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Quality of Life (QoL) in urban environments represents people’s well-being and is influenced by 
various factors. This paper introduces an innovative approach to promote urban equity by integrating 
spatial analysis and Multi-Criteria Decision-Making (MCDM). The proposed method focuses mainly 
on accessibility to urban facilities and environmental health factors. In this research, data fusion 
techniques were utilized to generate criteria maps for urban air pollution and heat islands, while factor 
analysis, Principal Component Analysis (PCA), and entropy were employed to provide a comprehensive 
assessment of equity related to these environmental factors in the case study area. Expert opinions, 
collected through the Analytic Hierarchy Process (AHP) and Best–Worst Method (BWM), were refined 
using Dempster–Shafer theory to adjust the weights assigned to each evaluation criterion. The results 
highlight that access to educational facilities and green spaces significantly impacts urban equity, 
with respective weights of 0.189 and 0.149. Air pollution was also identified as a critical factor, with a 
weight of 0.152. These findings underscore the potential of this integrated approach in assessing urban 
livability, particularly in Tehran, Iran.

Keywords  Urban quality of life, Principal component analysis, Analytic hierarchy process, Best–Worst 
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Throughout history, cities have driven scientific, economic, social, and cultural development. They offer a variety 
of services and amenities to improve citizens’ welfare and comfort.1,2. As a result, many people find urban living 
more appealing. However, modern cities are currently confronting major obstacles, including environmental 
degradation, traffic congestion, overpopulation, economic inequality, and various social issues3. These issues 
have profoundly influenced lifestyles, environmental conditions, and public health, reducing the overall Quality 
of Life (QoL). Nonetheless, policymakers and planners on both the international and national levels highlight 
cities’ ability to improve QoL4–6.

Despite the crucial role cities play in fostering development and providing essential services, the increasing 
complexity of urban challenges poses significant threats to residents’ QoL. Factors such as pollution, traffic 
jams, overcrowding, and socio-economic disparities have intensified in recent decades, adversely affecting 
public health, social cohesion, and environmental sustainability. These persistent problems complicate efforts to 
promote livable and equitable urban environments7–10. To better understand and respond to these challenges, it 
is essential to identify key evaluation criteria, particularly those related to environmental and spatial conditions, 
and to analyze their distribution across urban areas. In this context, Geographic Information Science (GIS) 
allows planners to visualize spatial disparities and access to services, providing a clearer foundation for targeted 
and sustainable interventions10.

Given the multifaceted and dynamic nature of these issues, assessing urban QoL requires comprehensive 
approaches that can capture the diversity of influencing factors. However, current evaluation methods often 
struggle to address this complexity effectively, limiting the ability of planners and policymakers to implement 
targeted and impactful interventions8. Multi-Criteria Decision Making (MCDM) techniques, including popular 
methods such as the Analytic Hierarchy Process (AHP) and the Best–Worst Method (BWM), have proven 
effective in addressing complex urban QoL assessments by integrating diverse criteria and expert judgments.

Numerous studies have endeavored to quantify and spatially visualize urban QoL through diverse data 
sources and multi-criteria assessment techniques. Lo and Faber4 utilized Landsat Thematic Mapper satellite 
imagery alongside U.S. census data to evaluate urban QoL in Atlanta, generating detailed spatial maps. Similarly, 
Rinner5 generated a spatial visualization framework that uses MCDM methods such as AHP to evaluate social, 
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economic, and environmental factors in Toronto communities. This approach allows planners to investigate 
weighting scenarios and identify spatial QoL trends, thereby facilitating informed policymaking. Javadi and 
Taleai11, proposed a mixed-method framework integrating subjective and objective criteria to measure QoL at 
the intra-national level, highlighting Tehran’s relatively higher QoL compared to less favorable regions such as 
Sistan-and-Balouchestan and Kermanshah. Beyond urban contexts, Mocuta6 examined the impacts of climate 
change on rural QoL, emphasizing health, agriculture, and well-being. Although focused on rural areas, the 
findings underscore the broader significance of policy measures applicable to urban settings, particularly 
regarding environmental challenges.

A substantial body of research has applied MCDM methods to evaluate QoL12–20, with a predominant focus 
on AHP and BWM as leading weighting techniques. Dadashpoor et al.12 employed the AHP technique for 
data integration and used the Gini coefficient to evaluate inequality. They also examined the metrics such as 
neighborhood effect, accessibility, and the percentage of urban areas covered by services. Bhatti et al.13 assessed 
QoL using data on physical health, psychological and social connections, the environment (natural and built), 
economic circumstances and development, and access to facilities and services. The weighting procedure in their 
study was carried out using the AHP approach. Özdemir Işık and Demir,14 studied how changes in recreation 
and tourism affect the QoL along the Trabzon coastline in Turkey, with the objective of improving inhabitants’ 
well-being. They employed the AHP approach for the primary criterion and the ELECTRE method for the sub-
criteria. Hussain et al.18 additionally suggested a novel MCDM framework for assessing ideological and political 
education strategies under uncertainty, which includes methodological innovations useful in complex, value-
driven decision environments. Badi et al.19 designed a hybrid MCDM framework by combining Fuzzy Simple 
Weight Calculation for criteria weighting and the MARCOS method for ranking strategic logistics alternatives in 
Free Trade Zones, demonstrating the utility of fuzzy and MCDM techniques in infrastructure decision-making. 
In a similar effort to utilize robust MCDM frameworks in high-stakes environments, Moslem et al.20 evaluated 
accident analysis techniques in process industries using the Logarithmic Methodology of Additive Weights 
(LMAW) and the Double Normalization-Based Multiple Aggregation (DNMA) method, demonstrating the 
increasing utility of advanced ranking and weighting models in complex decision-making scenarios.

At the city scale, Dissanayake et al.16 established a life quality index (LQI) for Kandy City employing an 
AHP-like MCDM method. Gradient analysis indicated that socioeconomic factors, especially transportation, 
had a stronger influence on QoL than environmental ones. Withanage et al.17 examined spatial inequities in 
QoL in Polpitigma town by applying 20 geographical variables using GIS and AHP. The outcome had the highest 
influence of cultural variables compared to the environment, service, security, and socioeconomic variables, with 
only 4.5% of the area having high QoL. Ptak-Wojciechowska21 examined the urban QoL of elderly citizens with 
multi-criteria analysis and the AHP approach. The results confirm the applicability of AHP in urban planning 
and suggest that future assessments could be enhanced through the use of machine learning (ML) for greater 
precision.

While prior research predominantly utilized a single MCDM technique, the current study integrates AHP and 
BWM to enhance evaluation robustness by combining expert judgment with both qualitative and quantitative 
data12–14,22–24. Although methods like ELECTRE and TOPSIS are widely used, they are less appropriate for this 
context due to limitations such as rigid utility assumptions or a focus on ranking options. In contrast, AHP and 
BWM are more appropriate for assigning weights to diverse urban QoL indicators, making them particularly 
effective for complex assessments such as Tehran’s urban environment. AHP was employed due to its ability to 
capture expert judgment through pairwise comparisons, ensuring a structured evaluation of subjective criteria. 
BWM was selected for its consistency and efficiency in deriving reliable weights with fewer comparisons, which 
is especially valuable in complex, large-scale urban studies25,26.

Recent advancements in QoL evaluation have increasingly leveraged innovative analytical tools, particularly 
those rooted in ML, deep learning, and a variety of MCDM approaches. Yao et al.27 combined spatial syntax 
with machine learning algorithms (Random Forest and XGBoost) to evaluate spatial quality from pedestrian 
perspectives. Etminani-Ghasrodashti et al.28 employed machine learning models such as Random Forests, 
Decision Trees, and Multilayer Perceptrons to investigate how factors in the built environment affect cancer 
patients’ QoL. Brodny et al.29 evaluated living conditions in smart sustainable cities using MCDM tools like 
EDAS and WASPAS. Similarly, Vakilipour et al.30 assessed TOPSIS, VIKOR, ELECTRE, and SAW approaches 
for measuring urban QoL at various geographical levels. Iamtrakul et al.31 used GIS spatial analysis and deep 
learning models like OCRNet to investigate the impact of the built environment on transportation-related 
QoL. Kayiran32 applied machine learning techniques to predict material stress behavior, a predictive modeling 
strategy that could be adapted to urban QoL assessments to estimate environmental or socioeconomic stressors. 
Akbulut33 utilized the Grey MARCOS model in complex financial evaluations under ambiguity, highlighting 
its potential for QoL assessments where variables are uncertain or incomplete. These approaches collectively 
illustrate the evolution of QoL assessment methodologies towards more data-driven and computationally 
sophisticated techniques.

Building on traditional MCDM methods like AHP and BWM, recent studies have proposed more sophisticated 
MCDM techniques like Parsimonious Spherical Fuzzy AHP (P-SF-AHP) and Z-number Parsimonious BWM 
(Z-PBWM)34,35. For instance, Moslem et al.34 proposed P-SF-AHP, which simplifies pairwise comparisons while 
allowing experts to express hesitation and ambiguity. However, due to their methodological complexity and the 
need for specialized knowledge, these advanced methods were not applied in this study.

However, despite their technical strength, these novel methods often face considerable limitations, namely 
the complexity of model interpretation, heavy reliance on large and often inaccessible datasets, and challenges 
in addressing subjective uncertainty. To overcome such issues, there has been a growing interest in developing 
hybrid frameworks that combine the rigor of quantitative methods with the contextual insight of expert 
judgment. In this regard, the current study proposes an integrated approach that blends the AHP and BWM 
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techniques to elicit expert-derived weights, while simultaneously incorporating objective data through statistical 
methods such as Principal Component Analysis (PCA) and Entropy23,24. These statistical tools assist in reducing 
data dimensionality and objectively determining the weights of indicators, thereby complementing the expert 
judgment derived from MCDM methods.This dual perspective allows for a more balanced and precise evaluation 
of QoL by capturing both empirical patterns and domain expertise.

Nevertheless, the incorporation of expert judgment introduces inherent uncertainty, especially when opinions 
are diverse, incomplete, or conflicting. Traditional models often fall short in addressing these uncertainties 
effectively. To enhance the reliability and robustness of the proposed framework, this study introduces the 
Dempster–Shafer Theory (DST) as a complementary mechanism for uncertainty management36,37. DST provides 
a flexible mathematical framework for combining evidence from multiple sources, allowing for reasoning under 
both uncertainty and ignorance without requiring precise prior probabilities. Unlike probabilistic models 
that require predefined distributions, DST enables the fusion of independent evidence sources and allows for 
reasoning under both uncertainty and ignorance. By integrating DST with AHP and BWM, the framework 
not only strengthens the methodological rigor but also enhances interpretability and decision confidence, 
making it a more suitable solution for complex urban environments where data ambiguity is inevitable38,39. This 
integration offers a distinct advantage over methods like Fuzzy AHP, which are limited to handling vagueness 
within a single framework, whereas DST facilitates cross-method synthesis and delivers a more transparent 
decision-making process40.

This study fills the methodological and practical gap in the existing QoL assessment frameworks by integrating 
qualitative expert-based MCDM techniques (AHP & BWM) with quantitative statistical tools (PCA & Entropy), 
while enhancing uncertainty modeling through DST. The case of Tehran provides a critical testbed due to its 
complex socio-environmental dynamics and urban inequities.

The remainder of this study is structured as follows: Section "Materials and methods" introduces the proposed 
methodology in detail, followed by Section "Results and discussion", which presents the results and offers a 
comprehensive discussion of the findings. Section "Conclusion" concludes the study by summarizing the key 
insights, and provides suggestions and directions for future research.

Materials and methods
Case study
Tehran is located in Tehran Province, in north-central Iran, within the Middle East (Fig. 1). It is the capital and 
most populated city in Iran41. This city has 22 municipal districts, each with its own administrative center. As of 
the 2016 census, the city’s population was approximately 8,693,706, making it the 24th most populous metropolis 
globally and the most populous in Western Asia42. Tehran has major issues such as air and noise pollution, a 
deficient transportation system, insufficiency and lack of equitable access to urban services, welfare, and public 
places, particularly in older districts, and a high resident unemployment rate. Because of these circumstances, 
the study area is a top priority for determining the QoL. The city consistently ranks among the world’s most 
polluted capitals, with air quality indices frequently exceeding safe levels, leading to significant health concerns. 
Additionally, traffic congestion exacerbates air pollution, with vehicular emissions accounting for a substantial 
portion of pollutants30.

Fig. 1.  Case study/ The authors created the maps using ArcGIS 10.8.1 software (https://support.esri.com).
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Proposed methodology
The proposed methodology, demonstrated in Fig. 2, is structured into five integrated steps to comprehensively 
evaluate urban QoL. First, data were collected and prepared for spatial layers containing physical, environmental, 
and socioeconomic factors such as accessibility to educational, medical, and recreational facilities; proximity 
to green spaces and industrial zones; air and noise pollution levels; urban heat island intensity; literacy; and 
unemployment rates. In the second step, objective statistical analyses were used. PCA was employed to reduce 
dimensionality and determine the most influential criteria, while Entropy analysis determined each indicator’s 
inherent variability. These data-driven methods ensured that the assigned weights precisely represented each 
factor’s factual importance, with no subjective interference.

The third step involved incorporating subjective expert knowledge using two MCDM techniques: the 
AHP and the BWM. These tools enabled domain experts to express professional judgment about the relative 
importance of each criterion. However, to deal with the inherent uncertainty and potential inconsistency in 
expert evaluations, the fourth step employed DST. DST enabled the integration of AHP and BWM outcomes 
into a unified weighting scheme by accounting for both uncertainty and ignorance, providing an interpretable 
and mathematically rigorous alternative to other methods.

In step five, the different QoL maps that were created using weights from (PCA + Entropy), AHP, BWM, 
and DST were compared both visually and quantitatively using metrics like MAE, RMSE, Pearson Correlation 
Coefficient, and SSIM. This multi-method comparison allowed for the validation of spatial distribution patterns, 
ensuring that the resulting QoL indices were reliable and actionable. Overall, this hybrid approach, which 
combines objective statistical rigor with subjective expert insight and is supported by a robust uncertainty-
handling framework, provides a practical, scalable model for assessing urban QoL in Tehran and other cities 
facing complex urban challenges.

Step 1: data collection and preparation
Many factors including physical, socioeconomic, and environmental must be considered, each with distinct 
analytical units. Therefore, this study determined relevant factors suitable for grid-based analysis. A grid-based 
technique was employed to prepare spatial data, enabling the identification of distinct areas and integration 
of multiple datasets43,44. Based on a review of previous research, this study applied a 100 × 100 m grid size, 
consistent with prior studies that use grid sizes between 100 and 500 meters45.

Table 1 summarizes the indicators and factors used in this study. Before selecting the ten QoL criteria, an 
extensive literature review was conducted.

These indicators were chosen after a thorough review of existing urban QoL literature, and they were 
further validated through expert consultation. While the number of indicators is purposefully limited, each was 
carefully selected to reflect the most important dimensions influencing urban QoL (physical access to services, 
environmental exposure, and socioeconomic conditions). Various studies have emphasized the significance of 
access to educational facilities, which are highly associated with long-term personal and societal well-being. 
Likewise, access to medical and recreational facilities performs a critical role in residents’ health, life satisfaction, 
and social cohesion. Environmental variables such as green space availability, air pollution, noise pollution, 
and urban heat islands have been shown to significantly affect both physical and mental health. Finally, literacy 
and unemployment rates are two widely used socioeconomic indicators that reflect larger issues such as equity, 
opportunity, and economic stability in urban areas. We have reduced the number of factors to 10 to avoid 
overloading the experts and to allow for a more transparent and trustworthy rating procedure. Including more 
criteria may contribute to confusion and inconsistencies in the evaluation process, reducing the assessment’s 
robustness and clarity. Therefore, the criteria were determined after conducting a thorough assessment of the 
literature, consulting with experts, and recognizing the practical requirement for a reasonable and successful 
evaluation framework.

In this study, noise pollution was estimated based on Euclidean distance from the road network. Although 
urban noise data is typically collected through monitoring stations in many countries, such infrastructure is not 
available on a city-wide scale in Iran. We used a proximity-based method because there were no high-resolution, 
direct noise measurements available in Tehran. The approach is based on previous work that shows that traffic-
related noise levels highly correlate with distance to major roads, particularly in dense urban environments 
where vehicular flow is the primary cause of environmental noise54. As a result, we concentrated on these three 
broad categories and found the most relevant individual elements within each. In addition to the literature 
study, we discussed with professionals in the field to rank and confirm the significance of these criteria. Experts 
confirmed the inclusion of these variables. Also,

Table 1 highlights the methods used to create maps for each criterion, which were chosen based on their 
features and suitability for accurate data representation. Euclidean distance was utilized for Green Space, 
Noise Pollution, and Industries because it allows for a simple assessment of closeness in a straight line. This 
technique accurately captures the impact radius of these factors without requiring route-specific considerations. 
Network distance was chosen for educational, medical, and recreational facilities since they include human 
contact and real travel pathways are important. Network distance allows for the actual paths that people would 
travel, offering a more realistic portrayal of accessibility and service reach. Therefore, network distance was 
utilized for human-related services (such as education, health, and recreation), Euclidean distance was chosen 
specifically for variables such as green spaces and industrial zones due to their geographical and environmental 
properties. These elements have a diffuse environmental impact on the surrounding areas, such as air or noise 
dispersion, visual access, and land use conflict, that is independent of real pedestrian or vehicular paths. As a 
result, calculating the straight-line proximity to such sources provides a more realistic representation of their 
environmental risk.
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Table 2 presents the significance of each indicator in QoL mapping, along with the costs and benefits of their 
inclusion.

The detailed explanation of the data fusion process used to generate air pollution and surface temperature 
maps is provided in the Supplementary Materials (Section S1).

Step 2: statistical analysis
In this study, statistical methods including PCA and Entropy were employed to reduce dimensionality and 
calculate weights. Prior to PCA, KMO and Bartlett’s tests were used to determine data suitability for factor 
analysis23,30.

Fig. 2.  Flowchart of the study/ Flowchart created by the authors using Microsoft Paint.
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KMO Test value (Kaiser–Meyer–Olkin)  The KMO test assesses the sampling adequacy for PCA by evaluating 
the extent to which variables can be predicted from others in the dataset. A value close to 1 suggests that the 
data is suitable for factor analysis30. The detailed formula and calculation are presented in the supplementary 
information (Section S2).

Bartlett’s test of sphericity  The Bartlett’s Test of Sphericity determines whether the correlation matrix deviates 
significantly from an identity matrix, indicating that the variables are interrelated and appropriate for PCA. A 
significant test result (p < 0.05) confirms the usefulness of PCA30. The detailed formula and calculation are pro-
vided in the supplementary information (Section S2).

Principal component analysis  PCA is a widely used statistical technique for dimensionality reduction, espe-
cially when dealing with complex datasets containing numerous correlated variables59. The method transforms 
the original variables into a new set of uncorrelated variables called principal components, which are ordered so 
that the first few retain most of the variation present in the original data. By doing so, PCA reduces redundancy 
and reveals the underlying structure of the data60. To identify relationships between variables, the covariance 
matrix is calculated:

Indicators Reason for Selection Benefits

Educational facilities
The inclusion of educational facilities is critical since access to quality education is strongly 
related to personal and social well-being. Education increases social mobility, promotes 
cognitive growth, and predicts health consequences

Improved educational possibilities result in greater literacy 
rates, improved job chances, and long-term economic stability, 
all of which improve QoL

Medical facilities
selected because of their strong connection to public health. One of the primary factors 
influencing life expectancy and overall health outcomes in the community is the accessibility 
to healthcare services

Better health outcomes, lower mortality, and better mental 
and physical health are all linked to access to medical services, 
which greatly improves overall QoL

Green space
Parks are examples of green spaces that offer vital psychological and environmental 
advantages. These areas promote physical exercise, enhance air quality, and offer a mental 
break from the stress of the city

decreases stress, boosts physical activity, and enhances mental 
well-being. In addition, green areas are linked to lower urban 
heat islands, improved air quality, and a feeling of community

Noise pollution
Numerous health problems, including heart disease, sleep disorders, and increased stress, 
have been connected to noise pollution. To provide practical prevention techniques, it is 
essential to quantify its influence on the living environment

Reducing noise pollution can greatly enhance inhabitants’ 
overall QoL by lowering stress levels, improving cardiovascular 
health, and improving sleep quality

Recreational 
facilities

Recreational facilities are essential for promoting the welfare of the community. They 
give people a place to relax, interact with others, and develop personally—all of which are 
necessary for leading a good and balanced existence

increases possibilities for mental and physical relaxation, 
fosters social cohesiveness, enriches culture, and improves 
overall life happiness

Industries
Public health and environmental quality may be greatly impacted by industrial zones, 
particularly when pollution is present. It is possible to identify regions that require 
regulatory control and correction by keeping an eye on industrial distribution

Understanding industrial distribution improves environmental 
and social sustainability by reducing pollution, fostering 
sustainable growth, and guaranteeing public health regulations

Air pollutant 
(PM10)

Air quality, especially the concentration of PM10 particles, has a direct effect on 
cardiovascular health, mental health, and respiratory health. Public health initiatives need 
an assessment of air pollution

Reducing air pollution improves the health of individuals and 
communities by lowering the prevalence of cardiovascular 
issues, respiratory illnesses, and early death

Surface temperature To comprehend the urban heat island effect and the wider effects of climate change, surface 
temperature data is crucial. It is essential to plans for climate adaption

contributes to a more sustainable and habitable environment 
by lowering energy costs associated with cooling, increasing 
resilience against high heat events, and aiding in urban 
planning and climate adaption

literacy rate
One important socioeconomic metric is literacy, which influences not only individual 
growth but also general social advancement, health outcomes, and access to better 
employment possibilities. The quality of education is proxied by it

improves job prospects, fosters better social fairness, and gives 
people the resources they need to make wise choices about 
their health, money, and involvement in the community

Unemployment rate
One important measure of economic stability is the unemployment rate. Since poverty, 
crime, and mental health problems are frequently linked to high unemployment, it is 
essential to evaluate for a thorough QoL map

Reduced unemployment rates directly enhance people’s QoL 
by fostering more economic stability, better mental health, and 
general prosperity for both individuals and communities

Table 2.  Benefit Analysis and Justification for Selected Indicators in QoL Mapping55–58.

 

Indicators Dataset Method of map preparation References

Physical factors

Educational facilities Spatial layer (Point) of primary and secondary schools Network analysis 7

Medical facilities Spatial layer (Point) of hospitals Network analysis 7

Green space Spatial Layer (Polygon) of parks Euclidean distance 46,47

Recreational facilities Spatial Layer (Point) of commercial centers, theaters, and cinemas Network analysis 48

Industries Spatial Layer (Point) Euclidean distance 49

Environmental factors

Air pollutant (PM10) Monitoring Station Data fusion (MODIS, Kriging) 50

Noise pollution Spatial Layer (Polyline) of road network Euclidean distance 51

Surface temperature Meteorological Station Data fusion (Landsat 8, Kriging) 52

Socioeconomic factors
Literacy rate Literate population of men and women Raster data 53

Unemployment rate Unemployed population of men and women Raster data 53

Table 1.  Summarizing of the variables related to QoL.
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where C is the covariance matrix,Zi is the observation value, and Z  is the mean vector of the data. Then 
eigenvalues and eigenvectors of the covariance matrix calculated as follows:

	 Cvk = λkvk � (2)

where λk  is the eigenvalue and vk  is the eigenvector. Variance for each principal component is as follows:

	
V ariance = λk∑n

i=1λi
� (3)

Entropy  Entropy measures the degree of uncertainty or randomness in data. Criteria with higher variabili-
ty contribute more to this uncertainty and are considered more influential. In order to calculate weights, the 
probability distribution of each variable’s values should be computed23. This method calculates the diversity of 
each criterion’s values across all spatial units and assigns objective weights based on their contribution to the 
overall uncertainty. In this study, entropy weighting was employed to reduce subjective bias and provide a more 
data-driven assessment of each indicator’s importance24.

Step 3: multi-criteria decision making
MCDM techniques facilitate complex decision-making by evaluating multiple criteria at the same time61,62. 
Various studies on spatial analysis of QoL, have used different MCDM techniques such as AHP and BWM. 
Prakash et al.63 analyzed QoL at the district level in India, based on three pillars of sustainable development. They 
used AHP to assign weights to indicators and sub-indices. Dissanayake et al.16 constructe a LQI and analyzed 
its regional distribution. They employed MCDM technique to establish a hierarchy of 13 components selected 
based on two key criteria: environmental and socioeconomic. Pairwise comparison matrices were generated, 
and the AHP calculated the weight of each element. Jafarı-Sırızı et al.64 attempted to rate QoL in Tabriz city using 
a combination of BWM, TOPSIS, and GIS. The BWM approach was used to establish the weighting of criteria. 
In this study, we adopted an integrated approach combining both AHP and BWM.

AHP is a frequently employed multi-criteria decision-making technique that assigns weights to criteria 
based on structured expert judgments. It depends on pairwise comparisons to assess the ranking of factors on 
a numerical scale (typically 1 to 9). AHP is especially beneficial in complex decision-making scenarios where 
both qualitative and quantitative criteria must be considered30,54,62,63,65,66. Numerous studies have used the AHP 
method to rank multiple criteria. Abd El Karim and Awawdeh,15 applied AHP to assign weights to public facilities 
such as hospitals, recreational centers, schools, and security services, which influence QoL. Also, Dissanayake 
et al.16 conducted expert interviews to identify the criteria, sub-criteria, and factors associated with the AHP.

In this study, the AHP was employed to assign weights to QoL indicators. To ensure a comprehensive 
evaluation, 20 experts were selected based on their professional backgrounds relevant to urban QoL. The 
expert panel included five experts in GIS, five specialists in urban planning and development, five experts 
in environmental science and management, and five professionals in public health and social welfare, with 
expertise in community well-being, access to services, and social equity. Each expert conducted a pairwise 
comparison of criteria. Individual responses were averaged to produce the final pairwise comparison matrix. 
The logical consistency of these comparisons was assessed using the consistency ratio (CR), which is described 
in the supplementary information (Section S2).

BWM is a structured multi-criteria decision-making technique that uses fewer pairwise comparisons and 
improves consistency. Experts must identify the most and least important criteria (best and worst) and then 
compare them to all others. Compared to AHP, BWM reduces inconsistency and the number of comparisons 
required, making it appropriate for complex decision scenarios22,67. Specifically, BWM requires only 2n − 3 
comparisons for n criteria, significantly less than traditional pairwise methods, while a consistency ratio is used 
to ensure reliable judgments. Additionally, BWM solves a min–max optimization model to derive criterion 
weights, providing more stable and unique solutions compared to other methods25,68.

In this study, 20 experts were asked to identify the best and worst criteria. The experts had backgrounds 
in GIS, urban planning, environmental science, and public health and social welfare. Each expert was asked 
to determine the best and worst criterion, followed by a rating of the relative importance of the best criterion 
over all others (Best-to-Others) and all others over the worst(Others-to-Worst). These responses were used to 
determine the optimal weights for each criterion.

Step 4: Dempster–Shafer Theory (DST)
The DST is one of the most effective ways of information fusion. This theory provides a mathematical 
structure for deciding in the presence of uncertainty, allowing evidence from several independent sources to 
be combined.36,37,40,69. In the context of this study, DST is employed to combine subjective weights obtained 
independently from the AHP and the BWM, improving reliability as well as reducing ambiguity.

DST depends on Dempster’s rule of combination, which mathematically combines two belief mass functions 
m1 and m2 defined in the same frame of discernment. The rule is expressed as:
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where K represents the total conflict between the two sources. In this study, both AHP and BWM weight vectors 
were normalized so that they could be examined as basic belief assignments (BBAs) over singleton sets of 
criteria. That is, for each criterion i, its normalized AHP and BWM weights, denoted ωAHP (i) and ωBW M (j), 
are treated as belief masses m1 ({i}) and m2 ({j})  respectively.

Since belief is assigned only to singleton subsets (individual criteria), the combination rule simplifies to:

	
m1,2 ({i}) = ωAHP (i) .ωBW M (i)∑

j
ωAHP (j) .ωBW M (j) � (5)

This yields the final weight for criterion i, incorporating both AHP and BWM evidence while resolving 
inconsistencies between them. An illustrative example showing the combination process of weights from AHP 
and BWM using Dempster’s rule is provided in supplementary information (Section S2).

DST results in a more complete and integrated model36,37,40,70. Al Sharif and Pokharel36 applied DST in a 
smart city planning, indicating its ability to deal with uncertainty in urban risk analysis. Wang et al.37 proposed 
a clustering-based MCDM framework that incorporates DST to handle both discrete and continuous uncertain 
evaluations, improving decision accuracy in large-scale problems. Gorsevski et al.70 applied DST in spatial hazard 
modelling and demonstrated its effectiveness in combining uncertain spatial data for landslide risk prediction. 
Furthermore, Tang et al.40 proposed a new correlation belief function within DST that improves evidence fusion 
in classification tasks, broadening its application in complex decision environments.

In our approach, DST was used to refine the weights derived from AHP and BWM. DST treats the AHP and 
BWM outputs as separate sources of evidence and fuses them accordingly. This fusion increases the reliability 
of the final weights. This integration guarantees that the decision-making process is not only based on the best 
available data, but also resistant to the uncertainties associated with subjective judgments, resulting in more 
trustworthy and believable outcomes when analyzing QoL.

Finally, Dempster-shapher’s combination rule aggregates the mass functions of all criteria to produce a 
complete evaluation, effectively addressing uncertainties and improving decision-making accuracy37.

Step 5:comparison QoL maps using quantitative and visual metrics
Comparing different QoL maps helps to validate the findings obtained from multiple methods. When two 
approaches yield comparable maps, it boosts confidence in the accuracy and dependability of the data71. To 
compare maps created using different methodologies, the combination of visual assessment and quantitative 
measurements can be used.

Side-by-side visual comparison helps reveal spatial patterns and discrepancies. This aids in evaluating the 
general trends and regions with high and low values qualitatively72. The objective evaluation and comparison of 
the maps’ correctness and similarity is performed using these quantitative measures, which include SSIM, MAE, 
RMSE, and Pearson correlation coefficient. These metrics quantify errors and assess spatial similarity between 
maps73–76. Given that observable data (ground truth) is not accessible, these measures are only utilized to evaluate 
the performance and results of the two techniques, DST and (PCA + Entropy), in measuring QoL. Although 
direct validation with observed data is not feasible, comparing projected maps from these two approaches helps 
us to determine whether strategy gives a more accurate or consistent picture of QoL.

Results and discussion
As previously stated, the QoL was examined following the implementation of a composite index that included 
multiple criteria. Each criteria represented a domain of QoL and is assessed using a set of indicators. Figure 3 
represents the criteria maps produced utilizing the mentioned indicators in Table 1, according to step 1. Based 
on previous experience and articles, a grid size of 100m by 100m was initially chosen for this study. Euclidean 
distance analysis was used to create accessibility maps to industrial facilities and green spaces, and noise pollution 
map. Then, using network distance analysis, accessibility maps to educational, medical, and recreational facilities 
were generated. The data fusion process was then used to produce air pollution and urban heat island maps, 
providing an integrated and comprehensive overview of urban QoL.

According to Fig.  3, the accessibility map of educational and medical facilities reveals areas with limited 
access to essential services, particularly in peripheral districts, highlighting disparities in service distribution. 
likewise, the green space accessibility map demonstrates regions with insufficient access to parks and recreational 
areas, both of which are important for physical and mental health. The air pollution map identifies high pollutant 
concentration zones, which are frequently located near industrial areas and major transportation routes, 
ashowing a direct impact on public health. Finally, the urban heat island map identifies areas with elevated 
surface temperatures as a result of dense development and limited green space.

The noise pollution map, derived from proximity to major road networks, demonstrates that central and 
high-traffic corridors are experiencing higher noise levels, which may adversely impact residents’ well-being 
through stress, sleep disruptions, and long-term health consequences.Access to recreational facilities, such as 
theaters and shopping malls, appears to be uneven, with suburban areas facing more challenges in reaching such 
amenities.

The industrial proximity map highlights the spatial clustering of industrial zones, particularly in southern 
Tehran, where environmental burdens are expected to be more severe.ocioeconomic factors supplement this 
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Fig. 3.  The criteria maps for QoL evaluation/ The authors created the maps using ArcGIS 10.8.1 software 
(https://support.esri.com).
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spatial understanding: areas with lower literacy rates are frequently associated with lower service accessibility 
and higher environmental stress, whereas regions with higher unemployment reflect broader patterns of social 
vulnerability.

According to step 2, KMO and Bartlett’s test of Sphericity are employed to the 10 criteria for statistical 
analysis. The high KMO value (0.823) indicates excellent sampling adequacy, and Bartlett’s test of sphericity was 
significant (χ2 = 2,942,548.65, p < 0.001) confirms strong intercorrelations among the variables. These findings 
support the use of PCA to identify latent structures in the dataset. This step reinforces the robustness of the 
selected indicators while also supporting the validity of the subsequent dimensionality reduction and weight 
assignment. Thus, factor analysis not only reduces the complexity of multidimensional data, but it also ensures 
that key QoL patterns are statistically supported and interpretable.

Table 3 shows the factor loadings for the first three components which indicate the correlation coefficients 
between observed variables and factors. They represent the extent to which a factor influences a variable. Network 
distance to educational facilities has factor loadings of − 0.62 on Component 1, − 0.64 on Component 2, and 
− 0.19 on Component 3. Similarly, network distance to medical facilities loaded at − 0.47 on Component 1, − 0.81 
on Component 2, and − 0.18 on Component 3. Variables like Euclidean distance to parks and Euclidean distance 
to industry facilities have substantial positive loadings on Component 1 (0.87 and 0.88, respectively), but only 
moderate loadings on the other components. The social variables also revealed interesting trends. “Literacy 
rates” was largely loaded on Component 3 (0.72), but unemployment rates had a high loading on Component 1 
(0.88) and moderate loadings on the remaining components.

While the three-component model first looked to be consistent with theoretical components, subsequent 
statistical analysis revealed significant flaws. First, the eigenvalues for the second and third components were 
particularly low (0.91 and 0.48, respectively), implying that they contributed little to explaining variance in the 
dataset. Second, the factor loadings were quite similar between Component 1 and Component 2, especially for 
environmental and accessibility variables. Several variables, including Euclidean distance to parks, Euclidean 
distance to industry facilities, noise pollution, urban heat island, and air pollution, had a significant impact on 
both components. This pattern identified redundancy among components and suggested reducing their number 
to improve clarity and interpretability.

Given the limitations found in the three-component model, the factor analysis was recalculated with 
two components to simplify the factor structure and eliminate redundancy. This adjustment improves the 
model’s interpretability, as shown in Table 4, by distinguishing between the two primary dimensions of QoL: 
environmental stressors and service accessibility.

The redesigned two-component structure showed a clearer difference between environmental stressors and 
accessibility considerations. Component 1 generally caught environmental variables like pollution, urban heat, 

Criteria Component1 Component2

Network distance to education facilities − 0.310063 0.631929

Network distance to medical facilities 0.066895 1.013469

Network distance to recreational facilities − 0.192861 0.653018

Euclidean distance to parks 0.884676 − 0.129994

Euclidean distance to industry facilities 0.913491 − 0.093710

Noise pollution 0.904165 − 0.110679

Urban heat island 0.868624 − 0.149168

Air pollution 0.778811 − 0.219930

Literacy rates 0.115216 − 0.203713

Unemployment rates 0.911831 − 0.070430

Table 4.  Factor loadings of variable (Two component).

 

Criteria Component1 Component2 Component3

Network distance to education facilities − 0.613854 − 0.636294 − 0.187688

Network distance to medical facilities − 0.473723 − 0.811640 − 0.184683

Network distance to recreational facilities − 0.519670 − 0.621590 − 0.138893

Euclidean distance to parks 0.871330 0.434701 0.200205

Euclidean distance to industry facilities 0.878000 0.413637 0.204819

Noise pollution 0.879144 0.427020 0.196384

Urban heat island 0.867057 0.445318 0.198198

Air pollution 0.821981 0.468417 0.202977

Literacy rates 0.125859 0.113336 0.714587

Unemployment rates 0.880712 0.420019 0.080233

Table 3.  Factor loadings of variable (three component).
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and industrial closeness, whereas Component 2 mostly represented service accessibility characteristics like 
distances to school, healthcare, and recreation. To improve factor discrimination, Promax rotation was used 
instead of Varimax. Unlike Varimax, which assumes independent components, Promax rotation accommodates 
correlated factors, resulting in a more realistic and interpretable factor structure. This change eliminated the 
overlap between components seen in the earlier model, resulting in a more meaningful depiction of QoL 
dimensions.

The resulting two-component model produced a theoretically sound and statistically sound assessment of 
QoL by ensuring that all criteria were maintained without introducing redundancy.

Table 5 presents the criterion weights calculated using PCA and Entropy methods. Prior to applying these 
techniques, all variables were normalized using min–max scaling (0–1) to ensure comparability across different 
data layers with varying units and scales. This normalization step was essential for maintaining consistency in 
the analysis. For PCA, the eigenvalues and the variance explained by the first three principal components were 
8.07, 0.91, and 0.48, respectively. The PCA weights were derived based on the absolute values of the loadings 
from the first principal component, reflecting the most influential variables in the dataset. In parallel, Entropy 
weighting was employed to evaluate the significance of each criterion based on its degree of variability, with 
higher variability indicating greater information contribution. Finally, the combined weights were obtained by 
averaging the PCA and Entropy weights, offering a balanced estimation that reflects both statistical structure and 
informational content of the criteria.

The PCA and Entropy weight comparison in Table 5 demonstrates that the majority of criteria have values that 
are comparatively constant between the two approaches. Nonetheless, several variables show clear disparities, 
including literacy rates, Euclidean distance to parks, network distance to recreational facilities, and network 
distance to medical services. This mismatch is mostly due to the basic differences in the way PCA and Entropy 
allocate weights.

PCA assigns weights depending on the variance contribution of every criteria. If a variable has less variance 
across the research region, PCA gives it a lower weight because it contributes less to overall differentiation. 
Entropy weighting, on the other hand, is sensitive to spatial heterogeneity and gives greater weight to variables 
with considerable local variability, even if their overall variance is minimal. These variations resulted in greater 
Entropy weights for criterion with skewed distributions, such as literacy rates, whereas PCA assigned lower 
weights due to their low variance over the whole study area.

To ascertain an equitable representation of both statistical variance and spatial heterogeneity, the arithmetic 
mean was chosen as the most acceptable method for combining the two weighting systems. This decision ensures 
uniformity across all criteria by using a uniform calculation procedure that does not favor one technique over 
another. Furthermore, the arithmetic mean avoids overemphasis on variables with severe outliers, which could 
affect the final weighting scheme. This is especially crucial for criteria like literacy rates, where highly skewed 
distributions have a large impact on Entropy weighting, potentially overestimating their value. The arithmetic 
mean ensures that no single approach dominates the results by combining both PCA and Entropy contributions 
equally. Another significant benefit of implementing the arithmetic mean is its simplicity and reproducibility. 
Unlike more complex combination approaches, the arithmetic mean offers a simple and transparent 
methodology that can be used to a wide range of datasets without adding extra computing complexity. It is a 
commonly used method in multi-criteria decision analysis (MCDA), ensuring that the weighing procedure is 
both methodologically sound and simply interpretable.

Figure 4 presents the weights generated by PCA, Entropy, and their combination.
According to Table 5 and Fig. 4, the network distance to education facilities had a PCA score of 0.103, an 

Entropy score of 0.145, and a total score of 0.124. Similarly, Network Distance to Medical Facilities received scores 
of 0.099 (PCA), 0.035 (Entropy), and 0.067 (Combined). In conclusion, the combination of (PCA + Entropy) 
values gives a solid foundation for evaluating the correlations and implications of numerous criteria in our 
dataset. The significant KMO value and Bartlett’s test affirm the validity of our factor analysis, while a thorough 
investigation of loadings and combined scores provides useful insights into the data’s patterns and trends.

Accoroding to step 3, AHP was applied to systematically assess the relative relevance of parameters influencing 
QoL. To acquire a more thorough comprehension and wider perspective, consultations with specialists, such 
as professional researchers and municipal employees, were performed. Twenty experts participated in the 

Criteria PCA Entropy Combined (Average)

Network distance to education facilities 0.102546 0.145254 0.123900

Network distance to medical facilities 0.099117 0.035323 0.067220

Network distance to recreational facilities 0.093213 0.023105 0.058159

Euclidean distance to parks 0.111890 0.038057 0.074974

Euclidean distance to industry facilities 0.111374 0.122891 0.117133

Noise pollution 0.111962 0.122566 0.117264

Urban heat island 0.112088 0.099233 0.105661

Air pollution 0.110217 0.098473 0.104345

Literacy rates 0.038299 0.266169 0.152234

Unemployment rates 0.109294 0.048928 0.079111

Table 5.  Calculated weights derived from statistical analysis.

 

Scientific Reports |        (2025) 15:22048 11| https://doi.org/10.1038/s41598-025-05468-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


discussions and were asked to rank ten factors that affect QoL index. The expert assessment were utilized to 
generate a pairwise comparison matrix. By contributing to the definition of the AHP, this participation made 
guaranteed that the analysis was based on expert knowledge.The analysis produced a set of weights for the 
criteria, which is demonstrated in Table 6 (CR = 0.01).

Based on the AHP results, air pollution received the highest weight (0.152), reflecting its critical role in 
shaping urban QoL, followed by network distance to educational facilities (0.117). Urban heat islands, on the 
other hand, had a lower weight of 0.065, suggesting that their impact on QoL was perceived as less immediate or 
severe compared to air pollution and service accessibility. Proximity to educational and healthcare facilities was 
among the most significant factors, reflecting their critical role in promoting health, human capital development, 
and long-term social well-being. Although recreational and sports services are beneficial to physical and mental 
health, they received lower ratings, possibly due to their perceived indirect impact on immediate urban living 
conditions.

Also, the BWM was employed to ascertain the relative importance of 10 factors influencing urban growth. 
Expert opinions on the significance of each criterion were provided by twenty participants in the study. Each 
expert identified the most and least significant factors and ranked the remaining criteria based on their relative 
importance to these two extremes. A large number of experts agreed that the literacy rate is the best criterion, 
while the worst criterion is the distance to the park. Expert evaluations were used to produce the Best-Optimal 
(BO) and Optimal-Worst (OW) vectors for each criterion. Subsequently, the mean BO and OW vectors were 
calculated across all experts to establish a consensus ranking for each criterion. To determine the weights of 
the criteria, an optimization problem was designed with the goal of minimizing the difference between expert 
evaluations and generated weights. As long as the weights are non-negative and add up to 1, the goal was to 
reduce the maximum possible deviation between the expert evaluations and the generated weights. Sequential 

Criteria Weight

Network distance to education facilities 0.117100

Network distance to medical facilities 0.074349

Network distance to recreational facilities 0.092937

Euclidean distance to parks 0.100372

Euclidean distance to industry facilities 0.102230

Noise pollution 0.081784

Urban heat island 0.065056

Air pollution 0.152416

Literacy rates 0.135688

Unemployment rates 0.078067

Table 6.  Calculated weights derived from AHP method.

 

Fig. 4.  Comparing generated weights from PCA, Entropy and combined weight/ Graph created by the authors 
using Python 3.9
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Least Squares Programming (SLSQP) was used to perform the optimization. The analysis findings generated a 
set of weights for the criterion, as shown in Table 7. (CR = 0.001).

According to the BWM results, literacy rates determined as the most critical factor with a weight of 0.210, 
underscoring the importance of education in urban growth. Conversely, network distance to medical facilities 
received the lowest weight (0.033), indicating that accessibility to healthcare, while important, was ranked lower 
than other factors such as education and environmental conditions.

According to step 4, the DST was employed to integrate the results from AHP and BWM, enhancing both 
the robustness and accuracy of the model by leveraging the complementary strengths of these two methods. 
This integration provides a more comprehensive and reliable assessment compared to using either method in 
isolation, reducing uncertainty and increasing confidence in the outcomes. The aggregated weights derived 
through the DST approach for each criterion are presented in Table 8.

According to the DST results, literacy rates identified as the most significant criterion, with a weight of 0.269, 
reinforcing its significance across multiple analytical approaches and its central role in urban development. 
Conversely, the network distance to medical facilities emerged its lower relevance, with a weight of 0.023, 
suggesting that proximity to healthcare services was identified less critical compared to educational and 
environmental factors in the context of urban QoL.

Figure 5 represents a linear graph of the weights created by DST as well as the weights from (PCA + Entropy) 
combined weights.

This comparison identifies major criteria influencing urban living conditions in Tehran. Both methods 
consistently prioritize network distance to educational facilities, with DST assigning a slightly higher weight 
(0.152 vs. 0.124), highlighting the critical role of educational access in improving urban QoL. Significant 
differences are observed in variables such as network distance to medical services (PCA: 0.067, DST: 0.023) 
and urban heat islands (PCA: 0.106, DST: 0.048), with PCA giving higher weights. These disparities reflect the 
two methods’ different priorities, which can be employed to direct targeted interventions in healthcare and 
environmental management. In contrast, DST prioritizes literacy rates (0.269) over PCA (0.152), implying that 
expert-informed methodologies may prioritize education as a foundation for long-term urban development. 
These findings imply that, while both methodologies reveal critical aspects such as educational accessibility, 
weight assignments emphasize differing viewpoints on other criteria, which can help policymakers prioritize 
efforts to improve urban QoL.

As a conclusion, these findings show that, while both techniques uncover crucial factors such as educational 
accessibility, weight assignments emphasize divergent opinions on other criteria, which might help policymakers 
prioritize efforts to improve urban QoL. The observed weight reversal, notably in the ranking of the first three 
criteria, demonstrates the basic differences between the two methodologies. While (PCA + Entropy) focus on 

Criteria Weight

Network distance to education facilities 0.15179262

Network distance to medical facilities 0.02286098

Network distance to recreational facilities 0.09872927

Euclidean distance to parks 0.07806351

Euclidean distance to industry facilities 0.09994415

Noise pollution 0.08657998

Urban heat island 0.04804611

Air pollution 0.0981935

Literacy rates 0.26932367

Unemployment rates 0.04646621

Table 8.  Calculated weights derived from DST.

 

Criteria Weight

Network distance to education facilities 0.137273

Network distance to medical facilities 0.032562

Network distance to recreational facilities 0.112499

Euclidean distance to parks 0.082362

Euclidean distance to industry facilities 0.103531

Noise pollution 0.112109

Urban heat island 0.078210

Air pollution 0.068225

Literacy rates 0.210196

Unemployment rates 0.063032

Table 7.  Calculated weights derived from BWM method.
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statistical variance and spatial heterogeneity, DST includes evidential reasoning to account for uncertainty in 
data dependability. This causes a reordering of certain components, as uncertainty plays a larger role in DST, 
resulting in different prioritization than (PCA + Entropy). This disparity in weight allocation might directly 
enlighten policymakers by demonstrating how data-driven and expert-informed viewpoints may result in 
differing prioritizing of urban interventions. For example, although (PCA + Entropy) quantitatively reveals 
spatial inequalities, DST may boost criteria such as environmental dangers or social justice issues that experts 
consider significant but have lower statistical variance. Understanding these methodological variations allows 
decision-makers to strike a balance between quantitative objectivity and contextual expertise, resulting in more 
inclusive and effective urban development policies.

To visually demonstrate the results, QoLmaps were generated using the AHP, BWM, and DST weights. The 
spatial distribution of the criteria and the weights produced from the AHP are integrated in this map (Fig. 6), 
thereby providing a full perspective of locations with various levels of QoL.

According to Fig. 6, the spatial distribution of QoL utilizing different weighting methods (PCA + Entropy, 
AHP, BWM, and DST) reveals substantial disparities across Tehran’s districts, shaped by varying prioritizations 
of criteria. Both DST and BWM place a greater emphasis on literacy rates, demonstrating the importance of 
educational factors in urban QoL evaluation. In contrast, (PCA + Entropy) and AHP distribute weights more 
evenly across environmental and accessibility-related variables, implying a broader understanding of what 
constitutes urban livability. These methodological differences can reveal important insights into how each 
approach emphasizes different urban priorities, such as education versus environmental health.

The spatial analysis of the maps reveals distinct spatial disparities in QoL across the city. The central and 
northern districts primarily concentrate high QoL areas, and these districts provide nearby essential services, 
have improved infrastructure, and offer more readily accessible public amenities. Peripheral neighborhoods, 
particularly in the southern and western regions, have consistently lower QoL scores. These areas frequently 
lack access to educational institutions, healthcare facilities, efficient transportation, and green spaces, all 
of which contribute to decreased urban livability. This spatial disparity reflects underlying urban inequities, 
implying that residents in marginalized areas face barriers that limit their access to critical resources for well-
being. The concentration of higher QoL scores near the city center is consistent with established urban theories 
emphasizing the importance of centrality in access to services, though the extent of this pattern varies across 
methods. Notably, DST and AHP demonstrate a more dispersed pattern of QoL distribution, implying a more 
nuanced understanding of less obvious factors influencing livability beyond mere proximity.

The prominence of literacy rates in DST and BWM methodologies underscores the fundamental role of 
education in shaping urban QoL. This finding emphasizes that improving educational opportunities in lower-
scoring districts may be a pivotal strategy to bridge spatial inequalities. Meanwhile, (PCA + Entropy) and AHP’s 
broader weighting of environmental and accessibility variables highlight the disproportionate environmental 
challenges faced by peripheral zones, emphasizing the need for integrated policies that address both the social 
and ecological dimensions of urban equity. In conclusion, these spatial inequalities highlight critical challenges 

Fig. 5.  Comparing weights from DST and Combined weights from (PCA + Entropy)/ Graph created by the 
authors using Python 3.9
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in achieving equitable urban development and emphasize the importance of targeted interventions that improve 
access to QoL resources across all city regions. Urban planners and policymakers require a comprehensive 
understanding of these spatial patterns to promote inclusive and sustainable cities.

The analysis confirms that all maps place better QoL regions near the city center, which is consistent with the 
expected benefit of proximity to services and infrastructure. However, DST and AHP show more dispersed high-
value areas, implying that these methods capture a broader range of QoL factors, including those that are not 
immediately apparent in proximity-based models. AHP and DST display a wider range of medium-value zones, 
indicating a more equitable distribution of QoL across regions. DST, in particular, reveals a more dispersed 
pattern with fewer clearly defined poor QoL zones on the periphery, indicating a more balanced integration 
of various data sources. In contrast, (PCA + Entropy) demonstrate significant differences between areas with 
good and poor QoL, emphasizing the importance of environmental factors in shaping urban livability. BWM is 
similar to (PCA + Entropy), but it prioritizes higher-value areas, demonstrating a focus on environmental and 
accessibility factors. Finally, DST provides the most dispersed and balanced QoL map, implying that this method 
better integrates multiple sources of evidence, resulting in a more comprehensive view of urban QoL.

Figure  7 compares different calculated weights from various methods in a radar graph. This graphical 
representation demonstrates how the importance of each criterion varies across the methods, allowing for a 
clear comparison of how each technique prioritizes urban QoL factors in Tehran.

The radar charts (Fig. 7) compare BWM, AHP, (PCA + Entropy), and DST for QoL criteria in Tehran, revealing 
significant variances and similarities. All techniques consistently stress C1 (Network distance to educational 
institutions) and C9 (Literacy rates) as key criteria, with BWM and DST assigning the greatest weights to C1 and 
C9. AHP has a more balanced distribution across criteria, emphasizing C1, C2 (Network distance to medical 
facilities), and C9, whereas (PCA + Entropy) likewise maintains a balanced approach, with a focus on C1, C6 
(Noise pollution), and C9. DST and BWM, on the other hand, de-emphasize criteria such as C2, C4 (Euclidean 
distance to parks), C5 (Euclidean distance to industry facilities), C7 (Urban heat island), and C8 (Air pollution), 
implying that fewer but more impactful criteria should be prioritized, as opposed to AHP and (PCA + Entropy), 
which distribute weights more evenly across multiple factors .

Fig. 6.  Spatial representation of QoL based on calculated weights derived from (PCA + Enropy), AHP, BWM, 
and DST/ The authors created the maps using ArcGIS 10.8.1 software (https://support.esri.com).
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Although the (PCA + Entropy) method assigns a relatively low weight to literacy rate due to its limited 
spatial variance, DST emphasizes its importance based on expert evaluations, resulting in a significantly higher 
weight. While this may seem contradictory at first glance, it in fact reflects the nature of DST’s belief aggregation 
mechanism: although DST-generated weights often follow the general trends of (PCA + Entropy), in cases like 
this, it amplifies criteria strongly supported by expert input—even when statistical variance is low.

DST does not simply average values; rather, it sharpens beliefs when strong support is provided by at least one 
credible source. In this case, AHP and, particularly, BWM rated the literacy rate higher, whereas (PCA + Entropy), 
which are data-driven and variance-based, rated it lower. DST combined these perspectives by emphasizing the 
higher belief mass, resulting in a heavier final weight. Such differences are not anomalies but instead highlight 
DST’s capacity to deal with uncertainty and represent conflicting or imbalanced evidence in a structured and 
robust manner.

Accroding to step 5, we compared the map generated by DST to the map derived from (PCA + Entropy) to 
assess its effectiveness. Figure 8 depicts a difference map, which is obtained by subtracting the DST map from 
the (PCA + Entropy) map. This difference map visually depicts the spatial areas where the two methodologies 
diverge, revealing regions where each approach prioritizes different aspects of QoL.

To quantify these differences, several evaluation metrics were calculated, including RMSE, MAE, Pearson 
correlation coefficient, and SSIM.

Visual examination of the maps reveals that both maps follow similar patterns, with high and low-value areas 
overlapping in the majority of regions. However, there are minor differences between the two maps, especially in 
areas where the values diverge. These variations highlight the methods’ different emphases and sensitivities. To 
further determine these differences, multiple quantitative metrics were calculated, providing more information 
for the comparison (Table 9). The MAE value of 0.058 and the RMSE value of 0.068 show the average magnitude 
of the differences between the two maps, with lower values indicating greater similarity. The Pearson Correlation 
Coefficient (0.856) indicates a strong positive correlation between the maps, implying that the two methods 
follow similar spatial patterns and rankings. The high SSIM value of 0.959 suggests the (PCA + Entropy) and DST 

Fig. 7.  Comparing Weight from various methods in radar graph/ Graph created by the authors using Python 
3.9. C1: Network distance to education facilities/ C2: Network distance to medical facilities. C3: Network 
distance to recreational facilities/ C4: Euclidean distance to parks. C5: Euclidean distance to industry facilities/ 
C6: Noise pollution/ C7: Urban heat island. C8: Air pollution/ C9: Literacy rates/ C10: Unemployment rates.
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maps are structurally very similar, with comparable brightness, contrast, and spatial structure. This reveals that 
both maps have substantially identical spatial patterns and intensity distributions, demonstrating the robustness 
of the methods used to analyze urban QoL.

Conclusion
This study proposed an integrated framework for evaluating urban QoL in Tehran by combining multiple 
decision-making methods (AHP, BWM, and DST) with statistical techniques such as PCA and Entropy. This 
hybrid approach allowed for both expert-driven weighting and data-based validation, enhancing the robustness 
of the results. Educational accessibility and literacy rates consistently emerged as the most influential criteria 
across all methods, emphasizing the central role of human capital in shaping urban livability. Moreover, Spatial 
analysis revealed a clear central-peripheral divide, with central districts enjoying higher QoL scores, while 
peripheral areas lagged behind, reflecting structural disparities in access to services and environmental quality.

To address these disparities, spatially targeted investments are needed, particularly in underserved peripheral 
zones, with priority given to infrastructure in education, health, and public transit. Urban planning must also 
incorporate environmental justice through neighborhood-level interventions such as green space expansion and 
air quality control. Moreover, institutionalizing the hybrid model developed in this study can enable planning 
agencies to monitor spatial inequalities and evaluate policy effectiveness using composite QoL indicators at the 
district level. Cross-sectoral collaboration—bringing together planners, environmental scientists, public health 
experts, and data analysts—will be essential to implement such integrated approaches effectively.

Quantitative metrics Value

Mean absolute error (MAE) 0.05780

Root mean square error (RMSE) 0.06839

Pearson correlation coefficient 0.85613

Structural similarity index (SSIM) 0.95942

Table 9.  Quantitative metrics to evaluate model performance.

 

Fig. 8.  A difference map between DST and (PCA + Entropy)/ The authors created the maps using ArcGIS 
10.8.1 software (https://support.esri.com).
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Looking ahead, future research may enhance this framework by integrating real-time data sources (air quality 
sensors, traffic APIs), higher-resolution satellite imagery, and advanced machine learning techniques to capture 
dynamic urban conditions more accurately. Additionally, the use of next-generation MCDM methods such as 
P-SF-AHP and Z-PBWM could offer more robust and cognitively efficient decision-making under uncertainty. 
These techniques were not employed in the present study due to their reliance on extensive expert calibration 
and computational complexity, which may not align with the practical constraints of urban-scale data collection. 
Nonetheless, future studies could benefit from comparing these advanced models with the current AHP–BWM–
DST framework to evaluate their relative effectiveness in urban QoL assessments.

Data availability
The datasets analyzed during the study are available from the corresponding author on reasonable request.
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