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This study aimed to investigate the functionality of the prefrontal cortex in patients with unipolar 
depression (UD) and bipolar depression (BD) using functional near-infrared spectroscopy (fNIRS) 
during a verbal fluency task (VFT). Additionally, it evaluated the reliability of fNIRS as a diagnostic 
tool for cognitive assessments through a deep learning approach using one-dimensional convolutional 
networks. The study included 73 patients with UD, 59 patients with BD, and 40 healthy controls 
(HC). Hemodynamic responses in the prefrontal cortex were recorded using fNIRS during the VFT. 
Differences in oxygenated hemoglobin concentrations across the three groups were compared, and 
receiver operating characteristic (ROC) curves were generated for each region of interest. Both UD 
and BD patients demonstrated significantly reduced activation in the prefrontal cortex compared 
to healthy controls. UD patients showed notably lower activation values than BD patients in the 
dorsolateral prefrontal cortex, frontopolar prefrontal cortex, left orbitofrontal cortex, and left 
ventrolateral prefrontal cortex. The highest classification accuracy (79.57%) was observed in the left 
orbitofrontal cortex. The UD group had the largest area under the ROC curve (AUC = 0.99) in the left 
orbitofrontal cortex, while the BD group had the largest AUC (0.91) in the right dorsolateral prefrontal 
cortex. The HC group exhibited the largest AUC (0.73) in the same region. The DLPFC, FPC, lOFC, and 
lVLPFC may serve as biomarker regions for differentiating UD from BD. The combination of fNIRS and 
the VFT shows promise as a supplementary diagnostic tool for mental health disorders.
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Bipolar disorder (BD) is a chronic, recurrent condition primarily characterized by fluctuations in mood 
and energy levels1,2. Depression often presents as the initial symptom, accounting for approximately 75% of 
symptomatic episodes3. The severity and nature of bipolar depression often resemble those of unipolar depression 
(UD)3–5. Notably, around 69% of individuals with BD are initially misdiagnosed with UD. On average, patients 
consult four different doctors before receiving an accurate diagnosis of BD, which poses significant challenges 
for both patients and their families6. In the first five years after a UD diagnosis, the conversion rate to BD is 
approximately 2.5% annually, dropping to 0.5% per year thereafter7. Consequently, this study focuses on UD 
patients with a history of recurrent depressive episodes lasting more than five years. The annual suicide rate 
among BD patients is approximately 0.9%, compared to just 0.014% in the general population, and an estimated 
15–20% of individuals with BD die by suicide. This underscores the need for early diagnosis and treatment to 
improve patient outcomes3.
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Distinct pathophysiological mechanisms differentiate BD from UD, including variations in brain structure, 
inflammation levels, and brain function8. Current diagnoses for these disorders rely on the DSM-5 and ICD-10 
classifications9,10. However, identifying objective biomarkers that reflect the inherent characteristics of these 
disorders is crucial for accurate differentiation between UD and BD11.

Previous research has revealed that BD patients exhibit mitochondrial dysfunction and metabolic decline 
in the prefrontal cortex (PFC)12. A In contrast, patients with major depressive disorder (MDD) demonstrate 
dysregulation in prefrontal circuits, with structural and functional changes in the PFC playing a key role in 
mood disorders13. Redlich et al. found that UD patients exhibited reduced activation in both the nucleus 
accumbens (NAC) and the PFC compared to BD patients14. While functional magnetic resonance imaging 
(fMRI) is the predominant tool used in cognitive studies of mood disorders, it is costly, requires complex 
operational maintenance, and is highly sensitive to head movements, potentially compromising data quality. 
These limitations hinder the broader adoption of fMRI. In light of these challenges, functional near-infrared 
spectroscopy (fNIRS) offers a promising alternative for examining cognitive and functional brain changes in BD 
and UD patients15.

The fNIRS is an optical neuroimaging technique that uses near-infrared light to track changes in 
concentrations of oxygenated hemoglobin (Oxy-Hb) and deoxygenated hemoglobin (Deoxy-Hb) to investigate 
brain function16. Compared to electroencephalography (EEG) or functional magnetic resonance imaging (fMRI), 
functional near-infrared spectroscopy (fNIRS) offers unique advantages. Its relatively portable equipment allows 
for use in various environments, and it is safe, non-invasive, unrestrictive, quiet, motion-tolerant, and cost-
effective17. fNIRS has been proven effective in detecting brain function and serves as a viable alternative for 
patients unable to undergo fMRI. When conducting brain function assessments on individuals with BD and 
UD, physical movement may occur due to emotional instability or restlessness. However, fNIRS demonstrates a 
high tolerance to motion artifacts. Additionally, given the psychologically sensitive and vulnerable nature of BD 
and UD patients, fNIRS only requires probe placement on the scalp surface, avoiding discomfort or potential 
risks.fNIRS is particularly effective in measuring oxygenation changes in the prefrontal cortex during cognitive 
tasks18 a region critical for cognitive control19. The prefrontal cortex is closely associated with stress perception, 
emotional regulation, and executive function20. Executive function refers to the ability to plan, make decisions, 
and self-regulate in the face of complex tasks21. Cognitive impairments, especially those affecting executive 
function, are commonly observed in BD and MDD22,23.

Among emotional and cognitive tasks, the verbal fluency task (VFT) is widely considered one of the most 
effective measures for assessing the control, planning, activation, and monitoring processes involved in emotional 
regulation24. During the VFT, participants are asked to generate as many unique words as possible within given 
categories (phonemic or semantic) under time constraints25. This task requires the initiation of verbal behaviors, 
strategic retrieval of verbal information, and self-monitoring to avoid intrusions and repetitions26. The VFT has 
been extensively used in fNIRS research to explore functional cognitive impairments.

Despite the growing body of research on BD and UD, few studies have examined brain activation patterns 
in these patients during fNIRS-VFT tasks. One study observed that BD patients exhibited decreased activation 
in the bilateral ventrolateral prefrontal cortex and anterior temporal cortex compared to healthy controls27. 
Additionally, Feng et al. found that BD patients showed lower activation in the left inferior frontal gyrus during 
the VFT, while UD patients demonstrated reduced activation in the left dorsolateral prefrontal cortex, bilateral 
ventrolateral prefrontal cortex, and bilateral orbitofrontal cortex15. Although these studies relied heavily on 
manual feature extraction, recent advancements in deep learning offer more efficient and accurate approaches. 
To improve the differentiation between BD and UD, this study applies a supervised learning approach using a 
one-dimensional convolutional neural network (1D-CNN), which captures temporal fluctuations in emotional 
states28. By extracting key features associated with emotional disorders, our model enhances the accuracy of 
distinguishing BD from UD29 thereby providing a more robust foundation for clinical diagnosis.

We therefore hypothesized that abnormalities in prefrontal area functioning may lead to enhanced negative 
emotions in BD and UD, and that abnormal activation in patients with BD may be emotional state specific, 
with activation showing a biphasic dynamic imbalance.This study utilizes fNIRS to investigate prefrontal cortex 
activation in UD and BD patients, as well as healthy controls, during a verbal fluency task. By integrating deep 
learning techniques with 1D-CNN analysis, we aim to identify specific brain regions or activation patterns that 
can differentiate between UD and BD, providing a more objective foundation for clinical diagnosis.

Materials and methods
Participants
This study included 172 patients treated at Huzhou Third People’s Hospital between November 2022 and August 
2024. The inclusion criteria were as follows: (1) meeting diagnostic criteria for bipolar disorder with depressive 
episodes or recurrent depressive disorder according to the Diagnostic and Statistical Manual of Mental 
Disorders, Fifth Edition (DSM-5), confirmed by two psychiatrists; (2) age range of 18 to 60; (3) a Hamilton 
Depression Rating Scale (HAMD-17) score above 17; (4) a Young Mania Rating Scale (YMRS) score below 7; (5) 
right-handedness; and (6) at least a primary education level. Exclusion criteria included: (1) presence of other 
psychiatric disorders, such as schizophrenia or dementia; (2) a significant medical history; (3) recent receipt 
(within the past month) of electroconvulsive therapy (MECT) or repetitive transcranial magnetic stimulation 
(rTMS); (4) history of substance or alcohol abuse; (5) diagnosis of a first depressive episode; and (6) pregnancy 
or breastfeeding. Additionally, 40 healthy controls (HC) matched for gender, age, and education level were 
recruited, with HAMD-17 scores below 7.

This study was approved by the ethical review committee of Huzhou Third People’s Hospital, and informed 
consent was obtained from all participants prior to inclusion.
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Verbal fluency task
The verbal fluency task (VFT) is designed to assess vocabulary knowledge, linguistic creativity, and executive 
function30. The test consists of three phases: a 30-second preparation rest period, a 60-second formal task period, 
and a 70-second recovery rest period. During the preparation and recovery phases, participants are instructed 
to verbally repeat the numbers one through five. In the formal task phase, participants are prompted to generate 
as many words as possible using the Chinese characters “hua,” “he,” and “jiang,” with a 20-second time limit per 
character. Participants remain seated and minimize movements throughout the test to ensure accuracy of the 
results (Fig. 1).

fNIRS measurement
In this study, we used the ETG-ONE functional near-infrared spectroscopy (fNIRS) imaging device from 
Hitachi, Japan, to measure brain activity. This device operates by emitting near-infrared light at wavelengths of 
695 nm and 830 nm. We configured 22 channels, consisting of 8 emitter probes and 7 receiver probes, arranged 
in a 3 × 5 layout over the frontal lobe region. The distance between each emitter and receiver probe was set to 3 
centimeters, with measurement points positioned 2–3 centimeters subcutaneously, corresponding to the cortical 
surface31 at a sampling rate of 10 Hz. Probe placement followed the EEG 10–20 system, initially positioning the 
central probe of the bottom row at the brow ridge and extending the remaining channels from the brow ridge 
to the pinna. Based on Brodmann area distributions, channels were assigned to specific prefrontal regions: the 
dorsolateral prefrontal cortex (DLPFC) included channels 1, 2, 3, 4, 5, 9, 14, and 18; the frontopolar prefrontal 
cortex (FPC) included channels 6, 8, 10, 11, 12, and 13; the orbitofrontal cortex (OFC) included channels 15, 
17, 20, and 21; and the ventrolateral prefrontal cortex (VLPFC) included channels 19 and 22 (Fig. 2). Cortical 
activation was recorded during the verbal fluency task, and concentrations of oxygenated and deoxygenated 
hemoglobin in the cortex were indirectly calculated along with their differential concentrations, based on the 
Beer-Lambert law.

Data analysis
Data analysis was conducted using SPSS 26.0 and MATLAB. Quality control of the fNIRS data was performed 
using the NIRS_KIT toolbox (MATLAB 2021a)32 to check for physiological noise, time-domain, frequency-
domain, or spatial features of head motion artefacts. Preprocessing was then initiated.The initial preprocessing 
step involved detrending the raw data. Motion artifacts were then corrected using the TDDR method, followed 

Fig. 2.  Distribution of fNIRS channels and corresponding brain regions.

 

Fig. 1.  Verbal fluency task.
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by the application of a third-order IIR Butterworth bandpass filter (0.001 to 0.1 Hz) to remove irrelevant low- 
and high-frequency components. After filtering, optical data signals detected by the photodetectors were 
converted into oxygenated hemoglobin (Oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) concentrations 
using an enhanced Beer-Lambert law. Only Oxy-Hb was analyzed, as prior studies suggest that Oxy-Hb more 
accurately reflects changes in regional cerebral blood flow compared to Deoxy-Hb33. the Oxy-Hb signal is a 
more direct reflection of cognitive activation than the Deoxy-Hb signa34 and therefore Oxy-Hb levels have been 
used to compute cortical activity to analyze fNIRS data35.

Cortical activation was indicated by increases in Oxy-Hb, calculated by subtracting the mean Oxy-Hb values 
during the resting periods before and after the task from the average Oxy-Hb during the task.

Data counts are reported as frequencies or percentages (%), with chi-square tests used for intergroup 
comparisons. The Shapiro-Wilk test was used to assess normality for quantitative data. Normally distributed 
data is presented as mean ± standard deviation (`x ± s) and analyzed using one-way ANOVA for intergroup 
comparisons. Non-normally distributed data is presented as the median and interquartile range [M(P25, P75)], 
with the Kruskal-Wallis rank-sum test applied for intergroup comparisons. Bonferroni correction was used for 
multiple comparisons. Statistical significance was set at P < 0.05, with a 95% confidence interval (CI) for all 
analyses.

Deep learning approaches
During data preprocessing, we performed data cleaning and standardization on the collected dataset. To 
enhance dataset diversity and robustness, we applied data augmentation techniques, including noise addition 
and Gaussian smoothing. We have added the following information to the revised manuscript: A combined 
strategy of Gaussian smoothing (σ = 0.1) and adding Gaussian noise (µ = 0, σ = 0.02) was used in the data 
enhancement stage, and the degree of smoothing and noise intensity was controlled by adjusting the sigma 
parameter. The time series are dynamically truncated/filled during data loading to ensure that all samples 
are uniformly of preset sequence length (hyperparameters determine the specific value). The preprocessing 
process is completely encapsulated in the fNIRSDataset class, and the batch data loading is realized through 
DataLoader, which is designed to ensure the reproducibility of the experiment and the standardization of the 
engineering implementation. In terms of model training optimization, a dynamic adaptive hyper-parameter 
tuning system is constructed: the AdamW optimizer (initial learning rate 0.0002, weight decay 0.001) is used 
to balance the gradient updating and regularization constraints, the validation loss is monitored in real-time 
through the ReduceLROnPlateau scheduler, and when the loss stagnates in 5 rounds, it automatically attenuates 
the learning rate by 50%, and a 40-round early A 40-round early stopping mechanism is set to prevent invalid 
training. During the training process, a five-fold overfitting prevention and control strategy is implemented: (1) 
online data enhancement with randomly perturbed input signals; (2) introduction of 0.6 probability dropout 
at the fully connected layer; (3) built-in L2 weight constraints in the optimizer; (4) dynamic partitioning of the 
validation set by five-fold cross-validation; and (5) real-time termination of the overfitting tendency by early 
stopping mechanism. The validation system adopts a two-layer validation framework, where the outer layer 
divides the training set and test set by 4:1, and the inner layer refines the training set into a training subset and 
a validation subset by 5-fold cross-validation. Two hundred fifty rounds of iterative training are performed to 
ensure parameter convergence, and the final model demonstrates a stable classification performance on the 
independent test set. All the above experiments were conducted based on the Pytorch platform.

The model uses a three-layer one-dimensional convolutional neural network (1D-CNN) architecture. The 
first convolutional layer has a kernel size of 9, with 22 input channels and 64 output channels. The second layer 
employs a kernel size of 5, with 64 input channels and 128 output channels, and the third layer features a kernel 
size of 3, with 128 input channels and 256 output channels. Following each convolutional layer, we applied the 
ReLU activation function and batch normalization to enhance training stability. Each convolutional layer is also 
followed by a max pooling layer with a kernel size of 2 and a stride of 2, reducing the spatial dimensions of the 
feature maps.

After the 1D-CNN processes the input, we concatenated the extracted features with integral values and 
passed them into a fully connected layer. The first fully connected layer has an input dimension of 39,958 and 
an output dimension of 256, while the second layer has an input dimension of 256 and an output of 128. Each 
fully connected layer includes the ReLU activation function, batch normalization, and dropout to stabilize 
training and prevent overfitting. Finally, a Softmax function converts the output into a probability distribution 
corresponding to the three classes: healthy, unipolar depression, and bipolar depression.

The loss function of the model is based on cross-entropy and optimized using the AdamW algorithm with 
a learning rate of 0.0002 and a weight decay of 0.001. The training parameters consist of 32 batches and 250 
calendar hours, with the early stopping patience set to 40 calendar hours. We used the KFold cross-validation 
method to divide the dataset into five folds. For each fold, the training set was randomly divided into a training 
subset and a validation subset. Models are trained on the training subset, losses are computed via forward 
propagation, and parameters are updated via backpropagation. Key performance metrics (e.g., accuracy on 
the validation subset) are monitored, and the learning rate is adjusted, or early stops are triggered using the 
ReduceLROnPlateau scheduler.

For model validation, we select 30 random seeds for experiments, and 20% of the data from each random 
seed is extracted as the test set, while the remaining 80% is divided into the training and validation sets by the 
leave-one-out method to ensure that the test set does not overlap with the training and validation sets at all. 
Through multiple training and validation, we calculate various performance metrics (e.g., accuracy, recall, F1 
value, etc.) of the model on the training, validation, and test sets and take the average value of these metrics in 
order to evaluate the performance of the model on the training data more comprehensively and stably and to 
avoid bias in the evaluation results due to the randomness in the division of the dataset.
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Through multiple sets of experiments, we explored the effects of different convolutional kernel sizes (e.g., 3, 
5, 7, 9, 11), step sizes (1, 2), the number of convolutional layers (1 to 5), and the number of neurons in the fully-
connected layer (32, 64, 128, 256) on the effect of feature extraction and the model’s ability to learn complex 
patterns. These experiments helped us to determine the optimal combination of parameters, which improved 
the overall performance of the model.

Results
Demographic and clinical characteristics
No significant gender differences were observed among the UD patients, BD patients, and healthy participants 
(χ² = 0.021, p = 0.989), nor were there significant differences in age (Z = 0.257, p = 0.880), BMI (Z = 1.742, p = 
0.418), duration of illness (Z = 0.570, p = 0.752), and years of education (Z = 1.853, p = 0.173). However, HAMD 
scores showed a significant difference across the three groups (Z = 94.088, p < 0.001) (Table 1).

Differences in prefrontal cortex activation among groups during the VFT
A one-way ANOVA was conducted on the activation values across the three groups. The results revealed 
significant differences in oxyhemoglobin concentration changes among the three groups across eight brain 
regions during the VFT (Table 2). Figure 3 presents the post-hoc comparisons across these regions, indicating a 
notable reduction in prefrontal cortex activation in both UD and BD patients compared to healthy participants 
(Fig. 3A-H). Additionally, UD patients showed significantly lower activation values than BD patients in the 
DLPFC, FPC, lOFC, and lVLPFC regions (Fig. 3A, B, C, D, F, H).

Classification (Deep Learning)
We conducted 30 randomized experiments on each brain region to assess model performance on the test set. 
The results, summarized in Table  3, show that the highest classification accuracy reached 79.57% in the left 
orbitofrontal cortex (lOFC), while the lowest accuracy was 61.64% in the left ventrolateral prefrontal cortex 
(lVLPFC).

Using the fNIRS classification results, we plotted the ROC curve for diagnosing UD across eight brain regions 
(Fig. 4). During the VFT task, the left orbitofrontal cortex (lOFC) exhibited the highest area under the curve 
(AUC) for UD patients, with an AUC of 0.99. The optimal cutoff value was 0.89, resulting in a sensitivity of 100% 
and a specificity of 89% (Table 4).

The fNIRS classification results were used to plot the ROC curve for diagnosing BD across eight brain regions 
(Fig. 5). During the VFT task, the right dorsolateral prefrontal cortex (rDLPFC) showed the highest area under 
the curve (AUC) for BD patients, with an AUC of 0.91. The optimal cutoff value was 0.66, achieving a sensitivity 
of 78% and a specificity of 89% (Table 5).

Region of interest F P ŋ2
p

rDLPFC 37.205 < 0.001 0.291

lDLPFC 33.155 < 0.001 0.282

rFPC 35.122 < 0.001 0.291

lFPC 40.851 < 0.001 0.324

rOFC 42.083 < 0.001 0.340

lOFC 58.613 < 0.001 0.391

rVLPFC 37.353 < 0.001 0.306

lVLPFC 34.200 < 0.001 0.274

Table 2.  Analysis of variance of changes in oxygenated hemoglobin concentration in eight brain regions in 
three groups.

 

Diagnostic groups UD(n = 73) BD(n = 59) HC(n = 40) Z/χ² a p

Age (years) 50(41, 57.50) 50(37, 57) 48.5(39, 58) 0.257 0.880

Gender (F/M) 61/12 49/10 33/7 0.021 0.989

BMI 22.66(20.81,24.65) 22.86(20.03,23.73) 22.88(21.41,24.64) 1.742 0.418

Duration of illness(moth) 70(65,78) 75(66,82) 0 0.570 0.752

Education (years) 11(6.50,15) 12(6,12) 12(9,14.25) 1.853 0.173

HAMD 20(18, 22) 20(18, 22) 1(0, 2) 94.088 0.000b

Table 1.  Comparison among three groups concerning demographic data and clinical scales.details. UD, 
unipolar depression group; BD, bipolar depression group; HC, healthy control group; BMI, body mass 
index; HAMD, Hamilton Depression Scale. a: For gender, we utilize the chi-square test, while for age, BMI, 
disease duration, years of education, and HAMD scores, we employ the rank-sum test. b: Through Bonferroni 
correction, post hoc comparisons indicated UD vs. HC, p < 0.001; BD vs. HC, p < 0.001; UD vs. BD, p = 1.000.
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Region of interest Three-class classification

rDLPFC 70.00%

lDLPFC 66.97%

rFPC 72.88%

lFPC 75.34%

rOFC 76.13%

lOFC 79.57%

rVLPFC 67.56%

lVLPFC 61.41%

Table 3.  The three-class classification accuracy for each brain region.

 

Fig. 3.  In the task of verbal fluency, significant differences emerged in the activation of the prefrontal cortex 
among the three groups. (A) Box plots of Oxy-Hb variations in the right dorsolateral prefrontal cortex for 
the three groups. (B) Box plots of Oxy-Hb variations in the left dorsolateral prefrontal cortex for the three 
groups. (C) Box plots of Oxy-Hb variations in the right anterior prefrontal cortex for the three groups. (D) Box 
plots of Oxy-Hb variations in the left anterior prefrontal cortex for the three groups. (E) Box plots of Oxy-Hb 
variations in the right orbitofrontal cortex for the three groups. (F) Box plots of Oxy-Hb variations in the left 
orbitofrontal cortex for the three groups. (G) Box plots of Oxy-Hb variations in the right ventrolateral cortex 
for the three groups. (H) Box plots of Oxy-Hb variations in the left ventrolateral cortex for the three groups.
(**p < 0.01,***p < 0.001).
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ROC curves were generated for diagnosing healthy controls (HC) across eight cortical regions using fNIRS 
classification results (Fig. 6). During the VFT task, the right dorsolateral prefrontal cortex (rDLPFC) exhibited 
the highest area under the curve (AUC) for HC, with an AUC of 0.98. The threshold value was set at 0.83, 
achieving a sensitivity of 83% and a specificity of 100% (Table 6).

Region of interest AUC Sensitivity Specificity Oxy-Hb cut-off point

rDLPFC 0.95 0.92 0.84 0.77

lDLPFC 0.86 1.00 0.63 0.63

rFPC 0.97 0.92 1.00 0.92

lFPC 0.98 0.92 1.00 0.92

rOFC 0.95 0.84 0.95 0.79

lOFC 0.99 1.00 0.89 0.89

rVLPFC 0.83 0.92 0.74 0.66

lVLPFC 0.87 0.69 0.89 0.59

Table 4.  During the VFT period, the AUC for distinguishing UD patients from the other two groups in each 
prefrontal area, along with the corresponding sensitivity, specificity, and Oxy-Hb cut-off points.

 

Fig. 4.  ROC curve for Class UD.

 

Scientific Reports |        (2025) 15:21257 7| https://doi.org/10.1038/s41598-025-05896-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Discussion
This study aimed to explore the potential of fNIRS in distinguishing patients with unipolar depression (UD) from 
those with bipolar disorder (BD). By combining fNIRS and a verbal fluency task (VFT), we assessed differences 
in prefrontal cortex (PFC) activation patterns across three groups—UD, BD, and healthy controls—using a 
one-dimensional convolutional neural network (1D-CNN) deep learning approach. Our findings demonstrate 
distinct PFC activation patterns across the groups during the fNIRS-VFT task, supporting the use of fNIRS as an 
auxiliary diagnostic tool to improve diagnostic accuracy for UD and BD in clinical settings.

Region of interest AUC Sensitivity Specificity Oxy-Hb cut-off point

rDLPFC 0.91 0.78 0.89 0.66

lDLPFC 0.77 0.62 0.89 0.51

rFPC 0.91 1.00 0.79 0.79

lFPC 0.89 0.92 0.79 0.71

rOFC 0.82 0.69 0.84 0.53

lOFC 0.85 0.69 0.89 0.59

rVLPFC 0.75 0.46 0.89 0.36

lVLPFC 0.77 0.85 0.58 0.43

Table 5.  During the VFT period, the AUC for distinguishing BD patients from the other two groups in each 
prefrontal area, along with the corresponding sensitivity, specificity, and Oxy-Hb cut-off points.

 

Fig. 5.  ROC curve for Class BD.
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Our study presents three main findings:
First, both UD and BD patients showed significantly reduced PFC activation compared to healthy 

participants, consistent with prior research. For example, previous studies using fNIRS reported that BD patients 
exhibit lower average changes in oxy-Hb during VFTs compared to healthy controls, with reduced bilateral 
DLPFC activity positively correlated with depression severity36. Similar findings have shown that UD patients 
demonstrate significantly lower oxyhemoglobin levels in both the prefrontal cortex and temporal lobes during 
VFT tasks relative to healthy participants15,37,38.This may be due to the fact that the VFT assesses vocabulary 

Region of interest AUC Sensitivity Specificity Oxy-Hb cut-off point

rDLPFC 0.98 0.83 1.00 0.83

lDLPFC 0.83 0.33 1.00 0.33

rFPC 0.76 0.50 1.00 0.50

lFPC 0.69 0.50 0.96 0.46

rOFC 0.94 0.83 0.88 0.72

lOFC 0.92 0.67 0.92 0.59

rVLPFC 0.89 0.67 0.88 0.55

lVLPFC 0.70 0.17 0.96 0.13

Table 6.  During the VFT period, the AUC for distinguishing HC group from the other two groups in each 
prefrontal area, along with the corresponding sensitivity, specificity, and Oxy-Hb cut-off points.

 

Fig. 6.  ROC curve for Class HC.
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production, executive ability, and cognitive flexibility39 and the onset of affective disorders affects mood, and 
cognition40 so that patients with affective disorders are imaged differently than healthy individuals on the fNIRS. 
Prior to the prevalence of fNIRS, studies on magnetic resonance also demonstrated limited activation of brain 
regions during the Stroop task in patients with bipolar disorder compared to healthy subjects41 and reduced 
dynamic functional connectivity between the posterior cingulate cortex and the medial prefrontal cortex in 
patients with bipolar disorder during the VFT task42. Magnetic resonance imaging also revealed an imbalance 
between left and right prefrontal activation in UD patients during emotion judgments43and a decrease in 
prefrontal activation during the VFT44. This may be because glutamate is the main excitatory neurotransmitter 
in the cerebral cortex that coordinates vascular and metabolic responses to neuronal activity behind changes 
in functional imaging signals45. Patients with mood regulation disorders-bipolar disorder and depression-have 
elevated levels of glutamate in the frontal cortex, and the frontal glutamatergic system is disturbed thereby 
affecting brain function46. Conversely, prefrontal activation is deficient, the diminution of prefrontal regulation, 
and the limbic brain is hypothesized to be dysregulated, leading to extreme moods such as mania, depression, 
and mixed states47.

Second, UD patients showed notably lower activation values in the DLPFC, FPC, lOFC, and lVLPFC regions 
compared to BD patients. Both the VLPFC and DLPFC play key roles in emotional regulation48–50 with the 
VLPFC particularly involved in the downregulation of negative emotions51. Compared to the right VLPFC, 
feedback from the left VLPFC is associated with enhanced self-regulation capabilities and improved emotional 
control across the frontal lobe52. Increased DLPFC activation has been linked to reduced subjective social 
distress53. The orbitofrontal cortex is functionally connected to brain regions such as the amygdala, hippocampus, 
and dorsolateral prefrontal lobe, and is responsible for receiving sensory and emotional input signals related 
to decision-making behaviors54  reward expectancy55  impulsivity, and other psychological activities. Reduced 
OFC function impairs decision-making and emotional processing, and may affect impulsivity in depressed and 
suicidal individuals56. Magnetic coimaging studies of adolescent bipolar depressed patients with suicidal behavior 
found reduced volume in the left orbitofrontal cortex and that the reduced volume was negatively correlated 
with suicide-to-mortality rates57. The MDD and BD groups had reduced resting-state functional connectivity 
in the left orbitofrontal cortex and the left anterior cingulate cortex58. Orbital frontal cortex-hippocampus 
(OFC-HPC) circuits were noted to mediate the remission of depression in a study on EEG59. The FPC, among 
the densest cortical regions, is integral to complex social, emotional, and cognitive processes and coordinates 
DLPFC and VLPFC integration60,61. Imaging studies have noted a reduction in grey matter volume in the FPC 
of UD patients62. Kawano found a negative correlation between cerebral blood flow in the FPC and depressive 
symptom severity, suggesting the FPC as a potential biomarker region for depression severity63. Prior studies 
indicated lower hemodynamic activation in the VLPFC of UD compared to BD patients15 though these studies 
often did not distinguish between first-episode and recurrent depression. Other research has noted differences 
in activation between BD and UD in the left FPC and Broca’s area64. For instance, Tran’s study found that BD 
patients displayed greater activation in the VLPFC and right FPC than UD patients65. Using a VFT paradigm, 
Liu and colleagues reported activation differences in lateral and orbitofrontal PFC regions between UD and 
BD patients66. The above study partially agrees with our findings, suggesting that bipolar-depressed patients 
have better activation patterns. For patients with UD and BD there are differences in the performance of brain 
structures under cognitive tasks may be due to the heterogeneity of mood disorders and the impact of current 
emotional states on cognitive performance47. Although the patients selected for this study were in depressive 
episodes, patients with BD had more fluctuating mood states throughout the illness, and this heterogeneity may 
be precisely reflected in the activation patterns15.

Third, to the best of our knowledge, studies combining MRI and pattern recognition techniques to explore 
biomarkers of psychiatric disorders have grown substantially in recent years. In a study of resting-state fMRI data 
from 46 patients with MDD and 57 HCs based on the multivariate pattern analysis (MVPA) learning method, 
an 86.4% correct classification rate was found67  and pattern classification analysis using the support vector 
machine (SVM) method was 86% accurate in distinguishing between BD and UD68. BD and UD in an emotional 
stimulus task with multivariate pattern analysis produced a significant classification rate of 72%69. However, 
these do not involve the training of network structures as complex as deep learning, so we applied a novel deep 
learning approach using 1D-CNNs to classify fNIRS data, which significantly enhances fNIRS data classification 
by automatically extracting complex features, thereby improving classification accuracy. Deep neural networks 
capture nonlinear relationships among brain regions, providing greater robustness and generalizability in multi-
class classification tasks. In this study, the three-class classification task achieved an accuracy of 79.57% in the 
lOFC, a critical region in cognitive processes such as behavioral inhibition, decision-making, and emotional 
regulation15,70. Further analysis revealed that, during the VFT task, the lOFC was the most effective region in 
diagnosing UD patients, with an AUC of 0.99. Similarly, the rDLPFC demonstrated high diagnostic efficacy for 
BD patients (AUC = 0.91) and for identifying healthy controls (AUC = 0.98). These findings indicate the high 
accuracy of our machine learning models in classifying patients with these disorders, underscoring the value 
and reliability of fNIRS technology as a clinical aid in the diagnosis of psychiatric disorders, and by providing 
real-time, noninvasive data on neural activity, it can complement the subjective limitations of the DSM-5 and 
the Structured Interview in terms of both the quantification of biomarkers and the dynamic monitoring of 
symptoms.

Limitations and future research
Some limitations in this study must be considered. First, the relatively small sample size may have led to an 
increased risk of confounding and selective bias, so future research needs to test whether these patterns replicate 
in larger samples. It would have been better to analyze the results by subgroups (gender and age). Although 
one study found no hemodynamic differences between genders during a verbal working memory task by 

Scientific Reports |        (2025) 15:21257 10| https://doi.org/10.1038/s41598-025-05896-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


fNIRS71. And the patients selected for this study were 18–60 years old, although the possible influence of minors 
and elderly people on the results was avoided, a perfectly matched sample in terms of age and gender is still 
ideal for subsequent studies, so as to further explore and validate whether this characteristic has an effect on 
hemodynamics. Second, the patients receiving medications were not ruled out from the study. Although previous 
studies have revealed no correlation between antidepressant dosages and Oxy-Hb activation in both BD and UD 
groups72. However, further exploration of the confounding effect between the use of multiple medications and 
changes in brain function is needed. Third, this study was a cross-sectional study. Future longitudinal studies 
are needed to monitor changes in blood oxygen levels during the disease and the effects of different drugs on 
hemodynamic activation during the VFT task and to assess the stability of fNIRS-derived biomarkers over time.
Fourth, this study did not collect behavioral data from the participants. However, in previous studies, it was 
found that task performance was not significantly different between many patient and healthy groups73,74. Fifth, 
fNIRS can only measure cortical areas and cannot measure the hemodynamic responses of subcortical structures 
such as the amygdala. Sixth, the NIRS-KIT toolkit used in this study offers a comprehensive analysis workflow. 
It also provides flexible data processing capabilities. However, the study did not utilize the Vector Phase Analysis 
Approach75. Omitting this method may hinder the effective separation and analysis of signals related to neural 
activity, thus affecting the accurate assessment of brain function. Future research could explore and adopt more 
advanced signal processing techniques to enhance the reliability of the results.

Conclusions
The findings of this study indicate that while both bipolar depression and unipolar depression patients 
demonstrate significant impairments in emotional regulation compared to healthy controls, patients with 
bipolar depression retain relatively better emotional regulation abilities than those with unipolar depression. 
This pattern of differential fNIRS prefrontal-based activation during the processing of cognitive tasks may 
contribute to elucidating the pathophysiological mechanisms of mood disorders and may serve as a potential 
marker to help differentiate between bipolar and unipolar depression.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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