and distributes attention more evenly, 
capturing both global and local features. These findings position PAPU_TonSeg as a valuable tool for 
clinical diagnosis and research in TCM tongue diagnosis.
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Tongue diagnosis is a significant part of the four diagnostic methods in traditional Chinese medicine (TCM), 
which include inspection, listening and smelling, inquiry, and feeling the pulse. By combining the tongue 
diagnosis with pulse diagnosis, inquiry, and other diagnostic methods, TCM doctors can correctly differentiate 
the patterns, and prescribe appropriate treatments for patients. In TCM, the tongue is connected to the internal 
organs (zang-organs and fu-organs) through the meridians and collaterals; thus, the conditions of the organs, qi, 
blood, and bodily fluids, as well as the degree and progression of disease, are manifested in the tongue. Tongue 
diagnosis can help TCM doctors differentiate the patterns, such as distinguishing between cold patterns and heat 
patterns or deficient patterns and excess patterns1.

Tongue diagnosis of TCM can observe the patients’ condition from many aspects, namely the motility of the 
tongue, tongue coating, and tongue color, which provide insights into the internal state of the body and organs. 
Firstly, the motility of the tongue reflects the severity of diseases. For example, a healthy tongue that indicates 
vigorous organ function is characterized by flexibility and the ability to extend and retract appropriately while 
a pathological tongue may manifest as flaccidity, rigidity, deviation, and so on. Secondly, the tongue coating is a 
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thin, moist layer on the surface of the tongue, consisting of a mixture of epithelial cells, saliva, microorganisms, 
and food debris2. A healthy tongue coating is a thin white layer that is evenly distributed over the surface of the 
tongue. It is produced by the stomach qi. The patient’s thick, yellow coating is often indicative of excess fire and 
stagnation in the spleen and stomach. Thirdly, different tongue color reflects different body condition. A light 
red tongue is generally considered healthy; while redness at the tip of the tongue often signifies upward flaming 
of heart fire, leading to patterns such as vexation, insomnia, and ulcers on the mouth and tongue. The moist pale 
purple or bluish-purple tongue usually indicates yin-cold becomes excessive inside and stagnation in the blood 
vessels. Therefore, it can be concluded that the state of disease is closely related to the tongue’s motility, coating, 
and color3.

Integrating TCM theories with advanced technologies such as information technology and Artificial 
Intelligence to achieve the automation and intelligence of the four diagnostic methods of TCM, thereby 
promoting the innovative development of TCM4. Currently, the subjective interpretation of TCM doctors, along 
with environmental factors such as lighting and surroundings, can impact the neutrality and precision of tongue 
diagnosis, which is one of the key components of the Four Diagnostic Methods. To overcome the limitation 
of traditional tongue diagnosis and advance towards intelligent tongue diagnosis, it is necessary to construct 
a Deep Learning-based tongue image diagnosis model, which consists of tongue semantic segmentation and 
tongue image classification. The tongue semantic segmentation requires to elimination of non-tongue areas 
such as the face and lips from the images, leaving only the tongue body to enhance the accuracy of tongue image 
classification. Therefore, a high-precision tongue semantic segmentation is an essential component of intelligent 
tongue diagnosis.

The conventional tongue image segmentation methods mainly utilize statistical machine learning and 
image processing technologies to achieve segmentation. Bo et al. proposed an original technique based on the 
combination of a bi-elliptical deformable template and an active contour model, which captures gross shape 
features through an energy function to segment tongue images5. Shi et al. introduced color space information to 
control the evolution of curves. They combined the geometric snake model with the parameterized GVFSnake 
model and proposed a new method for automatic tongue image segmentation that can achieve automatic 
segmentation of the tongue body6. Shi et al. digitized tongue body images and proposed a double geo-vector flow 
method for detecting tongue edges and segmenting the tongue region in the images, achieving a certain effect 
in tongue body segmentation7. Conventional tongue image segmentation is marked by high computational 
complexity and the need for geometric or mathematical modeling for image analysis. Some methods even 
require manual extraction of the tongue’s color, texture, and shape. Moreover, many models are easily influenced 
by the changes in lighting and are unable to distinguish the tongue from the lips. Therefore, there remains a great 
challenge to segment tongue images by using existing technique methods8.

In the field of image processing, numerous innovative approaches have emerged to address various challenges, 
which can be broadly categorized as follows: Leverages SAM to segment ambiguous objects by exploiting its 
potential in uncertain regions9; Enhances SAM with probabilistic prompting for efficient segmentation of 
ambiguous medical images10; Proposes modality-prompted heterogeneous graph learning for omni-modal 
biomedical representation11; Integrates global correlation networks and discriminative embedding for few-
shot segmentation12; Unsupervised anomaly segmentation: Detects brain lesions via dual semantic-manifold 
reconstruction13; Synthesizes pseudo-healthy images via GANs to refine lesion segmentation14.

With the development of AI Deep Learning, tongue semantic segmentation which is based on Deep Learning 
is increasingly gaining attention. As proposed by Long et al., the FCN (Fully Convolutional Network) introduced 
deep learning algorithms into the field of image segmentation15. Xu et al. employed the FCN for tongue 
semantic segmentation, thereby realizing a substantial improvement in accuracy in contrast to conventional 
methodologies16. Zhou et al. proposed an end-to-end deep neural network model, which incorporates a feature 
pyramid network of residual blocks designed for the extraction of multi-scale tongue features. By leveraging 
the extracted feature maps, the model is capable of pinpointing candidate tongue regions and subsequently 
executing precise localization and segmentation of the tongue, thereby yielding impressive segmentation 
results17. Based on FCN, Ronneberger et al. presented the U-Net Neural Network. It can extract features at 
different resolutions through its unique U-shaped network structure and fuses these features with upsampled 
features in the decoding part18. U-Net is one of the most widely applied approaches in deep learning for image 
segmentation, which exhibits good performance in segmenting biomedical images19. Xu Q et al. suggested a 
multi-task joint learning method that combines a U-Net segmentation network model with a discriminative 
filter learning model to achieve tongue image segmentation and classification tasks20. To better extract high-
level semantic features, Li M Y et al. introduced the Global Convolution Network Module into the encoder part 
of U-Net. An improved U-Net network was designed for the semantic segmentation of fissured tongues, which 
segments tongue fissures effectively21.

In recent years, the rapid development of computer vision in Deep Learning has led to many semantic 
segmentation models and their variants. Those models have achieved very good results in the field of medical 
image segmentation22. Building upon the encoding phase’s edge information and by integrating attention 
mechanisms, Liu et al. proposed a multi-layer edge attention network to comprehensively extract features 
from medical images. This network has demonstrated superior segmentation performance on Tongue Image 
Segmentation Dataset23. Qiu et al. conducted segmentation and classification of the tongue body on mobile 
devices. They implemented a high-precision segmentation technique that leveraged data augmentation and 
moment invariants on the dataset. They then integrated an attention mechanism after their segmentation, 
to facilitate lightweight tongue image classification, which yielded promising results24. The Deeplab series 
of neural networks introduced Atrous Convolution, enabling the expansion of the receptive field without 
a corresponding increase in the number of parameters25. Chen et al. put forward the DeepLabv3 model by 
improving the pyramid-shaped Atrous Pooling, cascading dilated convolutions, and making extensive use of 
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batch normalization26. Zhang et al. have enhanced the decoder of the DeepLabV3 network, thereby significantly 
mitigating the ambiguity in tongue image segmentation. Additionally, a post-processing module has been 
appended to augment the segmentation precision in the regions proximate to the tongue edges as well as those 
remote from the tongue edges27.

The above studies have all achieved considerable outcomes of tongue segmentation. However, the current 
tongue image segmentation models still suffer from the following deficiencies: ① the network models which 
are mainly based on convolutional neural networks fail to extract the global context semantic information of 
pictures effectively. In realistic segmentation situations, there will be occurrences such as incorrect judgments 
or the lack of certain parts of the tongue image. ② The semantic segmentation models taking the Transformer 
as the nucleus must rely on the Positional Embedding architecture to supply position information so that the 
limitations of the Self-Attention mechanism in processing the position information of different Patches can be 
overcome. However, when the resolution of the input image changes, the Positional Embedding with a fixed 
resolution is unable to accurately transmit the position information of Patches, which in turn causes a loss 
of accuracy. Meanwhile, the huge number of parameters in the Transformer model requires a large amount 
of data for training, and insufficient data will affect its performance optimization. ③ Most of the mainstream 
segmentation models are adopted to an encoding–decoding structure. In most of these models, the feature maps 
in the decoding process must be subjected to 16-times bilinear upsampling to recover the original size. This 
process is apt to cause a loss of edge accuracy, and ultimately leads to blurry edges in the segmented pictures, 
making it difficult to meet the application requirements of traditional Chinese medicine tongue diagnosis.

To address the above-mentioned problems, we propose PAPU_TonSeg (Parallel Attention and Progressive 
Upsampling for Tongue Segmentation), a high-precision, lightweight tongue image segmentation network 
designed for tongue image segmentation. This network incorporates a parallel structure that leverages self-
attention mechanisms along with progressive upsampling techniques. To achieve this improvement, we 
conducted an in-depth study on the network structures of semantic segmentation models and tested various 
models. Eventually, we chose to enhance the Segformer model, specifically for tongue segmentation in practical 
scenarios. The innovation and highlights of this paper mainly include the following three points.

	(1)	 Incorporate a parallel network module into the Segformer. While obtaining the global semantic features, 
fuse the high-dimensional detail features as well.

	(2)	 To make the Transformer structure extract semantic and feature information more effectively, the Trans-
former structure is combined with the convolutional model, and the ECA attention mechanism is added, 
aiming to achieve more refined feature weight allocation and optimize the representational ability of the 
model.

	(3)	 To reduce the loss of accuracy during the upsampling process, a structure that combines progressive up-
sampling with a convolutional network model is adopted. This structure is designed to alleviate the loss of 
accuracy during the upsampling process.

This paper consists of four sections. The first section is a brief introduction. The second section presents the 
introduction of relevant methods and model improvements. The third section focuses on the experiments and 
experimental results. The last section is dedicated to the discussion and summary.

Methods and model improvements
This section includes two parts. The first part briefly introduces the relevant theories of the Segformer. The 
second part presents the improvement ideas of the Segformer and the overall structure of the improved model.

Segformer model theory
In 2017, the Google team brought in the revolutionary Transformer model within the realm of artificial intelligence 
translation. Transformer constructed a novel network architecture by integrating the core components such 
as the innovative Self-Attention mechanism, Multi-Head Attention strategy, and Positional Encoding28. The 
innovation on the structural aspect empowers the Transformer to manifest outstanding performance in natural 
language processing (NLP) tasks, which swiftly emerging as the leading technology within this domain. The 
most prominent feature of the Transformer model lies in its abandonment of legacy CNN and RNN, with the 
self-attention mechanism being taken as the core of the model. While the Transformer structure has achieved 
considerable achievements in the field of natural language processing, it has also obtained considerable results 
in computer vision tasks. Kolesnikov et al. advanced the Vision Transformer (ViT) model predicated on the 
Transformer. It has obtained outstanding achievements in the realm of image classification, which demonstrate 
the Transformer’s application value in the realm of Computer Vision. From then on, models based on the 
Transformer structure have continuously emerged in the fields of image classification, image detection, and 
image segmentation29.

In 2021, Xie et al. proposed a Segformer model based on the Transformer. They improved the encoder 
and decoder of the Transformer through advanced ideas, namely the elimination of positional encoding, the 
employment of a multi-level Transformer encoder, and the simplification of an All-MLP decoder30. While 
simplifying the model structure, the model still achieved the best performance on segmentation tasks in various 
datasets at that time. In addition, compared with the conventional Transformer model, the Segformer can obtain 
satisfactory training effects with a relatively small quantity of data. The schematic of the Segformer model’s 
structure is presented in Fig. 1.

Scientific Reports |        2025 15:27622 3| https://doi.org/10.1038/s41598-025-05410-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Improved PAPU_TonSeg model
This study performs tongue segmentation under application situations based on the improved PAPU_TonSeg 
model. This section will present the improvement ideas of the model as well as the overall structure of the 
improved model.

Parallel network structure that combines the self-attention mechanism and residual module
A parallel network can run different network modules simultaneously and then combine their outputs. Its core 
concept is to make use of the computational power of multiple network modules to enhance efficiency and 
performance by handling data concurrently. Parallel networks can combine the advantages of two network 
structures. In the realm of convolutional neural networks, Szegedy et al. put forward the Inception-ResNet-v2 
parallel network model in 2016, which combines the features of the ResNet residual connection mechanism that 
can prevent the disappearance of gradients and improve performance, and the characteristics of the Inception 
module that can obtain sparse features under the same dimension31. After the ViT model was proposed, relevant 
research efforts were made to integrate the merits of the Transformer and traditional Convolutional Neural 
Networks, thereby proposing a parallel network structure. The research team constituted by Microsoft and 
the University of Science and Technology of China put forward the Mobile-Former model. By paralleling the 
Mobilenet network with the Transformer network, this model shows considerable performance in the situation 
of simplified model parameters32.

Compared with classic convolutional neural network layers, the Transformer structure possesses a broader 
scope of vision and is more capable of effectively capturing global characteristics. Through the employment 
of heatmap-based visualization techniques, the Segformer team delineated the effective perceptual scope of 
both Segformer and DeepLabv3 + models, noting that Segformer exhibited a more efficacious perceptual scope 
throughout the four phases of encoder subsampling. Even at the fourth layer of downsampling Segformer’s 
perceptual field surpasses that of DeepLabv3 + , which is a key element contributing to the Segformer model’s 
capacity to manage contextual information effectively. However, in some specific application scenarios of tongue 
image segmentation, the model must focus more on the fine details of the tongue body’s edge. The reasons for 
that are the edge of the tongue body is similar in color to the oral cavity and palate, and the tooth marks on 
the tongue body edge are a critical component of tongue diagnosis. To enable the model to obtain both local 
and global features simultaneously, based on existing research, this paper proposes a parallel network structure 
that integrates self-attention mechanisms with residual blocks. This structure processes the input neural 
network layer’s data tensors in both the self-attention mechanism and the residual module concurrently, and 
then integrates the outputs from the distinct networks and passes them into the following layer of the network 
structure.

Incorporating ECA attention mechanism into the mix-FFN
The attention mechanism significantly helps improve the performance of models. In the field of semantic 
segmentation, the attention mechanism can also help models achieve better evaluations. U-KAN, by using the 
KA activation function, significantly enhances the model’s ability to capture edge details in image segmentation 
tasks, especially in scenarios with complex textures and small object segmentation33. In the article “Hierarchical 

Fig. 1.  Structure of Segformer.
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deep network with uncertainty-aware semi-supervised learning for vessel segmentation”, the authors propose 
a hierarchical deep network that combines the attention mechanism and uncertainty-aware semi-supervised 
learning to address the challenges of vessel segmentation in medical images34. “Attention U-Net: Learning Where 
to Look for the Pancreas” introduces a spatial attention gate in the skip connections of U-Net to automatically 
focus on the target area (such as the pancreas) and suppress irrelevant background35. “SA-Net: A Scale-Attention 
Network for Medical Image Segmentation” combines multi-scale features and channel attention to solve the 
problem of large differences in target sizes in medical images36.

The Squeeze-and-Excitation (SE) channel attention mechanism is a typical attentional framework, wherein 
it modulates the salience of channel-wise features through the acquisition of their underlying nonlinear 
interplays37. Yet, the presence of fully connected layers in the SE module significantly increases the model’s 
parameter count and computational complexity. To overcome this problem, Wang et al. introduced the Efficient 
Channel Attention (ECA) mechanism. Differing from the SE channel attention mechanism that relies on fully 
connected layers, the ECA attention mechanism opts for a 1 × 1 convolutional layer to diminish the model’s 
parameter volume. Moreover, this approach allows the model to maintain a lower computational complexity, 
thereby enhancing performance without a concomitant increase in computational cost. The structure of the ECA 
attention mechanism is presented in Fig. 2.

The Segformer’s core structure incorporates the Mixed Feedforward Network (Mix-FFN), which is an 
essential component in the fusion and extraction of features. This component is entirely constructed from 
convolutional neural networks, which are responsible for feature mixing and extraction. To further enhance the 
network’s capability to extract features, we have incorporated the ECA attention mechanism within the Mix-
FFN framework. By harnessing the strengths of the ECA attention mechanism in tandem with the Segformer 
network’s inherent self-attention mechanism, the crucial features can be more effectively distilled from the data. 
This enhancement not only elevates the model’s performance metrics but also curtails the training timeframe 
and computational burden. As a result, the model’s utility and efficacy are markedly enhanced.

Multi-level feature aggregation
Semantic Segmentation Models Typically Employ an Encoder-Decoder Architecture. The architecture 
prevalent in semantic segmentation models facilitates feature extraction through the encoder phase, followed 
by an upsampling procedure by the decoder to reconstruct the image to its pristine size for precise pixel-level 
categorization. However, in this architecture, the feature maps produced by the decoder are usually much smaller 
in size than the original input image, implying that the upsampling process must amplify the coarse feature maps 
to the original image’s size. This implies that during the upsampling process, the model needs to restore the 
coarse feature maps to the same size as the original image, a process that is prone to losing detailed information, 
leading to a decrease in the precision of the predicted features.

To minimize the loss of detailed information during the process of upsampling, we leverage the Segformer 
encoder’s output of feature maps at various scales and employ a Multi-Level Feature Aggregation (MLA) 
upsampling approach. This method involves the sequential upsampling of feature maps of different dimensions 
to the required size using both convolutional neural networks and bilinear interpolation, with each iteration 
doubling the magnification factor. The disparate features are then merged. Notably, the MLA technique is devoid 
of complex neural network computations, thus not leading to a sudden increase in the model’s parameter count.

Improved model structure
The improved PAPU_TonSeg model’s network architecture consists of four cascaded Transformer units, a 
lightweight Multilayer Perceptron (MLP) decoder, parallel network modules, ECA attention mechanisms, and 
a Multi-Level Feature Aggregation (MLA) upsampling approach. And incorporating parallel network modules, 
ECA, and MLA upsampling sequentially based on the foundational Segformer model. The network structure of 
the upgraded PAPU_TonSeg model is depicted in Fig. 3.

As depicted in Fig. 3, the PAPU_TonSeg model’s architecture has been refined by transforming the initial 
four Transformer units into four Parallel Blocks. These Parallel Blocks consist of parallelly operating Resnet 
Layers and Transformer Blocks. Furthermore, we have incorporated the ECA attention mechanism into the 

Fig. 2.  Structure of the ECA attention mechanism.
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Mix-FFN within the Transformer Block module. The Decoder section of the original model has been upgraded 
by replacing the MLP layer with a synergistic MLP and MLA setup, employing both convolutional neural 
networks and bilinear interpolation for a multi-tiered feature aggregation upsampling process. The process 
involves directly linking feature maps of varying dimensions from the encoder’s middle layers to the decoder 
and equalizing the feature map dimensions. Then upsampling each tier of features to a quarter of the original 
image size through a feedforward neural network followed by bilinear interpolation. The features from the four 
layers are concatenated to achieve feature fusion, and another network is used to transform the channel numbers 
to match the quantity required for the semantic segmentation task to facilitate subsequent mask prediction.

Algorithm 1.   Parallel Block.Experiment results

This section will present the two datasets used in the experiments, the experimental environment, and the 
parameter settings. And displays our experimental results and results analysis.

Dataset
This study employs two datasets: one is the publicly available BioHit dataset, and the other is our self-constructed 
dataset.

	(1)	 The public BioHit dataset comprises 300 tongue images, each with dimensions of 576 × 768 pixels. The 
ground truth for the data is based on manually annotated results.

	(2)	 Our self-constructed dataset contains 642 photographs, collected by using the professional four-diagnostic 
device, with ground truth established through manual annotation.

Fig. 3.  Improved PAPU_TonSeg network architecture diagram.

 

Scientific Reports |        2025 15:27622 6| https://doi.org/10.1038/s41598-025-05410-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


We randomly divided the two tongue image datasets into training and testing sets in an 8:2 proportion. The 
dataset was annotated and partitioned into training, testing, and validation sets following the standard VOC 
dataset format. To ensure reproducible data splitting, The data was split using sklearn’s train_test_split function 
with random seed set to 717,750, guaranteeing consistent data distribution across different experimental runs.
Initially, all images were scaled down to a consistent resolution of 512 × 512 pixels. Subsequently, a horizontal 
flip augmentation was applied to the training images with a 50% probability to bolster the model’s capacity for 
generalization and mitigate the risk of overfitting. Photometric distortions were also introduced to the images 
with a 50% probability of further augmenting the dataset. Additionally, the images in both the training and 
testing sets underwent standardization in the RGB channels.

Experimental environment and parameter settings
The deep learning framework employed in this study is PyTorch 1.11.0, paired with CUDA version 11.3 for GPU 
acceleration. In terms of hardware specifications, the setup includes an NVIDIA A4000 GPU featuring 16 GB 
of VRAM and an Intel Xeon(R) Gold 5320 CPU operating at a 2.20 GHz clock frequency. To ensure complete 
reproducibility of our experiments, we have fixed the random seed to 717,750 across all computational libraries 
including Python’s random module, NumPy, and PyTorch. These measures guarantee that any variations in 
experimental results can be reliably attributed to model architecture or hyperparameter changes rather than 
computational randomness.

Model training method
In this study, the AdamW optimizer was chosen for the training of the enhanced network model, with an 
initial learning rate of 0.00006. The subtle updates to model weights throughout the training process facilitate 
a more nuanced convergence towards the minimum loss region. To counteract overfitting and bolster the 
model’s generalization ability, the weight_decay parameter was set to 0.0001. The model was trained for a total 
of 100 epochs, with a mini-batch size set to 16. The Cross-Entropy loss function was leveraged to facilitate the 
optimization of the neural network’s layer weights and biases.

Model evaluation indicators
To comprehensively evaluate the performance of PAPU_TonSeg, multiple evaluation indicators were adopted, 
including MPA (Mean Pixel Accuracy), MIoU (Mean Intersection over Union), the Dice coefficient, FLOPs 
(Floating Point Operations), and the parameter count of the model itself.

	(1)	 MPA: The PA (Pixel Accuracy) can be obtained by calculating the proportion of the number of pixels that 
are correctly classified in each category to the total number of pixels in that category. Then, the MPA is ob-
tained by averaging the PA values of all categories. The calculation formula of MA is presented in Formula 
1. In this formula, njj is the total number of pixels marked as category j and correctly predicted as j, while tj 
is the total number of pixels marked as j.

	
MP A = 1

k

k∑
j=1

njj

tj
� (1)

	(2)	  Dice: The Dice index is computed by evaluating the fraction of the intersection (i.e., the correctly identi-
fied pixel count) to the union (i.e., the sum of the predicted and actual pixel counts) of the predicted and 
true pixels. This index indicates the congruence between the model’s predictive outcomes and the actual 
outcomes, hence acting as a significant criterion for gauging the model’s segmentation accuracy. The Dice 
index varies from 0 to 1, with values tending toward 1 suggesting superior segmentation quality37. Equa-
tion 2 illustrates the method for calculating the Dice index, where TP indicates true positives, FP indicates 
false positives, and FN indicates false negatives38.

	
Dice = 2 ∗ T P

F P + 2 ∗ T P + F N
� (2)

	(3)	  MIoU: The MIoU (Mean Intersection over Union) is an indicator expanding upon IoU (Intersection over 
Union). IoU can quantitatively measure the overlap between predicted and actual regions. The MIoU meth-
od calculates IoU for each class separately and then computes the arithmetic average of these individual IoU 
values, which provides a comprehensive measure that accounts for all classes. This approach offers a holistic 
assessment of a model’s performance in semantic segmentation. The formula for MIoU is detailed in Eq. 3 
39. Here, nii signifies the aggregate pixel count designated as category i and accurately identified as such, 
whereas nij represents the pixel count for category i that has been misidentified as category j. The definitions 
for all other terms remain consistent with the aforementioned.

	
MIoU = T P

T P + F P + F N
= 1

k

k∑
i=0

nii∑k

j=0 nij +
∑k

j=0 nji − nii

� (3)
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	(4)	 FLOPs: As a pivotal indicator of the complexity inherent in algorithms or models, FLOPs (Floating Point 
Operations) are frequently applied to quantify the aggregate computational effort required by neural net-
work models, thus offering an inference of the model’s time complexity.

 

Experimental results
Comparison of each model
For a thorough assessment of model performance, the classic models mentioned above, the Segformer model, 
and the PAPU_TonSeg model were independently trained on both the publicly available BioHit dataset and our 
self-built dataset, followed by an evaluation of model performance on the respective test sets. The comparative 
performance of different models on both datasets is delineated in Table 1.

From Table 1, it can be observed that on the BioHit dataset, the performance of both DeepLabV3 and 
Segformer across all evaluation indicators is better than that of FCN, UNet, and PsPnet (Pyramid Scene Parsing 
Network) models. When comparing DeepLabV3 and Segformer, the metrics are quite close, with DeepLabV3 
performing slightly better than Segformer. Among the five models, the improved PAPU_TonSeg model 
demonstrates the best performance. Compared to the original Segformer, the enhanced PAPU_TonSeg model 
shows a 2.42% increase in MPA, a 0.78% increase in Miou, and a 2.02% increase in Dice. When compared to 
DeepLabV3, the improved model exhibits a 1.97% increase in MPA, a 0.31% increase in MIOU, and a 1.55% 
increase in Dice.

On our self-constructed dataset, the original Segformer outperforms other classic models in all evaluation 
indicators, but the performance of the improved PAPU_TonSeg is further enhanced, becoming the best-
performing model among all. The PAPU_TonSeg shows a 0.64% higher MIou than Segformer, and a 0.33% 
higher MIou, as well as a 0.4% higher Dice. Therefore, on both datasets, the PAPU_TonSeg model has the optimal 
effect, fully demonstrating the effectiveness of the improvement strategy and the robustness of the model.

To thoroughly evaluate the performance of different models, a comparison of FLOPs and Param was 
undertaken. Given the correlation between a model’s FLOPs and the input data size, all models were subjected to 
data of uniform dimensions (1 × 3 × 224 × 224). The Python third-party library thops was employed to ascertain 
the FLOPs for the different models, and the same tool was applied to determine the models’ parameter quantities 
(Param). The experimental data are explicitly illustrated in Table 2.

Table 2 illustrates that the Segformer, in contrast to legacy semantic segmentation models that are 
predominantly CNN-based, possesses a considerably smaller parameter set and a significantly reduced 
computational complexity. The PAPU_TonSeg, after enhancements, sees an uptick of 0.7G in computational 
complexity and an addition of 3.34 M parameters over the original Segformer. Despite this, it remains on the 
lower end of the spectrum concerning parameter volume and computational complexity in comparison to other 
classic models.

To further compare the actual segmentation outcomes of various models, 4 random images were drawn 
from the custom dataset and the public BIOHit dataset for a comparative experiment of the actual segmentation 
performance of each model. The segmentation results of the models are shown in Figs. 4 and 5.

Network FLOPs(G) Param(M)

FCN 19.5 18.64

UNet 38.9 32.09

PSPNet 11.3 46.71

DeepLabv3 13.0 58.63

Segformer 1.3 3.71

PAPU_TonSeg 2.0 7.05

Table 2.  FLOPs and param data for different models with the same input.

 

Network

BioHit Self-Built Dataset

MPA (%) MIou (%) Dice (%) MPA (%) MIou (%) Dice (%)

FCN 91.75 94.92 92.32 90.30 95.02 93.86

UNet 84.33 92.76 86.55 94.94 97.33 96.80

PSPNet 93.96 97.35 94.95 95.10 96.78 97.00

DeepLabv3 95.59 98.29 96.44 95.83 97.93 97.41

Segformer 95.14 97.82 95.97 96.68 98.31 97.92

PAPU_TonSeg 97.56 98.60 97.99 97.32 98.64 98.32

Table 1.  Comparative evaluation metrics of different models on the BioHit dataset and the self-built dataset. 
Significant values are in bold.
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As shown in Fig.  4, the segmentation efficacy of four tongue images from the BioHit public dataset is 
presented. Each row corresponds to a sample, while each column displays the segmentation effect of a specific 
model on various samples. The sequence of models in the columns is Input, FCN, UNet, PSPNet, DeepLabV3, 
Segformer, PAPU_TonSeg, and Ground Truth. It can be observed that the segmentation effects of FCN and 
UNet models significantly differ from Ground Truth, with torn segmentation and blurred edges; PSPNet model’s 
segmentation, while similar to Ground Truth, lacks edge clarity; UNet, DeepLabV3, and Segformer also exhibit a 
lack of refinement in segmenting tongue body details and tooth marks. Compared to other models, the improved 
PAPU_TonSeg model’s segmentation outcome is the closest to Ground Truth, which effectively distinguishes the 

Fig. 5.  Segmentation results of different models on the self-built dataset.

 

Fig. 4.  Segmentation outcomes of different models on the public BioHit dataset.
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tongue body without debris, and accurately segments the tooth marks on the tongue body edge, resulting in 
better segmentation detail of the tongue body edge.

Figure  5 illustrates the comparative segmentation outcomes of various models on our dataset. Upon 
examination of the segmentation results, it is evident that the enhanced model effectively delineates edge details, 
such as tooth marks, etc. Despite PSPNet, DeepLabV3, and Segformer capturing the general contour of the 
tongue body, they fail to provide crisp segmentation of the edges, demonstrating a marked improvement in edge 
detail segmentation accuracy with our refined PAPU_TonSeg.

Ablation experiment
Building upon the foundational framework of the Segformer model, we implemented critical enhancements by 
replacing the Transformer Block in the Segformer’s backbone network with a Parallel block, infusing the Mix-
FFN with the ECA attention mechanism, and enhancing the Segformer’s up-sampling procedure with the Multi-
Level Attention (MLA) module. To substantiate the effectiveness of these refinements, comprehensive ablation 
experiments were executed on the BioHit public dataset, with the employment of Mean Pixel Accuracy (MPA) 
as the evaluative criterion for model performance. The tabulated experimental findings are illustrated in Table 3.

Feature visualization
The Grad-Cam technique (Gradient-weighted Class Activation Mapping) serves to demystify the decision 
processes of Convolutional Neural Networks. By analyzing the gradients, it identifies the most impactful areas of 
the input image on the network’s predictions40–43.

Figure 6 illustrates the heatmaps obtained from applying Grad-Cam to three randomly selected images each 
from the public dataset BioHit and our in-house dataset.

As depicted in Fig. 6, the original images are presented on the extreme left, followed by heatmaps generated 
from the FCN, UNet, PSPNet, DeepLabV3, Segformer, and PAPU_TonSeg model moving from left to right. The 
FCN and UNet are observed to target only particular tongue local features, bypassing a substantial portion of 
the tongue’s informative features. The UNet model even notably misidentifies regions such as the lips as focus 
areas. The PSPNet model intermittently does not fully capture the tongue’s edge features, and the DeepLabV3 
and Segformer also demonstrate an incomplete recognition of the tongue with an undue focus on the tongue’s 
central regions. However, the refined PAPU_TonSeg model’s attention scope encompasses the entire tongue, 
and the heatmap color distribution reveals a more consistent focus area, with edges and the center showing 
nearly identical color saturation. This indicates that the modified model effectively acquires both global and local 
features of the tongue, facilitating accurate segmentation based on tongue attributes.

Comparative analysis with general models
To demonstrate the superior performance of our improved model in tongue image segmentation, we conducted 
comparative experiments with state-of-the-art models in recent years. All models were trained and evaluated 
within the mmsegmentation framework. Specifically, we adapted our new model architecture to conform to 
mmsegmentation’s standard structure and jointly trained it using both our proprietary dataset and the BioHit 
dataset under identical training parameters.For optimization, all models employed the SGD optimizer with a 
learning rate of 0.01 and a momentum of 0.9. As shown in Table 4, the improved model exhibits significantly 
better performance compared to general-purpose models, indicating that our proposed enhancements enable 
superior applicability in tongue image segmentation tasks.

Convergence analysis
To demonstrate the variation of the loss function during the training process, thereby verifying the stability 
of the model and the absence of overfitting, we plotted the loss curve of the model on the validation set. As 
shown in the Fig.  7, the loss exhibits significant fluctuations in the early stages of training. However, in the 
later stages, the loss function on the validation set gradually stabilizes. Moreover, during the latter half of the 
training process, the validation loss does not show any substantial upward trend, indicating that the model did 
not exhibit overfitting during training.

Discussion
Tongue diagnosis can enable doctors to reveal the health condition of the body’s inner organs by observing 
changes in the tongue motility and coating. However, the diagnostic method of the tongue is easily influenced 
by the physician’s professional knowledge, personal experience, and external environmental factors, which leads 

Network Parallel Eca attention Progressive upsample MPA(%)

Segformer 95.14

Segformer + Parallele √ 97.25

Segformer + Eca Attention √ 97.06

Segformer + Progressive Upsample √ 96.80

Segformer + Parallel + Eca Attention √ √ 97.33

PAPU_TonSeg √ √ √ 98.60

Table 3.  Results of ablation study on the public dataset BioHit.
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to subjectivity to some degree. To boost the objectivity and precision of TCM tongue diagnosis and elevate 
the automation and intelligent capabilities of TCM, the implementation of AI-driven TCM tongue diagnosis 
techniques is crucial. For the tongue image classification models to ascertain diagnoses accurately, precise and 
exhaustive capture of the patient’s tongue imagery is fundamental, rendering a superior tongue image semantic 
segmentation model critical.

Our study proposes the PAPU_TonSeg, an improvement based on the lightweight Segformer model. To 
begin with, the integration of a parallel network architecture that encompasses self-attention and residual 
components within the original Segformer allows for the simultaneous extraction of global and local 
information. Subsequently, the incorporation of the ECA attention mechanism into the Mix-FFN framework 
significantly enhances the network’s ability to extract features, improving the accuracy and efficiency of semantic 
segmentation. Finally, the utilization of a progressive upsampling approach in conjunction with a convolutional 

IoU Acc Dice Precision Recall

Vit 93.23 96.73 96.50 96.27 96.73

HRNet 94.12 95.99 96.97 97.97 95.99

Swin Transformer 95.80 97.56 97.86 98.15 97.56

Beit 91.77 92.79 95.71 93.72 97.79

PAPU_TonSeg 96.82 98.21 98.38 98.55 98.21

Table 4.  Comparison with baseline models.

 

Fig. 6.  Grad-Cam Heatmaps of different models on the BioHit dataset and our self-built dataset.
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network model minimizes information loss during upsampling, ensuring that more edge detail is retained 
throughout the upsampling process.

In this research, despite a few attempted enhancements to the Segformer model aimed at boosting the 
efficacy of tongue image segmentation, we faced several challenges and identified areas for improvement. (1) 
During the conduct of ablation tests, each enhancement did result in a notable performance improvement 
compared with the original model, however, the segmentation performance has not achieved the most desirable 
outcomes, suggesting that there remains scope for enhancement in the indicators used for practical evaluation. 
(2) The existing evaluation frameworks have shown inadequacies, particularly in evaluating the precision of edge 
segmentation. These shortcomings are significant obstacles to be tackled in future research endeavors.

Conclusion
This study made a series of improvements based on the original Segformer to address the existing issues in 
tongue body segmentation. The experimental outcomes indicate that these enhancements have elevated the 
model’s segmentation capabilities across two tongue image datasets, which outperforms legacy models. The 
PAPU_TonSeg, which we have refined, exhibits reduced computational complexity compared to conventional 
convolutional neural network-based semantic segmentation models, and it more precisely delineates the tongue 
body, notably resolving the intricate segmentation of tongue body edge details. This study endeavor contributes 
positively to the scientize of tongue diagnosis, heightening its objectivity and exactitude, and possesses 
appreciable value for wider dissemination and practical use.

Data availability
The public BioHit dataset: https://github.com/BioHit/TongeImageDataset.
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Fig. 7.  Loss curve of the PAPU_TonSeg model on the validation set.
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