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Different prefrontal cortex activity
patterns in bipolar and unipolar
depression during verbal fluency
tasks based on functional near
infrared spectroscopy study

Lan Mou'®, Yuqi Shen?°, Boyuan Wu3, Chengyu Zhang*, Jiayun Zhu3, Qian Tan?,
Xiaomei Zhang?, Zefeng Wang?® & Zhongxia Shen®***

This study aimed to investigate the functionality of the prefrontal cortex in patients with unipolar
depression (UD) and bipolar depression (BD) using functional near-infrared spectroscopy (fNIRS)
during a verbal fluency task (VFT). Additionally, it evaluated the reliability of fNIRS as a diagnostic
tool for cognitive assessments through a deep learning approach using one-dimensional convolutional
networks. The study included 73 patients with UD, 59 patients with BD, and 40 healthy controls

(HC). Hemodynamic responses in the prefrontal cortex were recorded using fNIRS during the VFT.
Differences in oxygenated hemoglobin concentrations across the three groups were compared, and
receiver operating characteristic (ROC) curves were generated for each region of interest. Both UD
and BD patients demonstrated significantly reduced activation in the prefrontal cortex compared

to healthy controls. UD patients showed notably lower activation values than BD patients in the
dorsolateral prefrontal cortex, frontopolar prefrontal cortex, left orbitofrontal cortex, and left
ventrolateral prefrontal cortex. The highest classification accuracy (79.57%) was observed in the left
orbitofrontal cortex. The UD group had the largest area under the ROC curve (AUC=0.99) in the left
orbitofrontal cortex, while the BD group had the largest AUC (0.91) in the right dorsolateral prefrontal
cortex. The HC group exhibited the largest AUC (0.73) in the same region. The DLPFC, FPC, IOFC, and
IVLPFC may serve as biomarker regions for differentiating UD from BD. The combination of fNIRS and
the VFT shows promise as a supplementary diagnostic tool for mental health disorders.
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Bipolar disorder (BD) is a chronic, recurrent condition primarily characterized by fluctuations in mood
and energy levels!2. Depression often presents as the initial symptom, accounting for approximately 75% of
symptomatic episodes®. The severity and nature of bipolar depression often resemble those of unipolar depression
(UD)3-. Notably, around 69% of individuals with BD are initially misdiagnosed with UD. On average, patients
consult four different doctors before receiving an accurate diagnosis of BD, which poses significant challenges
for both patients and their families®. In the first five years after a UD diagnosis, the conversion rate to BD is
approximately 2.5% annually, dropping to 0.5% per year thereafter’. Consequently, this study focuses on UD
patients with a history of recurrent depressive episodes lasting more than five years. The annual suicide rate
among BD patients is approximately 0.9%, compared to just 0.014% in the general population, and an estimated
15-20% of individuals with BD die by suicide. This underscores the need for early diagnosis and treatment to
improve patient outcomes?.
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Distinct pathophysiological mechanisms differentiate BD from UD, including variations in brain structure,
inflammation levels, and brain function®. Current diagnoses for these disorders rely on the DSM-5 and ICD-10
classifications”!®. However, identifying objective biomarkers that reflect the inherent characteristics of these
disorders is crucial for accurate differentiation between UD and BD!!.

Previous research has revealed that BD patients exhibit mitochondrial dysfunction and metabolic decline
in the prefrontal cortex (PFC)!2. A In contrast, patients with major depressive disorder (MDD) demonstrate
dysregulation in prefrontal circuits, with structural and functional changes in the PFC playing a key role in
mood disorders!®. Redlich et al. found that UD patients exhibited reduced activation in both the nucleus
accumbens (NAC) and the PFC compared to BD patients'. While functional magnetic resonance imaging
(fMRI) is the predominant tool used in cognitive studies of mood disorders, it is costly, requires complex
operational maintenance, and is highly sensitive to head movements, potentially compromising data quality.
These limitations hinder the broader adoption of fMRI. In light of these challenges, functional near-infrared
spectroscopy (fNIRS) offers a promising alternative for examining cognitive and functional brain changes in BD
and UD patients'>.

The fNIRS is an optical neuroimaging technique that uses near-infrared light to track changes in
concentrations of oxygenated hemoglobin (Oxy-Hb) and deoxygenated hemoglobin (Deoxy-Hb) to investigate
brain function'®. Compared to electroencephalography (EEG) or functional magnetic resonance imaging (fMRI),
functional near-infrared spectroscopy (fNIRS) offers unique advantages. Its relatively portable equipment allows
for use in various environments, and it is safe, non-invasive, unrestrictive, quiet, motion-tolerant, and cost-
effective!”. {NIRS has been proven effective in detecting brain function and serves as a viable alternative for
patients unable to undergo fMRI. When conducting brain function assessments on individuals with BD and
UD, physical movement may occur due to emotional instability or restlessness. However, fNIRS demonstrates a
high tolerance to motion artifacts. Additionally, given the psychologically sensitive and vulnerable nature of BD
and UD patients, {NIRS only requires probe placement on the scalp surface, avoiding discomfort or potential
risks.fNIRS is particularly effective in measuring oxygenation changes in the prefrontal cortex during cognitive
tasks!'® a region critical for cognitive control'. The prefrontal cortex is closely associated with stress perception,
emotional regulation, and executive function?’. Executive function refers to the ability to plan, make decisions,
and self-regulate in the face of complex tasks?!. Cognitive impairments, especially those affecting executive
function, are commonly observed in BD and MDD?*%%,

Among emotional and cognitive tasks, the verbal fluency task (VFT) is widely considered one of the most
effective measures for assessing the control, planning, activation, and monitoring processes involved in emotional
regulation?!. During the VFT, participants are asked to generate as many unique words as possible within given
categories (phonemic or semantic) under time constraints®*. This task requires the initiation of verbal behaviors,
strategic retrieval of verbal information, and self-monitoring to avoid intrusions and repetitions®. The VFT has
been extensively used in fNIRS research to explore functional cognitive impairments.

Despite the growing body of research on BD and UD, few studies have examined brain activation patterns
in these patients during fNIRS-VFT tasks. One study observed that BD patients exhibited decreased activation
in the bilateral ventrolateral prefrontal cortex and anterior temporal cortex compared to healthy controls?.
Additionally, Feng et al. found that BD patients showed lower activation in the left inferior frontal gyrus during
the VFT, while UD patients demonstrated reduced activation in the left dorsolateral prefrontal cortex, bilateral
ventrolateral prefrontal cortex, and bilateral orbitofrontal cortex'”. Although these studies relied heavily on
manual feature extraction, recent advancements in deep learning offer more efficient and accurate approaches.
To improve the differentiation between BD and UD, this study applies a supervised learning approach using a
one-dimensional convolutional neural network (1D-CNN), which captures temporal fluctuations in emotional
states?®. By extracting key features associated with emotional disorders, our model enhances the accuracy of
distinguishing BD from UD? thereby providing a more robust foundation for clinical diagnosis.

We therefore hypothesized that abnormalities in prefrontal area functioning may lead to enhanced negative
emotions in BD and UD, and that abnormal activation in patients with BD may be emotional state specific,
with activation showing a biphasic dynamic imbalance.This study utilizes fNIRS to investigate prefrontal cortex
activation in UD and BD patients, as well as healthy controls, during a verbal fluency task. By integrating deep
learning techniques with 1D-CNN analysis, we aim to identify specific brain regions or activation patterns that
can differentiate between UD and BD, providing a more objective foundation for clinical diagnosis.

Materials and methods
Participants
This study included 172 patients treated at Huzhou Third People’s Hospital between November 2022 and August
2024. The inclusion criteria were as follows: (1) meeting diagnostic criteria for bipolar disorder with depressive
episodes or recurrent depressive disorder according to the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5), confirmed by two psychiatrists; (2) age range of 18 to 60; (3) a Hamilton
Depression Rating Scale (HAMD-17) score above 17; (4) a Young Mania Rating Scale (YMRS) score below 7; (5)
right-handedness; and (6) at least a primary education level. Exclusion criteria included: (1) presence of other
psychiatric disorders, such as schizophrenia or dementia; (2) a significant medical history; (3) recent receipt
(within the past month) of electroconvulsive therapy (MECT) or repetitive transcranial magnetic stimulation
(rTMS); (4) history of substance or alcohol abuse; (5) diagnosis of a first depressive episode; and (6) pregnancy
or breastfeeding. Additionally, 40 healthy controls (HC) matched for gender, age, and education level were
recruited, with HAMD-17 scores below 7.

This study was approved by the ethical review committee of Huzhou Third People’s Hospital, and informed
consent was obtained from all participants prior to inclusion.
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Fig. 1. Verbal fluency task.
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Fig. 2. Distribution of fNIRS channels and corresponding brain regions.

Verbal fluency task

The verbal fluency task (VFT) is designed to assess vocabulary knowledge, linguistic creativity, and executive
function®’. The test consists of three phases: a 30-second preparation rest period, a 60-second formal task period,
and a 70-second recovery rest period. During the preparation and recovery phases, participants are instructed
to verbally repeat the numbers one through five. In the formal task phase, participants are prompted to generate
as many words as possible using the Chinese characters “hua,” “he,” and “jiang,” with a 20-second time limit per
character. Participants remain seated and minimize movements throughout the test to ensure accuracy of the
results (Fig. 1).

fNIRS measurement

In this study, we used the ETG-ONE functional near-infrared spectroscopy (fNIRS) imaging device from
Hitachi, Japan, to measure brain activity. This device operates by emitting near-infrared light at wavelengths of
695 nm and 830 nm. We configured 22 channels, consisting of 8 emitter probes and 7 receiver probes, arranged
in a 3 x5 layout over the frontal lobe region. The distance between each emitter and receiver probe was set to 3
centimeters, with measurement points positioned 2-3 centimeters subcutaneously, corresponding to the cortical
surface®! at a sampling rate of 10 Hz. Probe placement followed the EEG 10-20 system, initially positioning the
central probe of the bottom row at the brow ridge and extending the remaining channels from the brow ridge
to the pinna. Based on Brodmann area distributions, channels were assigned to specific prefrontal regions: the
dorsolateral prefrontal cortex (DLPFC) included channels 1, 2, 3, 4, 5, 9, 14, and 18; the frontopolar prefrontal
cortex (FPC) included channels 6, 8, 10, 11, 12, and 13; the orbitofrontal cortex (OFC) included channels 15,
17, 20, and 21; and the ventrolateral prefrontal cortex (VLPFC) included channels 19 and 22 (Fig. 2). Cortical
activation was recorded during the verbal fluency task, and concentrations of oxygenated and deoxygenated
hemoglobin in the cortex were indirectly calculated along with their differential concentrations, based on the
Beer-Lambert law.

Data analysis

Data analysis was conducted using SPSS 26.0 and MATLAB. Quality control of the fNIRS data was performed
using the NIRS_KIT toolbox (MATLAB 2021a)*? to check for physiological noise, time-domain, frequency-
domain, or spatial features of head motion artefacts. Preprocessing was then initiated.The initial preprocessing
step involved detrending the raw data. Motion artifacts were then corrected using the TDDR method, followed
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by the application of a third-order IIR Butterworth bandpass filter (0.001 to 0.1 Hz) to remove irrelevant low-
and high-frequency components. After filtering, optical data signals detected by the photodetectors were
converted into oxygenated hemoglobin (Oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) concentrations
using an enhanced Beer-Lambert law. Only Oxy-Hb was analyzed, as prior studies suggest that Oxy-Hb more
accurately reflects changes in regional cerebral blood flow compared to Deoxy-Hb?. the Oxy-Hb signal is a
more direct reflection of cognitive activation than the Deoxy-Hb signa®* and therefore Oxy-Hb levels have been
used to compute cortical activity to analyze fNIRS data®.

Cortical activation was indicated by increases in Oxy-Hb, calculated by subtracting the mean Oxy-Hb values
during the resting periods before and after the task from the average Oxy-Hb during the task.

Data counts are reported as frequencies or percentages (%), with chi-square tests used for intergroup
comparisons. The Shapiro-Wilk test was used to assess normality for quantitative data. Normally distributed
data is presented as mean *standard deviation ('x *s) and analyzed using one-way ANOVA for intergroup
comparisons. Non-normally distributed data is presented as the median and interquartile range [M(P25, P75)],
with the Kruskal-Wallis rank-sum test applied for intergroup comparisons. Bonferroni correction was used for
multiple comparisons. Statistical significance was set at P< 0.05, with a 95% confidence interval (CI) for all
analyses.

Deep learning approaches

During data preprocessing, we performed data cleaning and standardization on the collected dataset. To
enhance dataset diversity and robustness, we applied data augmentation techniques, including noise addition
and Gaussian smoothing. We have added the following information to the revised manuscript: A combined
strategy of Gaussian smoothing (o =0.1) and adding Gaussian noise (u =0, 0= 0.02) was used in the data
enhancement stage, and the degree of smoothing and noise intensity was controlled by adjusting the sigma
parameter. The time series are dynamically truncated/filled during data loading to ensure that all samples
are uniformly of preset sequence length (hyperparameters determine the specific value). The preprocessing
process is completely encapsulated in the fNIRSDataset class, and the batch data loading is realized through
DataLoader, which is designed to ensure the reproducibility of the experiment and the standardization of the
engineering implementation. In terms of model training optimization, a dynamic adaptive hyper-parameter
tuning system is constructed: the AdamW optimizer (initial learning rate 0.0002, weight decay 0.001) is used
to balance the gradient updating and regularization constraints, the validation loss is monitored in real-time
through the ReduceLROnPlateau scheduler, and when the loss stagnates in 5 rounds, it automatically attenuates
the learning rate by 50%, and a 40-round early A 40-round early stopping mechanism is set to prevent invalid
training. During the training process, a five-fold overfitting prevention and control strategy is implemented: (1)
online data enhancement with randomly perturbed input signals; (2) introduction of 0.6 probability dropout
at the fully connected layer; (3) built-in L2 weight constraints in the optimizer; (4) dynamic partitioning of the
validation set by five-fold cross-validation; and (5) real-time termination of the overfitting tendency by early
stopping mechanism. The validation system adopts a two-layer validation framework, where the outer layer
divides the training set and test set by 4:1, and the inner layer refines the training set into a training subset and
a validation subset by 5-fold cross-validation. Two hundred fifty rounds of iterative training are performed to
ensure parameter convergence, and the final model demonstrates a stable classification performance on the
independent test set. All the above experiments were conducted based on the Pytorch platform.

The model uses a three-layer one-dimensional convolutional neural network (1D-CNN) architecture. The
first convolutional layer has a kernel size of 9, with 22 input channels and 64 output channels. The second layer
employs a kernel size of 5, with 64 input channels and 128 output channels, and the third layer features a kernel
size of 3, with 128 input channels and 256 output channels. Following each convolutional layer, we applied the
ReLU activation function and batch normalization to enhance training stability. Each convolutional layer is also
followed by a max pooling layer with a kernel size of 2 and a stride of 2, reducing the spatial dimensions of the
feature maps.

After the 1D-CNN processes the input, we concatenated the extracted features with integral values and
passed them into a fully connected layer. The first fully connected layer has an input dimension of 39,958 and
an output dimension of 256, while the second layer has an input dimension of 256 and an output of 128. Each
fully connected layer includes the ReLU activation function, batch normalization, and dropout to stabilize
training and prevent overfitting. Finally, a Softmax function converts the output into a probability distribution
corresponding to the three classes: healthy, unipolar depression, and bipolar depression.

The loss function of the model is based on cross-entropy and optimized using the AdamW algorithm with
a learning rate of 0.0002 and a weight decay of 0.001. The training parameters consist of 32 batches and 250
calendar hours, with the early stopping patience set to 40 calendar hours. We used the KFold cross-validation
method to divide the dataset into five folds. For each fold, the training set was randomly divided into a training
subset and a validation subset. Models are trained on the training subset, losses are computed via forward
propagation, and parameters are updated via backpropagation. Key performance metrics (e.g., accuracy on
the validation subset) are monitored, and the learning rate is adjusted, or early stops are triggered using the
ReduceLROnPlateau scheduler.

For model validation, we select 30 random seeds for experiments, and 20% of the data from each random
seed is extracted as the test set, while the remaining 80% is divided into the training and validation sets by the
leave-one-out method to ensure that the test set does not overlap with the training and validation sets at all.
Through multiple training and validation, we calculate various performance metrics (e.g., accuracy, recall, F1
value, etc.) of the model on the training, validation, and test sets and take the average value of these metrics in
order to evaluate the performance of the model on the training data more comprehensively and stably and to
avoid bias in the evaluation results due to the randomness in the division of the dataset.
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Diagnostic groups UD(n=73) BD(n=59) HC(n=40) Zixa |p

Age (years) 50(41, 57.50) 50(37, 57) 48.5(39, 58) 0.257 | 0.880
Gender (F/M) 61/12 49/10 33/7 0.021 | 0.989
BMI 22.66(20.81,24.65) | 22.86(20.03,23.73) | 22.88(21.41,24.64) | 1.742 | 0.418
Duration of illness(moth) | 70(65,78) 75(66,82) 0 0.570 | 0.752
Education (years) 11(6.50,15) 12(6,12) 12(9,14.25) 1.853 | 0.173
HAMD 20(18,22) 20(18,22) 1(0,2) 94.088 | 0.000b

Table 1. Comparison among three groups concerning demographic data and clinical scales.details. UD,
unipolar depression group; BD, bipolar depression group; HC, healthy control group; BMI, body mass

index; HAMD, Hamilton Depression Scale. % For gender, we utilize the chi-square test, while for age, BMI,
disease duration, years of education, and HAMD scores, we employ the rank-sum test. ®: Through Bonferroni
correction, post hoc comparisons indicated UD vs. HC, p < 0.001; BD vs. HC, p< 0.001; UD vs. BD, p=1.000.

Region of interest | F P 1)21,

rDLPEC 37.205 | <0.001 | 0.291
IDLPFC 33.155 | <0.001 | 0.282
rFPC 35.122 | <0.001 | 0.291
IFPC 40.851 | <0.001 | 0.324
rOFC 42.083 | <0.001 | 0.340
I0FC 58.613 | <0.001 | 0.391
rVLPFC 37.353 | <0.001 | 0.306
IVLPFC 34.200 | <0.001 | 0.274

Table 2. Analysis of variance of changes in oxygenated hemoglobin concentration in eight brain regions in
three groups.

Through multiple sets of experiments, we explored the effects of different convolutional kernel sizes (e.g., 3,
5,7,9, 11), step sizes (1, 2), the number of convolutional layers (1 to 5), and the number of neurons in the fully-
connected layer (32, 64, 128, 256) on the effect of feature extraction and the model’s ability to learn complex
patterns. These experiments helped us to determine the optimal combination of parameters, which improved
the overall performance of the model.

Results

Demographic and clinical characteristics

No significant gender differences were observed among the UD patients, BD patients, and healthy participants
(x* = 0.021, p= 0.989), nor were there significant differences in age (Z =0.257, p= 0.880), BMI (Z =1.742, p=
0.418), duration of illness (Z =0.570, p= 0.752), and years of education (Z =1.853, p= 0.173). However, HAMD
scores showed a significant difference across the three groups (Z =94.088, p < 0.001) (Table 1).

Differences in prefrontal cortex activation among groups during the VFT

A one-way ANOVA was conducted on the activation values across the three groups. The results revealed
significant differences in oxyhemoglobin concentration changes among the three groups across eight brain
regions during the VFT (Table 2). Figure 3 presents the post-hoc comparisons across these regions, indicating a
notable reduction in prefrontal cortex activation in both UD and BD patients compared to healthy participants
(Fig. 3A-H). Additionally, UD patients showed significantly lower activation values than BD patients in the
DLPEFC, FPC, 10FC, and IVLPFC regions (Fig. 3A, B, C, D, E H).

Classification (Deep Learning)

We conducted 30 randomized experiments on each brain region to assess model performance on the test set.
The results, summarized in Table 3, show that the highest classification accuracy reached 79.57% in the left
orbitofrontal cortex (IOFC), while the lowest accuracy was 61.64% in the left ventrolateral prefrontal cortex
(IVLPEC).

Using the fNIRS classification results, we plotted the ROC curve for diagnosing UD across eight brain regions
(Fig. 4). During the VFT task, the left orbitofrontal cortex (IOFC) exhibited the highest area under the curve
(AUC) for UD patients, with an AUC of 0.99. The optimal cutoff value was 0.89, resulting in a sensitivity of 100%
and a specificity of 89% (Table 4).

The fNIRS classification results were used to plot the ROC curve for diagnosing BD across eight brain regions
(Fig. 5). During the VFT task, the right dorsolateral prefrontal cortex (rDLPFC) showed the highest area under
the curve (AUC) for BD patients, with an AUC of 0.91. The optimal cutoff value was 0.66, achieving a sensitivity
of 78% and a specificity of 89% (Table 5).
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Fig. 3. In the task of verbal fluency, significant differences emerged in the activation of the prefrontal cortex
among the three groups. (A) Box plots of Oxy-Hb variations in the right dorsolateral prefrontal cortex for

the three groups. (B) Box plots of Oxy-Hb variations in the left dorsolateral prefrontal cortex for the three
groups. (C) Box plots of Oxy-HDb variations in the right anterior prefrontal cortex for the three groups. (D) Box
plots of Oxy-Hb variations in the left anterior prefrontal cortex for the three groups. (E) Box plots of Oxy-Hb
variations in the right orbitofrontal cortex for the three groups. (F) Box plots of Oxy-Hb variations in the left
orbitofrontal cortex for the three groups. (G) Box plots of Oxy-Hb variations in the right ventrolateral cortex
for the three groups. (H) Box plots of Oxy-Hb variations in the left ventrolateral cortex for the three groups.
(**p<0.01,*p< 0.001).

Region of interest | Three-class classification
rDLPFC 70.00%
IDLPFC 66.97%
rFPC 72.88%
IFPC 75.34%
rOFC 76.13%
10FC 79.57%
rVLPEC 67.56%
IVLPFC 61.41%

Table 3. The three-class classification accuracy for each brain region.
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Region of interest | AUC | Sensitivity | Specificity | Oxy-Hb cut-off point
rDLPEC 095 |0.92 0.84 0.77
IDLPFC 0.86 | 1.00 0.63 0.63
rFPC 0.97 |0.92 1.00 0.92
IFPC 0.98 |0.92 1.00 0.92
rOFC 095 |0.84 0.95 0.79
10FC 0.99 | 1.00 0.89 0.89
rVLPEC 0.83 |0.92 0.74 0.66
IVLPFC 0.87 |0.69 0.89 0.59

rDLPEC (AUC = 0.947368)
IDLPEC (AUC = 0.858300)
rFPC (AUC = 0.971660)
IEPC (AUC = 0.983806)
rOFC (AUC -~ 0.951417)
IOEC (AUC = 0.987854)
I'VLPFC (AUC — 0.829960)
IVLPEC (AUC = 0.870445)

Table 4. During the VFT period, the AUC for distinguishing UD patients from the other two groups in each
prefrontal area, along with the corresponding sensitivity, specificity, and Oxy-Hb cut-off points.

ROC curves were generated for diagnosing healthy controls (HC) across eight cortical regions using fNIRS
classification results (Fig. 6). During the VFT task, the right dorsolateral prefrontal cortex (rDLPFC) exhibited
the highest area under the curve (AUC) for HC, with an AUC of 0.98. The threshold value was set at 0.83,

achieving a sensitivity of 83% and a specificity of 100% (Table 6).
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Fig. 5. ROC curve for Class BD.

Region of interest | AUC | Sensitivity | Specificity | Oxy-Hb cut-off point
rDLPFC 091 [0.78 0.89 0.66
IDLPFC 0.77 | 0.62 0.89 0.51
rFPC 091 |1.00 0.79 0.79
IFPC 0.89 |0.92 0.79 0.71
rOFC 0.82 |0.69 0.84 0.53
10FC 0.85 |0.69 0.89 0.59
rVLPFC 0.75 |0.46 0.89 0.36
IVLPFC 0.77 |0.85 0.58 0.43

tDLPFC (AUC = 0.914980)
IDLPEC (AUC = 0.773279)
rFPC (AUC = 0.906883)
IFPC (AUC = 0.890688)
rOFC (AUC = 0.817814)
IOFC (AUC = 0.854251)
rVLPFC (AUC = 0.748988)
IVLPEC (AUC = 0.769231)

Table 5. During the VFT period, the AUC for distinguishing BD patients from the other two groups in each
prefrontal area, along with the corresponding sensitivity, specificity, and Oxy-Hb cut-off points.

Discussion

This study aimed to explore the potential of {NIRS in distinguishing patients with unipolar depression (UD) from
those with bipolar disorder (BD). By combining fNIRS and a verbal fluency task (VFT), we assessed differences
in prefrontal cortex (PFC) activation patterns across three groups—UD, BD, and healthy controls—using a
one-dimensional convolutional neural network (1D-CNN) deep learning approach. Our findings demonstrate
distinct PFC activation patterns across the groups during the fNIRS-VFT task, supporting the use of {NIRS as an
auxiliary diagnostic tool to improve diagnostic accuracy for UD and BD in clinical settings.
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Fig. 6. ROC curve for Class HC.
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Region of interest | AUC | Sensitivity | Specificity | Oxy-Hb cut-off point
rDLPEC 098 |0.83 1.00 0.83
IDLPFC 0.83 [0.33 1.00 0.33
rFPC 0.76 | 0.50 1.00 0.50
IFPC 0.69 |0.50 0.96 0.46
rOFC 094 |0.83 0.88 0.72
10FC 0.92 |0.67 0.92 0.59
rVLPEC 0.89 |0.67 0.88 0.55
IVLPFC 0.70 |0.17 0.96 0.13

rDLPFC (AUC = 0.980769)
IDLPFC (AUC = 0.833333)
rFPC (AUC = 0.756410)
IFPC (AUC = 0.692308)
rOFC (AUC = 0.935897)
10FC (AUC = 0.923077)
rVLPFC (AUC = 0.891026)
IVLPFC (AUC = 0.698718)

Table 6. During the VFT period, the AUC for distinguishing HC group from the other two groups in each
prefrontal area, along with the corresponding sensitivity, specificity, and Oxy-Hb cut-off points.

Our study presents three main findings:

First, both UD and BD patients showed significantly reduced PFC activation compared to healthy
participants, consistent with prior research. For example, previous studies using {NIRS reported that BD patients
exhibit lower average changes in oxy-Hb during VFTs compared to healthy controls, with reduced bilateral
DLPFC activity positively correlated with depression severity*®. Similar findings have shown that UD patients
demonstrate significantly lower oxyhemoglobin levels in both the prefrontal cortex and temporal lobes during
VFT tasks relative to healthy participants'>*7%.This may be due to the fact that the VFT assesses vocabulary

Scientific Reports|  (2025) 15:21257

| https://doi.org/10.1038/s41598-025-05896-z

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

production, executive ability, and cognitive flexibility* and the onset of affective disorders affects mood, and
cognition so that patients with affective disorders are imaged differently than healthy individuals on the fNIRS.
Prior to the prevalence of fNIRS, studies on magnetic resonance also demonstrated limited activation of brain
regions during the Stroop task in patients with bipolar disorder compared to healthy subjects*! and reduced
dynamic functional connectivity between the posterior cingulate cortex and the medial prefrontal cortex in
patients with bipolar disorder during the VFT task*2. Magnetic resonance imaging also revealed an imbalance
between left and right prefrontal activation in UD patients during emotion judgments*®and a decrease in
prefrontal activation during the VFT*4. This may be because glutamate is the main excitatory neurotransmitter
in the cerebral cortex that coordinates vascular and metabolic responses to neuronal activity behind changes
in functional imaging signals®®. Patients with mood regulation disorders-bipolar disorder and depression-have
elevated levels of glutamate in the frontal cortex, and the frontal glutamatergic system is disturbed thereby
affecting brain function®. Conversely, prefrontal activation is deficient, the diminution of prefrontal regulation,
and the limbic brain is hypothesized to be dysregulated, leading to extreme moods such as mania, depression,
and mixed states?’.

Second, UD patients showed notably lower activation values in the DLPFC, FPC, IOFC, and IVLPFC regions
compared to BD patients. Both the VLPFC and DLPFC play key roles in emotional regulation’®->" with the
VLPFC particularly involved in the downregulation of negative emotions!. Compared to the right VLPFC,
feedback from the left VLPFC is associated with enhanced self-regulation capabilities and improved emotional
control across the frontal lobe®. Increased DLPFC activation has been linked to reduced subjective social
distress®. The orbitofrontal cortex is functionally connected to brain regions such as the amygdala, hippocampus,
and dorsolateral prefrontal lobe, and is responsible for receiving sensory and emotional input signals related
to decision-making behaviors® reward expectancy® impulsivity, and other psychological activities. Reduced
OFC function impairs decision-making and emotional processing, and may affect impulsivity in depressed and
suicidal individuals®®. Magnetic coimaging studies of adolescent bipolar depressed patients with suicidal behavior
found reduced volume in the left orbitofrontal cortex and that the reduced volume was negatively correlated
with suicide-to-mortality rates®’. The MDD and BD groups had reduced resting-state functional connectivity
in the left orbitofrontal cortex and the left anterior cingulate cortex. Orbital frontal cortex-hippocampus
(OFC-HPC) circuits were noted to mediate the remission of depression in a study on EEG*. The FPC, among
the densest cortical regions, is integral to complex social, emotional, and cognitive processes and coordinates
DLPFC and VLPFC integration®*®!. Imaging studies have noted a reduction in grey matter volume in the FPC
of UD patients®. Kawano found a negative correlation between cerebral blood flow in the FPC and depressive
symptom severity, suggesting the FPC as a potential biomarker region for depression severity®. Prior studies
indicated lower hemodynamic activation in the VLPFC of UD compared to BD patients'> though these studies
often did not distinguish between first-episode and recurrent depression. Other research has noted differences
in activation between BD and UD in the left FPC and Broca’s area®. For instance, Tran’s study found that BD
patients displayed greater activation in the VLPFC and right FPC than UD patients®. Using a VFT paradigm,
Liu and colleagues reported activation differences in lateral and orbitofrontal PFC regions between UD and
BD patients®. The above study partially agrees with our findings, suggesting that bipolar-depressed patients
have better activation patterns. For patients with UD and BD there are differences in the performance of brain
structures under cognitive tasks may be due to the heterogeneity of mood disorders and the impact of current
emotional states on cognitive performance?’. Although the patients selected for this study were in depressive
episodes, patients with BD had more fluctuating mood states throughout the illness, and this heterogeneity may
be precisely reflected in the activation patterns'.

Third, to the best of our knowledge, studies combining MRI and pattern recognition techniques to explore
biomarkers of psychiatric disorders have grown substantially in recent years. In a study of resting-state fMRI data
from 46 patients with MDD and 57 HCs based on the multivariate pattern analysis (MVPA) learning method,
an 86.4% correct classification rate was found®” and pattern classification analysis using the support vector
machine (SVM) method was 86% accurate in distinguishing between BD and UD®. BD and UD in an emotional
stimulus task with multivariate pattern analysis produced a significant classification rate of 72%%. However,
these do not involve the training of network structures as complex as deep learning, so we applied a novel deep
learning approach using 1D-CNNss to classify fNIRS data, which significantly enhances fNIRS data classification
by automatically extracting complex features, thereby improving classification accuracy. Deep neural networks
capture nonlinear relationships among brain regions, providing greater robustness and generalizability in multi-
class classification tasks. In this study, the three-class classification task achieved an accuracy of 79.57% in the
10FC, a critical region in cognitive processes such as behavioral inhibition, decision-making, and emotional
regulation'>”%. Further analysis revealed that, during the VFT task, the IOFC was the most effective region in
diagnosing UD patients, with an AUC of 0.99. Similarly, the rDLPFC demonstrated high diagnostic efficacy for
BD patients (AUC =0.91) and for identifying healthy controls (AUC =0.98). These findings indicate the high
accuracy of our machine learning models in classifying patients with these disorders, underscoring the value
and reliability of fNIRS technology as a clinical aid in the diagnosis of psychiatric disorders, and by providing
real-time, noninvasive data on neural activity, it can complement the subjective limitations of the DSM-5 and
the Structured Interview in terms of both the quantification of biomarkers and the dynamic monitoring of
symptoms.

Limitations and future research

Some limitations in this study must be considered. First, the relatively small sample size may have led to an
increased risk of confounding and selective bias, so future research needs to test whether these patterns replicate
in larger samples. It would have been better to analyze the results by subgroups (gender and age). Although
one study found no hemodynamic differences between genders during a verbal working memory task by
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fNIRS’!. And the patients selected for this study were 18-60 years old, although the possible influence of minors
and elderly people on the results was avoided, a perfectly matched sample in terms of age and gender is still
ideal for subsequent studies, so as to further explore and validate whether this characteristic has an effect on
hemodynamics. Second, the patients receiving medications were not ruled out from the study. Although previous
studies have revealed no correlation between antidepressant dosages and Oxy-Hb activation in both BD and UD
groups’2. However, further exploration of the confounding effect between the use of multiple medications and
changes in brain function is needed. Third, this study was a cross-sectional study. Future longitudinal studies
are needed to monitor changes in blood oxygen levels during the disease and the effects of different drugs on
hemodynamic activation during the VFT task and to assess the stability of fNIRS-derived biomarkers over time.
Fourth, this study did not collect behavioral data from the participants. However, in previous studies, it was
found that task performance was not significantly different between many patient and healthy groups’>7*. Fifth,
fNIRS can only measure cortical areas and cannot measure the hemodynamic responses of subcortical structures
such as the amygdala. Sixth, the NIRS-KIT toolkit used in this study offers a comprehensive analysis workflow.
It also provides flexible data processing capabilities. However, the study did not utilize the Vector Phase Analysis
Approach’®. Omitting this method may hinder the effective separation and analysis of signals related to neural
activity, thus affecting the accurate assessment of brain function. Future research could explore and adopt more
advanced signal processing techniques to enhance the reliability of the results.

Conclusions

The findings of this study indicate that while both bipolar depression and unipolar depression patients
demonstrate significant impairments in emotional regulation compared to healthy controls, patients with
bipolar depression retain relatively better emotional regulation abilities than those with unipolar depression.
This pattern of differential {NIRS prefrontal-based activation during the processing of cognitive tasks may
contribute to elucidating the pathophysiological mechanisms of mood disorders and may serve as a potential
marker to help differentiate between bipolar and unipolar depression.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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