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OPEN A deep learning model for early

diagnosis of alzheimer’s disease
combined with 3D CNN and video
Swin transformer

Juan Zhovu, Yiming Wei, Xiong Li**, Weigiang Zhou, Ruiyang Tao, Yi Hua & Hongwei Liu

Alzheimer’s disease (AD) constitutes a neurodegenerative disorder predominantly observed in the
geriatric population. If AD can be diagnosed early, both in terms of prevention and treatment, it is very
beneficial to patients. Therefore, our team proposed a novel deep learning model named 3D-CNN-
VSwinFormer. The model consists of two components: the first part is a 3D CNN equipped with a 3D
Convolutional Block Attention Module (3D CBAM) module, and the second part involves a fine-tuned
Video Swin Transformer. Our investigation extracts features from subject-level 3D Magnetic resonance
imaging (MRI) data, retaining only a single 3D MRI image per participant. This method circumvents
data leakage and addresses the issue of 2D slices failing to capture global spatial information. We
utilized the ADNI dataset to validate our proposed model. In differentiating between AD patients

and cognitively normal (CN) individuals, we achieved accuracy and AUC values of 92.92% and 0.9660,
respectively. Compared to other studies on AD and CN recognition, our model yielded superior results,
enhancing the efficiency of AD diagnosis.

Keywords Magnetic resonance imaging, Alzheimer’s disease, 3D convolutional neural network, Video Swin
transformer

Individuals afflicted with AD predominantly constitute the elderly. Its main manifestations include gradual
memory impairment, cognitive dysfunction, personality changes, and language difficulties, significantly
impacting social, occupational, and daily functioning. As reported by the Alzheimer’s Association in 2023, an
estimated 6.7 million American seniors, those 65 years old and over, suffer from AD. Unless there are medical
breakthroughs in prevention, slowing down, or curing AD, this number could increase to 13.8 million by 2060'.

The human brain possesses an extraordinarily complex internal structure, where elucidating its structural
and functional attributes is pivotal for deducing the etiology of various psychiatric disorders, a focal point
of contemporary scientific inquiry. The development of magnetic resonance imaging (MRI) technology has
greatly propelled advances in brain science research. MRI technology generates detailed images by measuring
the signals of atomic nuclei within the human body and their interactions with a strong magnetic field.
Widely employed in clinical medicine, neuroscience, and research, MRI provides high-resolution, multi-level
anatomical, and functional information. MRI is a kind of professional medical imaging technology. It accurately
reflects structural and functional changes in different brain tissues, characterizing morphological changes and
metabolite concentrations within the brain. Therefore, this technology has shown good application effectiveness
and reliable detection capabilities in the early identification of diverse neurodegenerative conditions like AD

In recent years, deep learning models utilizing whole-brain MRI images have made significant progress in
predicting and identifying AD. The predictive accuracy of these algorithms has even surpassed that of experts
in the field of AD?. Currently, there are two main types of MRI data used in deep learning algorithms. The
first involves using 2D MRI slices. In this process, MRI is employed to partition the cerebral structure along
a specified plane, yielding a sequence of 2D slices. where the MRI of a person’s brain is sliced along a certain
axis to obtain a series of 2D images. Due to the high similarity between adjacent slices, this method of dataset
partitioning suffers from data leakage, rendering the results unreliable. The second approach utilizes 3D whole-
brain MRI images at the subject level, where each patient’s data consists of a single MRI scan. This method
completely avoids data leakage and ensures that the obtained results are genuine and reproducible. The data used
in this study comprises 3D whole-brain MRI images, thus mitigating concerns related to data leakage.
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As computer vision progresses continuously, a multitude of remarkable algorithm models have surfaced. After
studying the model proposed by Liu et al.%, we gained some insights. Thus, our contribution is the formulation
of a novel deep learning architecture, designated as 3D-CNN-VST, amalgamating the 3D Convolutional Neural
Network with the Video Swin Transformer modality, for the early identification of AD. The 3D-CNN-VST
combines the advantages of 3D CNN in extracting local features from 3D MRI images and the advantages of
Video Swin Transformer in multi-scale feature fusion. It comprehensively captures the pathological features of
participants’ whole-brain MRI images, thereby enabling better identification of AD patients.

The salient contributions of this research are summarized as follows:

(1) The 3D Convolutional Block Attention Module (3D CBAM) was proposed and incorporated into 3D CNN,
which enhances the model’s capability to capture crucial features in volumetric data and weight information
from different regions. This augments the model’s aptitude for discerning localized attributes within cere-
bral MRI scans.

(2) Proposed the 3D-CNN-VSwinFormer model by integrating a 3D CNN with CBAM module and Video
Swin Transformer, the model integrates the advantages of CNNs in capturing local features and Transform-
ers in extracting global features, and validated its performance on the ADNI dataset.

(3) In the absence of data leakage, the proposed model was evaluated against other existing studies, showing
superior diagnostic efficacy in Alzheimer’s disease (AD).

Subsequent sections: Section II summarizes relevant literature and analyzes the impact of data leakage. Section
III provides a detailed introduction to the constructed 3D-CNN-VSwinFormer model. Section IV delineates
the experimental outcomes and furnishes comparative analyses with extant research. Section V outlines the
experimental procedures and the obtained results. Section VI synthesizes the scholarly work and proffers
perspectives on prospective research trajectories.

Related works

In this section, I will introduce the mainstream methodologies for the detection and diagnosis of AD in
contemporary research. Additionally, my analysis will concentrate on the burgeoning utilization of deep learning
for the precursory detection and diagnosis of AD. The mainstream early diagnosis methods for AD primarily fall
into following categories.

Region of interest (ROIl)-based analysis

ROI-based analysis in the field of neuroimaging can be traced back to around the year 2000. ROI-based analysis
was a widely used method for automated AD diagnosis in earlier years. Upon the artificial demarcation of the
ROJ, it may serve as a characteristic for disease diagnosis. Based on the quantity of delineated ROIs, the approach
can be bifurcated into single ROI methods® and multi-ROI methods®-.

Chupin et al.® utilized a fully automated segmentation technique to delineate the hippocampus, which was
subsequently applied for the identification of AD patients. The yielded experimental outcomes demonstrated
a 76% accuracy rate in the correct identification of individuals with AD. Ahmed et al.” integrated visual
characteristics of the hippocampus with the volume of cerebrospinal fluid (CSF) to formulate a diagnostic
framework for AD. They employed post-fusion to enhance the accuracy of the results. This methodology
culminated in an 87% rate of diagnostic precision. Liu et al.'? utilized 83 regions of interest (ROISs) to represent
features of the entire brain. The findings suggest that this approach is viable for the recognition of AD.

Diagnosis of AD based on biomarkers

This involves using specific molecules or substances detected within the body to diagnose diseases. In recognition
research of AD, biomarkers mainly consist of proteins associated with the disease, particularly p-amyloid (Ap)
and tau proteins. The detection of these biomarkers typically involves blood tests, cerebrospinal fluid (CSF)
sampling, or molecular imaging techniques such as positron emission tomography (PET).

Palmgqvist et al.!! utilized plasma tau 217 (P-tau217) as a biomarker for AD diagnosis. Experimental findings
indicated that the incorporation of P-tau217 could reliably differentiate AD from alternative neurodegenerative
conditions. Moreover, its performance showed no significant difference from CSF or PET biomarkers. Lee et
al.!> proposed a non-invasive method for diagnosing AD and predicting its future risk of onset. Experimental
findings revealed that the secretion levels of AP42 were more than double in all AD cases compared to the
control group.

AD diagnosis based on machine learning

The utilization of machine learning techniques for the diagnosis of AD has attracted considerable interest in the
scientific community over recent years. The application of machine learning classification models for diagnosing
AD has yielded promising results.

Kloppel et al.!* employed linear support vector machines for classifying AD and CN subjects, highlighting
the utility of SVM in AD diagnosis. Peng et al.'* utilized brain MRI images and genetic data as input features and
employed multi-kernel learning with support vector machines for subject classification. They utilized leave-one-
out cross-validation (LOOCYV) to identify the optimal model.

AD diagnosis based on deep learning

Deep learning is a branch of machine learning. Its main characteristic is the inclusion of multiple layers (depth)
of neural networks, which pass learned features layer by layer to accomplish tasks. Compared to general machine
learning methods, deep learning models, while not as interpretable, exhibit greater accuracy in AD detection.
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They also automatically extract features without the need for specialized medical image knowledge. Deep
learning is currently the most prominent branch of artificial intelligence, with various models continuously
emerging. Within computer vision, Convolutional Neural Network (CNN) are arguably the most prominent
visual models. It have achieved significant success in the realm of image processing, with widespread deployment
in tasks including image or video classification, recognition, and object detection.

For medical images such as MRI brain scans, using CNN is highly suitable. To date, researchers have proposed
numerous CNN architectures, including AlexNet, VGGNet, ResNet, DenseNet, MobileNet, EfficientNet,
ConvNext, and many others. The advent of the Vision Transformer (ViT) has been a recent innovation, astutely
transferring the Transformer architecture from the realm of natural language processing to visual tasks'.
Subsequent to the proposition of the ViT model, an array of Transformer-based visual models have gradually
been introduced, such as DETR and Swin Transformer, to name a few.

Using deep learning for AD diagnosis, MRI data inputted into the deep learning model can mainly be
classified into two types: 2D slices and 3D whole-brain MRI. MRI brain images are three-dimensional image
data, with corresponding three dimensions: coronal, sagittal, and axial planes.

The first approach involves slicing the 3D MRI brain image along different dimensions, typically retaining
only several dozen 2D slices from the middle portion. This is because the information contained in the initial
and final slices, resembling the shape of an ellipsoid, is minimal. The obtained slices are then fed into a deep
learning model for training. Since this method is based on 2D slice images, the utilized deep learning models are
also 2D, such as 2D CNN and 2D ViT.

The use of 2D slices can greatly risk data leakage, a concern that is often overlooked by researchers. Based
on my extensive experimentation and literature review, as described by Ekin et al.'%, utilizing 2D slice datasets
for training resulted in an erroneous 29% increase in accuracy on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). This error arises because some researchers, when slicing 3D MRI images, retain several slices
per patient, and the adjacent slices of each patient are highly similar. Subsequently, these slices are randomly
partitioned into training, validation, and test sets. Therefore, these similar slices inevitably exist in both the
training, validation, and test sets, leading to data leakage.

Some studies based on 2D slice analysis include Liu et al.'”, who utilized a depthwise separable CNN for
AD detection, achieving a final experimental accuracy of 91%. Ahmad et al.!® proposed a CNN model for
classification of AD, achieving a 99% accuracy rate in a three-class task distinguishing between mild, normal,
and AD. Jain et al.'? applied VGG16 for early AD detection, resulting in a final accuracy of 95%. Farooq and
colleagues® proposed a deep CNN model for classifying AD, MCI, LMCI, and CN, achieving an experimental
accuracy of 98.8%. Ramzan et al.?! realized a 100% accuracy rate in a quintuple-class categorization endeavor
associated with Alzheimer’s disease. These studies may suffer from potential data leakage issues, casting doubt
on the experimental results and warranting further scrutiny regarding their reliability and applicability.

The second approach involves subject-level classification, where instead of slicing 3D MRI, the entire volume
undergoes preprocessing before being fed into a deep learning model for training. This constitutes a 3D image
classification task, employing 3D deep learning models such as 3DCNN and 3D ViT. Training with 3D MRI
inevitably entails increased computational complexity and training time. However, due to the richer information
on brain structural changes contained in 3D MRI images, feature extraction through 3D algorithms allows for
better identification of AD-related pathologies. Consequently, the diagnostic performance obtained is expected
to surpass that of 2D approaches significantly. Therefore, the training data utilized in this study is based on 3D
subject-level MRI, and the proposed model is also a 3D medical image model.

Chen et al.?? integrated slice-level attention mechanisms within 3D CNN and utilized comprehensive brain
MRI to diagnose AD. The team introduced a slice-level attention to highlight particular 2D slices and eliminate
redundant features. Following this, a 3D CNN was employed to globally capture structural changes at the subject
level. The model achieved accuracies of 91.1% for AD detection and 80.1% for MCI prediction on the ADNI-
1. Li et al.?* combined ResNet and Transformer for AD diagnosis. To address the issue of small datasets, the
authors first pre-trained their model on large-scale datasets and then applied transfer learning to achieve higher
performance. Liu et al.>* proposed an unsupervised learning neural network for feature extraction followed
by clustering, achieving an 84% accuracy in AD vs. CN classification tasks. Lu et al.> employed Inception-
ResNet-V2 as the base model for transfer learning in AD diagnosis, achieving a 90.9% accuracy on the ADNI
dataset.

The mentioned studies generally avoid the issue of data leakage. However, it’s crucial to note that even in
3D subject-level classification, precautions against data leakage are necessary. Sequential MRI scans from an
individual patient, captured at distinct temporal intervals, should not be concurrently included in the training,
validation, and testing datasets. To mitigate this concern, our approach in this paper is to select only one 3D MRI
image per patient. This strategy effectively circumvents data leakage, ensuring that the experimental results are
both authentic and reproducible.

1.17

Methods

This section presents the methodological framework relevant to our work, encompassing the 3D Convolutional
Attention Mechanism (3D CBAM) and Video Swin Transformer. Subsequently, we provide a detailed exposition
of the 3D-CNN-VSwinFormer model constructed in this study. The code for the model can be obtained from:
https://github.com/Yiming0110/3D-CNN-VswinFormer.

3D-CBAM

Woo et al.®¢ introduced the Convolutional Block Attention Module (CBAM) in 2018, presenting a simple yet
effective feedforward neural network attention mechanism. CBAM serves as a lightweight and versatile module
seamlessly integrable into any CNN architecture, incurring negligible overheads. Integration of CBAM into
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various CNN models has consistently led to performance enhancements in classification and detection tasks.
However, as CBAM was originally designed for 2D convolutions, whereas our task involves 3D data, we were
inspired by Woo et al. to propose 3D-CBAM. Experimental results indicate performance improvements for our
task with 3D-CBAM. The following figure provides an overview of 3D-CBAM.

The input feature map is denoted as r ¢ REXP*xHXW  Ag jllustrated in Figs. 1. 3D-CBAM sequentially
derives the 1D channel attention map M. € R*****! and the 3D spatial attention map M, € R**P*HxW,
The entire procedure can be outlined as follows:

F'= Mc(F)® F, W
F' = MS(F/) ® F/7'

Where ® denotes multiplication conducted on an element-by-element basis, Mc represents the 3D channel
attention module, and Mg denotes the 3D spatial attention module. F’ represents an intermediary product,
while F” constitutes the ultimate output. The procedural methodology for computing channel attention and
spatial attention is delineated in Fig. 2. The following details the two attention modules in 3D-CBAM.

3D channel attention module

The basic idea of channel attention is to learn the weights of each channel and then apply these weights to the
corresponding feature maps. This allows the network to more flexibly focus on channels that are meaningful for
solving specific tasks, thereby improving the network’s performance. The core idea is to utilize the relationships
between channels of features to generate channel attention maps?’.

Initially, two 3D pooling operations are utilized, specifically 3D average pooling and 3D max pooling, to
aggregate the spatial information of the 3D feature maps from 3D MRI scans. This results in two parameters,
Fg,y and Fihax, which correspond to the feature matrices derived from these pooling operations. These
matrices are subsequently input into a fully connected layer to produce the 3D channel attention map, denoted
as M, € REXIx1x1 Following this, an element-wise summation of the feature vectors is conducted. To
encapsulate, the computation of 3D channel attention is as described by Formula (2).

M. (F) = o (fc(AvgPool3d (F)) + fc(MaxzPool3d (F))) . (2)

Herein, F denotes the input feature map, o symbolizes the sigmoid activation function, and fc is indicative of the
fully connected layer.

3D Spatial attention module
The core idea of spatial attention is to learn the weights for each spatial position, allowing the network to enhance
or diminish the representation capacity of specific positions at different layers?.

In a similar vein, we utilize two pooling operations, average and maximum, to amalgamate the channel
information of the 3D feature maps, yielding a pair of 3D maps: s, € R'*P*H*Wand iy q € R P HXW,
Then, we concatenate these features and apply a 3D convolution operation with a kernel size of 7 and padding of
3. In summary, the calculation of 3D spatial attention is illustrated by Formula (3).

Ms(F)=o0c (f7X7 ([AvgPool3d (F) ; MaxzPool3d (F)D) . (3)

3D Convolutional Block Attention Module

3D Channel
Attention 3D Spatial
Module Attention
' — Module
/
/
, Mc(F) Mg (F')
® Q-
H F' H
v P Tl

Input 3D feature F Refined 3D feature F"'

Fig. 1. An exposition of the 3D-CBAM: This module encompasses a duo of successive sub-modules: 3D
Channel and 3D Spatial. At every convolutional block within the deep network, our module (3D-CBAM)
dynamically enhances intermediate feature maps.
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Fig. 2. Schematic diagram of the two sub-modules in 3D-CBAM.

Herein, F denotes the input feature map, o symbolizes the sigmoid activation function, and f**7 is indicative of
the convolution with a 7 x 7 kernel.

Video Swin transformer

Mentioning Video Swin Transformer* inevitably leads to the discussion of Swin Transformer®. Video Swin
Transformers are an enhancement built upon the foundation of Swin Transformers, enabling them to tackle
tasks in the realm of video processing. Video Swin Transformer treats videos as sequences of images and applies
Swin Transformer in the temporal dimension. In our MRI classification task, we retain the central 64 slices of
the transverse plane. After computation with 3DCNN, we obtain a feature map of size (112, 112, 32) as the input
to the Video Swin Transformer module. Figure 3. depicts the architecture of the Video Swin Transformer model.

Video Swin transformer block

Figure 3. illustrates the core structure of the Video Swin Transformer block. This block utilizes an attention
mechanism predicated on a 3D sliding window multi-head self-attention (MSA) mechanism (detailed in Sect. 3D
shifted window based MSA module), representing an innovative enhancement. In essence, the Video Swin
Transformer is composed of an MSA module based on the 3D sliding window and an MLP module. Interposed
between these two modules is Layer Normalization (LN) for standardization. Additionally, residual connections
are implemented subsequent to each module. The calculation formula for the Video Swin Transformer block is
represented by Formula (4).

2'=3D- W - MSA (LN (z71)) +2' 7,
2 = MLP (LN (2')) + 2,

21 =3D - SW - MSA (LN (z')) + 7,
27 =MLP (LN (2)) + 2,

(4)

Where 2! and 7' respectively represent the output feature maps of the 3D(S)-W-MSA module and the MLP
module in the I block; 3D-W-MSA and 3D-SW-MSA represent the multi-head self-attention with conventional
window and the multi-head self-attention based on the shifted window, respectively.

3D shifted window based MSA module
Following4, let’s assume the given MRI consists of D’ x H x W' 3D tokens, and the 3D window size is
P x M x M. The windows partition the 3D MRI input uniformly and non-overlappingly, resulting in a total

of [%ﬁ‘ X [IA{/I/ —‘ X PX—/I/—‘ windows. Taking our task as an example, suppose the size of the input MRI token is
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Fig. 3. Video Swin Transformer block.

16 x 56 x 56, and the window size is 8 x 7 x 7. Then, at layer /, the number of windows is 2 x 8 x 8 = 128.
Multi-head self-attention is performed within each 3D window. Formula (5) illustrates the computation of self-
attention.

T
Attention (Q, K, V') = Softmax (Qj{& > V. (5)

In the equations, Q, K, and V denote the query, key, and value matrices, respectively, where d represents the
dimension of the query and key features.

3D-CNN-VSwinFormer

Taking inspiration from the achievements of Video Swin Transformer in video classification, Fig. 4 illustrates
the architecture of the proposed 3D-CNN-VSwinFormer model. The preprocessed MRI data can be fed into the
model for training (detailed in Sect. 4). As Video Swin Transformer essentially treats video input as a sequence
of consecutive frames, the default output size is 32 x 224 x 224(D x H x W), representing a video composed
of 32 frames of size 224 x 224. Subsequently, the data undergoes Patch Embedding to compress it to a size of
16 x 56 x 56, with the default window size being 8 x 7 x 7.

We observe that Video Swin Transformer computes multi-head self-attention within the window with
minimal sliding in the first dimension, D. While this significantly reduces computational overhead, it may
compromise the extraction of crucial information along the first dimension. This approach works well for video
classification tasks, as videos consist of sequential frames with subtle changes between consecutive frames,
requiring less information retention. However, for our MRI classification task, as MRI data is in the form of
3D medical images, information along any dimension is valuable. However, if 3DSwinTransformer is used to
calculate multi-head self-attention by sliding Windows in all dimensions, the training time consumed will
be multiplied, and the training effect will not increase significantly. So, we adopt compromise approach, first
utilize a 3D-Res-Dw CNN module to extract information from each dimension and then employ a Video Swin
Transformer module to capture global features.

3D-Res-Dw CNN module

For this 3D-Res-Dw CNN module, we employed the CenterSpatialCrop function from the monai package to crop
theinputsizeto1l x 64 x 112 x 112(C' x D x H x W). Within this module is a 3D convolution characterized
by a kernel size of 3, a stride of 1, and padding of 1, alongside a suite of 3D depth-wise (Dw) convolutions. Group
Normalization is used for normalization, and a 3D CBAM module is incorporated between each convolution.
Inspired by ResNet, we applied a residual connection to add the output feature maps of the convolutional layers
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Fig. 4. Architecture of the 3D-CNN-VSwinFormer model.

to the original input feature maps. Finally, a 3D MaxPooling operation is used to downsample the feature maps
to3 x 32 x 112 x 112(C x D x H x W).

Vide Swin transformer module
For the Video Swin Transformer module, we made some improvements compared to Liu et al.%. The original
Video Swin Transformer takes input of size 32 x 224 x 224, while our input is 32 x 112 X 112. To adapt to the
input feature map size of this work, we changed the patch size from (2, 4, 4) to (2, 2, 2). This allows us to obtain
token sizes of 16 x 56 x 56 through Patch Embedding. Choosing this input size better suits preprocessed MRI
data and also reduces computational complexity. We use Patch Merging for downsampling, reducing the spatial
resolution of the feature map while allowing interactions between larger receptive field patches to extract more
global spatial information. In this paper, we chose the tiny version of the Video Swin Transformer, with specific
hyperparameters including:

Swin-Tiny: C=96, layer numbers = {2, 2, 6, 2}.

where C represents the number of channels in the hidden layers of the initial stage. The default window size is
8 X 7 x 7. Each head of the query dimension is set to d=32, and the expansion layer of each MLP is configured
asa=4.

Dataset and evaluation criteria

MRI dataset preprocessing

The research conducted by our team employed whole-brain MRI data acquired from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). ADNI serves as an extensive medical
imaging repository, providing imaging data pertinent to Alzheimer’s disease at no cost to investigators. To date,
ADNI has executed four distinct phases of research: ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. The MRI
datasets utilized in our investigation were derived from these collective phases. For up-to-date information, see
www.adni-info.org.
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Class | Number | M/F Age

CN 438 217/221 | 74.74+5.88

AD 360 194/166 | 75.31+7.86

Table 1. The demographic data of the subjects.

Fig. 5. The preprocessing sequence for brain MRI (axial view). (A) Original image. (B) Brain extraction. (C)
Registration. (D) Smoothing.

In our work, 798 MRI images were obtained from the ADNI database. To avoid data leakage and ensure the
authenticity and reproducibility of the experiments, only one image per subject was retained. The 798 images
correspond to 798 subjects. Table 1 presents the demographic information of the subjects.

MRI preprocessing is necessary because the pristine MRI datasets could potentially be influenced by
a multitude of extraneous variables, thus reducing the quality of the images and affecting the reliability of
subsequent analyses. Preprocessing is instrumental in eliminating noise that may be introduced during the
data collection process, thereby allowing the model to concentrate on the morphological variances within
the brain structures of the subjects®. Irrelevant factors such as the subjects’ skull and neck can also impact
model training, leading to slow convergence or even failure to converge. As depicted in Fig. 5, the MRI data
undergo preprocessing, displaying only one slice of the axial view. First, we perform skull stripping to extract
the brain from the original MRI scans, removing non-brain tissues such as the skull and neck. Then, we conduct
image registration to map the images of different subjects to a common standard space, eliminating individual
differences and facilitating comparisons and analyses at the population level. The standard space template used
for registration is the MNI152 template, with a spatial resolution of each voxel. Following registration, all images
are resized to 182 x 218 x 182 (X x Y x Z). Finally, we apply smoothing with a 4 mm full-width at half-
maximum (FWHM) Gaussian filter.

All preprocessing operations were performed using FMRIB Software Library (FSL)?!. FSL is a software toolkit
designed for analyzing functional and structural magnetic resonance imaging (fMRI and sMRI) data, developed
by the functional magnetic resonance imaging of the brain (FMRIB) Analysis Group at the University of Oxford.
In this study, the following FSL commands were utilized: The BET command was used for brain extraction. The
Flirt command was employed for image registration. The Fslmaths command was utilized for smoothing.

It is noteworthy that during the first step of brain extraction, some images may not have the skull and neck
completely removed. In such cases, it is necessary to manually inspect and adjust parameters before re-executing
the BET command to ensure proper brain extraction. Failure to do so may adversely affect model training and
convergence. The final dataset comprises 798 preprocessed MRI images, with 360 from AD patients and 438
from CN individuals.

Evaluation criteria

In this study, four evaluative metrics were utilized to substantiate the efficacy of the model we introduced. These
encompass accuracy, sensitivity, specificity, the receiver operating characteristic (ROC) curve, and the area
under the ROC curve (AUC). The formulas are as follows:

Accuracy = i ] (6)
TP+TN+ FP+ FN
Sensitivity = TpgljriPFN (7)
Speci ficity = % (8)
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In the context of this study, TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively. Accuracy serves as a fundamental evaluation metric, describing the probability of correct
prediction outcomes. Sensitivity can be understood as the probability that the model correctly predicts all
positive instances in the sample, representing the disease detection rate. Specificity, on the other hand, signifies
the probability that the model accurately predicts all negative instances in the sample. AUC is particularly robust
in handling class imbalance issues. In situations of class imbalance, metrics such as accuracy may be affected, but
AUC better reflects the model’s classification ability.

Experimental results

Experimental setup

In our experiments, the dataset of 798 subject MRI images was divided into two subsets: training and testing,
with 75% for training and 25% for testing. Since each subject only retains one MRI image, there is no data
leakage issue, ensuring the validity of the experiments. Additionally, we utilized the MONAI library (https://mo
nai.io/) for data augmentation. This involved methods such as CenterSpatialCrop, RandSpatialCrop, Resize for
cropping and resizing images, NormalizeIntensity for intensity normalization, and RandFlip and RandRotate90
for flipping and rotating images.

In the experiments, we utilized the pretrained weights of the tiny version of Video Swin Transformer provided
by the official sources as initial weights, retaining only the matching weights. For unmatched weights, we applied
the default initialization weight strategy. The experiments were conducted using a GPU model 3080. Due to
GPU memory constraints, the batch size was set to 2. To achieve optimal performance, we conducted extensive
experiments on hyperparameter selection. The optimizer chosen was AdamW?2, with a learning rate of 0.000005
and weight decay set to 0.1. For the learning rate scheduler, we employed CosineAnnealingWarmRestarts. With
these configurations, the loss and accuracy curves for the model proposed for distinguishing between AD and
CN subjects are depicted in Fig. 6.

Diagnosis accuracy
Figure 6 illustrates the training progress of the classification tasks involving AD and CN subjects within this
investigation. It can be observed that the model tends to converge after 500 epochs of training, achieving
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Fig. 6. Test Loss and Accuracy Curves for the Binary Classification Task between AD and CN.
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Methods Techniques Accuracy(%) | Sensitivity(%) | Specificity(%) | AUC
Liu et al.® 3D DenseNet 88.90 86.60 90.80 0.9250
Zhu et al.>* 3D CNN 92.40 91.00 93.80 0.9650
Luetal® Inception-ResNet-V2 90.10 81.20 94.30 0.9570
Chen et al.2 MSA 3D CNN 91.10 88.80 91.40 0.9500
Xing et al.* 3D CNN + Transformer 91.34 - - 0.9522
Liu et al.* PCA +CNN+ROIs 84.17 79.65 88.05 -
Bonab et al.* EfficientNet-B7 90.30 92.60 89.00 -
Diogo et al.¥’ Machine learning 90.60 91.50 89.70 0.9740
Duan et al.®® Vision Transformer 89.58 - - -
Gabriele et al.>* 3D Attention 85.60 79.20 91.00 -
Arman et al.? 3D CNN 90.00 - - -
Proposed method | 3D CNN + Video Swin Transformer | 92.92 95.41 89.88 0.9660

Table 2. Comparison of performance metrics between the proposed model and models proposed in recent
studies for AD and CN classification tasks.

Methods Accuracy(%) | Sensitivity(%) | Specificity(%) | AUC

3D ResNet 90.40 90.82 89.88 0.9397
3D Convnext 62.12 82.57 37.08 0.6448
3D Swin Transformer 74.75 88.07 58.43 0.7847
Video Swin Transformer | 89.90 92.66 86.52 0.9231
Proposed method 92.92 95.41 89.88 0.9660

Table 3. Comparative analysis of the proposed model and state-of-the-art computer vision models in AD and
CN classification tasks across various metrics in recent years.

an optimal accuracy of 92.92%. To validate the effectiveness and superiority of the proposed 3D-CNN-VST
algorithm, based on the ADNI dataset used in this study, comparative experiments were conducted against
algorithms proposed in recent years?>?#2>33-40 a5 shown in Table 2. It is worth noting that our experiments
completely avoided dataleakage, ensuring the reliability and authenticity of the results. Although the experimental
results may not appear as impressive as those from studies with data leakage, the credibility and reliability of our
experiments are guaranteed. From Table 2, it can be observed that for the classification task of AD and CN, the
proposed model achieves superior performance in terms of accuracy and sensitivity compared to the methods
proposed by other researchers in 2023 and 2024. The achieved accuracy is 92.92%, and the sensitivity is 95.41%,
which fully demonstrates the advantages and contributions of our model in the field of computer-aided early
diagnosis of AD.

We know that the size of the dataset used by each researcher may vary, The preprocessing techniques
employed on the dataset might vary, the strategies for dataset partitioning may vary, and the hyperparameters
selected during training may also differ. Simply conducting such comparative experiments may not be sufficient.
To further validate the superiority of the proposed algorithm in this study, under the condition that the dataset,
preprocessing pipeline, and experimental procedures are kept identical, we compared our proposed model with
the state-of-the-art models in the visual domain for AD and CN classification tasks, including: 3D ResNet*!,
3D ConvNext, 3D Swin Transformer, and Video Swin Transformer?. For ConvNext and 3D Swin Transformer,
which are modifications based on the 2D visual domain ConvNext*? and Swin Transformer?, respectively. The
comparative outcomes are presented in Table 3. As indicated within this table, the model we have introduced
demonstrates superior efficacy across the quartet of evaluative criteria. Acc increased by 2.52%, Sen increased
by 2.75%, Specificity (Spe) remained equal to the best values achieved by other models, and AUC increased by
2.63%. The ROC curves of our proposed model compared with the four benchmark models are depicted in
Fig. 7, demonstrating that our model achieves the best classification performance.

We conducted a visual analysis of the model’s misclassifications. Table 4 presents the classification report of
the model. The formulas for the three parameters in the classification report - precision, recall, and f1-score - are

as follows.
Precision = % )
Recall = TP}JL% (10)
F1 — Score = % (11)
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Fig. 7. ROC curves of other comparative models and the proposed model.

Class | Precision | Recall | F1-Score | Support
AD 0.94118 0.89888 | 0.91954 89
CN 0.92035 0.95413 | 0.93694 109

Table 4. Model classification Report.

Precision indicates the proportion of samples that truly belong to a class among all samples predicted by the
model as that class. Recall represents the proportion of samples correctly identified by the model among all true
positive samples. F1-score is the harmonic mean of precision and recall, providing a balance between these two
metrics. In AD diagnosis, a high recall is more crucial as we aim to identify as many truly affected individuals as
possible. Figure 8 shows the confusion matrix of the validation set, where the diagonal data represents correct
predictions, and off-diagonal entries indicate misclassifications. The figure demonstrates that a large number of
individuals were correctly classified, with only 14 misclassifications, indicating a high overall model accuracy.
Table 4 further shows that the precision for AD is 0.94118 and for CN is 0.92035. However, analyzing the recall
and misclassification patterns reveals that among the misclassified individuals, 9 AD cases were predicted as
CN, while 5 CN cases were predicted as AD. The former is nearly twice the latter. This is also reflected in Table 4,
where the recall for AD is 0.89888, and for CN is 0.95413, showing a 5% difference. Upon investigation, we
found that this discrepancy is due to the imbalance in the proportion of AD to CN cases in our dataset. Our data
comprises 360 AD cases and 438 CN cases. In future research, we plan to balance the ratio of AD to CN cases as
much as possible and collect more MRI data to enhance the model’s performance.

Ablation

In antecedent studies pertaining to the precocious detection of AD, typical preprocessing steps for brain MRI
include skull stripping, registration to a standard space, and segmentation. Smoothing is a common step in
voxel-based morphometry (VBM) methods aimed at denoising, compensating for segmentation defects, and
facilitating statistical analysis. However, the effectiveness of smoothing in MRI brain image preprocessing in
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Fig. 8. Confusion Matrix of the AD and CN Binary Classification Task.

preprocessing with smoothing | preprocessing without smoothing
Accuracy(%) | 92.92 92.92
Sensitivity(%) | 95.41 98.16
Specificity(%) | 89.88 86.51
AUC 0.9660 0.9666

Table 5. Impact of smoothing operation on model performance.

the field of deep learning has not been thoroughly validated. To evaluate the impact of the smoothing operation
on the model’s performance, we conducted comparative experiments. The experimental results are presented
in Table 5. From the table, we can conclude that the smoothing operation has almost no effect on the model’s
performance. Researchers can conduct their own comparative experiments to choose the optimal results.

In 2D image-based visual tasks, the plug-and-play CBAM module has been demonstrated to enhance model
performance. However, the effectiveness of the 3D CBAM module in AD detection tasks based on 3D MRI
remains to be validated. Therefore, in this task, we conducted experiments to verify the necessity of the 3D
CBAM module. Through experimentation, we found that incorporating the 3D CBAM module after depthwise
separable convolution to extract features is beneficial for accurate AD recognition. The empirical findings are
delineated in Table 6. Examination of Table 6 indicates that incorporating the 3D CBAM module substantially
enhances the precision of the model.

Visualization analysis

To demonstrate the effectiveness of our proposed model in identifying AD and improve the interpretability
of the model, we referred to the Grad-CAM method* to visualize the focus points of the model. Since our
model processes 3D MRI data, we performed slice-wise processing of the MRI data along the axial plane and
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Accuracy(%) | 92.92 89.90
Sensitivity(%) | 95.41 96.33
Specificity(%) | 89.88 82.02
AUC 0.9660 0.9356

Table 6. Impact of 3D CBAM module on model accuracy.

Fig. 9. 3D-CNN-VSwinFormer attention visualization heatmap.

extracted some of them for illustration, as shown in Fig. 9. By observing the visualization, we can find that the
attention of our model is mainly concentrated on the parietal lobe, cerebral cortex, Broca’s area, and the medial
temporal lobe. Further research by our team suggests that the parietal lobe is responsible for the processing
of bodily sensations*!, the Broca’s area is closely related to human speech and language®®, and these regions
may be associated with the onset of AD. The medial temporal lobe involves structures like the hippocampus
and amygdala, which can affect memory and emotion processing, and their atrophy may even lead to AD*.
These findings indicate that our model has a certain effect on the early diagnosis of AD. The visualized results
provide insights into the key brain regions that the model focuses on, which aligns with the known pathological
mechanisms of AD. This can help improve the interpretability and robustness of our AD identification model.

Computational analysis

In this subsection, we evaluated and compared the computational complexity of the model. We used the ptflops
and torchinfo libraries in PyTorch to calculate the model’s floating point operations (FLOPs) and the number
of parameters, which reflect the model’s computational requirements and memory usage. As shown in Table 7,
there is a clear relationship between accuracy, model parameters, and FLOPs. Our model achieved the highest
accuracy while maintaining significantly lower parameter count and FLOPs compared to the second-best
model. This demonstrates that our model not only excels in accuracy but also offers a distinct advantage in
computational efficiency.

Discussion

Currently, the trained model has achieved promising prediction results on the ADNI dataset. However, how
to integrate the model into clinical practice and its impact on early AD diagnosis are important issues worth
discussing for future work. To successfully implement the proposed model in clinical practice and achieve
excellent diagnostic performance, we believe it is crucial to ensure seamless integration with existing medical
imaging systems. Through automated preprocessing and analysis of patients’ 3D MRI images, the model can
quickly generate classification results and present them to clinicians. This enables physicians to rapidly obtain
diagnostic recommendations from the model, while also providing intuitive heatmaps that highlight the
areas of interest identified by the model, further assisting clinical decision-making. The model is capable of
capturing subtle pathological changes that are difficult for the human eye to detect, aiding physicians in their
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Methods Accuracy(%) | Total params | Params size (MB) | FLOPs (G)
3D ResNet 90.40 63,470,658 253.88 240.36

3D Convnext 62.12 8,413,010 33.64 47.6

3D Swin Transformer 74.75 5,698,196 22.00 28.61
Video Swin Transformer | 89.90 27,852,008 110.01 37.12
Proposed method 92.92 27,847,899 89.88 146.42

Table 7. Comparison of computational complexity between different models.

Methods Test dataset | Accuracy(%) | AUC

3D ResNet OASIS 65.38 0.7596
3D Convnext OASIS 62.50 0.6698
3D Swin Transformer OASIS 57.69 0.6320
Video Swin Transformer | OASIS 62.50 0.6760
Proposed method OASIS 75.96 0.8177

Table 8. Generalization performance of various models on the OASIS Dataset.

decision-making process. This not only improves diagnostic accuracy but also significantly reduces diagnosis
time, alleviates the workload of doctors, and lowers healthcare costs for patients. While this is our envisioned
outcome, achieving such results will require substantial time and resources. For instance, the cost of training the
model is a significant factor, as we have only trained it on the ADNI dataset. To integrate the model into clinical
practice, a much larger dataset will be required. Specifically, we would need to collect MRI data from AD and CN
individuals across various age groups to enhance the model’s generalization and predictive capabilities.

To assess the generalization capability of our model, we conducted tests on the open-source dataset OASISY.
We collected 104 3D MRI images from 104 subjects, equally distributed between AD and CN (52 each). We
directly applied our model, trained on the ADNI dataset, to test on the collected OASIS database. We then
compared our results with those of current state-of-the-art models in the vision domain, as mentioned earlier.
The results are presented in Table 8. As evident from the table, our model demonstrates superior generalization
performance on the OASIS dataset, achieving an accuracy of 75.96%, significantly outperforming other models.
Opverall, the generalization ability of all models listed in the table appears limited. We attribute this to two main
factors:

(1) Insufficient training data volume. The ADNI dataset, with 798 MRI images, uses only 75% for training.
This quantity is still relatively small, especially considering the complexity of 3D data, which makes feature
generalization more challenging.

(2) The difference between the ADNI and OASIS datasets. While ADNI contains MRI images specifically re-
lated to AD, OASIS includes images of patients with various forms of dementia. The pathological features
represented in these MRI scans may differ slightly, potentially contributing to the suboptimal generalization
results.

Despite these challenges, our model ultimately achieved an accuracy of 75.96%, significantly outperforming
other models in terms of generalization. This demonstrates our model’s superior ability to capture AD-specific
features. However, we also recognize the existing limitations. In the future, our team plans to collaborate with
local hospitals, while ensuring patient privacy, to gather more MRI data for further training. Additionally, we
plan to collect and incorporate MRI data containing artifacts and noise into our training process to enhance
the model’s robustness. Another important aspect to consider is the computational complexity of the model.
Improving the computational efficiency while maintaining model performance can further facilitate its clinical
application. Therefore, we plan to continue our research in areas such as knowledge distillation and model
pruning to optimize our model.

At the same time, we believe that ethical considerations must not be overlooked when using deep learning
models for AD diagnosis, particularly regarding patient data privacy and the potential impact of artificial
intelligence (AI) on clinical decision-making for AD diagnosis. In this study, as well as in our future research,
protecting patient data privacy remains a core principle. All the MRI data we have used in this research have been
anonymized to ensure that patients’ personal information cannot be traced. We will maintain this approach in
our future research. Al-assisted diagnosis for AD offers considerable benefits, such as enhancing early detection
and assisting clinicians in identifying subtle pathological changes that might be missed otherwise. However,
the potential for adverse outcomes exists if Al is misused. It is crucial that physicians do not become overly
dependent on Al as this may compromise their decision-making independence. Clinicians should exercise
discernment when using AT models, ensuring that the results are considered alongside other clinical assessments
for a thorough evaluation. Additionally, as researchers, we must focus on improving the transparency and
interpretability of AI models to support clinicians in making well-informed decisions.
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Conclusion

This paper proposes a novel deep learning model, 3D-CNN-VSwinFormer, for early diagnosis of Alzheimer’s
disease. In this model, a residual-based depthwise separable CNN combined with a 3D CBAM module is used
to extract low-dimensional features from MRI data. The Video Swin Transformer progressively integrates local
spatial features to obtain information about structural changes in the brains of Alzheimer’s disease patients. For
the first time, we applied the Video Swin Transformer to the field of 3D medical image diagnosis for AD, and
integrated it with a custom 3D CNN, achieving satisfactory results.

From the perspective of the dataset utilized, we employed 3D MRI brain scans as input, with only one
image per subject. This approach effectively circumvented data leakage, ensuring the authenticity and accuracy
of the experiment. However, the use of 3D MRI datasets consequently extended the model training duration
significantly. The inability to train using a 2D slice approach inherently limited the size of our dataset, as
evidenced by our use of merely 798 3D MRI images. Despite this, we achieved remarkably accurate AD detection
results, which attests to the exceptional performance of our highlighted model. Looking ahead, our work will
focus on two key areas:

Expanding the dataset: By acquiring more diverse 3D MRI data, we aim to address the current limitations in
data volume and variety. This expansion will likely lead to improved model robustness and generalization across
different populations and imaging protocols.

Longitudinal analysis: We will investigate techniques to effectively incorporate temporal information from
sequential MRI scans. This approach could potentially reveal subtle changes in brain structure over time, offering
insights into the progression of AD and enhancing our model’s predictive capabilities.

Data availability
The raw data used in the current study are all available from the ADNI dataset, http://adni.loni.usc.edu, and
OASIS dataset, https://sites.wustl.edu/oasisbrains/.
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