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Environmental managers and citizens alike are concerned with air quality. Early warning systems for 
air pollution are essential to prevent health issues and implement effective prevention strategies. This 
paper proposes a comprehensive, reliable system with air quality prediction and assessment modules 
for China’s air pollution. In this study, six air pollutants were observed, including Carbon Monoxide 
(CO), Nitrogen Dioxide (NO2), Ozone (O3), Sulphur Dioxide (SO2), Fine particulate matter (PM2.5), 
and Coarse particulate matter (PM10). The current dataset includes hourly air pollutants data from 10 
national air-quality monitoring sites, such as Aotizhongxin, Changping, Dongsi, Guanyuan, Huairou, 
Nongzhanguan, Shunyi, Tiantan, Wanliu, and Wanshouxigong. The dataset was recorded hourly from 
01/03/2013 to 28/02/2017. Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs) 
were developed with both unencoded and encoded features to address the forecasting challenge of 
multivariate time series, specifically in predicting air pollution concentrations. The results showed that, 
the top accuracy was as follows: 93.8% at the Wanshouxigong station using CNN-Encoded, 91.9% at 
the Nongzhanguan station using (DNN-Encoded and CNN-Encoded), 93.4% at Aotizhongxin station 
using DNN-Encoded, 96.2% at Nongzhanguan station using DNN-Encoded, 94% at Dongsi station 
using CNN-Unencoded, and 92.4% at Aotizhongxin station using (CNN-Unencoded and DNN-Encoded) 
in forecasting CO, NO2, O3, PM2.5, PM10 and SO2 pollutants, respectively. The findings indicated 
that the suggested approaches are efficient and dependable for environmental supervisors in the 
monitoring and management of air pollution.

Keywords  Air quality forecasting, Air pollution monitoring, Deep learning, Early warning systems, 
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General background of study
Air pollution is a major issue worldwide due to its negative effects on human health, the environment, and 
the climate1. Among several criterion pollutants for determining the levels of air pollution, six parameters are 
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generally considered highly concerning, including SO2, NO2, CO, O3, PM2.5, and PM10
2. According to data 

from the World Health Organisation (WHO), nine out of ten individuals breathe air with high levels of these 
pollutants, which is beyond the standard limits of the WHO. Air pollution will cause seven million premature 
deaths globally each year. In addition to impairing vision, air pollution can affect the balance of solar radiation 
directly or indirectly3 and might even spark more severe weather conditions like drought and flooding4. The 
concentration of air pollutants in ambient air can be influenced by meteorological conditions, which can also 
contribute to the mobility, emission, chemical synthesis, and deposition of these pollutants. This is crucial to any 
actions or management initiatives to reduce air pollution5.

Variations in meteorological data may result in inaccurate conclusions about management effectiveness 
or intervention. This can make it difficult to determine the trends in different air contaminants accurately6. 
Therefore, it is essential to distinguish weather effects from data trends on air quality and to identify the precise 
policy-driven changes in air quality4. Determining air pollution parameters using a theoretical model based on 
algorithmic methods was a reliable alternative method. Regression models mathematically represent statistical 
correlations, quantifying the influence of multiple independent variables on a single dependent variable. Since 
big data is gradually affecting every aspect of daily life. In the future, data resources will become more and more 
valuable. The use of data and technology from big data thinking and artificial intelligence (AI) diagnostic tools 
can be beneficial to environmental governance7. Additionally, based on the availability of online sensor data 
collection as real-time data monitoring, with the help of citizen participation management and environmental 
governance, it offers a noble scientific philosophy for government decision-making in public ecological tracking 
and early warning8,9. Countries monitoring air quality have increased dramatically in recent years10,11. These 
infrastructure developments in air quality monitoring can be attributed to the government’s recently constructed 
or expanded monitoring networks and the crucial contributions of non-governmental groups and concerned 
citizens worldwide. Although progress has been achieved, several regions still lack air quality monitoring, 
necessitating that a substantial portion of the population access information necessary to manage pollution and 
make informed health decisions.

Literature review
Deep learning (DL) and machine learning (ML) models have significantly contributed to recent developments 
in air quality monitoring and forecasting. These models have demonstrated extraordinary potential in predicting 
air pollution levels and identifying contamination sources12,13.

The co-training framework for air quality monitoring proposed for real-time monitoring in Beijing and 
Shanghai is noteworthy. By integrating spatial and temporal classifications such as artificial neural networks 
(ANN) and conditional random fields (CRF), this approach outperformed traditional models such as decision 
trees and linear interpolation. The use of real-time meteorological and traffic flow data proved beneficial in 
improving accuracy14. The key technological advancement here was the integration of various data sources for 
real-time monitoring. However, a significant challenge remains in the complex integration of these models, 
particularly when scaling to larger urban areas.

In addition, the use of wavelet-ANN models for short-term air pollution forecasting in Xi’an and Lanzhou 
was a key factor. The wavelet-ANN (WANN) model demonstrated superior performance in predicting air 
pollution indices (API), providing a higher R-value (0.8906) than traditional ANN models. This improvement 
was attributed to the WANN’s ability to capture non-linear patterns in pollution data. However, a challenge was 
the computational cost and the complexity of processing large datasets15.

The use of mobile air quality monitoring systems has increased, particularly through a study in Beijing, 
where electric vehicles equipped with real-time sensors collected PM2.5 data. These mobile sensors were mapped 
using decision tree models, which significantly outperformed fixed monitoring stations. The advantage of 
mobile sensors is their ability to provide high-resolution air quality data, but this approach is a challenge in fleet 
management and sensor calibration across a wide range16.

In terms of cost-effective solutions, the Deep-MAPS framework utilized mobile and fixed air quality sensors 
to estimate PM2.5 concentrations, delivering results at a resolution of 1 km × 1 km and 1 h. This model reduced 
hardware costs by up to 90% compared to conventional fixed sensor methods, providing a more economical 
way to monitor urban air quality. However, the challenges persist in ensuring secure network coverage and 
expanding the sensor network for broader geographic coverage17.

The MCST-Tree model proposed for space–time learning of air quality in Chengdu included both mobile and 
fixed sensor data, achieving a high accuracy (R2 = 0.94 for PM2.5) even with sparse data. This model is capable 
of handling space–time data gaps, but ensuring high model accuracy with limited sensor data is an ongoing 
challenge18. In Chengdu, the Multi-AP learning system was introduced for high-resolution pollutant mapping. 
This method produced detailed hourly pollution maps, resulting in a decrease in computational efficiency and 
accuracy. However, the challenge remains to maintain the complexity of real-time predictions, particularly for 
large-scale urban areas19.

For long-term forecasting, an ANN-based model for PM2.5 concentrations in Liaocheng demonstrated 
a high accuracy (R = 0.9570), resulting in Bayesian regularization. The challenge of mitigating overfitting 
and guaranteeing consistent performance across a variety of conditions persists, although this approach was 
successful in long-term predictions20. In forecasting volatility, a hybrid XGBoost-GARCH-MLP model was 
employed for PM2.5 volatility prediction, providing better long-term prediction accuracy. The hybrid model’s 
strength was in incorporating volatility into the forecasting process, yet the complexity and high computational 
requirements of such models are limited to their practical application21. In addition, AI-based models such as 
ANN, CNN, and LSTM have been employed for climate and air quality forecasting in cities such as Jinan and 
Hohhot, where CNN-LSTM models showed superior performance. These multimodal forecasting techniques 
provide a great opportunity to improve air quality predictions, though challenges persist in model generalization 
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and integrating across diverse regions22. ST-Exposure, a promising model, utilizes fixed and mobile sensors 
to predict PM2.5 exposure on a pixel-wise basis. This model achieved an SMAPE below 15%, indicating its 
potential in high-resolution exposure predictions. However, the challenges of sparse sensor deployment and 
data integration remain obstacles to achieving optimal accuracy23.

While significant efforts have been made in utilizing ML and DL techniques for air quality forecasting, 
data quality, computational complexity, model integration, and coverage persist. Future advances in sensor 
technology, data fusion, and model optimization will be crucial in advancing these methods for broader 
geographical applications and improving their practical application.

Research objectives and novelty
While deep learning models such as ANN, CNN, and LSTM have shown strong performance in predicting 
air pollution, each comes with its own set of challenges. ANN models are susceptible to overfitting and often 
struggle to generalize across different geographical areas. CNNs are good at identifying spatial features, but they 
typically need large datasets and may fail to capture time-based patterns. LSTMs handle temporal data well, 
but they require significant computational resources and can perform poorly when data is noisy or incomplete. 
Additionally, many deep learning approaches have trouble integrating diverse data types—like weather, traffic, 
and sensor inputs—and scaling efficiently in complex urban settings. These limitations point to the importance 
of enhanced data preprocessing, hybrid model approaches, and transfer learning techniques. Therefore, the 
research is aimed at the forecasting problems of six fundamental pollutants—Carbon Monoxide (CO), Nitrogen 
Dioxide (NO2), Ozone (O3), Sulphur Dioxide (SO2), Fine Particulate Matter (PM2.5), and Coarse Particulate 
Matter (PM10) using state-of-the-art machine learning approaches, specifically Deep Neural Networks (DNNs) 
and Convolutional Neural Networks (CNNs). These pollutants are particularly important due to their adverse 
effects on the environment and the environment.

The research uses data from the Beijing Municipal Environmental Monitoring Centre (BMEMC) from March 
2013 to February 2017, which includes meteorological data and pollutant levels from 10 nationally controlled 
monitoring sites. This study intends to provide hourly predictions that enable a more accurate assessment of the 
health-related impacts of air pollution, unlike the traditional models that often provide poor temporal accuracy.

This study is a unique approach to air pollution prediction using DNNs and CNNs based on multivariate 
time series analysis. Until now, only a few ML studies have attempted to apply such high temporal resolution 
to pollutant concentration prediction using feature-encoded DNN and CNN frameworks with both encoded 
and unencoded features. The contribution captures intricate spatiotemporal structures that especially tend to 
be masked in strongly polluted urban settings where both time and pollution levels fluctuate dramatically. The 
study utilizes sophisticated pre-processing of data, including interpolation of missing values, as well as thorough 
exploratory analysis using box plots to ensure the accuracy and integrity of the data. This strategy enhances the 
accuracy of air quality predictions and the model’s scalability for real-time forecasting; likewise, urban planners 
and public health regulators can monitor hourly pollutant concentrations in their areas to implement effective 
pollution management methods. This work aims to provide reliable emission prediction models that could guide 
decisions regarding human health protection and environmental sustainability.

Study area and data
In January 2013, Beijing established 36 air-quality monitoring sites, 35 of which are Beijing Municipal 
Environmental Monitoring Center (BMEMC) sites, and one at the US Embassy in Beijing24. The current dataset 
comprises hourly air pollutant data from 10 national air quality monitoring stations, namely Aotizhongxin, 
Changping, Dongsi, Guanyuan, Huairou, Nongzhanguan, Shunyi, Tiantan, Wanliu, and Wanshouxigong. These 
ten stations were chosen due to the availability of free access to their data. The meteorological data in each air-
quality site are compared to the nearest weather station from the China Meteorological Administration (CMA). 
The data was recorded in hours from 01/03/2013 to 28/02/2017. The datasets included four time attributes such 
as (year of the data, month of the data, day of the data, and hour of the data), six principal air pollutants such 
as (PM2.5 concentration (ug/m3), PM10 concentration (ug/m3), SO2 concentration (ug/m3), NO2 concentration 
(ug/m3), CO concentration (ug/m3) and O3 concentration (ug/m3)), and six relevant meteorological variables 
such as (temperature (°C), pressure (hPa), dew point temperature (°C), rainfall (mm), wind direction and wind 
speed (m/s)).

Artificial intelligence models
Deep neural networks (DNN)
Artificial neural networks (ANNs) are an effective machine learning technique based on the human brain’s 
structure. In self-learning, ANNs can identify patterns and hidden correlations in datasets25. Furthermore, a 
particular type of ANN called a deep neural network (DNN) has numerous layers of connected nodes, which 
enables it to represent more complex data relationships and perform better than traditional ANNs26.

The layers in the DNN model typically have an input layer, three or more hidden layers, and an output layer. 
The input layer receives the data, which is then altered by the hidden layers, and the output layer generates 
a forecast. Figure  1a displays the DNN model’s architecture employed in this investigation. A single neuron 
receives inputs, multiplies each input by the corresponding weight (W ), adds a bias (b), and then passes the sum 
through an activation function (f(x)) to produce an output. The weights and biases are calculated to determine 
the impact of the inputs. At the same time, the activation function provides nonlinearity and enables the model 
to learn complex patterns27.

A backpropagation approach is employed to alter the weights between the nodes to train a DNN model. 
This strategy eliminates the disparity between the forecasted and actual output by altering the weights until the 
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network can reliably predict new data. A DNN model can identify complex relationships in data and generate 
precise predictions when given new data, if it receives sufficient training28.

Convolutional neural network (CNN)
The CNN network’s convolutional and pooling layers are the essential elements of feature extraction29. Time 
series data are typically the primary application for 1D-CNNs due to their strong feature extraction capabilities30. 
Alternating convolutional and pooling layers in the 1D-CNN enable the extraction of non-linear features from 
raw data, and the fully connected layer completes adaptive feature learning31.

The basic architecture of the CNN is outlined in Fig. 1b, which comprises an input layer, several convolutional 
layers, several pooling layers, a fully connected layer, and an output layer. The convolutional and pooling layers 
are connected in an alternating fashion. In this regard, the CNN feature extraction module comprises the input, 
convolutional, and pooling layers. The output module includes the connected and output layers32. The complete 
calculation formula is outlined in Eq. (1).

Fig. 1.  Schematic diagrams of deep learning models; (a) DNN, (b) CNN.
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where, f  is the activation function, ⊗ is the convolutional operator, w is the weight matrix, and b is the bias 
deviation.

Model development and configuration
Ten nationally controlled air-quality monitoring sites—Aotizhongxin, Changping, Dongsi, Guanyuan, Huairou, 
Nongzhanguan, Shunyi, Tiantan, Wanliu, and Wanshouxigong—provided hourly air quality data for this study. 
The dataset spans from March 1, 2013, to February 28, 2017, and includes four temporal attributes (year, month, 
day, and hour), six major air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3 in µg/m3), and six meteorological 
variables (dew point temperature (°C), air temperature (°C), pressure (hPa), wind direction, wind speed (m/s), 
and precipitation (mm)).

In preprocessing, each station’s dataset was analyzed to identify and impute missing values using linear 
interpolation (Table 1). The final cleaned dataset contained 35,064 instances per station. These were split into 
training, validation, and testing sets with a time-series window size of 10, resulting in: Training: (25,000, 10, 
number of features), (25,000), Validation: (5000, 10, number of features), (5000) and Testing: (5054, 10, number 
of features), (5054).

To improve prediction accuracy (Fig.  2), the proposed method incorporates both temporal and spatial 
features. Temporal features (e.g., hour, day, month) are inherently cyclical. To model this periodicity, each 
cyclical feature was encoded using sine and cosine transformations, allowing the model to capture repeating 
patterns. Specifically Eqs. (2–4):
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These transformations help preserve the cyclical continuity (e.g., hour 23 to hour 0) and support the model in 
learning seasonal or diurnal effects, especially during transitions such as dawn/dusk or seasonal changes.

Spatial features are derived from the geographical and industrial characteristics unique to each monitoring 
site. These include proximity to traffic, industrial zones, and residential areas, which introduce local dependencies 
into pollution patterns. Rather than generalizing across all locations, the model trains separately for each station 
to account for such location-specific dynamics.

The rationale for selecting DNN and CNN lies in their respective strengths:

	i.	 DNNs are effective for learning non-linear feature interactions, especially when the dataset includes mixed 
data types (e.g., meteorological and pollutant data).

	ii.	 CNNs are chosen for their ability to capture local patterns across the time dimension, as convolutional filters 
can detect trends and abrupt changes in short sequences—an important feature in hourly air pollution data.

Both models were implemented for each station independently to capture station-specific pollution dynamics. 
Furthermore, in both models, we set window_size = 10, which refers to the number of consecutive time steps 
(or rows) used to construct a single input sample for the time series forecasting model. The encoded approach 
outperformed the unencoded baseline in capturing temporal fluctuations and spatial heterogeneity. This 
approach led to improved air quality forecasting accuracy and provided insights into region-specific pollution 

PM2.5 PM10 SO2 NO2 CO O3 Temp Pres Dewp Rain WD WS

Aotizhongxin 925 718 935 1023 1776 1719 20 20 20 20 81 14

Changping 774 582 628 667 1521 604 53 50 53 51 140 43

Dongsi 750 553 663 1601 3197 664 20 20 20 20 78 14

Guanyuan 616 429 474 659 1753 1173 20 20 20 20 81 14

Huairou 953 777 980 1639 1422 1151 51 53 53 55 302 49

Nongzhanguan 628 440 446 692 1206 506 20 20 20 20 78 14

Shunyi 913 548 1296 1365 2178 1489 51 51 54 51 483 44

Tiantan 677 597 1118 744 1126 843 20 20 20 20 78 14

Wanliu 382 284 575 1070 1812 2107 20 20 20 20 123 14

Wanshouxigong 696 484 669 754 1297 1078 19 19 19 19 79 13

Table 1.  Distribution of missing values (NaN) across columns in multiple stations.
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trends. As per Table 2, to ensure fair and optimal performance of both DNN and CNN architectures across 
unencoded and encoded feature sets, a systematic hyperparameter tuning process was conducted using grid 
search and fivefold cross-validation on the training data, aiming to minimize validation RMSE. The model 
architectures were designed to balance complexity and generalization, with DNNs using three dense layers 
(32 → 16 → 8 units) for progressive feature abstraction and CNNs employing a kernel size of 2 with 32 filters for 
efficient local pattern extraction. The Adam optimizer with a learning rate of 0.005—selected from the range 
{0.001, 0.003, 0.005, 0.01}—offered stable convergence and the lowest validation error. MSE was used as the 
loss function, while RMSE served as the evaluation metric for its interpretability. Models were trained for 100 
epochs, with early stopping applied to prevent overfitting.

Forecasting metrics
In this paper, the following metrics were applied to measure the efficiencies of unencoded and encoded deep 
learning models:

	 i.	 Mean Absolute Error (MAE)

	
MAE = 1

N
×

N∑
i=1

|Pi − Oi|� (5)

	ii.	 Mean Squared Error (MSE)

	
MSE = 1

N
×

N∑
i=1

(Pi − Oi)2� (6)

Fig. 2.  Model development and configuration for forecasting hourly air pollutants in 10 Beijing stations.
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Model type Component Description

DNN (Unencoded)

Input layer Shape: (10, 10)

Flatten layer Flatten the input to a 1D array

Hidden layers

Dense layer 1: Units = 32, Activation = ReLU

Dense layer 2: Units = 16, Activation = ReLU

Dense layer 3: Units = 8, Activation = ReLU

Output layer Units: 1, Activation: Linear

Training configuration

Loss Function: (MSE)

Optimizer: Adam

Learning Rate: 0.005

Metrics: (RMSE)

Epochs: 100

CNN (Unencoded)

Input layer Input Shape (10, 10)

Convolution layer

Filters: 32

Kernel Size: 2

Activation: ReLU

Flattening layer Flattens the input data

Hidden layers
Dense Layer 1: Units = 16, Activation = ReLU

Dense Layer 2: Units = 8, Activation = ReLU

Output layer Units = 1, Activation = Linear

Training configuration

Loss Function: (MSE)

Optimizer: Adam

Learning Rate: 0.005

Metrics: (RMSE)

DNN (Encoded)

Input layer Shape: (10, 7)

Flatten layer Flatten the input to a 1D array

Hidden layers

Dense layer 1: Units = 32, Activation = ReLU

Dense layer 2: Units = 16, Activation = ReLU

Dense layer 3: Units = 8, Activation = ReLU

Output layer Units: 1, Activation: Linear

Training configuration

Loss Function: (MSE)

Optimizer: Adam

Learning Rate: 0.005

Metrics: (RMSE)

Epochs: 100

CNN (Encoded)

Input layer Input Shape (10, 7)

Convolution layer

Filters: 32

Kernel Size: 2

Activation: ReLU

Flattening layer Flattens the input data

Hidden layers
Dense Layer 1: Units = 16, Activation = ReLU

Dense Layer 2: Units = 8, Activation = ReLU

Output layer Units = 1, Activation = Linear

Training configuration

Loss Function: (MSE)

Optimizer: Adam

Learning Rate: 0.005

Metrics: (RMSE)

Table 2.  Components and descriptions for DNN and CNN models with Unencoded and Encoded features.
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	iii.	 Root Mean Square Error (RMSE)

	

RMSE =
√

MSE =

√√√√ 1
N

×
N∑

i=1

(Pi − Oi)2� (7)

	iv.	 Coefficient of Determination (R2)

	
R2 = 1 −

∑
(Pi − Oi)2

∑
(Pi − Oi)2 � (8)

	 v.	 Willmott Index (WI)

	
W I = 1 −

∑N

i=1(Oi − Pi)2

∑N

i=1(
∣∣Pi − O

∣∣ +
∣∣Oi − O

∣∣)2 � (9)

	vi.	 Kling-Gupta Efficiency (KGE)

	
KGE = 1 −

√
(P CC − 1)2 + (std

rd
− 1)

2
+ (O

P
− 1)� (10)

In the above equations, Oi is the observed (actual) value of air pollutants. Pi is the forecasted value of air 
pollutants. O and P  are the average values of the observed and forecasted values of air pollutants, respectively. 
P CC , std, and rd are the Pearson correlation coefficient, the standard deviation of forecasted values, and the 
standard deviation of observation values, respectively.

Results and discussion
Aotizhongxin station
At Aotizhongxin station (Fig. 3), DNN and CNN models showed distinct strengths across pollutants. CNN-
Unencoded performed best for CO (RMSE: 483.5 µg/m3) and PM10 (KGE: 0.921), while DNN-Encoded led in 
NO2 (KGE: 0.914), O3 (RMSE: 12.4 µg/m3), and SO₂ (KGE: 0.952). The dew point was the dominant predictor 
in ~ 83% of top-performing models. Rainfall and hourly features contributed minimally (< 10%). PM2.5 forecasts 
exhibited the highest variability. Overall, performance was driven by broad temporal and environmental 
patterns, with each model excelling in specific pollutant contexts.

Changping station
At Changping Station (Fig. 4), CNN-Encoded models showed consistently strong performance across pollutants. 
They achieved the lowest MAE and RMSE in 67% of cases and ranked highest in R2 or KGE for ~ 50%. For CO, 
CNN-Encoded had R2 = 0.849 and MAE = 279.9 µg/m3, outperforming CNN-Unencoded despite a slightly lower 
KGE. In NO2, CNN-Encoded reduced MAE by ~ 21% compared to DNN-Unencoded. O3 forecasts showed close 
performance: DNN-Encoded had the highest KGE (0.943), while CNN-Encoded achieved the lowest MAE 
(7.3 µg/m3). For PM2.5 and PM10, CNN-Unencoded slightly outperformed in KGE and R2, but CNN-Encoded 
had lower error metrics. SO2 results were mixed, with CNN-Unencoded leading in R2 (0.983), while DNN-
Encoded topped in KGE (0.852). Dew point, month_cosine, and month were key predictors in over 80% of 
models, while rainfall and hourly features had < 10% impact.

Dongsi station
At Dongsi Station (Fig.  5), CNN models—particularly CNN-Encoded—demonstrated superior forecasting 
accuracy for most pollutants. CNN-Encoded achieved the lowest MAE and RMSE in 60% of pollutants, excelling 
in CO (MAE: 244.2 µg/m3), NO2 (MAE: 6.93 µg/m3; R2: 0.912), and SO2 (MAE: 2.21 µg/m3). CNN-Unencoded 
led in KGE and WI for PM2.5 (KGE: 0.959) and PM10 (KGE: 0.934), while DNN-Encoded had the lowest RMSE 
for PM2.5 (22.05 µg/m3) and the highest KGE for O3 (0.934). Dew point, month_cosine, and temperature were 
key predictors in > 80% of cases, while rainfall had < 10% influence. Overall, CNN models outperformed others 
in MAE/RMSE in most cases, confirming their robustness in pollutant forecasting.

Guanyuan station
At Guanyuan Station (Fig. 6), DNN-Encoded models outperformed in 60% of pollutants, achieving top KGE 
and NSE for CO (KGE: 0.949; NSE: 0.9), PM2.5, and SO2, along with the lowest MAE/RMSE for CO and PM2.5. 
CNN-Encoded led in O3 (KGE: 0.936; WI: 0.97) and PM10 (KGE: 0.949; WI: 0.982). DNN-Unencoded had 
the highest R2 for NO2 (0.916) and lowest MAE/RMSE for O3, despite lower KGE/NSE. Key predictors across 
models included dew point, month_cosine, and temperature (relevant in > 80% of top-performing models), 
while rainfall and hour_sine had < 10% impact. Overall, encoded models performed better on KGE/NSE/WI, 
while unencoded models excelled in MAE/RMSE for select pollutants, emphasizing pollutant-specific model 
suitability.
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Fig. 3.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at 
Aotizhongxin Station.
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Huairou station
At Huairou Station (Fig.  7), CNN-Encoded models outperformed others in ~ 70% of pollutant forecasts, 
achieving top KGE (0.951) and WI (0.976) for CO, and lowest errors for CO, NO2, and O3. DNN-Encoded 
excelled for PM2.5 (KGE: 0.949), PM10, and SO2, showing better KGE and NSE in ~ 30% of cases. Encoding 

Fig. 3.  (continued)
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Fig. 4.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at 
Changping Station.
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improved performance across all pollutants, particularly for CO, NO2, and O3. Key predictors—dew point, 
month, and temperature—were influential in over 80% of top-performing models, while rainfall and hourly 
features had minimal impact (< 10%). Overall, encoded models consistently delivered superior accuracy by 
effectively capturing temporal and environmental patterns.

Fig. 4.  (continued)
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Fig. 5.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at Dongsi 
Station.
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Nongzhanguan station
At Nongzhanguan Station (Fig. 8), CNN-Encoded models outperformed others in ~ 70% of pollutants, achieving 
top KGE for CO (0.960), O3 (0.962), and NO2 (0.943), with the lowest MAE/RMSE (e.g., CO MAE: 209.2 μg/
m3; O3 MAE: 7.1 μg/m3). DNN-Unencoded excelled in PM2.5 with the highest KGE (0.976) and lowest RMSE 

Fig. 5.  (continued)
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Fig. 6.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at 
Guanyuan Station.
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(19.7 μg/m3). Forecasts for CO, NO2, and O3 had strong accuracy (KGE > 0.92; R2 > 0.91), while SO2 had the 
lowest performance (max KGE: 0.933; R2: 0.88). Dew point, temperature, and pressure were key predictors 
in > 80% of cases; rainfall had a < 10% impact. Overall, CNN-Encoded models proved most effective for pollutant 
forecasting, driven by strong meteorological and temporal features.

Fig. 6.  (continued)
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Fig. 7.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at 
Huairou Station.
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Shunyi station
At Shunyi Station (Fig. 9), CNN-Encoded models outperformed in ~ 60% of pollutants, achieving top metrics 
for CO (KGE: 0.946, R2: 0.907), PM10 (KGE: 0.945, R2: 0.937), and SO2 (MAE: 2.62 µg/m3, RMSE: 6.56 µg/m3). 
DNN-Encoded led in NO2 (KGE: 0.928, R2: 0.908), O3 (KGE: 0.938), and PM2.5 (KGE: 0.969, R2: 0.953). CO and 

Fig. 7.  (continued)
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Fig. 8.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at 
Nongzhanguan Station.
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O3 had the strongest model performance (KGE > 0.94), linked to high meteorological sensitivity. Dew point and 
month_cosine were key drivers in > 80% of cases, while rainfall had a < 10% impact. Overall, CNN-Encoded 
models provided superior forecasts when pollutant levels were strongly meteorology-dependent.

Fig. 8.  (continued)
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Fig. 9.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at Shunyi 
Station.
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Tiantan station
At Tiantan Station (Fig. 10), encoded models outperformed unencoded ones in ~ 70% of cases. CNN-Encoded 
achieved top results for CO, PM2.5, and SO2 (KGE > 0.93, R2 > 0.88, MAE: 210.2 µg/m3 for CO; 10.53 µg/m3 for 
PM2.5). DNN-Encoded led in NO2 (KGE: 0.941, MAE: 7.32 µg/m3) and O3 (NSE: 0.917, R2: 0.92). PM10 was best 

Fig. 9.  (continued)
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Fig. 10.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at 
Tiantan Station.
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predicted by CNN-Unencoded (KGE: 0.938). Key drivers (dew point, temperature, pressure, wind) influenced 
forecasts in > 80% of cases, while rainfall had a < 10% impact. Overall, encoded models improved accuracy by 
effectively capturing seasonal and atmospheric patterns.

Fig. 10.  (continued)
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Wanliu station
At Wanliu Station (Fig. 11), CNN-Encoded models outperformed unencoded ones in ~ 75% of cases, achieving 
top accuracy for CO, PM2.5, and SO2 (KGE > 0.93, R2 > 0.88, MAE: 240.55 μg/m3 for CO; 9.78 μg/m3 for PM2.5). 
DNN-Encoded led NO2 forecasting (KGE: 0.938, MAE: 7.22  μg/m3) and O3 (NSE: 0.912, R2: 0.923). PM10 
predictions were best by CNN-Unencoded (KGE: 0.931, MAE: 15.64 μg/m3). Key meteorological drivers (dew 
point, temperature, pressure, wind) influenced > 80% of results, while rainfall had minimal (< 10%) impact. 
Encoded features improved forecast accuracy by effectively capturing complex temporal and atmospheric 
patterns.

Wanshouxigong station
At Wanshouxigong Station (Fig. 12), CNN-Encoded models led in ~ 80% of cases, achieving the highest accuracy 
for CO (KGE: 0.964, R2: 0.938, MAE: 192.96 µg/m3) and PM2.5 (KGE: 0.958, R2: 0.948, MAE: 1.85 µg/m3). O3 
was driven by temperature, wind, and hourly cycles; NO2 and SO2 showed strong seasonal (month) effects. 
PM10 performed best with DNN-Encoded (R2: 0.935, RMSE: 28.20 µg/m3). SO2 had lower accuracy but CNN-
Encoded still improved errors (RMSE: 4.02 µg/m3). Rainfall had a minimal (< 10%) impact. Encoding boosted 
forecast reliability by capturing seasonal and short-term variations and reducing errors.

Remarks and comparison
As per Tables 3, 4, 5, 6, 7, 8. The model performance across pollutants and locations is generally high, with 
R2 values mostly exceeding 0.85, reflecting strong predictive accuracy. PM2.5 and PM10 exhibit the highest 
and most consistent R2 scores, often above 0.94, indicating excellent model fit across all sites and methods. 
O3 predictions also show robust results, generally above 0.89. CO and NO2 show slightly more variation but 
still maintain strong performance, with CNN models—especially those using encoded inputs—tend to have 
a slight edge over DNNs. SO2 predictions are the most variable and generally lower, with some locations like 
Changping and Guanyuan showing R2 values closer to 0.76–0.78, suggesting more complexity or noise in 
the data. Locations such as Nongzhanguan, Wanshouxigong, and Tiantan consistently yield higher R2 values 
across pollutants and models, indicating more stable data or better model generalization, whereas Changping 
and Guanyuan often show comparatively lower performance. Overall, CNN architectures with encoded inputs 
generally offer marginal improvements, particularly for more challenging pollutants like SO2 and CO. Moreover, 
based on Table 9, CNN achieves the highest R2 in 70% of the cases (14 out of 20 combinations) across both 
unencoded and encoded features. DNN follows, ranking highest in 25% of cases, while LSTM leads only once 
(5%). ANN consistently underperforms, with the lowest R2 in 90% of the stations when features are encoded. 
Top-performing stations like Nongzhanguan, Tiantan, and Wanliu record R2 values above 0.96 with CNN, while 
lower-performing stations like Changping and Huairou have values around 0.94 or below, highlighting site-
specific variability in model accuracy.

Conclusion, limitations and future directions
This research highlights how effective deep learning models—specifically DNN and CNN frameworks—are at 
predicting major urban air pollutants across several monitoring locations using four years of hourly data. Both 
models delivered strong predictive performance, showing a high level of alignment between real and predicted 
pollutant values. Notably, the inclusion of feature encoding greatly boosted model accuracy, leading to steady 
gains of about 2–5% in key evaluation metrics like R2, NSE, and KGE.

The findings show that CNNs excelled at detecting spatial and temporal pollution patterns, particularly 
for pollutants such as CO and PM2.5. Meanwhile, DNNs demonstrated strong results across a wider range 
of pollutants. Feature encoding proved essential in enhancing the models’ ability to generalize and reduce 
prediction errors, underscoring the value of preprocessing in forecasting air quality over time.

Differences between monitoring sites showed the models could adapt to varying pollution trends and levels, 
reinforcing their usefulness in a variety of urban contexts. These insights suggest that deep learning, especially 
when supported by encoded features, holds significant potential for delivering accurate and scalable air quality 
predictions—tools that could be crucial for city planning and public health efforts.

Despite these strong results, the study is not without limitations. The deep learning models require significant 
computational resources—GPU or cloud-based infrastructure—which may limit their application in resource-
constrained settings. Moreover, external environmental drivers such as meteorological data (temperature, 
wind speed, humidity), traffic emissions, and industrial output were not included in the modeling pipeline. 
Incorporating these factors could potentially improve model accuracy by up to 10–15%, based on evidence 
from other related literature. Additionally, the geographic scope of the study was limited to Beijing, reducing the 
model’s generalizability to regions with different climatic and socio-economic profiles.

The practical implications of this research are remarkable. High-accuracy pollutant forecasting, with R2 
values above 0.90 in many cases, can support early warning systems, enabling city authorities to issue timely 
health advisories and reduce exposure risks. The integration of these models into smart city infrastructure could 
lead to more efficient urban planning, including dynamic traffic control and targeted industrial regulation. 
Furthermore, the framework demonstrated in this study provides a scalable foundation for AI-driven air quality 
management, capable of being deployed in various urban areas.

For future research, increasing the input feature space to include meteorological and socioeconomic variables 
is essential. Preliminary studies indicate that adding weather-related variables can increase forecasting accuracy 
by 8–12%. Model interpretation should also be prioritized using tools such as SHAP or attention mechanisms to 
uncover the influence of specific features on predictions. Furthermore, incorporating data from multiple cities 
with different pollution profiles would enhance its adaptability and general applicability. Finally, transitioning to 
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Fig. 11.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at 
Wanliu Station.
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real-time, cloud-based deployment can provide scalable, on-demand predictions. Hybrid models that combine 
deep learning with physical or statistical modeling may improve prediction robustness by 10–20%, offering a 
promising direction for next-generation environmental forecasting systems.

Fig. 11.  (continued)
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Fig. 12.  Forecasting results of six air pollutants using Unencoded and Encoded deep learning models at 
Wanshouxigong Station.
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Fig. 12.  (continued)
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DNN-Unencoded CNN-Unencoded DNN-Encoded CNN-Encoded

Aotizhongxin 0.932 0.932 0.934 0.932

Changping 0.904 0.907 0.908 0.908

Dongsi 0.908 0.909 0.907 0.909

Guanyuan 0.89 0.882 0.887 0.887

Huairou 0.921 0.926 0.923 0.928

Nongzhanguan 0.927 0.927 0.93 0.929

Shunyi 0.898 0.896 0.896 0.897

Tiantan 0.919 0.919 0.92 0.92

Wanliu 0.923 0.923 0.922 0.921

Wanshouxigong 0.925 0.923 0.926 0.924

Table 5.  Comparison of R2 values for pollutant O3 across locations.

 

DNN-Unencoded CNN-Unencoded DNN-Encoded CNN-Encoded

Aotizhongxin 0.891 0.887 0.89 0.889

Changping 0.87 0.869 0.874 0.876

Dongsi 0.909 0.908 0.909 0.912

Guanyuan 0.916 0.913 0.915 0.914

Huairou 0.863 0.868 0.869 0.872

Nongzhanguan 0.917 0.917 0.919 0.919

Shunyi 0.904 0.902 0.908 0.905

Tiantan 0.906 0.902 0.906 0.906

Wanliu 0.894 0.895 0.895 0.897

Wanshouxigong 0.91 0.909 0.911 0.913

Table 4.  Comparison of R2 values for pollutant NO2 across locations.

 

DNN-Unencoded CNN-Unencoded DNN-Encoded CNN-Encoded

Aotizhongxin 0.895 0.902 0.893 0.9

Changping 0.847 0.845 0.847 0.849

Dongsi 0.879 0.883 0.88 0.881

Guanyuan 0.881 0.904 0.904 0.9

Huairou 0.907 0.907 0.906 0.908

Nongzhanguan 0.923 0.923 0.921 0.926

Shunyi 0.907 0.904 0.9 0.905

Tiantan 0.908 0.908 0.901 0.913

Wanliu 0.897 0.904 0.901 0.904

Wanshouxigong 0.93 0.934 0.93 0.938

Table 3.  Comparison of R2 values for pollutant CO across locations.
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DNN-Unencoded CNN-Unencoded DNN-Encoded CNN-Encoded

Aotizhongxin 0.918 0.924 0.924 0.923

Changping 0.765 0.783 0.773 0.776

Dongsi 0.863 0.853 0.854 0.857

Guanyuan 0.777 0.772 0.765 0.782

Huairou 0.854 0.861 0.864 0.864

Nongzhanguan 0.861 0.878 0.861 0.88

Shunyi 0.827 0.824 0.83 0.835

Tiantan 0.873 0.883 0.878 0.884

Wanliu 0.89 0.89 0.892 0.892

Wanshouxigong 0.912 0.913 0.92 0.923

Table 8.  Comparison of R2 values for pollutant SO2 across locations.

 

DNN-Unencoded CNN-Unencoded DNN-Encoded CNN-Encoded

Aotizhongxin 0.927 0.933 0.932 0.933

Changping 0.907 0.912 0.911 0.912

Dongsi 0.937 0.94 0.938 0.939

Guanyuan 0.93 0.933 0.933 0.933

Huairou 0.912 0.912 0.916 0.911

Nongzhanguan 0.932 0.933 0.933 0.933

Shunyi 0.935 0.934 0.936 0.937

Tiantan 0.926 0.929 0.929 0.929

Wanliu 0.925 0.929 0.928 0.929

Wanshouxigong 0.934 0.932 0.935 0.935

Table 7.  Comparison of R2 values for pollutant PM10 across locations.

 

DNN-Unencoded CNN-Unencoded DNN-Encoded CNN-Encoded

Aotizhongxin 0.9579 0.9579 0.956 0.956

Changping 0.9425 0.9427 0.9425 0.943

Dongsi 0.9518 0.9534 0.9541 0.9531

Guanyuan 0.955 0.9559 0.956 0.956

Huairou 0.9397 0.9401 0.9394 0.9408

Nongzhanguan 0.9614 0.9608 0.9617 0.9612

Shunyi 0.9517 0.9518 0.9526 0.9511

Tiantan 0.9586 0.9592 0.9602 0.9608

Wanliu 0.9565 0.957 0.9569 0.957

Wanshouxigong 0.9477 0.9475 0.948 0.9483

Table 6.  Comparison of R2 values for pollutant PM2.5 across locations.
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