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Analyzing microscopy images of large growing cell samples using traditional methods is a complex and 
time-consuming process. In this work, we have developed an attention-driven UNet-enhanced model 
using deep learning techniques to efficiently quantify the position, area, and circularity of bacterial 
spores and vegetative cells from images containing more than 10,000 bacterial cells. Our attention-
driven UNet algorithm has an accuracy of 96%, precision of 82%, sensitivity of 81%, and specificity of 
98%. Therefore, it can segment cells at a level comparable to manual annotation. We demonstrate the 
efficacy of this model by applying it to a live-dead decontamination assay. The model is provided in 
three formats: Python code, a Binder that operates within a web browser without needing installation, 
and a Flask Web application for local use.

Keywords  Spores, Deep learning, Contamination

Light microscopy is the most widely used tool for visually characterizing bacterial cells and their behavior. 
One of its advantages over other imaging techniques is that it allows for imaging and monitoring of live 
cells, including cell growth, division, and death, with enough resolution to see sub-cellular features1. This is 
an advantage over bulk studies, which do not provide individual insights into the behavior of cells, and over 
electron microscopy, which works with fixed (dead) cells. Additionally, when studying bacteria it is important 
to have a large representative sample, which can sometimes number in the thousands of cells, especially when 
comparing the efficacy of decontamination and biocides2–4. However, tracking individual cells in a large sample 
over time, when using timelapse microscopy, is difficult5. Consequently, researchers face a trade-off between the 
sample’s scale and complexity and the temporal constraints of the experiment6. This is particularly problematic 
when studying large samples of growing bacterial cells.

To address these challenges, recent years have seen the development of various computational tools. These 
tools facilitate and expedite the segmentation of microscopy images, elevating analysis to a computational level7. 
They are particularly useful in analysing small features like flagella8, analysing 3D timelapse images9 or cell 
phenotyping10. Meanwhile, tools like SporeTracker are specifically designed to track germination11. However, 
SporeTracker uses thresholding to segment spores and cell growth, which can limit its accuracy in distinguishing 
overlapping cells or handling heterogeneous image conditions. In recent years, there has been an increase in the 
use of machine learning (ML) and deep learning (DL) tools for segmenting or classifying cells and bacteria in 
microscopy images12–16. Ilastik12 employs a machine learning approach to train a random forest classifier, which 
then segments and classifies the image. DeepCell Kiosk13 is a cloud-native platform designed to leverage deep 
learning for cellular image analysis. Cellpose14 is a deep learning-based segmentation tool trained on a large and 
diverse dataset of cell images. It uses a convolutional neural network (CNN) to perform segmentation without 
the need for retraining or parameter adjustment. Omnipose15 improves upon Cellpose by accurately segmenting 
samples with significant morphological variability, such as mixed bacterial cultures and antibiotic-treated cells, 
using unique CNN-based network outputs like the gradient of the distance field. Despite their strengths, these 
methods face limitations when applied to diverse cell types because they are not specialized models for specific 
data. A common deep neural network architecture well-suited for image segmentation is UNet17. UNet has been 
shown to have remarkable performance for image segmentation18–20. The name UNet comes from its U-shaped 
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architecture, which has a contracting path to gather context and a symmetric expanding path for precise 
localization. It uses convolutional layers to extract image features and pooling layers to downsample feature maps. 
UNet connects the contracting and expanding paths’ layers of equal resolution via skip connections, enabling it 
to retrieve fine-grained spatial information that may have been lost during downsampling. A key advantage of 
UNet is its use of multiscale feature maps, allowing the network to capture objects of various sizes, which can be 
important for segmentation. However, UNet struggles with segmenting small structures in images21.

To improve UNet’s limitations in segmenting both small and large structures in an image, attention 
mechanisms can be integrated. These mechanisms are specifically designed to focus on the target object in an 
image22. Attentive weighting allows focusing on the key parts of the representation while filtering unnecessary 
elements. The weighted combination of channels then serves as an input to the first fusion stage, thereby 
improving the information flow in the decoder pathway. Recent studies have demonstrated that incorporating 
attention in UNet can significantly improve performance for a given task23,24. Attention mechanisms serve as 
a crucial tool in enhancing desired signals while minimizing unwanted noise, thereby directing the network’s 
focus towards the most relevant features for a given task25. Oktay et al26 incorporated attention gates into the 
UNet model for medical image segmentation, significantly improving performance on the task of pancreas 
segmentation. Similarly, Schlemper et al.27 used spatial attention mechanisms to enhance the segmentation of 
cardiac structures in MRI images. These studies highlight the potential of attention mechanisms to address the 
limitations of UNet in handling small and complex structures. This capability is particularly advantageous in the 
context of imaging microbiological systems, which are characterized by high signal variance and the presence 
of elements that can complicate segmentation28. Bacterial spores are, in particular, complicated to segment 
given their changes in brightfield optical density during spore germination (CaDPA release) and significant 
morphological alterations during the outgrowth phase29,30. Thus, both large and small features are present that 
change over time. This underscores the need for sophisticated segmentation methods to adapt to and effectively 
manage these complexities.

In this work, we develop and test the performance of an attention mechanism incorporated into a UNet 
architecture to enable the analysis of microscope images containing over 10,000 bacterial spores that germinate 
(“spore-UNet”). We also present a workflow to automatically image and combine multiple fields of view images 
of spores deposited onto a surface, see Fig. 1. Composite images are analysed using spore-UNet to produce an 
accurate mask, identifying individual spores and cells. This approach offers opportunities for direct spore and 
bacteria quantification and monitoring growth. We demonstrate this by conducting a live-dead assay where we 
monitor the germination and outgrowth after decontamination.

Materials and methods
Study setup and evaluation
In this section, we will explain in detail the method we propose for segmentation. During the training phase, we 
include normalization and contrast enhancement in the preprocessing step. To increase the number of training 
samples, we slice the original image into smaller patches and augment them to feed into the network’s input.

Pre-processing
Microscopy images often have quality issues that can make analysis difficult. Some common problems include 
uneven brightness across the image, lack of contrast between the features of interest, and visual artifacts such as 
debris or staining imperfections. These issues can reduce the accuracy of models that attempt to analyze these 
images. To minimize these problems, we first pre-processed the images by normalizing the brightness. The initial 
pre-processing step was to normalize the brightness of the spore images. This helps to account for differences in 
the overall brightness from one image to the next.

We normalized each image according to Eq. 1 below:

	
Inorm = I − µ

σ
� (1)

where I is the input image, µ is the mean intensity, and σ is the standard deviation of intensity. Once normalization 
is done, contrast enhancement is applied. Contrast enhancement helps improve the visual quality of images by 
stretching the range of intensity values they contain. For contrast enhancement, histogram equalization is used. 
T﻿he histogram equalization transform function is according to Eq. 2 below:

	
T (r) =

r∑
k=0

p(rk)� (2)

where T(r) is the transform function that maps the original grayscale pixel value r to an enhanced value. p(rk) 
represents the probability of occurrence of a pixel with intensity value rk . The function of p(rk) can be written as

	
p(rk) = nk

N

where nk  is the number of pixels with intensity value rk  and N is the total number of pixels in the image. The 
combined effect of normalization and histogram equalization contributed to a higher input quality for training. 
We observed that normalization improved the consistency of histogram equalization results, especially when 
processing batches of images with varying lighting conditions.
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UNet based architecture
The spore-UNet model modifies and enhances the standard UNet architecture. As shown in Fig. 2, UNet has a 
U-shaped encoder-decoder structure. On the encoder side (left half), the process involves repeated max pooling 
to reduce image size by half, coupled with double convolution operations that increase feature maps twofold. The 
decoder side (right half) mirrors the encoders, reversing the downsampling and feature-mapping steps. Similar 
to the original UNet, spore-UNet uses four encoder-decoder modules connected in this manner.

Each decoder module has three main stages: bilinear up-sampling to double the spatial dimensions of 
the feature maps (violet arrows). Next, we concatenate these upsampled features with the outputs from the 
corresponding encoder module (gray arrows). This allows multiscale information to flow through the network. 
The third is double convolution, which halves the number of feature maps and condenses information. Skip 
connections enable the combination of hierarchical features from the encoder side for more contextual output. 
Finally, the last layer of spore-UNet applies a 1 × 1 convolution (brown arrow) to produce a single feature map 
to predict output segmentation. The decoders upsample the features, fuse them with encoder outputs, transform 
the combined representation through convolution operations, and ultimately generate pixel-wise classifications. 
This decoding phase restores the spatial resolution while benefiting from the encoder context.

The spore-UNet model modifies the original UNet architecture by adding attention modules to the encoder 
pathway. Specifically, we employed channel and spatial attention blocks after the first convolution and each 
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Fig. 1.  The cell segmentation and counting workflow. (A) The spores are imaged, with multiple overlapping 
fields of view to form a multi-image grid. The images are then stitched together into a composite image, which 
can contain >10,000 bacterial spores. (B) The process involves repeating the imaging to allow viable spores 
to germinate in nutrient media. A timelapse is obtained as a result of this. (C) The proposed UNet algorithm 
processes composite images to provide a binary mask of spores and germinated cells. (D) Free software tools 
such as ImageJ can be used to count cells and spores from binary masks. Filtering spores from vegetative cells 
can be done by knowing their area and circularity.
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subsequent encoder (green arrows in Fig. 2). This amplifies informative features and suppresses less useful 
features at each image scale. Importantly, the encoder attention modules, such as convolution, do not directly 
process the input image. Rather, they are only fed into the decoders through skip connections to retain all 
original image details up to the bottleneck. This selective highlighting of encoder features guides the decoder to 
refine and transform these representations for accurate final segmentation.

Spatial attention gate
The spatial attention gate is a key enhancement to the standard U-Net architecture. Introduced in the Attention 
U-Net design, it selectively emphasizes salient encoder features before they are passed through skip connections 
to the decoder. In this configuration, each attention gate receives feature maps from the encoder and a 
corresponding gating signal from the decoder, allowing the model to learn spatially selective masks that suppress 
irrelevant background activations and highlight semantically meaningful regions. This is particularly valuable in 
grayscale images, where critical structures often occupy small areas with low contrast.

To compute the spatial attention mask, an encoder feature map x ∈ RH×W ×Cx  is first downsampled using 
a 2 × 2 convolution with stride 2, producing a compressed representation θx ∈ R

H
2 × W

2 ×Cint . Simultaneously, 
a gating signal from the decoder g ∈ R

H
2 × W

2 ×Cg  is processed using a 1 × 1 convolution and upsampled to 
match the spatial dimensions of θx, yielding ϕg . A schematic of the process is shown in Fig. 3.

The attention coefficients are computed by summing θx and ϕg  element-wise, followed by a ReLU activation 
to produce an intermediate map f. This is then processed using a convolution 1 × 1 and a sigmoid function to 
generate the spatial attention map ψ ∈ R

H
2 × W

2 ×1. This map is upsampled to the resolution of the original input 
x, repeated along the channel axis to match Cx, and multiplied element-wise with the encoder feature map to 
produce the filtered feature map Fs as shown in Eq. 3.

	 Fs = x · Repeat(Upsample(ψ), Cx)� (3)

A final convolution 1 × 1 followed by batch normalization is applied to restore the feature map to its original 
shape. This spatial attention mechanism ensures that only the most relevant encoder features are forwarded 

3x3 Conv+ ReLu + Dropout +
3x3 conv + ReLu

32 32

64 64

128 128

256 256

256

512

128

256

64

128

32

64 32 1

Spa al A en on Gate

Bilinear upsampling

Skip conec on

Max-pool 2x2

1x1 Conv

25
6
x2

56
12
8
x1

28

56
x5

6

28
x2

8

14
x1

4

Input
Output

Fig. 2.  An example input passed through our spore-UNet model (color version optimal). The rectangular bars 
show multi-channel feature maps extracted at each layer. The numbers above the bars indicate the number of 
channels, whereas the vertical digits on the left display the x-y dimensions of the feature maps.
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through skip connections, improving the model’s ability to localize fine structures and suppress irrelevant 
context in segmentation tasks.

Training, validation, and testing dataset
For imaging spores, we used an inverted microscope (Olympus IX71, Olympus) equipped with a temperature-
controlled water immersion objective (UPlanSApo60XWIR 60X N.A. = 1.2; Olympus) and a servo-controlled 
sample stage31,32. Together with the microscope, we used a 1920 × 1440 pixel CMOS camera (C11440-10C, 
Hamamatsu) to record brightfield images (1920 × 1440 pixels each).

For training, we prepared a dataset consisting of 8285 images to train spore-UNet. The dataset comprises 
7000 training images, 1000 validation images, and 285 testing images. We generated smaller 256 × 256 patches 
from the camera output images (1920 × 1440 pixels) to use as input to the model and save memory. During the 
patch creation process, we only included patches that had more than 5% of patch area occupied by data points 
(bacterial cells). The dataset has both the original images and their ground truth labels. We also augmented 
the training data by rotating, scaling, and flipping images to create more variety. Data augmentation helps 
improve the machine learning model performance by generating new and varied training examples33. With 
larger, comprehensive training datasets, the model will be more accurate and identify accurate boundaries of 
segmented objects. Thus, this helps the model learn robust features that generalize better. During training, the 
training and validation datasets are used to tune the model hyperparameters. To evaluate the model, we used 
test data, which was unseen during training. We built the model architecture in Python 3 using Keras 2.7 and ran 
experiments on an NVIDIA GeForce RTX 3070 graphics card.

Annotation of images
Image annotation is the process of labeling where objects of interest are located in images. This helps deep 
learning models recognize and classify objects. We annotated our dataset using the Roboflow application34, a 
web-based annotation tool that requires no complex setup (Fig. S1). Although Roboflow is used for the initial 
region of interest, the resulting annotations are not used directly. Instead, all masks are manually refined using 
polygon points to ensure high-quality ground-truth labels. This correction process is essential, as the SAM-
based segmentation in Roboflow frequently fails to resolve the morphological features of densely packed spores. 
We defined labels to provide information about what is shown in each image. We used polygons to outline the 
boundaries of the spores and the grown bacteria (Fig. S2). The annotation results were stored in a JSON file 
with x and y coordinates and labels. Finally, we converted these polygon points into binary mask images for 
each object. Thus, annotation prepares image data to train deep learning models to detect and classify objects of 
interest. We annotated a total of 724 images, and these are used to create more patches for training data.

Statistical metrics used for evaluation
We assessed the performance of the model using standard machine learning metrics. We used five metrics, 
such as accuracy, precision, sensitivity, specificity, and F1-score, to evaluate the model’s performance. These 
metrics are computed by comparing the predicted labels of the model for each pixel against the true labels in the 
reference data. They are calculated based on the number of true positive (TP), true negative (TN), false positive 
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Fig. 3.  Schematic of the Spatial Attention Gate. The encoder feature x is compressed to θx, and the decoder 
signal g is projected and upsampled to ϕg . Their sum is used to produce the attention map ψ, which is 
broadcast and multiplied by x to generate the filtered feature map.
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(FP), and false negative (FN) predictions made by the model35. We will display the mathematical definition of 
each item mentioned below.

Accuracy measures the proportion of correct predictions made by a model out of total predictions.

	
Accuracy = (T P + T N)

(T P + T N + F P + F N)

Precision measures the proportion of positive predictions made by the model that are correct.

	
P recision = T P

(T P + F P )

Sensitivity measures the proportion of actual positive samples correctly identified by the model.

	
Sensitivity = T P

(T P + F N)

Specificity measures the proportion of actual negative samples that the model correctly identifies.

	
Specificity = T N

(T N + F P )

The F1-score is the harmonic mean of precision and sensitivity. It considers both FP and FN predictions. A 
model with a high F1 score has high precision and sensitivity.

	
F 1 − score = 2 ∗ T P

(2 ∗ T P + F P + F N)

Intersection over Union (IoU) measures the overlap between the predicted and ground truth regions. It is 
defined as the ratio of the intersection to the union of the predicted and true positives.

	
IOU = T P

(T P + F P + F N

These results were then collected into a confusion matrix. The diagonal cell of the confusion matrix represents 
the correctly classified instances for a class. By analyzing the confusion matrix, we could identify the strengths 
and weaknesses of the spore-UNet model.

Cell counting experiment
Spore preparation
Bacillus thuringiensis (B. thuringiensis) ATCC 35646 cells were grown on BBLK sporulation agar (BD) plates, 
incubated at 30 °C overnight36. Cells were collected by scraping them off the agar and transferred to a 1.5 mL 
Eppendorf tube, centrifuged once with the supernatant discarded to remove leftover growth media and the pellet 
resuspended in deionised water. To allow sporulation, the cells were stored overnight at 4 °C. The resulting spore 
suspension was then purified by centrifuging in deionised water at 5000 × g for 5 min five times, discarding 
the supernatant and resuspending the pellet each time. After being purified, the suspension was resuspended in 
deionised water and stored at 4 °C.

The sample was prepared by depositing 5 µL of a 107 spores/mL suspension on a glass cover slip (no.1, Paul 
Marienfeld GmbH & Co., Lauda-Königshofen, Germany) and allowing it to dry to fix the spores to the surface. 
To observe the process of spore germination and growth, a 5 µL drop of tryptic soy broth (TSB, BactoTM, BD) 
was added on top of the dried spores and the sample was sealed by placing a vacuum grease ring around the 
drop and covering it with a 20 × 20 mm cover slip. The sample was then kept at 30 °C, while acquiring images of 
a 500 × 500 µm sample area.

Image stitching
The image acquisition for stitching was done using an in-house developed LabView program for controlling the 
sample stage and the camera (see SI section “Image Acquisition in LabView”). The program uses a snake-by-
rows algorithm to capture 49 overlapping fields of view in a 7 × 7 grid. The sequence takes less than 1 minute 
to complete and the process was repeated every 20 min, resulting in a timelapse series of composite images. 
To create the composite images, each image sequence was combined in Fiji (ImageJ, 1.53t)37 using the image 
stitching plugin38. The 49 fields of view were merged into a combined image (stitched) that covered a 500 × 500 
µm area with a resolution of approximately 16.5 pixels/µm. The supplementary material includes the LabView 
code and a step-by-step guide on how to perform these tasks.

Counting cells
We determined the number of cells using the free software Fiji (ImageJ) and the masks were processed using the 
“Analyze Particles” tool.

To determine typical spore and cell size and shape and thus filter noise and false positives, we compared 
spores on the UNet-generated masks with the corresponding original unprocessed images. We manually 
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checked around 100 particles, measuring their size and circularity. Following this pre-measurement we have 
chosen the following filter parameters for the “Analyze Particles” tool settings: 0.2–0.95 for circularity, pixel size 
50–750 for the 0 min time point (when the sample is only spores) and pixel size 50–5000 for the 120 min time 
point (when large cells are present). Particles outside these parameters were discarded. We manually assessed 
these filter settings.

Results and discussions
Model evaluation and validation
With the aim of developing an advanced machine learning model specifically tailored for the classification and 
analysis of spore images, we trained the spore-UNet model using 7000 spore images and validated the model 
using 10,00 images. The images were 256 × 256 pixels and contained gray channel information. To enhance the 
learning process, we employed Adam optimization, a training technique known for its efficient computation and 
effective handling of sparse gradients39. This allowed us to set a learning rate of 0.002, which determines how 
quickly the model learns from each batch of images. We also set two momentum parameters, β1 and β2, which 
help stabilize and speed the learning. The model was then trained for 50 epochs.

After about 10 epochs, the model accuracy reached a plateau of around 95% for the validation set, as shown 
in Fig. 4. This means that the model could accurately classify the content of images that were not used during 
training. The loss curve also shows a similar downward trend, indicating that the model continued to improve. 
By the time it reached 50 epochs, the model had minimal additional learning, suggesting that it was well-trained. 
We used the confusion matrix for our data, shown on Fig. 5, to calculate the Precision, Sensitivity, Specificity, 
and F1-Score for each class in the data set. Based on these metrics, we concluded that the spore-UNet model 
performed well across all measures.

We use an Attention-based UNet architecture for spore segmentation. To assess its performance, we 
compared it with traditional UNet and residual-based UNet architectures for spore segmentation. We evaluated 
different UNets based on the Precision, Sensitivity, Specificity, F1-score, Accuracy, and Intersection over Union 
(IOU). Based on the test data, it can be concluded that the spore-UNet model has achieved and accuracy of 96%, 
precision of 82%, sensitivity of 81%, specificity of 98%, F1-score of 80%, and IOU of 71%. These results suggest 
that the modifications made to the UNet architecture have enhanced its ability to classify accurately and segment 
data with high consistency. The second-best performer among the other state-of-the-architectures was the 
Residual-based UNet model, which achieved 90% accuracy, 81% precision, 67% sensitivity, 94% specificity, 73% 
F1-score, and F1-score of 61% on the test data. In contrast, the UNet architecture used as a baseline achieved an 
accuracy of 88% on the test data.

We have validated the algorithm by comparing it to Cellpose, we were not able to segment test images 
accurately, achieving a precision of 78%, recall of 64%, accuracy of 70%, F1-score of 68%, specificity of 78%, 
and IOU of 0.54%. We believe this is due to the characteristics of our data, in which cells vary in size and 
shape, which pose challenges for optimization by Cellpose. We also run Omnipose with our dataset achieving 
a precision of 79%, recall of 67%, accuracy of 82%, F1 score of 73%, specificity of 78% and IOU of 0.57%. These 
improvements highlight Omnipose’s ability to better handle morphological variability. However, our spore-
UNet still outperformed both models, demonstrating stronger generalization and robustness on spore-specific 
segmentation tasks.

Fig. 4.  Training and validation metrics over Epochs. (A) illustrates the decrease in training loss across 50 
epochs, demonstrating the model’s improving performance in learning from the dataset. (B) shows the 
increase in validation accuracy over the same 50 epochs, indicating the model’s enhanced ability to generalize 
and accurately classify new, unseen data. During the first 10 epochs, loss decreases and accuracy sharply rises, 
followed by a plateau. After 10 epochs, the training set accuracy continues to rise, but the validation accuracy 
remains largely unchanged.
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Thus, we conclude that our experimental results suggest that the spore-UNet model has stronger robustness 
and higher generalization ability than other tested models for spore segmentation. For training, we used 
Roboflow just to mark the initial regions of interest in the images, but the final annotations were manually 
corrected using polygon points to make sure they were accurate and unbiased. So, our spore-UNet model did not 
learn from any pre-trained model. Instead, it was trained using expert-labeled data. Also, we found that general 
tools like Cellpose and Omnipose did not work well for our type of data. That’s why we developed a custom 
spore-UNet model. One of the main advantages of spore-UNet is that it can accurately segment a large number 
of bacterial cells, even when they look different or are very close together. This helps reduce both manual work 
and the need for retraining. The results of all models are listed in Table 1.

Segmenting spores in microscopy images
To showcase the performance of the spore-UNet model in segmenting spores in microscopic images, we present 
examples in Figs. 6 and S2. Note that the spore samples were not cleaned using, for example, Histodenz or 
Nycodenz to remove debris, since we wanted to assess the model on complicated images. The original images are 
displayed on the left, and the manually annotated ground truth is provided in the middle for comparison. On 
the right-hand side, you can see the predicted segmentations generated by spore-UNet. Qualitatively, we see that 
our model can accurately delineate spore boundaries and internal textures. We evaluated the spatial alignment 
between predicted masks and the ground truth masks using the Intersection over Union metric, as presented 
in Table 1.

Method Precision Sensitivity Specificity F1-score Accuracy IOU

Cellpose 0.78 0.64 0.78 0.68 0.70 0.54

Omnipose 0.79 0.67 0.88 0.73 0.82 0.57

UNet 0.78 0.68 0.91 0.73 0.88 0.59

Res-UNet 0.81 0.67 0.94 0.73 0.90 0.61

spore-UNet 0.82 0.81 0.98 0.80 0.96 0.71

Table 1.  Quantitative comparison of spore segmentation performance for different model architectures. This 
table displays evaluation metrics measuring precision, sensitivity, specificity, F1-score, accuracy, and IOU. 
Spore-UNet demonstrates improved performance across all metrics compared to Cellpose, Omnipose, baseline 
UNet and Res-UNet. Largest values for each column are in bold.

 

Fig. 5.  Confusion matrix demonstrates the pixel-level classification performance on the test set. The rows 
indicate the true class from the ground truth, whereas the columns show the predicted classes output by spore-
UNet. The diagonal cells display correctly classified instances as either spores or backgrounds. The off-diagonal 
elements indicate misclassified examples.
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As evident from visual inspection, our model captured fine-grained edge details on the perimeter of each 
spore. Notably, the model properly segmented clustered spores. Compared to manual annotation, which 
segments spores and cells as relatively simple polygons (due to time limitations in manual annotation of ∼ 
30,000 cells), the predictions (except the false positives) were in fact a better representation of the spores and 
cells in the raw data. This means that the limitations of manual annotation are a contributing factor to the 
lower performance metrics. The “real” prediction metrics would likely be higher if compared to a more finely 
annotated ground truth.

These capabilities highlight the proficiency of the model in identifying unique spore instances within each 
image. Validating the performance across our entire test set, we report an average segmentation accuracy of 
95% compared to manual spore delineations. This high accuracy demonstrates the reliable generalization of 
our model to various spore morphologies and image backgrounds. While predictions appear largely correct, we 
observe false-positive regions, indicated by blue arrows. Incorporating more diverse training data with additional 
spore types would likely improve performance in these corner cases. Nonetheless, the current results confirm 
that our approach can segment spores at a level of accuracy on par with that of expert human labelers. Therefore, 
our model shows potential as an automated tool for analysing large images that contain a high quantity of spores.

Quantifying germination and outgrowth of 104 spores in large images
To demonstrate the use of the model for high-throughput analysis, we tracked the germination and outgrowth 
of B. thuringiensis spores on a large field of view. Spores are inactive seed-like forms of some bacteria that form 
when the bacteria are in unfavourable conditions. These spores are highly resilient to environmental challenges 
and disinfection procedures40 and thus some spore-forming species like C. difficile and B. cereus present a 
problem in healthcare41 and food processing42. Traditional methods of testing disinfection on surfaces are bulk 
testing, which results in losses of cells during the transfer from the surface to nutrient plates43. Direct imaging 
of the cells would avoid these losses and allow for a more representative assessment of the effect on the sample. 
However, typical disinfection requirements for spores on hard surfaces are 3–4 log44 and thus require at least 
104 cells to be counted, well outside what can be counted manually within a reasonable timeframe. However, 
counting 104 cells falls within the capability of our workflow. As such, it can be used as a much more direct, 
accurate, and “real-world” way of assessing surface disinfection.

To simulate such a scenario, we placed spores on a glass slide, covered them with nutrient broth (TSB), and 
monitored their germination and growth for two hours. We then use the spore-UNet model described above to 
obtain binary masks for each time point, see Fig. 7A and B. From the masks, we extracted quantitative metrics 
(size, circularity) of the spores (Fig. 7A) and the germinated cells (Fig. 7B).

Counting spores and cells can be complex for automated tools, as the relative contrast of the spore can also be 
greatly affected by focus drift, as shown in Fig. S3. Additionally, as they grow out of the spore form, they increase 
in size, change their shape, as well as their optical density. However, we found that the spore-UNet model could 
resolve the cells despite these differences. The data indicate that spores exhibit a clear phenotype that depends 
on incubation time, as they germinate and grow into cells. More specifically, after filtering out artifacts with low 
pixel size, spores before nutrient incubation have a median area of 1.11 µm2 with a 5–95% range of 0.6–1.97 
µm2 (n = 13972). These data exhibit a distribution that closely resembles a normal distribution, depicted in 
blue in Fig. 7C. In comparison, following 2 h of incubation, the median size of the particles is 3.73 µm2 with a 
5–95% range of 0.33–10.06 µm2 (n = 9455), with a non-normal distribution (orange). The shape of the particles 
also changes, as shown by the circularity measurements shown in Fig. 7D. The spores before incubation show 
a narrow range of circularity (blue) with a median value of 0.86 and a 5–95% range of 0.71–0.93, compared to 
the incubated spores (orange), which have a median of 0.58 and a much wider 5–95% range of 0.30–0.90. One 

Image Annotation spore-UNetRes-UNetUNetCellpose Omnipose

Fig. 6.  Comparison of model predictions for spore segmentation. The first column presents the original 
microscope images of spores and outgrown vegetative cells. The second column features the manual 
annotations that outline the spore and cell boundaries. The subsequent columns illustrate the performance 
of various algorithms: Cellpose, Omnipose, UNet, and Res-UNet, highlighting deviations from the manual 
annotations. The final column exhibits the segmentation predictions made by Spore-UNet, with the blue arrow 
indicating a false-positive region in the predictions.
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limiting factor for the algorithm can be dense overlapping cells, particularly when dividing. Cells can float away 
from the glass surface and overlap with each other, making counting difficult. A way to prevent this would be to 
use agar-based methods, such as sandwich agar pads. The cells are then limited to grow in a plane, preventing 
overlap. In experiments where this is not possible, the area of heavily overlapping cells can be excluded from 
analysis.

We have also manually examined particles that are outside of our pre-set size and circularity limits to ensure 
we did not unintentionally filter out a significant number of spores or cells. The most common particle is the 
single pixel artifact, which is caused by noise. Other small particles like the ones shown in Fig. 6 have sizes of ≤ 
50 pixels and have low circularity. These particles usually consist of segmented debris or partially obscured cells. 
Large filtered particles, such as spore particles greater than 750 pixels (2.7 µm2) in size, consist of 2–3 cells or 
spores in close proximity, fused into a single particle by a pixel bridge (Fig. S4). However, these were relatively 
rare, accounting for only 0.1% and 0.5% of the cells in the 0 min and 120 min images, respectively. Therefore, 
they do not affect the results or capability of the workflow. These fused cells can also be resolved back into single 
images using the erode and dilate tools in ImageJ, although this would slightly affect their size.

Based on the information obtained, we were able to calculate the spore germination rate. After analysing 
the samples post-incubation, we identified 9455 segmented cells in the sample, of which only 1247 met the 
predefined criteria for spore size and circularity parameters before incubation. Using these results, we estimate 
the germination rate at 87%. By utilizing this approach, which enables scanning of large areas to inspect 
thousands of cells, it is possible to conduct various types of quantitative studies, including those focused on 
comparing growth rates or viability (live-dead) assays. As a proof of concept, we tested our UNet algorithm on 

Fig. 7.  Tracking the germination and growth of B. thuringiensis. The algorithm segments spores both at 
the start of the measurement (A) and after 2 h (B), at which point, based on incubation duration and visual 
confirmation, spores have had the time to germinate and grow, but not yet divide. A higher resolution inset 
illustrates the segmented individual spores and cells. Particle analysis can be used to quantify differences in the 
sample over time, such as cell size difference (C) and circularity (D) to determine germination rates.
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images that contained spores exposed to high levels of 1064 nm light. See the method in the supplementary 
material. Thus, we expected that the majority of spores would be non-viable and that there would be fewer cells 
overlapping. In Fig. S6A and B, we can see that after 180 minutes of incubation, only a low number of spores (16) 
germinated out of a population of 633 (2.5% viability). These germinated spores can be clearly identified based 
on their size (Fig. S6C). The size and circularity (Fig. S6D) of the remaining population are similar between the 
start and end of the experiment (180 min).

These findings demonstrate that our algorithm provides a powerful tool for quantifying spore disinfection at 
the single-spore level by enabling high-throughput analysis of thousands of individual cells. By applying strict 
morphological criteria such as size and circularity, we can accurately distinguish viable, germinated spores from 
non-viable ones. The algorithm’s ability to detect such low levels of viability highlights its sensitivity and potential 
for evaluating disinfection efficacy in various experimental conditions.

GUI application
We have developed a desktop application using Python’s Flask framework, designed to simplify the process of 
uploading and analyzing images with our automated algorithm. The application’s workflow is shown in Fig. 
S5. Users can select an image from a gallery or upload one via drag-and-drop. Once an image is uploaded, the 
application predicts the presence of spores. When installed on a local computer with an i9 10th Gen processor 
(Intel) and 32GB of RAM, the application processes both small and large images efficiently.

Github resources
Detailed instructions for installing the developed code and implementing it are provided in the supporting 
information. Additionally, users can find instructions on how to retrain using Google Colab in the GitHub 
resources45. The ’Training model.ipynb’ file can be used to retrain the model; simply follow the instructions 
provided in the file. The ’prediction file.ipynb’ file is used to test the model on your custom dataset.

Conclusions
Light microscopy is a highly flexible tool for analyzing cell shape and the growth of cells. However, traditional 
methods often encounter challenges when scaling effectively for large numbers of cells. In this study, we 
developed an attention-based UNet algorithm specifically designed to rapidly analyze large microscope images, 
capable of accommodating more than 10,000 bacterial cells per image at each time point. Furthermore, we show 
a workflow that includes automated image acquisition over an extensive grid, followed by stitching these images 
into a larger, combined image. This approach presents significant advantages over conventional bulk methods 
in analyzing extensive cell populations. We believe that this workflow, coupled with the attention-based UNet 
algorithm, has substantial potential for a wide range of research applications, such as decontamination studies 
and live-dead assays.

Data availability
All the code in this project was developed using Python and different public libraries, as defined in the support-
ing information. The code can be downloaded from GitHub.
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