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Neural oscillations are critical for brain function and cognition. Thus, identifying the typical or natural 
frequencies of the brain is an important step in understanding its functional architecture. Recently, a 
data-driven algorithm has been developed for mapping these frequencies throughout the cortex, free 
of anatomical and frequency-band constraints, but its robustness is limited to group-level analyses. 
Here, we adapt this algorithm to improve the single-subject maps of natural frequencies derived from 
magnetoencephalography and validate them using the fingerprinting technique. Modifications to the 
original method included (1) increasing the number of power spectra assigned to each k-means cluster, 
and (2) smoothing across neighboring voxels. Our results show high accuracy in individual identification 
within single sessions and across sessions separated by over four years. This demonstrates the stability 
and reliability of the single-subject mapping of natural frequencies, enhancing opportunities for 
identification of pathological variations in the intrinsic oscillatory activity of individuals.

Keywords  Natural frequencies, Fingerprinting, Brain oscillations, Magnetoencephalography, Resting state

Electromagnetic oscillations are spontaneously generated by the brain and are postulated to play a key role in 
neural communication, ultimately supporting the mechanisms of cognition1,2. Gaining a deeper understanding 
of neural oscillations is therefore essential for deciphering the brain’s communication code and for unraveling 
how cognitive processes emerge from the coordinated activity of neural networks. For this purpose, an important 
initial step is to identify the brain’s natural frequencies. These refer to the intrinsic oscillatory frequencies that 
characterize specific brain regions, defined as the peak frequency of the most representative spectral pattern 
for each region. This has been explored through two main strategies: directly perturbing intrinsic oscillations, 
e.g., by a single pulse of transcranial magnetic stimulation (TMS)3–5, or characterizing region-specific spectral 
features from electro-/magnetoencephalography (EEG/MEG) and intracranial EEG (iEEG) recordings6–11. 
Interestingly, spectral profiles are so consistent that they can be used to differentiate and classify brain regions 
based on their intrinsic oscillatory activity9,12.

With the aim of providing a detailed atlas of the natural frequencies of the healthy human brain at rest, 
Capilla and colleagues6 developed a data-driven algorithm for mapping natural frequencies on a voxel-by-voxel 
basis, free of anatomical and frequency-band constraints. The shift in focus from the conventional frequency 
bands to the study of individual frequencies allowed them to identify, for example, different generators of 
oscillatory activity in sensory regions (visual, auditory and tactile), all of them characterized by oscillations 
within the alpha band, but each with a distinctive frequency (e.g., ∼12 Hz in visual areas, ∼8 Hz in auditory 
areas). Overall, ongoing oscillations showed a region-specific organization, which was structured along two 
gradients of increasing frequency, from medial to lateral and from posterior to anterior brain areas. In particular, 
medial frontal and temporal regions were characterized by slow oscillations (delta and theta, 0.5–4 Hz and 
4–8 Hz, respectively), posterior occipito-temporal cortices were characterized by alpha-band oscillations (8–13 
Hz), while lateral frontal and parietal cortices exhibited oscillations in the beta range (13–30 Hz), in line with 
previous reports7,9,11,13.

However, an important limitation of this methodology is that it only provides robust results at the group level. 
Although individual brain patterns of natural frequencies can, in principle, be computed, they are of modest 
quality. Still, obtaining single-subject maps is essential for statistical purposes as well as to identify individual 
normal/pathological variations. Accordingly, in this study we aimed to adapt Capilla and colleagues’6 approach 
to improve the quality of the single-subject mapping of the brain’s natural frequencies.

To determine whether brain maps of natural frequencies are robust at the single-subject level, we relied on 
the fingerprinting technique. The concept of brain fingerprinting has gained traction in recent years within the 
neuroscientific literature, inspired by traditional forensic and biometric practices, where fingerprints are used for 
individual identification. Several neuroimaging-based approaches have been proposed to extract unique features 
of brain activity. The most established procedure makes use of functional magnetic resonance imaging (fMRI) 
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to obtain functional connectivity profiles, which are then employed as fingerprints to identify a target subject 
among others14–18. Only recently, more complex spectral and electrophysiological connectivity profiles have 
also been extracted from MEG recordings to enable individual differentiation19–22. In both cases, the number of 
features employed is considerably large. Here, we propose using a relatively simple index of brain function, the 
brain pattern of natural frequencies at rest (a vector with 1925 elements, i.e., each voxels’ natural frequency) as a 
brain fingerprint to identify individuals.

Materials and methods
Participants and data acquisition
All procedures complied with the Declaration of Helsinki and were approved by the institutional ethics 
committees. Data were obtained from The Open MEG Archive (OMEGA23), an open-access database which 
provides anonymized resting-state MEG recordings and T1-weighted Magnetic Resonance Images (MRIs). 
All participants provided informed consent, explicitly agreeing to be included in OMEGA. Brain activity was 
recorded in a magnetically shielded room at the Montreal Neurological Institute (MNI, McGill University) using 
a whole-head CTF MEG system with 275 axial gradiometers and 26 reference sensors at a 2400 Hz sampling rate. 
An anti-aliasing low-pass filter at 600 Hz was applied online, as well as CTF third-order gradient compensation. 
Participants remained awake with eyes open on a fixation cross for 5 min.

Within-session group
The within-session group included 128 healthy volunteers (68 males, 118 right-handed, 30.5 ± 12.4 [M 
± SD] years, ranging from 19 to 73 years) with one session per participant. This sample was used to conduct 
fingerprinting using data from both halves of a single session for each participant (Fig. 1a).

Between-session group
The between-session group comprised a subset of 27 individuals from the within-session group with more than 
one MEG session on the same or on different days (18 males, 26 right-handed, 27.5 ± 6.0 years, age range 21–46 
years in the first session; time between sessions: 299 ± 411 days, ranging from 0 to 1696 days). This subsample 
was intended to assess the performance of the fingerprinting approach on a subsequent recording (Fig. 1b). 
When more than one additional session was available, we discarded those containing more artifacts.

Pre-processing and reconstruction of source-level activity
For the within-session group, the MEG recording was split into two halves; from here on, they will be referred 
to as Part 1 and Part 2. In recordings lasting ∼10 min, each part was 5 min long; for 5-minute recordings, each 
part was 2.5 min long. For the between-session group, both MEG sessions were trimmed to the first 5 min; we 
will refer to them as Session 1 and Session 2. Thus, all natural frequency maps were derived from data spanning 
a maximum of 5 min and a minimum of 2.5 min. Each part/session was analyzed separately, as described in the 
following paragraphs.

The analysis pipeline for data pre-processing and source reconstruction was identical to that described in 
Capilla et al.6. Analyses were carried out using FieldTrip (version 2023011824) and in-house Matlab code. The 
scripts necessary to reproduce all the analysis and figures are available at https://github.com/necog-UAM.

The MEG signal was denoised using Principal Component Analysis (PCA). Then, data were high-pass filtered 
at 0.05 Hz with a third-order Butterworth filter, whereas no low-pass filters were applied in the pre-processing. 
The power line artifact at 60 Hz (and harmonics at 120 and 180 Hz) was reduced by means of spectrum 
interpolation25. The signal was then demeaned, detrended, and resampled at 512 Hz. Artifacts were corrected 
using Independent Component Analysis (ICA), after a PCA dimensionality reduction to 40 components. Eye 
and muscular components were removed based on their characteristic time course and topography, according 
to expert criteria. Any remaining prominent artifacts in the continuous data were identified through visual 
inspection, and the affected time intervals were annotated and excluded from further analysis. On average, each 
participant had 1.17 ± 1.49 contaminated data segments (ranging from 0 to 8), with a duration of 4.03 ± 4.33 s 
(ranging from 0.5 to 43 s).

Individual T1-weighted MRIs were co-registered to the MEG coordinate system using a semi-automatic 
procedure based on a modified version of the Iterative Closest Point algorithm26. The forward model was 
computed using a realistic single shell volume conductor model27. A standard MNI grid with 1-cm resolution 
was adapted to each individual’s brain volume and lead fields were computed for each grid point. Voxels in 
regions outside the cerebral cortex or the hippocampus (i.e., cerebellum and subcortical structures) were 
excluded, leaving 1925 voxels for further analysis.

To reconstruct source-level time series, we employed linearly constrained minimum variance (LCMV) 
beamforming28. The spatial filter weights were derived from the covariance of the artifact-free data, with the 
regularization parameter lambda set to 10%. These beamforming weights were then used to estimate source-
space time series from the sensor-level data.

Frequency analysis on source-level data
Frequency analysis was conducted on the source-reconstructed MEG signal. Beamformer source estimates 
are inherently biased toward the center of the head, where reconstructed activity is stronger compared to 
cortical areas29. To address this bias, we first normalized the source-space signal of each voxel by dividing it 
by its standard deviation across time. Next, a Hanning-tapered sliding window Fourier transform was applied 
in 200-ms steps to the normalized source-level signal. Spectral analysis was performed at a higher temporal 
resolution compared to Capilla et al.6 (i.e., every 200 ms instead of 500 ms) to increase the number of power 
spectra and thereby enhance the quality of the single-subject maps of natural frequencies (see Fig. 1c). Power 
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Fig. 1.  MEG data and pipeline for obtaining individual brain maps of natural frequencies. (a) Within-
session data. A single session from each participant was divided into two parts and pre-processed separately. 
(b) Between-session data. The two MEG sessions recorded at different times for each participant were 
pre-processed separately. The following panels (c–e) illustrate the pipeline for mapping the brain’s natural 
frequencies. (c) Source reconstruction and frequency analysis of each part/session. (d) Whole-group k-means 
clustering was conducted on 150 spectra per voxel and participant from Part/Session 1. (e) Brain mapping of 
single-subject natural frequencies was derived separately for Part/Session 1 and Part/Session 2. First, single-
subject power spectra obtained from one instance of the data were classified into the whole-group clusters. 
Next, the peak of the most typical power spectrum defined the natural frequency of each voxel, which were 
smoothed across neighboring voxels. Final brain maps for Part/Session 1 and Part/Session 2 were composed of 
single vectors of 1925 natural frequencies, i.e., one value per voxel. Note: all illustrations are based on real data.
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was computed for 61 frequency bins logarithmically spaced from 1.7 to 34.5 Hz, as we previously observed that 
higher frequencies reflected artifactual activity6. The width of the sliding window was frequency-dependent and 
adapted to a length of 5 cycles per frequency bin, which attenuated the 1/f aperiodic component in the resulting 
spectra6. We discarded 5.8-s time intervals (i.e., 10 cycles at the lowest frequency of 1.7 Hz) at the beginning and 
the end of every artifact-free data segment to avoid edge effects. Thus, for the within-session group, we obtained 
a set of 778 ± 29 power spectra per voxel and participant from Part 1 and 783 ± 28 spectra from Part 2. For the 
between-session group, we obtained 1286 ± 20 spectra from Session 1 and 1259 ± 19 spectra from Session 2.

Whole-group cluster analysis of power spectra
To identify different patterns of source-reconstructed oscillatory activity, we performed a whole-group k-means 
clustering with the cosine as the distance metric (i.e., one minus the cosine of the angle between spectra), 
as it maximizes differences between clusters based on spectral shape rather than amplitude9. Clustering was 
performed separately for the within-session and the between-session groups, randomly selecting 150 power 
spectra per voxel and participant from Part 1 and Session 1, respectively. We trained the k-means clustering 
model only with data from Part/Session 1 to avoid biasing the identification of data from Part/Session 2. Thus, 
we introduced a total of 128 participants x 1925 voxels x 150 power spectra for the within-session group, and 27 
participants x 1925 voxels x 150 power spectra for the between-session group. The number of clusters was set 
to 25, as previous research has shown that the algorithm’s performance with this type of data reaches a plateau 
at around this number6. To achieve optimal results, we run 5 clustering replicates with a maximum of 200 
iterations and selected the solution with the lowest sum of distances (Fig. 1d). The resulting cluster centroids for 
both the within-session and between-session group are shown on the Supplementary Material (Suppl. Figures 
1 and 2, respectively). Importantly, these centroids display peak frequencies and spatial distributions that are 
broadly consistent with those reported by Capilla and colleagues6, including delta- and theta-band activity 
originating from medial fronto-temporal regions, alpha activity characteristic of posterior cortices, and beta-
band oscillations associated with lateral frontal areas.

Additionally, to assess whether the fingerprinting performance depended on the inclusion of participants in 
the k-means training set (based on the first part/session), we tested the model’s ability to generalize to unseen 
individuals. Thus, we conducted a new whole-group k-means clustering analysis, including 150 power spectra 
per voxel and participant, randomly selected from Part 1 of the session of the within-session group, but only from 
those participants who did not belong to the between-session group (within-session group: N = 128; between-
session group: N = 27; new k-means group: N = 128–27 = 101). This resulted in a total of 101 × 1925 × 150 
power spectra being introduced into the k-means algorithm. As before, we specified 25 clusters, five replicates, 
a maximum of 200 iterations, and cosine distance as the distance metric. The clustering solution with the lowest 
total distance was selected. This trained k-means model was then applied to the remaining participants (those 
in the between-session group, N = 27), following the same procedure outlined in the main analysis (see next 
sections).

Single-subject brain maps of natural frequencies
Once the whole-group k-means clustering model was trained using data from Part/Session 1, we computed the 
single-subject maps of natural frequencies. Cortical surface templates used for visualization were obtained from 
the FieldTrip toolbox24, originally based on Caret surfaces developed by the Van Essen Lab. For each individual, 
we obtained two maps (Part 1 and Part 2 maps for the within-session group participants; Session 1 and Session 
2 maps for the between-session group participants), following the steps below (see Fig. 1e).

 For each participant and voxel, we assigned the previously computed power spectra (see Sect. Frequency 
analysis on source-level data) to each cluster, by computing the cosine distance9 between the power spectra 
and the cluster centroids. Each power spectrum was assigned to the cluster with the smallest distance to its 
centroid. In addition, to identify the oscillatory frequency characterizing each cluster, we detected the local 
maxima in each centroid power spectrum. Cluster centroids with no peaks were disregarded, as a spectral peak 
is required to confirm the presence of genuine oscillatory activity30. In cases where two peaks were detected, we 
first assessed whether they exhibited a harmonic relationship (e.g., 10 and 20 Hz), using a ± 1 Hz tolerance. If a 
harmonic relationship was identified, only the fundamental (lowest) frequency was retained. Alternatively, if the 
peaks were not harmonically related (e.g., 7 and 22 Hz), each frequency was assigned an equal weight of 50%.

The first step towards improving the quality of the single-subject maps was to classify a larger number of 
power spectra per participant. In the original formulation of the method (see Capilla et al.6), only 150 power 
spectra per voxel and participant were used for the whole-group level clustering and subsequent natural 
frequency mapping. Following this approach, we also used 150 spectra per voxel to train the whole-group 
k-means model (see Sect.  Whole-group cluster analysis of power spectra), as increasing this number would 
require substantial computational resources. However, since assigning spectra to precomputed clusters is not 
computationally demanding and can enhance the precision of individual natural frequency maps, we classified 
all available spectra per voxel and participant into the previously computed whole-group clusters. The number 
of available spectra varied by subject depending on the length of the artifact-free data (see Sect.  Frequency 
analysis on source-level data). We then calculated the proportion of power spectra assigned to each cluster 
and normalized these values across voxels using z-scores. This yielded, for each participant and voxel, a z-score 
reflecting the relative presence of each cluster’s peak frequency (e.g., 1.9 Hz, 2.6 Hz, 3.3 Hz; see Suppl. Figures 1 
and 2). Finally, since the frequency values were restricted to discrete centroids, we upsampled the data (10×) to 
obtain a finer-grained spectral resolution (e.g., 1.9 Hz, 2.0 Hz, 2.1 Hz).

The second measure to improve individual maps was to smooth across adjacent voxels. Since there might be 
abrupt transitions between the natural frequencies of surrounding voxels (e.g., delta and high-beta frequencies in 
frontal regions), standard smoothing is not appropriate for these data, and we opted for an alternative approach. 
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For each voxel, we identified its neighbors within a 1.5-cm radius and extracted the z-values reflecting the 
relative presence of each oscillatory frequency for each of them, including the central voxel. One-sample t-tests 
against zero were then computed for each frequency bin to assess whether a given frequency was consistently 
represented in the local neighborhood, under the null hypothesis that the mean z-score across voxels was less 
than or equal to zero. The frequency with the highest t-value was selected as the voxel’s natural frequency, as it 

Fig. 2.  Within-session fingerprinting of natural frequencies. (a) Correlation matrix between the natural 
frequency maps obtained from the two parts of the MEG recording for each participant of the within-session 
group (N = 128). (b) Matrix of correct/incorrect matches. Target matches are represented in green; non-target 
matches, in red. The graph shows that 122/128 individuals were correctly identified. (c) Identifiability of 
participants (Kendall’s τ). Self-correlation of each participant is depicted in light blue; others-correlation (i.e., 
mean correlation of each participant with all other participants) is displayed in gray. Red triangles point to the 
participants that did not match themselves. (d) Differentiability provides a normative metric (z-score) of the 
extent to which the participant’s natural frequency map is distinct from other participants’ maps.
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reflected the most consistent oscillatory component within the 1.5-cm radius. If the associated p-value exceeded 
0.05, indicating that no frequency was reliably expressed in that voxel’s neighborhood, the voxel was assigned a 
missing value.

Identification of participants
After obtaining the natural frequency brain maps for every participant in each part/session, we carried out 
the identification of individual brains, separately for the within-session and the between-session groups. The 
identification procedure followed the common fingerprinting approach, which is based on the correlation 
between the first and the second instances of all participants’ data14,15,20.

We calculated the Kendall’s tau (τ) correlation coefficients between the Part/Session 1 natural frequency 
maps and Part/Session 2 maps for all individuals, thus obtaining a square correlation matrix of size participants 
x participants (128 × 128 in the within-session group, and 27 × 27 in the between-session group). We chose 
Kendall’s correlation coefficient because our data did not conform to a normal distribution, as assumed by 
Pearson’s correlation31. We performed a Kolmogorov–Smirnov test to check whether the natural frequencies of 
each map were normally distributed and found that none of the maps were Gaussian (p <.001).

The diagonal of the correlation matrix represents the autocorrelation of each individual with themselves. The 
fingerprinting process consists of a search through the rows/columns of the correlation matrix, where the highest 
correlation coefficient indicates the matching participant and receives a score of 1. The rest of participants in 
the row/column are thus non-matches and are assigned a score of 0. This process resulted in a final matrix of 
matches, derived from the two instances of natural frequency maps. Correct matches or “target matches” occur 
when participants correctly match with themselves, while “non-target matches” refer to cases where the first 
map of one participant matches the second map of a different participant. The overall accuracy of the brain 
fingerprinting was determined by calculating the percentage of correctly identified individuals or target matches.

For descriptive purposes, we calculated the means and standard deviations of the correlation coefficients 
(τ). Specifically, we computed the descriptive statistics for the self-correlations (the diagonal of the correlation 
matrix) and for the correlations with others (values outside the diagonal), separately for the within-session and 
the between-session groups. To test whether self-correlations were statistically higher than correlations with 
others, we performed paired sample t-tests.

To compute the confidence interval (CI) of the identification accuracy for each group, we employed a 
bootstrapping procedure, repeated 10,000 times. In each iteration, we randomly resampled participants with 
replacement (i.e., participants were randomly drawn from the original group, allowing duplicates) to create a 
new dataset of the same size as the original. For each resampled dataset, we repeated the fingerprinting process 
to obtain an identification accuracy score. This resulted in a distribution of accuracy scores, from which we 
derived the 95% CI as the interval between the 2.5th and 97.5th percentiles of the distribution.

We also performed a non-parametric permutation test to assess the statistical significance of the fingerprinting 
accuracy. This consisted of randomly changing (10,000 times) the labels of the participants in the second map, 
for each group separately, and repeating the identification process. We then computed the highest success rate 
among all iterations.

Identifiability and differentiability of participants
For each group and participant, we calculated both identifiability and differentiability metrics. Identifiability 
(Iself​; from Amico and Goñi14) is used to quantify the reliability of an individual’s identification among the rest 
of the cohort. Thus, we computed the correlation of each participant with himself/herself (i.e., self-correlation; 
τself) minus the average of the correlation with the rest of participants (i.e., others-correlation; µothers)(Iself ​= 
τself − µothers). Thus, a high identifiability value would indicate that a participant is easily identifiable among the 
others (i.e., individuals with a high self-correlation and/or a low correlation with others).

Da Silva Castanheira et al.20 extended this notion with the introduction of a normalized measure, the 
differentiability. Differentiability (Dself) is defined as the correlation of one participant with himself/herself (i.e., 
self-correlation; τself) minus the mean of the correlations with others (i.e., others-correlation; µothers), divided by 
the standard deviation of others-correlations (σothers)(Dself​ = [τself − µothers]/σothers). As in the case of identifiability, 
high differentiability values would be indicative of individuals with unique or salient brain natural frequency 
fingerprints, with the advantage of being a normalized value (z-score) which allows for more direct comparisons.

For descriptive purposes, we also calculated the means and standard deviations of identifiability and 
differentiability for both groups and the means and standard deviations of target matches and non-target matches. 
Additionally, we conducted two-sample t-tests to assess the hypothesis that identifiability and differentiability 
were higher for target than for non-target matches.

Brain fingerprinting across time
We also set out to investigate whether the accuracy of the brain natural frequency fingerprinting decreases as the 
time between the recording sessions increases. We thus focused on the between-session group, as it included two 
MEG sessions acquired at different points in time, with an interval from 0 to 1696 days (4.6 years).

For this purpose, we conducted two types of analysis. First, we performed a Pearson’s linear correlation 
between the number of days between sessions and the value of Kendall’s τ for self-correlations, to determine 
whether self-correlation decreases with increasing time. Then, we statistically tested whether elapsed time was 
different for target and non-target matches. Since sample size was rather unbalanced for correct compared to 
incorrect matches (a higher number of correct matches), we applied a Welch’s t-test32,33.
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Voxel-wise contribution to identifiability
Finally, to determine which voxels contributed most to individual identification, we conducted a voxel-wise 
permutation analysis for both the within-session and the between-session groups. For each voxel, we identified 
all neighboring voxels within a 1.5-cm radius. We then randomly permuted the natural frequency values of 
all voxels within this radius (including the central voxel) across participants in the second part/session’s maps. 
Specifically, for each of these voxels, we shuffled its natural frequencies across subjects, reassigning them to 
the same spatial location but to different individuals. This procedure selectively disrupted individual-specific 
information in the target region while preserving the remaining natural frequencies.

We then recomputed the mean identifiability across all subjects for each permutation and subtracted the 
original (non-permuted) value. The resulting Δ Identifiability reflected the change in identifiability due to the 
permutation of that voxel and its neighborhood, with more negative values indicating a greater contribution of 
that voxel to participant identification.

Results
Individual brains can be identified from their natural frequency fingerprints within the same 
session
In this study we aimed to test whether it is possible to obtain robust brain maps of natural frequencies at the 
single-subject level. Thus, we first assessed if we could identify individual brains from natural frequency maps 
obtained within the same session in a sample of 128 participants (within-session group).

The Kendall’s τ correlation matrix of the within-session group is depicted in Fig. 2a and led to the identification 
of participants in the subsequent step. As shown in Fig. 2b, we correctly identified 122 out of 128 participants or, 
in other words, the correlation with oneself was higher than with any other participant in 122/128 cases. Hence, 
the accuracy of the natural frequency fingerprinting within sessions was 95.31% (95% CI [92.19, 99.22]). To 
determine whether the observed identifications could have been driven by random similarities in correlations 
across participants, we performed a non-parametric permutation test in which we shuffled the identity of 
the participants. Across 10,000 iterations, the highest success rate achieved was 1/128 (0.78%). Therefore, the 
probability of obtaining at least 122/128 correct identifications by chance was below 0.001.

In addition, we found that the Kendall’s τ correlation was higher for self-correlations (0.50 ± 0.07) compared 
to correlations with others (0.18 ± 0.04)(t(127) = 46.26, p <.001). It is important to note that the interpretation of 
Kendall’s τ correlation coefficients might differ from the more common Pearson’s r. Although both coefficients 
range from − 1.0 to + 1.0, the absolute value of Kendall’s τ is typically about 1.5 times smaller than Pearson’s r34. 
Thus, the self-correlation values obtained here would indicate moderate to high correlations.

Figure 2c shows the within-session identifiability of each participant. The overall identifiability of the within-
session group was 0.33 ± 0.08, although it was significantly higher for target matches (0.33 ± 0.07) compared to 
non-target matches (0.15 ± 0.07)(t(126) = 6.46., p <.001).

The z-values for differentiability followed a similar pattern (Fig. 2d). Although the average differentiability of 
the within-session group was 3.28 ± 0.66, z-values were significantly higher for target matches (3.35 ± 0.57) than 
for non-target matches (1.87 ± 0.88)(t(126) = 6.12, p <.001).

Individual brains can be identified from their natural frequency fingerprints obtained in 
separate sessions
Having proved that natural frequency maps can be used to identify individuals with data from the same session, 
we aimed to test whether we could also identify individuals with data from separate sessions. Our sample 
consisted of 27 participants who underwent two MEG sessions with an interval of 0 to 1696 days (between-
session group).

Figure 3a shows the Kendall’s τ correlation matrix of the between-session group. In this case, 20 out of 27 
participants were correctly identified (Fig. 3b) and, therefore, the accuracy of the natural frequency fingerprinting 
between sessions was 74.07% (95% CI [59.26, 92.59]). The non-parametric permutation test revealed that, if the 
identity of the participants was randomly shuffled, the highest match rate would be 2/27 (7.41%). Consequently, 
the accuracy obtained in the between-session group was also above chance level (p <.001).

Similar to the within-session results, we also found that the Kendall’s τ correlation was higher for self-
correlations (0.40 ± 0.09) compared to correlations with others (0.22 ± 0.04)(t(26) = 10.09, p <.001) when MEG 
data comes from two different sessions.

The average between-session identifiability was 0.18 ± 0.09 (Fig. 3c). As for the within-session group results, 
we also found that identifiability was higher for target matches (0.21 ± 0.06) compared to non-target matches 
(0.08 ± 0.1)(t(25) = 3.99, p <.001).

Similarly, overall differentiability for the between-session group was 2.05 ± 0.98 (Fig. 3d). Differentiability 
was also higher for target matches 2.44 ± 0.53 than for non-target matches (0.91 ± 1.09)(t(25) = 4.94, p <.001).

Natural frequency fingerprinting remains robust regardless of participants’ inclusion in the 
k-means training set
Figure 4a shows the Kendall’s τ correlation matrix for the between-session group, using the whole-group k-means 
model trained without any data from these participants. Identification accuracy reached 19 out of 27 participants 
(Fig. 4b), corresponding to a fingerprinting accuracy of 70.37% (95% CI [59.26%, 92.59%], identical to the CI 
obtained with the original clustering). The non-parametric permutation test confirmed that the highest match 
rate expected by chance was 2/27 (7.41%), also matching the original analysis. Therefore, fingerprinting accuracy 
remained well above chance level (p <.001), despite training and testing on different participants.
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Natural frequency fingerprinting is robust against time
Data from the between-session group allowed us to explore whether participants’ identification decay over time. 
First, we conducted a Pearson’s linear correlation between elapsed time and self-correlations. This correlation 
did not result statistically significant (r(25) = − 0.017, p =.93), indicating that identifiability does not decrease as 
time between sessions increases (Fig. 5a).

Fig. 3.  Between-session fingerprinting of natural frequencies. (a) Correlation matrix between the natural 
frequency maps obtained from two separate MEG sessions for each participant of the between-session group 
(N = 27). (b) Matrix of correct/incorrect matches. Target matches are represented in green; non-target matches, 
in red. The graph shows that 20/27 individuals were correctly identified. (c) Identifiability of participants 
(Kendall’s τ). Self-correlation of each participant is depicted in light blue; others-correlation (i.e., mean 
correlation of each participant with all other participants) is displayed in gray. Red triangles point to the 
participants that did not match themselves. (d) Differentiability provides a normative metric (z-score) of the 
extent to which the participant’s natural frequency map is distinct from other participants’ maps.
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We then tested whether elapsed time was different for target and non-target matches. We found that the 
number of days between sessions did not significantly differ between target matches (341 ± 445 days) and 
non-target matches (180 ± 287 days)(t(16.59) = 1.09, p =.29, 95% CI [−151, 471])(Fig. 5b). Taken together, these 
results suggest that the time elapsed between recording sessions does not influence identification accuracy and, 
therefore, natural frequency fingerprinting is robust against time.

Figure  5c shows some representative brain maps of natural frequencies obtained from the two separate 
sessions of correctly identified participants. Note the similarity between both maps even in cases where MEG 
recordings are several years apart (e.g., participant 1 or 24). Finally, Fig. 5d illustrates some natural frequency 
maps of individuals that did not match themselves.

Frontal regions show the highest contribution to identifiability
Finally, to identify the voxels with the greatest contribution to individual identification, we performed voxel-wise 
permutations of each voxel and its neighbors across participants in the second part/session’s natural frequency 
maps.

Figure 6a illustrates the negative impact of the permutations on identifiability in the within-session group. 
The strongest effects were observed in both medial and lateral frontal regions, showing a maximum decrease of 
0.68% in mean identifiability.

Similarly, Fig. 6b presents the results for the between-session group, where frontal regions, particularly medial 
areas, exhibited the greatest impact on identifiability, with a maximum decrease of 0.70% in mean identifiability.

Discussion
The present work aimed to adapt the methodology to map the brain’s natural frequencies6 from the group to 
the individual level. To improve the quality of the single-subject maps, we introduced two modifications to the 
original formulation of the algorithm. First, after performing k-means clustering on the entire group, a larger 
number of power spectra (∼1000) were assigned to each cluster centroid at the single-subject level. Second, 
we applied smoothing to the individual brain maps of natural frequencies. To assess the quality of the single-
subject maps, we employed a brain fingerprinting approach. The underlying rationale was that, if individual 
brain patterns of natural frequencies are robust, they could be used to identify a target participant among others. 
Brain fingerprinting was conducted both within and between-sessions, achieving a high degree of accuracy in 
individual identification. Moreover, natural frequency fingerprints proved to be stable over time, even for MEG 
sessions conducted more than four years apart. Taken together, these results demonstrate that the brain’s natural 
frequencies can be reliably estimated at the single-subject level.

Our fingerprinting analysis showed an accuracy of over 95% for recognizing a target participant from two 
halves of the same recording. Accuracy dropped to 74% when the brain maps of natural frequencies came 
from two separate recordings. The lower accuracy values observed in the between-session group might be due 
to changes in brain state between the two sessions, although our results demonstrate that the drop in correct 
identifications is not systematically related with the passage of time. In addition, this could be explained by slight 
differences in co-registration between the first and second MEG sessions. Unlike previous MEG studies, we 

Fig. 4.  Between-session fingerprinting of natural frequencies for participants not included in the whole-group 
k-means training. (a) Correlation matrix between the natural frequency maps obtained from two separate 
MEG sessions for each participant of the between-session group (N = 27). (b) Matrix of correct/incorrect 
matches. Target matches are represented in green; non-target matches, in red. The graph shows that 19/27 
individuals were correctly identified.
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Fig. 5.  Fingerprinting of natural frequencies is not affected by the interval between sessions. (a) Absence of 
a significant correlation between self-correlation Kendall’s τ coefficients and days elapsed between sessions. 
Green indicates participants whose first session matched their second, while red indicates those whose sessions 
did not match. The trend line is shown in black. The letter P (participant) and a number identifies specific 
individuals, which are further described in the next panels. (b) Absence of significant differences in the time 
elapsed between sessions for correct matches (in green) Vs. incorrect matches (in red). Means are represented 
by black horizontal lines; blue lines represent the medians. (c) Examples of correct matches. Natural frequency 
brain maps for the two sessions of participants P1, P11, and P24 (> 4 years, > 4 months, > 2 years elapsed 
between sessions, respectively). (d) Examples of incorrect matches. Brain maps of participants P2, P6, and P18 
(7 days, > 2 years, > 3 months elapsed between sessions, respectively). For simplicity, only the lateral view of the 
left hemisphere and the medial view of the right hemisphere are shown.
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provided results at a voxel-by-voxel level. This substantially enhances the spatial resolution of the individual brain 
maps of natural frequencies and avoids the use of predefined anatomical parcellations, though at the expense 
of increased sensitivity to co-registration. Importantly, we also tested whether fingerprinting accuracy might 
have been affected by the inclusion of all the participants in the k-means training set. Our results showed that 
the between-session identification accuracy remained in the same range (70%) even when training and testing 
the clustering model on different individuals. These findings indicate that the trained model generalizes well 
to unseen individuals, supporting the validity of our approach and its potential for application to independent 
datasets.

Overall, our identification accuracy results are in line with those found in related research. For example, in 
their seminal work, Finn et al.15 used individual functional connectivity profiles derived from resting fMRI data 
recorded on two consecutive days to identify participants, achieving a success rate of over 92%. MEG studies show 
more variable results. For example, Colenbier et al.19 attained modest identification accuracy of approximately 
60% when attempting to identify individuals based on the spectral power of resting-state oscillatory activity, 
although identifiability raised up to 100% when participants were engaged in explicit tasks. Da Silva Castanheira 
et al.20 achieved success rates of around 95% using both spectral and functional connectivity features within 
the same MEG session. When comparing participants who underwent a second MEG session with a gap of up 
to 2.8 years, identification accuracy for functional connectomes decreased slightly to 89%, whereas spectral 
fingerprinting remained robust, with higher accuracy scores of nearly 98%.

Identifiability and differentiability are measures of the reliability in identifying a participant within the 
cohort and their individual saliency, respectively. Our identifiability results of about 33% and 18% for within- 
and between-session fingerprinting and differentiability of 3.28–3.35 are also comparable with findings from 
previous MEG studies19,20,22. Importantly, we did not observe any significant correlation between identifiability 
and the number of days between MEG sessions, in agreement with Da Silva Castanheira et al.20. This implies 
that intrinsic oscillatory activity is an inherent and stable feature of brain function, unique to each individual. It 
would be interesting to explore the temporal boundaries of this stability in future research, as the longest interval 
between the two sessions in our data was 4.6 years.

Our study brings forward two important innovations in the field of MEG fingerprinting. First, we used 
natural frequencies to recognize individuals, contrasting with previous research that focused on spectral 
power or functional connectivity measures, whether amplitude- or phase-based19–22. Thus, we shifted the focus 
from power/phase on the y-axis to frequency on the x-axis. Our approach emphasizes frequency itself as a 
distinctive identifying feature, demonstrating that the typical oscillatory frequency of each brain region is also a 
stable marker for individual identification. Importantly, the algorithm to obtain the brain’s natural frequencies 
provides precise values, making the use of frequency bands unnecessary6. Frequency band boundaries are 
usually established based on conventional criteria, rather than reflecting the brain’s natural oscillatory patterns, 
which might lead to misclassification of similar oscillations across species, life stages, or even different states 
within the same individual35–37. Additionally, the brain pattern of natural frequencies is a relatively simple index 
of brain function, since it involves only one value per voxel (1925 elements in this study, compared to the up to 
30,000 used in the spectral fingerprinting of previous research)(e.g., Da Silva Castanheira et al.20). Although this 
is not an advantage in itself, it indicates that a simple metric can yield good identification results, which could be 
combined with others to further improve identification (e.g., natural frequency along with mean spectral power 
at the natural frequency). Furthermore, participant discrimination could likely be achieved with a smaller subset 
of voxels, as adjacent voxels often convey redundant information. In particular, the voxel set could potentially 
be restricted to frontal regions, which contributed most to individual identification, consistent with previous 

Fig. 6.  Voxel-wise permutation impact on identifiability. (a) Reduction in identifiability following voxel-wise 
permutations in the within-session group, with the strongest effects observed in frontal areas. (b) Reduction in 
identifiability following voxel-wise permutations in the between-session group, with the greatest impact in the 
medial frontal region.
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findings14–16. This may be explained by the higher inter-individual variability in the natural frequencies of 
frontal regions, which makes them more informative for fingerprinting.

The second innovation is the voxel-level resolution of our brain maps. Previous studies have often parcellated 
the brain into regions of interest to reduce the number of features used for fingerprinting (e.g., 68 regions in 
Da Silva Castanheira et al.20, or 148 regions in Sareen et al.22). However, parcellation is not trivial when applied 
to brain fingerprinting. Finn et al.15 showed that, in terms of identification rates, network definitions based on 
high-resolution parcellation (268 regions) outperformed those based on fewer regions, which may average out 
individual variability. Moreover, Capilla et al.6 found that the regional organization of intrinsic oscillatory brain 
activity does not completely overlap with typical anatomical parcellations, as some abrupt transitions in natural 
frequencies lack anatomical correspondence. Therefore, parcellation, if used, should rely on functional rather 
than anatomical criteria. Future research could develop a functional parcellation based on the brain’s intrinsic 
oscillatory activity, mirroring the parcellation of the brain derived from the resting-state fMRI functional 
connectome38,39.

In conclusion, this study demonstrates that it is possible to obtain single-subject brain maps of natural 
frequencies that are robust enough to reliably identify a specific individual. The in-depth analysis of oscillatory 
frequencies adds a new layer to the more commonly studied power and phase, potentially offering valuable 
insights into the brain’s communication code. Furthermore, the ability to generate brain maps of natural 
frequencies at the individual level represents a significant advancement, as access to single-subject data is essential 
for conducting statistical analyses. This approach may also pave the way for detecting patterns of intrinsic 
oscillatory activity that deviate from normative patterns and could be indicative of particular pathologies, the 
so-called oscillopathies36.

Data availability
The data used this study are available in OMEGA: The Open MEG Archive (doi:10.1016/j.neuroim-
age.2015.04.028).

Code availability
All codes for preprocessing and data analysis are available at https://github.com/necog-UAM.
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