
Efficient attention vision
transformers for monocular depth
estimation on resource-limited
hardware
Claudio Schiavella1, Lorenzo Cirillo1, Lorenzo Papa1,2, Paolo Russo1 & Irene Amerini1

Vision Transformers show important results in the current Deep Learning technological landscape,
being able to approach complex and dense tasks, for instance, Monocular Depth Estimation. However,
in the transformer architecture, the attention module introduces a quadratic cost concerning the
processed tokens. In dense Monocular Depth Estimation tasks, the inherently high computational
complexity results in slow inference and poses significant challenges, particularly in resource-
constrained onboard applications. To mitigate this issue, efficient attention modules have been
developed. In this paper, we leverage these techniques to reduce the computational cost of networks
designed for Monocular Depth Estimation, to reach an optimal trade-off between the quality of the
results and inference speed. More specifically, optimization has been applied not only to the entire
network but also independently to the encoder and decoder to assess the model’s sensitivity to these
modifications. Additionally, this paper introduces the use of the Pareto Frontier as an analytic method
to get the optimal trade-off between the two objectives of quality and inference time. The results
indicate that various optimised networks achieve performance comparable to, and in some cases
surpass, their respective baselines, while significantly enhancing inference speed.

Keywords  Computer vision, Edge devices, Efficient vision transformer, Monocular depth estimation

In Computer Vision, most approaches rely on RGB images1,2. However, several studies have demonstrated that
incorporating a fourth channel, the depth channel, yields significant improvements3–5 by integrating and making
explicit additional information that was previously implicit in the captured image. Utilizing depth information,
however, requires access to depth maps, which can be obtained through specialized hardware using an active
sensing approach. Sensors such as LiDAR or certain types of cameras acquire depth by emitting a physical signal
into the environment and measuring the time taken for its return. Depth plays an essential role in several practical
applications. In robotics, it enhances autonomous navigation and obstacle avoidance6, while in autonomous
driving, it provides a precise understanding of the surrounding environment7. Additionally, in virtual reality,
depth data contributes to more realistic and immersive experiences, improving user engagement8. Despite its
advantages, actively acquiring depth through sensors presents several challenges. First, depth maps generated
by these devices are often sparse, providing depth values only at specific points rather than offering a dense
and comprehensive representation of the scene. Moreover, integrating dedicated hardware imposes additional
constraints on the system, increasing weight and power consumption, which can be critical for resource-limited
applications.

These challenges can be mitigated through passive depth-sensing techniques, which shift the computational
complexity from hardware to software. Unlike active sensing, passive approaches estimate scene depth without
directly perturbing the environment, eliminating the need for specialized depth sensors. One prominent example
of passive depth estimation is Monocular Depth Estimation (MDE)9, which infers depth information from a
single RGB image. This complex, dense task allows for a more global view of the scene’s depth and minimises
the reliance on specific hardware. In this context, Deep learning models are essential for obtaining accurate
and reliable depth estimates. In particular, transformer architectures succeed in approaching this task with
impressive results. Due to their ability to capture global features via the attention mechanism10, the transformer
models specific to vision tasks, namely Vision Transformers (ViTs)11, can predict accurate and precise depth
maps12–14. A major limitation of the ViT architecture is the computational cost of its attention module, which

1Department of Computer, Control and Management Engineering (DIAG), Sapienza University of Rome, Rome
00185, Italy. 2ϕ-Lab, European Space Agency (ESA), Frascati 00078, Italy. email: schiavella@diag.uniroma1.it

OPEN

Scientific Reports | (2025) 15:24001 1| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-06112-8&domain=pdf&date_stamp=2025-7-4

scales quadratically with the number of tokens being processed. While this module is essential for achieving high
performance, it significantly impacts processing speed and memory usage, making dense prediction tasks such
as MDE highly resource-intensive. This challenge is particularly critical in onboard or real-time applications,
where the device’s processor is also responsible for tasks beyond network inference. In this context, the device
is in a dynamic environment and it should generalize real and new data15–18 in a reliable and fast way. This fact,
combined with the constrained computational resources of certain hardware platforms, creates a challenging
environment for deploying ViT-based MDE models efficiently. To address this issue, our research focuses on
integrating efficient attention mechanisms into state-of-the-art ViT architectures for MDE, aiming to achieve an
optimal trade-off between performance and inference speed.

This paper provides a comprehensive analysis of the impact of efficient attention modules on various ViT
architectures for MDE that achieve state-of-the-art performance. Specifically, optimizations are applied not only
to the entire network but also independently to the encoder and decoder, enabling a more granular study of how
attention modifications influence different network components. This approach helps identify the most effective
optimizations, ultimately guiding the development of a model that balances inference speed with fidelity to
baseline performance. The architectures under investigation include PixelFormer (PXF)12 and Neural Window
Fully-connected CRFs (NeWCRFs)13, both of which are computationally intensive models that incorporate
attention mechanisms in both the encoder and decoder. Additionally, we analyse METER14, a lightweight
hybrid architecture that combines transformer-based processing with convolutional layers. By comparing the
effects of optimizations on these models, we aim to understand how fully attention-based networks, such as
PXF and NeWCRFs, perform relative to hybrid architectures like METER. The optimizations explored in this
study introduce structural modifications to the attention mechanism. Specifically, MetaFormer (Meta)19 replaces
the attention module with a token mixer of linear complexity, significantly reducing computational overhead.
Meanwhile, Pyramid Vision Transformers (Pyra)20 adjust the computational granularity of the attention module
by reducing the size of its processing elements, thereby altering its overall complexity. Through this analysis, we
seek to determine the effectiveness of these optimizations in enhancing inference efficiency while maintaining
high-quality depth predictions. Finally, the Mixture-of-Head (MoH) method21 introduces a routing mechanism
to dynamically select the most effective attention heads, further enhancing computational efficiency. The choice
of these types of efficient attention modules is based on the fact that they have been tested on various computer
vision tasks, but not yet to MDE. In all cases considered, these attention modifications have led to promising
results, making it interesting to evaluate their performance on a dense and complex task such as MDE. Moreover,
each optimisation affects the attention modification differently: Meta simplifies the architecture, Pyra compresses
the inputs, while MoH changes the routing of multi-head attention.

Given the structural modifications introduced by these optimizations, it is essential to employ an objective
evaluation framework to assess their impact. To achieve this, our research leverages the Pareto Frontier, a
systematic and analytical tool for identifying optimal solutions in multi-objective problems. In our context,
each candidate model represents a potential solution, and only the Pareto-optimal models, those that are not
outperformed across all objective criteria, are selected. A model is considered dominant if no other model
surpasses it in both prediction quality and inference speed simultaneously. The resulting Pareto-optimal models
define the frontier, representing the best trade-offs between these competing objectives. This approach provides a
rigorous evaluation framework, allowing us to systematically compare optimised models against their respective
baselines. While Pareto analysis has been applied in deep learning evaluations22 and in multi-modal object
tracking23, it has not yet been explored specifically for MDE.

Our experiments are conducted on two benchmark datasets widely used for MDE: NYU Depth V224, which
consists of indoor scenes, and KITTI25, which focuses on outdoor driving scenarios. By evaluating optimised
networks across these datasets, we aim to assess their performance in diverse real-world conditions, ensuring the
models generalize well to practical applications.

To provide a clear overview, our work can be summarized as follows:

•	 We conduct an in-depth study on the impact of efficient attention modules on the qualitative and temporal
performance of ViT models for the MDE task.

•	 We analyse the impact of the efficient attention modules separately on the full network, encoder, and decoder,
obtaining a descriptive evaluation of the optimisation’s contribution.

•	 We introduce the Pareto Frontier as a systematic method to identify the optimised models that achieve the
optimal trade-off between result quality and inference speed.

The rest of the article is organized as follows: In “Related works” section presents an overview of MDE, describing
ViT architectures for this task and suitable optimizations for their attention modules. In “Methods” section
exposes networks and efficient attention modules used in the experiments. “Results” section presents a detailed
analysis of the experiments carried out. Finally, “Conclusions” section indicates conclusions and potential future
research directions.

Related works
Monocular depth estimation
Depth estimation, in its most general form, concerns determining the distance between an object and the
imaging sensor. From an application perspective, this process is crucial in various real-world domains, including
robotics6, autonomous driving7 and augmented reality8. The depth measurement can be performed actively, by
sensing the depth through dedicated hardware. That approach perceives the scene’s depth by perturbing the
environment with a physical medium, such as LiDAR or Time-of-Flight. Another possible solution is to retrieve
the depth passively, not by measuring but by estimating the value through software solutions. Our application

Scientific Reports | (2025) 15:24001 2| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

context focuses on MDE, which is categorised as a passive method. This approach estimates image depth from
a single RGB image on a per-pixel basis9. Among software-based solutions related to this task, several Deep
Learning methods leverage neural networks to predict depth maps12–14. These techniques often achieve accurate
results that are in part attributed to10 attention mechanisms, which enable the extraction of global information
from the input image. However, despite their potential, these models are often constrained by a slow inference
speed, primarily due to the weight of the network and the computational cost of some of their modules. This
situation leads to challenges in scenarios where both precision and real-time performance are necessary.

Our research aims to identify solutions that can mitigate the complexity of MDE models while maintaining
performance and improving inference speed.

Vision transformers for monocular depth estimation
Deep Learning-based solutions are widely used in the MDE task. Early approaches involved using Convolutional
Neural Networks (CNN)26 to estimate the depth from a single input image. A representative work that introduces
this type of model is the study by Eigen et al.27. Their approach captures the image context and then reconstructs
the depth map by refining the local details of the obtained representation.

With the advent of Transformers and the attention mechanism10, these architectures have been extended
to the field of imaging, through the introduction of ViTs11. These models process input images by tokenizing
them into smaller patches. Due to their ability to capture long-range dependencies and model global spatial
relationships, they have been widely adopted in Computer Vision28 tasks, including MDE. Several networks have
exploited the ViT architecture with specific techniques to improve the quality of the predicted depth map. An
example is the PixelFormer network12, which after extracting the image representation with a Swin Transformer
backbone29, improves the quality of the predicted depth map by merging encoder and decoder features with
an attention-based approach. Similarly, the NeWCRFs network13 exploits a decoder module that introduces
Conditional Random Fields (CRF) integrated with attention mechanisms. In this framework, each CRF captures
observable image features, such as textures and object positions, to define an energy function, which is then
optimised to retrieve the depth estimation. In contrast to these networks, some recent solutions integrate CNNs
with the capabilities of ViTs, developing hybrid approaches. For instance, METER14 is a lightweight model,
combining a transformer-based encoder with a fully convolutional decoder. This architecture is suitable for
experiments were conducted on devices with limited hardware resources and achieves a reasonable balance
between efficiency and performance.

Despite the strong performance of the presented networks for the MDE task, they share common problems
with ViT architectures. Transformer models are often characterized by a high number of parameters and floating
point operations per second (FLOPs), resulting in memory-intensive networks and often slow inference. This
issue is mitigated in lightweight transformer architectures, which achieve reasonable performance while
maintaining lower computational demands. However, another challenge that affects all Transformers is the
quadratic problem of the attention module10. This module has a quadratic computational cost concerning
the input tokens, leading to a significant speed issue in MDE, as high-resolution inputs require processing a
substantial number of tokens to predict a dense depth map. Recent research on MDE has introduced efficient
attention mechanisms in networks addressing this task30,31; however, the trade-off between performance and
speed remains insufficiently analysed.

This work addresses the optimisation of networks for MDE, which perform well but are limited by the
computational cost of the attention module. Furthermore, this work focuses on achieving a trade-off between
performance and speed through a structured and quantitative evaluation of the modified networks compared
with their original models.

Efficient attention modules
Although in different ways, all the architectures presented use the attention mechanism. This module, in most
cases, determines the model’s performance. However, attention presents a computational problem due to its
quadratic complexity relative to the input tokens10. In ViT-based networks, where images are divided into a large
number of patches11, this results in significant computational overhead. This situation poses challenges in time-
critical applications such as autonomous driving or rescue robotics9.

To address this issue, several studies32 have explored techniques to optimise the attention modules. In
particular, these methods aim to reduce the quadratic complexity of the mechanism, proposing new approaches
to speed up the calculation and maintain performance. These methods are specifically designed to modify
attention, in contrast to the promising optimisation present in the current literature33,34, or more general
solutions such as quantisation35, pruning36 and knowledge distillation37 which reduce computational overhead
by optimising the entire network. Regardless of the applied optimisation, modified models will experience a
trade-off between performance and inference speed32,38. There are cases, however, where performance may even
improve once the optimisation is introduced. A consistent example is MoH21, which modifies the entire multi-
head attention mechanism. Since not all attention heads contribute equally to the final prediction39, the proposed
optimisation employs a specialised routing mechanism to efficiently select the most relevant heads. This method
has been used in computer vision tasks such as classification or image generation, but its application in MDE
has not yet been proven.

Unlike MoH, some optimisations, such as Meta19 and Pyra20 focus more specifically on token processing
within the attention module. Meta advances the idea that in ViT architectures, the quality of results depends
primarily on the overall structure of the network, rather than on the attention module. This part of the network
is intended as a token mixer and, given the initial assumption, is replaced with a much simpler module which
performs the token mixing operation in a computationally lighter manner. Pyra optimisation, in particular,
introduces spatially reduced attention, progressively decreasing the input size of the attention mechanism.

Scientific Reports | (2025) 15:24001 3| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

This method allows for the better application of transformation architectures to dense tasks, dealing with less
expensive computational elements. Both methods introduced have already been tested in the MDE task38,
bringing encouraging results from the point of view of maintaining the performance and speed of the optimised
models. However, a precise analytical definition of the trade-off between prediction quality and speed of inference
remains unclear. The Efficient Error Rate introduces a possible approach in32, but this metric is based on values
primarily influenced by network-wide optimisations, which substantially alter the number of parameters and
the model’s memory weight. Another attempt to measure the trade-off between different objectives of a neural
network was introduced by the work22, in which through the Pareto Frontier a systematic and precise way is
proposed that comes directly from optimisation theory. To the best of our knowledge, the application of this
method is limited in the context of Deep Learning and unexplored in the analysis of optimised models for MDE.

Building on these concepts, we aim to optimise ViT architectures for the MDE task. More specifically,
techniques that modify the complexity of the attention modules have been adopted. The impact of these
modifications will be evaluated in a general and systematic manner, independent of specific network values,
focusing solely trade-off between quality and speed objectives.

Methods
Optimization framework
In this section of the article, the general approach proposed to modify and analyse the networks considered for
the study is presented. As highlighted in the current literature, the issue associated with Transformer models,
related to the quadratic cost of their attention module, has emerged10,38. Consequently, the need to optimize this
part of the network arises, applying targeted modifications to mitigate the complexity of attention. However, to
have a clear comparison between the modified networks and the baselines, a standardized process that can be
applied to the networks and optimizations under study is essential.

This need leads to setting the proposed analysis through a specific framework. This approach takes
advantage of the architectural similarities of the elements involved, allowing the various network-optimization
combinations to be easily applied and immediately capture the results relevant to the research. The idea is shown
in Fig. 1. The approach considers each component as a container, capable of integrating the different elements.
In this way, a generic framework is obtained, with different instances depending on the dataset, network and
optimization used.

More specifically, the framework includes a module related to the network architectures to be tested. This
component itself contains two sub-structures: one for the encoder and the other for the decoder. These two
elements are fundamental in the framework because they will integrate the different types of efficient attention
modules and the classical one for the baseline. Thus, by instantiating these containers, it is possible to obtain the
network configurations in a clear and precise manner.

This approach realises a consistent experimental framework that facilitates the reproducibility and the
evaluation of the different modified models. Each network and optimization that realizes a configuration has

Fig. 1.  The general framework used to compare the different network-optimization configurations. The
module Network architecture instantiates the network to be analysed, while the submodule Efficient Attention
Module integrates the attention mechanism used by the encoder, decoder, or the entire network. On the left
side a comparison is shown to illustrate how each optimization modifies the original module. The left module
depicts the optimised attention, while the right one shows its standard version.

Scientific Reports | (2025) 15:24001 4| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

its characteristics that determine the behaviour of the modified network. Details on these different elements are
discussed in the following sections.

Network architectures
METER
METER14 is a hybrid and lightweight ViT network. It achieves strong performance, even in scenarios with
limited hardware resources.

This network uses an encoder that extracts useful features for depth prediction from the input image. This
module comprises different layers, including convolutions with small kernels to maintain fast data processing
and transformer blocks. In particular, this is the only part of the network that has attention modules. This module
is available in three sizes: XXS, XS, and S. Each increment increases the parameters and the network capabilities.
The METER decoder is purely convolutional and is responsible for reconstructing the predicted depth map from
the features extracted by the encoder.

Beyond the architecture, this work introduces a composite loss specific to the MDE task. This approach
integrates different values tailored for depth estimation, considering the pixel-per-pixel difference, cosine
similarity between prediction and ground truth, and penalty factors to enhance detail reconstruction. In
addition, a dedicated data augmentation pipeline enhances the robustness of the network. The latter proposes a
change in the colour and brightness of the input RGB image, called C Shift, to simulate different data acquisition
conditions. Furthermore, virtual data augmentation is also applied to the depth maps, with the D Shift, which
randomly shifts the depth map corresponding to the ground truth to reduce the risk of overfitting on specific
depth values.

PixelFormer
PixelFormer12 approaches the MDE task in a particular form. For each image, the network adaptively predicts
multiple intervals that divide the continuous depth value into a discrete range. Each pixel of the depth map to
be estimated will be associated with a vector of weights, with several elements equal to the number of intervals
estimated. The final depth of each pixel is calculated as a linear combination of the centres of the intervals
predicted for the image, weighted by the values of the probability vector associated with that pixel.

The encoder, a Swin Transformer29, was presented in the original paper as a general backbone for computer
vision tasks. Its feature extraction function is based on a hierarchical organisation to model information at
different resolutions and on non-overlapping windows that, in their context, apply attention computation to the
local context of an input patch. As in the previous model, the network is available in three configurations: tiny,
base and large, each with increasing parameters. PixelFormer’s decoder, on the other hand, introduces the SAM
mechanism that merges features from the encoder with those of the decoder through an attention mechanism to
maximise information extraction from the encoder’s general and decoder-specific features.

NeWCRFs
The NeWCRFs13 network approaches the MDE task based on so-called CRFs. These elements are probabilistic
models that capture spatial relationships in structured data. In MDE, these elements allow dependencies
between pixels to be modelled so that the estimated depth is consistent with that of its neighbours. This approach
applies CRFs on local windows to capture global information while limiting the computational impact to limited
connections between neighbouring pixels.

The network applies this methodology through its decoder, supported by an attention mechanism to precisely
and accurately model the connections between the different local windows related to the CRFs. The encoder
module consists of a Swin Transformer29 that processes the input images, extracting global and hierarchical
features while capturing long-range dependencies between pixels.

Efficient attention module
Meta-optimised modules
As shown, MetaFormer generalises the concept of ViTs by maintaining the overall architecture while allowing
the use of different token mixers to replace the attention module. In particular, the work demonstrates that using
a simple operator, such as pooling, instead of attention supports the hypothesis that the general ViT architecture
is a key factor in model performance.

Taking the original formula of the attention, the difference between this and the one proposed in19 is very
marked. Considering the classical formulation of the attention

	
Attention(Q, K, V) = Softmax

(
QK⊤
√

dh

)
V � (1)

where Q are the queries, K the keys, V the values, dh the size of the attention head and Softmax an activation
function10, the Meta approach proposes the following modification

	 MetaAttention(x) = Poolingk (x)� (2)

where, in this case, x is directly the input given to the transformer, and the operator Pooling operates as suggested
by its name, exploiting a kernel of dimension k that aggregates the elements of the input by averaging them
among those that fall in its receptive field.

Scientific Reports | (2025) 15:24001 5| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Using pooling as a token mixer allows for a module with linear computational complexity concerning the
number of input tokens. In addition, it does not introduce trainable parameters that could burden the network’s
structure.

Pyra-optimised modules
The Pyramid PVT approach is one of the proposed variants designed to mitigate the drawback associated with
the quadratic complexity of the attention module, particularly in transformer-based networks for dense tasks,
such as MDE. In this case, the number of tokens present is exceptionally high, exposing the network to the
adverse effects of having a quadratic complexity dependent on this factor.

The concept presented in20 combines the advantages of convolutional neural networks26 and transformers10.
It introduces a pyramid approach that progressively reduces the input’s resolution, maintaining a high-resolution
representation in the first levels for greater accuracy in dense predictions. Although the attention equation closely
resembles the original version shown in Eq. 1, a critical detail represents the core idea of the proposed method.

	
PyraAttention(Q, K, V) = Softmax

(
QSR(K)⊤

√
dh

)
SR(V)� (3)

The spatial reduction operator SR manipulates both K and Q keys, defined as follows

	 SR(x) = Norm (Reshape (x, R) W)� (4)

This operation is applied to the input x, which, in our case, are the keys or values. The reduction ratio R applies
a reshape operation to the input. The output is then subjected to a linear projection and normalisation. These
steps reduce the computational cost of the attention operation by as much as R2 compared to its original form,
allowing even considerable inputs to be better handled.

MoH-optimised modules
The concept presented by MoH does not modify the attention module itself but rather optimises the routing
mechanism among multiple heads, as is depicted in Fig. 2. Attention remains so at the equation shown in Eq. 1.
In its original form, multi-head attention is formulated as follows:

	 MultiHead(Q, K, V) = Concat
(
H1, H2, . . . , Hh

)
WO � (5)

	 Hi = Attention(Qi, Ki, V i) � (6)

It represents a linear concatenation of the various attention heads, with the matrix WO as the final step. This
form can be seen from another perspective.

	
MultiHead(Q, K, V) =

h∑
i=1

HiW i
O � (7)

This is expressed by decomposing the linear projection matrix WO row by row and describing the multi-head
attention formula as a sum. This point serves as the foundation of the MoH technique. The multi-head attention
set as in21 is defined as follows.

	
MoH(Q, K, V) =

h∑
i=1

giH
iW i

O � (8)

Fig. 2.  On one side, the classical attention module (a) is compared with the token mixer module of Meta (b)
implemented by the pooling operation, and with the Pyra (c) approach in which key and values are spatially
reduced. On the other side, MoH (e) approach modifies the routing system in the multi-head attention (d),
addressing only some specific heads, and then aggregating them using a weighted sum.

Scientific Reports | (2025) 15:24001 6| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

In this configuration, the routing score gi acts as a router to select the best k heads of attention. This gi value is
non-zero if and only if the ith attention head should be activated.

This attention mechanism categorises two types of heads: shared heads, which are always active and capture
useful standard information in different contexts, and routed heads, which may or may not be active and do not
share information between various contexts. The number of each type of head is a design decision to be made by
those implementing the MoH mechanism.

Given this concept, the two-stage routing of the MoH approach is realised by the routing score gi, which is
as follows.

	
gi =

{
α1 Softmax (Wsx)i , if 1 ≤ i ≤ hs,
α2 Softmax (Wrx)i , if (Wrxt)i ∈ Top-K

({
(Wrx)i | hs + 1 ≤ i ≤ h

})
,

0, otherwise.
� (9)

	 [α1, α2] = Softmax (Whxt) � (10)

x indicates the input token and hs the number of shared heads. Ws and Wr are the projection matrices
that combine the score of each head type, thus implementing the routing mechanism. The coefficients α1 and
α2 are learned through the trainable matrix Wh to balance the overall contribution of the two kinds of heads.
Learnable elements of the presented routing system are taken into account during training via an additional loss
term specific to the task specific for the task that the network is performing21. This approach enables the dynamic
selection of the most appropriate attention heads for each token, enhancing inference efficiency and accuracy.

Implementation details
Benchmark datasets
The datasets used in the subsequent experiments to analyse the impact of the chosen architectures are NYU
Depth V224 and KITTI25. These two datasets are benchmarks for the MDE task.

The NYU dataset contains a collection of indoor scenes, with RGB images having a resolution of 640 × 480,
and their associated depth maps, which have a maximum depth of 10 metres. There are 120K training samples,
while there are 654 samples for the test phase.

As far as the KITTI dataset is concerned, it is conceptually opposed to the previous one; in fact, it is a
collection of outdoor images with a resolution of 1241 × 376, and their respective depth maps, which, in this
case, reaches up to 80 metres. The split of the dataset is such that there are 23K training samples and 697 test
samples.

Evaluation metrics
The metrics used to evaluate the experimental results are standard qualitative measures used in MDE27: Root
Mean Square Error (RMSE, in metres [m]), Absolute Relative error (AbsRel), and the accuracy measures δ1,
δ2, and δ3. Those metrics are presented in the following equations.

	

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2 � (11)

	
AbsRel = 1

N

N∑
i=1

|ŷi − yi|
yi

� (12)

	
δj = 1

N

N∑
i=1

max
(

yi

ŷi
,

ŷi

yi

)
< 1.25j for j = 1, 2, 3 � (13)

In this expressions, yi is the depth ground truth for the ith pixel, ŷi is the estimated depth for the i − th pixel,
and N is the total number of pixels of the image.

For the inference speed test, inference time is measured as the duration in seconds [s] required for the
network to perform the forward pass over the entire test set.

Experimental setup
The training configurations of the models follow the specifications reported in their respective papers12–14, with
training conducted on multiple NVIDIA RTX5000 GPUs. In particular, PixelFormer and NeWCRFs were trained
for 20 epochs, using Adam40 optimiser with parameters β = (0.9, 0.999) and weight decay of 10−2, a batch size
of 8 samples, and an initial learning rate of 4 × 10−5 reduced linearly to 4 × 10−6. METER was trained for 60
epochs under different configurations, introducing the AdamW optimiser41 with parameters β = (0.9, 0.999)
and weight decay of 10−1, a batch size of 128 samples, and an initial learning rate of 10−3 reduced by a factor
of 0.1 every 20 epochs. All the models were implemented through the PyTorch framework42. Unlike the other
networks in this research, METER operates on smaller image sizes compared to the original samples of both
datasets under consideration. However, depth maps predicted by METER can be compared by upscaling, with
the downside of a lower resolution. Furthermore, the METER article indicates that the KITTI version should be
trained using samples with filled-in depth maps. To ensure a fair comparison between the models in our study,
METER was trained on the KITTI raw dataset, which contains sparse depth maps.

Scientific Reports | (2025) 15:24001 7| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

With regard to the application of the optimisations, an attempt was made to keep the parameters unchanged
from the respective references19–21. However, for Meta and Pyra, some modifications, obtained through a trial-
and-error process, were necessary to adapt the pooling and the spatial reduction operator to the embedding sizes
of the respective networks.

The experiments in our work were performed on three different CPUs: Intel Core i9-7920X (I9X79), Intel
Core i9-10900X (I9X10), and Intel Xeon Gold 6338 (XG38). Testing the inference on a CPU aims to isolate
the impact of optimisations, to prevent parallelization from mitigating their contribution. Moreover, this
scenario reflects real-world applications where networks operate directly on embedded devices. In this context,
a hardware accelerator, such as a GPU, is not always available. In such cases, the processor must manage both
network calculation and other device functionalities. For this reason, all tests were performed on a CPU limited
to a single core. The experiments evaluate the models using standard metrics (RMSE, AbsRel, δ1, δ2, δ3) and
measure the inference speed for both baseline and optimised networks. The reported metrics describe the mean
performance, and inference speed is defined as the time each network takes to perform a forward pass, one
sample at a time, over the entire test set.

Results
Experiments
The experiments were conducted by applying optimisations to the network’s attention modules. In particular,
each technique was observed on different parts of the models, analysing the impact on evaluation metrics and
inference speed when the modification is applied to the whole network, to the encoder only, or to the decoder
only. This approach enables the identification of the network parts most affected by the optimisation, highlighting
which region yields the greatest improvements or experiences the most significant performance degradation.
From this perspective, this analysis can identify models that achieve a meaningful trade-off between result
quality and inference speed. To formalise this approach, the notation follows the network structure, where the
encoder always precedes the decoder. More precisely:

•	 Optimisation Network: the optimisation was applied to all the attention modules in the architecture;
•	 Optimisation-Base Network: the optimisation was applied only to the attention modules present in the encod-

er of the architecture, while the decoder remained as it was in the non-optimised baseline model;
•	 Base-Optimisation Network: the optimisation was only applied to the attention modules in the decoder of the

architecture, while the encoder remained as it was in the non-optimised baseline model;

The notation partially applies to METER: it only presents attention to its encoder, and the optimisation will be
referred to as if applied to the entire network. Based on that, Tables 1 and 2 present the result of baseline models
and their optimised versions, grouped by dataset to evaluate their performance on indoor and outdoor samples.
Each test will have three tables, one for each network size: tiny, base and large. Each of these formats increases
the number of parameters of the encoder, resulting in a more computationally demanding network.

Some details become evident from the tests on the NYU Depth V2 dataset. For METER, we observe how the
optimisations, except MoH, have a minimal impact on degrading qualitative metrics while also reducing inference
times. Analysing the different model sizes, we observe that, in general, the Meta and Pyra optimisations enhance
network performance in some cases, with Meta consistently achieving the best inference speed. However, in
the large version of METER, this trend is observed only in inference speed, where the baseline outperforms
the optimised versions. For the deeper architectures, PixelFormer and NeWCRFs, decoder-level optimisations
yield performance comparable to, and in some cases better than, their respective baselines. Other optimisation
applications tend to degrade performance metrics, although they result in reduced inference times. In particular,
it can be seen that, in all dimensions of these networks, Meta is always the fastest when applied to the entire
architecture. This behaviour is attributed to the simplicity of pooling, which replaces the computationally
intensive attention. In indoor scenarios, optimisations generally improve network speed, occasionally at the cost
of performance. However, in some cases, such as with optimised decoders, they maintain competitive evaluation
metrics.

When analysing the results obtained on the outdoor samples of the KITTI dataset, METER exhibits
difficulties in generalising depth maps different from those it was originally developed to work with. Regarding
performance metrics, the optimisations do not replicate the improvements observed with indoor samples. They
tend to improve the delta metrics for the tiny and base sizes while improving the RMSE and AbsRel errors in
larger versions. However, the application of efficient attention also increases the network’s speed, resulting in
better times in all the case studies. In deep architectures, we find similar behaviours in the optimisations, with
Meta always presenting the best inference times and the decoder optimisations managing to keep performance
equivalent to the baselines. Again, PixelFormer favours Meta and Pyra, while NeWCRFs work better with MoH.
More specifically, as the size increases, the latter optimisation improves the performance of NeWCRFs.

Overall, the behaviour of the optimisations across the analysed networks follows identifiable trends. For
instance, Meta primarily aims to accelerate inference, but often compromises prediction quality. Pyra is a good
compromise between accuracy and speed. Conversely, MoH tends to enhance performance while yielding a
comparatively smaller gain in speed. Each network, however, prefers certain optimisations over others regarding
quality and speed. METER often works better with Pyra, PixelFormer performs well with the decoder modified
with Pyra and NeWCRFs, and MoH is preferred over the decoder.

For the large versions, comparing the depth maps predicted by the baseline and the best-optimised model
is insightful. As shown in Fig. 3, the predictions of the optimised models closely match those of the baseline
across the analysed networks. In particular, the best-optimised versions of PixelFormer and NeWCRFs present
predictions similar to those of their respective baselines. This is noticeable both in qualitative terms, observing

Scientific Reports | (2025) 15:24001 8| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Model RMSE [m] ↓ AbsRel ↓ δ1 ↑ δ2 ↑ δ3 ↑ I9X79 [s] ↓ I9X10 [s] ↓ XG38 [s] ↓

(a)

 METER 0.544 0.175 0.778 0.946 0.983 15.91 10.96 16.47

 Meta METER 0.553 0.159 0.787 0.948 0.984 12.95 9.54 12.96

 Pyra METER 0.533 0.162 0.773 0.949 0.986 14.86 10.15 14.34

 MoH METER 1.109 0.297 0.342 0.679 0.874 16.08 11.11 17.20

 PXF 0.392 0.114 0.880 0.982 0.996 370.92 171.90 112.41

 Meta PXF 0.846 0.274 0.543 0.830 0.944 276.73 132.06 88.88

 Meta-Base PXF 0.840 0.266 0.547 0.833 0.947 294.19 140.01 0.18

 Base-Meta PXF 0.395 0.116 0.879 0.981 0.995 0.19 165.79 103.53

 Pyra PXF 0.628 0.202 0.697 0.921 0.978 337.07 171.20 115.64

 Pyra-Base PXF 0.622 0.198 0.700 0.920 0.977 332.02 167.13 112.21

 Base-Pyra PXF 0.392 0.114 0.882 0.982 0.996 341.28 167.54 110.18

 MoH PXF 0.697 0.219 0.637 0.893 0.970 359.53 190.96 124.26

 MoH-Base PXF 0.682 0.218 0.647 0.899 0.972 358.67 187.83 121.90

 Base-MoH PXF 0.677 0.216 0.648 0.900 0.972 356.17 187.62 115.34

 NeWCRFs 0.388 0.112 0.885 0.980 0.995 576.44 323.96 170.78

 Meta NeWCRFs 1.061 0.349 0.430 0.729 0.890 335.38 161.54 109.64

 Meta-Base NeWCRFs 0.844 0.274 0.541 0.833 0.946 510.30 294.72 150.82

 Base-Meta NeWCRFs 1.027 0.353 0.448 0.745 0.899 380.64 192.91 126.68

 Pyra NeWCRFs 0.964 0.324 0.477 0.778 0.921 425.37 214.19 142.44

 Pyra-Base NeWCRFs 0.627 0.194 0.696 0.921 0.979 554.73 327.57 169.94

 Base-Pyra NeWCRFs 0.947 0.322 0.489 0.786 0.922 434.61 217.36 148.73

 MoH NeWCRFs 0.402 0.116 0.878 0.979 0.994 480.90 242.25 159.40

 MoH-Base NeWCRFs 0.397 0.115 0.878 0.980 0.995 588.50 332.93 177.68

 Base-MoH NeWCRFs 0.382 0.111 0.886 0.981 0.995 467.82 233.77 152.54

(b)

 METER 0.497 0.149 0.811 0.951 0.987 28.66 16.84 17.10

 Meta METER 0.499 0.146 0.811 0.955 0.988 22.52 15.77 16.52

 Pyra METER 0.483 0.140 0.823 0.960 0.990 21.20 16.28 18.12

 MoH METER 0.921 0.248 0.471 0.791 0.938 25.64 15.33 18.86

 PXF 0.338 0.096 0.918 0.988 0.997 542.79 305.30 181.09

 Meta PXF 0.817 0.271 0.569 0.843 0.948 379.05 213.43 133.69

 Meta-Base PXF 0.806 0.266 0.571 0.847 0.951 393.54 220.83 141.52

 Base-Meta PXF 0.340 0.097 0.918 0.989 0.997 511.37 296.31 180.42

 Pyra PXF 0.651 0.199 0.679 0.910 0.975 535.42 299.90 189.79

 Pyra-Base PXF 0.621 0.192 0.711 0.922 0.977 522.03 295.70 183.70

 Base-Pyra PXF 0.338 0.095 0.919 0.989 0.998 528.77 306.64 192.41

 MoH PXF 0.675 0.213 0.655 0.900 0.973 581.83 349.55 211.02

 MoH-Base PXF 0.666 0.209 0.658 0.904 0.973 577.37 345.43 208.24

 Base-MoH PXF 0.667 0.210 0.666 0.904 0.973 543.79 324.31 193.23

 NeWCRFs 0.337 0.095 0.918 0.989 0.998 755.28 458.38 241.93

 Meta NeWCRFs 1.055 0.359 0.431 0.732 0.891 442.80 241.67 151.82

 Meta-Base NeWCRFs 0.791 0.253 0.569 0.851 0.954 613.03 368.69 191.87

 Base-Meta NeWCRFs 1.035 0.345 0.441 0.744 0.901 618.69 322.12 194.90

 Pyra NeWCRFs 0.968 0.328 0.479 0.777 0.919 695.89 342.69 219.52

 Pyra-Base NeWCRFs 0.632 0.197 0.699 0.919 0.976 792.81 448.06 246.80

 Base-Pyra NeWCRFs 0.959 0.321 0.475 0.781 0.923 633.84 346.81 217.15

 MoH NeWCRFs 0.349 0.098 0.912 0.987 0.997 711.95 380.77 243.29

 MoH-Base NeWCRFs 0.346 0.099 0.913 0.987 0.997 803.02 470.81 261.67

 Base-MoH NeWCRFs 0.336 0.096 0.919 0.988 0.997 650.92 358.43 219.34

(c)

 METER 0.460 0.133 0.834 0.966 0.992 22.02 18.78 21.52

 Meta METER 0.485 0.142 0.816 0.961 0.989 19.92 17.26 16.94

 Pyra METER 0.477 0.139 0.824 0.962 0.989 22.07 17.47 23.15

 MoH METER 0.835 0.228 0.501 0.847 0.966 24.57 20.85 18.06

 PXF 0.324 0.091 0.928 0.991 0.998 893.15 520.45 294.74

Continued

Scientific Reports | (2025) 15:24001 9| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

the disparity maps between the two predictions, and in quantitative terms, with the RMSE between these
two predictions. This behaviour is also understandable because of the similar evaluation metrics between the
baseline and the best-optimised version. METER, however, is more affected by the optimisations, exhibiting a
more pronounced difference between baseline and optimised predictions.

Trade-off performance-inference speed
The experimental setup yielded a comprehensive set of results, extensively illustrating how each type of
optimisation impacts the network and its different modules. However, identifying the optimal trade-off between
the obtained models solely from the tabular results is challenging. For this reason, the results were organised
using the Pareto Frontier. This tool represents the set of optimised solutions where improving one objective
would worsen at least one other. More specifically, all solutions are initially assumed to be optimal. Subsequently,
each of them is compared with the others. Suppose one of the two chosen values is less than or equal to the other,
with at least one of the two inequalities being strict. In that case, the first solution dominates the other, which
is eliminated from the optimal solutions describing the best trade-offs. After this comparison, the remaining
solutions will form the frontier.

In our case study, the two objectives are the RMSE, chosen as a quantitative index of model performance,
and the average of the three CPU times, reporting the best trade-offs for these measures only. The choice of the
RMSE as the indicator of network performance is given by the fact that this metric plays a key role in assessing
the quality of the predicted depth, as it provides an indication of the overall consistency between prediction and
ground truth9.

From these concepts, Pareto Frontiers were constructed by grouping the results by dataset and size of the
networks under analysis, as illustrated in Figs. 4 and 5. Analytically, this approach identifies the optimal trade-
offs between the two selected objectives. Graphically, this corresponds to a frontier where models closest to it are
valuable compromises, while those farther away are sub-optimal solutions. The elements of each Pareto frontier,
optimal solutions between quality and speed, are highlighted in Tables 1 and 2 with a italic line.

The Pareto Frontier provides a summary of the model distributions across different sizes and datasets. Each
point represents a model. A point further to the left indicates a better RMSE, while a point lower on the graph
indicates a faster inference time. As can be seen, in addition to the best models, there are several elements on the
Pareto frontier which, from an analysis of the tables alone, could have turned out to be sub-optimal solutions.
For example, in the case of the PixelFormer tiny architectures on NYU, the best optimisation turned out to be
Meta on the decoder. However, employing the analytical method of the Pareto frontier, we find that all Meta
and Pyra optimisations on the decoder turn out to be the optimal solutions with the best trade-off between
performance and speed of inference. Looking at the graphs, we can see specific trends that the optimisations
tend to present in each case study. Considering Meta optimisation, the models where it is applied generally
exhibit reduced performance but improved inference speed, except when applied only to the decoder, where it
sacrifices speed but achieves better performance.

Model RMSE [m] ↓ AbsRel ↓ δ1 ↑ δ2 ↑ δ3 ↑ I9X79 [s] ↓ I9X10 [s] ↓ XG38 [s] ↓

 Meta PXF 0.720 0.231 0.624 0.882 0.965 629.44 355.11 204.61

 Meta-Base PXF 0.693 0.218 0.648 0.896 0.971 638.91 359.58 215.09

 Base-Meta PXF 0.321 0.090 0.930 0.991 0.998 873.93 505.98 282.41

 Pyra PXF 0.680 0.208 0.657 0.900 0.976 922.30 532.98 312.46

 Pyra-Base PXF 0.638 0.198 0.692 0.916 0.976 924.81 541.79 317.44

 Base-Pyra PXF 0.322 0.090 0.929 0.991 0.998 892.15 514.00 299.51

 MoH PXF 0.678 0.212 0.650 0.900 0.973 972.18 576.50 334.21

 MoH-Base PXF 0.668 0.208 0.661 0.901 0.973 961.29 570.71 321.89

 Base-MoH PXF 0.651 0.201 0.680 0.912 0.975 925.16 545.08 302.05

 NeWCRFs 0.322 0.091 0.929 0.992 0.998 1345.95 658.96 339.68

 Meta NeWCRFs 1.043 0.357 0.434 0.737 0.894 999.90 376.78 225.67

 Meta-Base NeWCRFs 0.692 0.220 0.648 0.896 0.971 1157.19 518.98 271.43

 Base-Meta NeWCRFs 1.019 0.344 0.451 0.752 0.905 1026.18 537.24 303.27

 Pyra NeWCRFs 1.038 0.379 0.444 0.739 0.892 1120.98 593.90 335.55

 Pyra-Base NeWCRFs 0.966 0.336 0.459 0.773 0.917 1238.04 682.72 350.57

 Base-Pyra NeWCRFs 0.934 0.309 0.497 0.795 0.930 1071.33 562.12 318.50

 MoH NeWCRFs 0.334 0.094 0.923 0.990 0.997 1142.63 605.58 356.84

 MoH-Base NeWCRFs 0.332 0.094 0.923 0.989 0.998 1269.16 694.72 366.10

 Base-MoH NeWCRFs 0.325 0.092 0.925 0.990 0.998 1109.97 585.42 329.66

Table 1.  Experimental results on the tiny (a), base (b), and large (c) models with the NYU Depth V2 dataset.
Values in bold represent the best results between the baseline and the optimisations applied for that model. The
lines highlighted in italic show the best trade-offs between RMSE and inference time considering all models.
These points are those values that compose the Pareto frontier.

Scientific Reports | (2025) 15:24001 10| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Model RMSE [m] ↓ AbsRel ↓ δ1 ↑ δ2 ↑ δ3 ↑ I9X79 [s] ↓ I9X10 [s] ↓ XG38 [s] ↓

(a)

 METER 5.945 7.408 0.287 0.485 0.604 26.16 18.04 8.13

 Meta METER 6.065 8.268 0.312 0.506 0.617 20.87 17.95 15.38

 Pyra METER 6.048 7.615 0.312 0.502 0.612 23.61 17.87 17.91

 MoH METER 6.173 9.508 0.320 0.506 0.615 31.97 20.06 18.75

 PXF 2.324 0.060 0.966 0.996 0.999 468.91 256.89 160.90

 Meta PXF 4.231 0.125 0.837 0.956 0.987 394.75 193.13 126.90

 Meta-Base PXF 4.312 0.126 0.833 0.953 0.987 420.84 209.51 136.83

 Base-Meta PXF 2.335 0.060 0.964 0.995 0.999 456.77 236.17 145.98

 Pyra PXF 3.150 0.087 0.915 0.984 0.996 482.70 243.56 171.71

 Pyra-Base PXF 3.140 0.084 0.916 0.985 0.996 482.27 241.43 158.92

 Base-Pyra PXF 2.310 0.060 0.964 0.996 0.999 499.32 259.68 161.13

 MoH PXF 3.516 0.095 0.895 0.976 0.994 533.67 275.82 171.57

 MoH-Base PXF 3.600 0.097 0.892 0.977 0.994 525.27 278.92 168.56

 Base-MoH PXF 3.546 0.096 0.894 0.977 0.994 516.21 261.16 161.84

 NeWCRFs 2.373 0.059 0.965 0.995 0.999 847.32 463.72 234.65

 Meta NeWCRFs 6.929 0.284 0.559 0.822 0.932 505.81 235.54 156.89

 Meta-Base NeWCRFs 4.201 0.122 0.844 0.959 0.988 780.12 427.10 207.85

 Base-Meta NeWCRFs 6.069 0.219 0.662 0.879 0.958 611.31 280.70 180.89

 Pyra NeWCRFs 5.140 0.177 0.738 0.920 0.976 667.40 306.87 205.90

 Pyra-Base NeWCRFs 3.193 0.088 0.914 0.983 0.996 801.98 457.53 231.76

 Base-Pyra NeWCRFs 4.750 0.171 0.756 0.934 0.981 697.67 312.78 200.27

 MoH NeWCRFs 2.483 0.062 0.958 0.994 0.999 704.72 355.31 223.71

 MoH-Base NeWCRFs 2.432 0.060 0.962 0.995 0.999 821.65 468.97 245.97

 Base-MoH NeWCRFs 2.361 0.060 0.963 0.995 0.999 687.85 347.26 214.89

(b)

 METER 5.794 6.625 0.302 0.504 0.618 42.51 29.66 22.16

 Meta METER 5.920 7.797 0.329 0.516 0.622 44.45 24.12 18.22

 Pyra METER 6.052 7.010 0.319 0.498 0.605 36.50 26.22 26.65

 MoH METER 5.958 8.033 0.329 0.514 0.621 44.69 31.88 25.17

 PXF 2.205 0.055 0.972 0.997 0.999 781.45 437.31 262.77

 Meta PXF 4.161 0.120 0.845 0.956 0.987 567.21 300.64 194.17

 Meta-Base PXF 4.250 0.119 0.843 0.953 0.986 585.94 317.15 200.21

 Base-Meta PXF 2.195 0.054 0.972 0.997 0.999 754.56 428.33 258.40

 Pyra PXF 3.243 0.086 0.914 0.983 0.996 781.64 439.35 275.37

 Pyra-Base PXF 3.254 0.087 0.915 0.983 0.995 780.42 437.67 263.11

 Base-Pyra PXF 2.192 0.055 0.972 0.997 0.999 792.97 444.23 267.44

 MoH PXF 3.561 0.094 0.894 0.975 0.993 867.64 514.36 290.09

 MoH-Base PXF 3.508 0.093 0.901 0.978 0.994 870.25 502.47 295.32

 Base-MoH PXF 3.562 0.093 0.894 0.976 0.993 837.29 474.92 273.32

 NeWCRFs 2.185 0.054 0.972 0.999 0.997 1152.80 718.32 356.12

 Meta NeWCRFs 7.302 0.300 0.522 0.802 0.922 679.21 372.90 221.74

 Meta-Base NeWCRFs 4.322 0.122 0.838 0.953 0.986 876.38 530.25 270.77

 Base-Meta NeWCRFs 6.221 0.233 0.647 0.872 0.954 877.22 483.00 279.96

 Pyra NeWCRFs 5.311 0.186 0.725 0.914 0.973 1001.02 508.04 303.65

 Pyra-Base NeWCRFs 3.250 0.087 0.914 0.984 0.996 1093.31 644.32 339.26

 Base-Pyra NeWCRFs 5.062 0.177 0.744 0.926 0.977 951.53 505.20 309.29

 MoH NeWCRFs 2.272 0.057 0.969 0.996 0.999 1041.32 557.87 342.92

 MoH-Base NeWCRFs 2.219 0.056 0.970 0.996 0.999 1115.38 672.96 352.22

 Base-MoH NeWCRFs 2.203 0.055 0.971 0.996 0.999 955.48 526.33 316.13

(c)

 METER 5.726 7.299 0.332 0.524 0.630 44.05 30.68 34.50

 Meta METER 5.711 7.469 0.270 .493 0.625 41.78 29.97 26.27

 Pyra METER 5.744 7.122 0.288 0.501 0.621 51.37 29.30 38.01

 MoH METER 5.714 7.470 0.275 0.498 0.628 63.78 34.45 35.24

 PXF 2.123 0.052 0.975 0.997 0.999 1498.72 738.41 426.68

Continued

Scientific Reports | (2025) 15:24001 11| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

In most cases, Pyra often finds itself in better performance zones than Meta, but in worse zones in terms of
time. This phenomenon is amplified with MoH, which seems to prevail in performance over inference time.
Meta is the optimisation most frequently appearing on the Pareto frontier, while Pyra and MoH occasionally
approach or reach it. Sometimes, we also find baselines within this set.

So far, all results discussed have been based on the RMSE metric, as indicated at the beginning of this
subsection. The RMSE provides an overall view of prediction quality, but has certain limitations. In particular, it
tends to heavily penalise larger errors, without accurately representing the relative consistency between predicted
depths, as it only measures absolute stability with respect to ground truth9.

Fig. 3.  Visual results for the large versions of the networks. For each model and dataset, we show the input
RGB image (Input), the depth ground truth (GT), the prediction of the baseline model (Base), the prediction
of the best-performing optimised model (Opt) and the qualitative and quantitative difference, indicated by the
RMSE, between these two predictions (Diff).

Model RMSE [m] ↓ AbsRel ↓ δ1 ↑ δ2 ↑ δ3 ↑ I9X79 [s] ↓ I9X10 [s] ↓ XG38 [s] ↓

 Meta PXF 3.426 0.094 0.892 0.977 0.995 959.37 504.63 302.80

 Meta-Base PXF 3.454 0.094 0.896 0.978 0.995 984.05 510.99 304.09

 Base-Meta PXF 2.108 0.052 0.976 0.997 0.999 1314.52 729.29 388.99

 Pyra PXF 3.273 0.087 0.913 0.983 0.996 1359.07 802.24 430.41

 Pyra-Base PXF 3.202 0.086 0.913 0.983 0.996 1383.07 759.66 437.13

 Base-Pyra PXF 2.111 0.052 0.975 0.997 0.999 1575.81 748.99 412.63

 MoH PXF 3.427 0.089 0.906 0.980 0.995 1781.64 830.96 462.96

 MoH-Base PXF 3.399 0.089 0.909 0.980 0.995 2491.49 833.11 473.86

 Base-MoH PXF 3.311 0.086 0.913 0.982 0.995 2111.08 785.55 429.66

 NeWCRFs 2.072 0.052 0.975 0.997 0.999 1863.63 969.38 500.17

 Meta NeWCRFs 6.952 0.288 0.545 0.815 0.930 1297.96 555.62 326.76

 Meta-Base NeWCRFs 3.481 0.096 0.895 0.979 0.995 1423.14 725.79 374.50

 Base-Meta NeWCRFs 5.626 0.203 0.691 0.898 0.968 1490.97 796.73 433.06

 Pyra NeWCRFs 4.830 0.164 0.762 0.932 0.979 1730.30 837.99 477.72

 Pyra-Base NeWCRFs 3.302 0.087 0.910 0.982 0.996 1813.54 969.33 503.52

 Base-Pyra NeWCRFs 4.529 0.153 0.785 0.944 0.985 1575.83 801.59 460.03

 MoH NeWCRFs 2.176 0.053 0.972 0.997 0.999 1668.14 869.06 503.80

 MoH-Base NeWCRFs 2.123 0.052 0.974 0.997 0.999 1709.84 992.06 518.11

 Base-MoH NeWCRFs 2.128 0.052 0.974 0.997 0.999 1616.46 855.36 473.46

Table 2.  Experimental results on the tiny (a), base (b), and large (c) models with the KITTI dataset. Values
in bold represent the best results between the baseline and the optimisations applied for that model. The lines
highlighted in italic show the best trade-offs between RMSE and inference time considering all models. These
points are those values that compose the Pareto frontier.

Scientific Reports | (2025) 15:24001 12| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

To address this limitation, we have also represented the Pareto Frontier plots using the Absrel metric as a
quality indicator. This index normalises the error with respect to the true depth, making it particularly suitable
in scenarios with varying scales. Furthermore, Absrel proves to be more robust for assessing relative depth
estimation quality9.

Fig. 4.  Pareto Frontiers built considering the RMSE and the mean of the three inference times of the models.
The networks in these plots refer to the NYU dataset and are grouped by dataset and size: tiny (a), base (b), and
large (c) models. The models in bold represent the optimal trade-offs, lying on the Pareto Frontier.

Scientific Reports | (2025) 15:24001 13| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Analysing the impact of this change on the Pareto Frontier plots in Fig. 6, it can be seen that the overall
situation remains substantially unchanged. Again, the most effective optimisations in terms of trade-off between
quality and computational costs are those applied exclusively to the decoder. Among these, the Meta optimisation
is frequently found on the optimal frontier, reinforcing what has emerged in previous experiments. It represents
a particularly good choice for achieving a good balance between performance and speed of inference.

Fig. 5.  Pareto Frontiers built considering the RMSE and the mean of the three inference times of the models.
The networks in these plots refer to the KITTI dataset and are grouped by dataset and size: tiny (a), base (b),
and large (c) models. The models in bold represent the optimal trade-offs, lying on the Pareto Frontier.

Scientific Reports | (2025) 15:24001 14| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

A further observation concerns the size of the frontiers. Compared to the graphs based on the RMSE metric,
the frontiers obtained with Absrel tend to include a smaller number of models, thus being more contained. This
suggests that the new metric applies a stricter criterion, favouring models that maintain better proportional
accuracy across varying depth ranges.

Fig. 6.  Pareto Frontiers built considering the Absrel and the mean of the three inference times of the models.
The networks in these plots refer to the NYU dataset and are grouped by dataset and size: tiny (a), base (b), and
large (c) models. The models in bold represent the optimal trade-offs, lying on the Pareto Frontier.

Scientific Reports | (2025) 15:24001 15| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Embedding entropy analysis
The various experiments conducted showed promising results for the optimised architectures, confirming the
validity of the structural changes made to the attention modules, especially from an application perspective.

However, focusing on the PixelFormer and NeWCRFs models, the only ones to have undergone optimisations
on both the encoder and decoder sides, an interesting result emerges. Among all the combinations tested, the
architectures in which only the decoder has been optimised tend to perform best, particularly in terms of accuracy
and also with respect to the trade-off between prediction quality and inference speed. This phenomenon is
clearly observable in the results reported in Tables 1 and 2. In both datasets, models with an optimised decoder
often exceed the baseline, or at least equal it, while maintaining acceptable computational efficiency.

Although not always the fastest in terms of inference time, these models show a more stable and robust
balance compared to the fully optimised ones. This behaviour is further confirmed by the analysis of the Pareto
Frontier, constructed using both the RMSE and the Absrel metric, as most of the models that lie on the optimal
frontier are precisely those with decoder optimisation.

At this point, in the light of such evident results, it is relevant to question the causes that justify the advantage
obtained by the architectures with optimised decoders, and at the same time to understand the reasons why
performance worsens when optimisations are applied to the encoder module, especially in the PixelFormer and
NeWCRFs models.

The analysis of the results in Tables 1 and 2 lead to the idea that optimised encoders tend to generate
embeddings that are less effective in guiding the depth map reconstruction process. Indeed, the quality metrics
show a greater difficulty in producing consistent predictions faithful to ground truth. This leads us to formulate
the hypothesis that such encoders, once modified, generate degraded latent representations.

Dispersed or unstructured embedding distribution in latent space makes the decoder reconstruction task
more complex, as it struggles to predict accurate depth maps. And this is exactly what we observe in our
experiments. Optimised decoders seem to work effectively when they receive sufficiently rich and coherent
embeddings as input, which does not always seem to be the case when the encoder is modified.

In order to quantify how dispersed the embedding distribution actually is, it is necessary to use a precise
metric established in the literature. The objective is to find a measure that indicates how much the embeddings
produced by the encoder are representative of a compact and well-defined distribution.

Based on this idea, we leverage the theoretical framework of Variational Autoencoders (VAEs), because in
its loss the regularisation term quantifies the trade-off between embedding compactness and informativeness43.
This term corresponds to the Kullback-Leibler divergence between the distribution learned by the encoder and a
standard Gaussian distribution (H). It includes, among other components, the differential entropy of the learned
distribution, which quantifies the dispersion of the latent encoding, a value that is useful to gather information
needed to verify our hypothesis.

Differential entropy measures, in nats (units of information based on the natural logarithm44), the continuous
volume occupied by the embeddings. A lower, i.e. more negative, value indicates that the embeddings are more
concentrated, so the latent distribution is more compact and less uncertain. While lower, intended as more
negative, differential entropy does not necessarily imply higher informativeness with respect to the input, it
does ensure a less dispersed embedding distribution, which generally makes the decoder’s reconstruction task
easier43.

This metric assumes that the distribution that the distribution of embeddings follows a standard Gaussian.
This concept may be too restrictive, since embeddings may present multimodal structures or heavy tails, not
captured by a simple covariance matrix. For this reason, it is also useful to analyse information dispersion
through non-parametric methods, such as the Kozachenko-Leonenko entropy estimator (H_KL), due to its
robustness to non-standard distributions45.

Again, a lower, more negative, value of the entropy estimated with the Kozachenko-Leonenko estimator,
indicates more compact embeddings with less dispersion, while higher values reflect a greater dispersion of the
point distribution and a possible loss of structure.

To perform the analysis with the tools described above, the embeddings produced as output by the encoder
were considered. This approach was applied to all versions of the PixelFormer and NeWCRFs models, on NYU
Depth V2 and KITTI datasets. The METER network was not included in the analysis, as it does not present the
problem that is the subject of this study. In fact, the optimisations were only applied to the encoder, which is the
only one containing attention modules14.

It is important to emphasise that the embeddings analysed come from all the architectural combinations
considered (baseline, encoder-optimised, decoder-optimised, full-optimised). It might appear that by
optimising only the decoder, the encoder remains unchanged compared to the non-optimised version. However,
during training, the parameters of each module are updated differently according to the chosen optimisation.
Consequently, the encoder of a decoder-only version never exactly coincides with that of the baseline, but also
incorporates the changes resulting from the overall optimisation.

On the theoretical basis set out above, the implementation of the tools discussed supports the hypothesis
formulated. In all the cases analysed, as shown in Figs. 7 and 8, any modification made to the encoder structure
leads to a deterioration in the compactness of the embeddings it produces. A greater dispersion of the embeddings
may compromises the decoder’s ability to effectively reconstruct the input, with a negative impact on the final
quality metrics. This behaviour is consistent for both entropy indices considered, with stronger evidence in the
case of the Kozachenko-Leonenko entropy estimator, whose non-parametric nature makes it more robust in
non-standard contexts.

Scientific Reports | (2025) 15:24001 16| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

General optimisation comparison
Following the results obtained, it can be observed that optimisations aimed exclusively at the attention
module confirm their effectiveness19,32. However, at this point in the analysis, it is interesting to compare these
optimisations with more generic and widely used techniques. For this reason, the three neural networks analysed
in this work were subjected to unstructured pruning and dynamic quantization techniques, both applied in post-
training contexts.

The choice fell on these approaches because they were the most suitable for an unbiased comparison, given
the fact that no modification to the network is required. to the network is required to fit them. These techniques
allow a significant reduction in occupied memory and, in specific contexts, may improve inference times without
requiring model retraining. Both techniques were implemented using the native functionality offered by the
PyTorch42 framework.

Focusing on the general optimisations applied, a global unstructured approach was chosen for pruning,
based on the L1 norm, i.e. the absolute value of the weights36. In this application, 70% of the smallest weights
were pruned, selected globally from all convolutional and linear layers in the model. The choice of such a high
pruning percentage was motivated by the aim to clearly observe the impact of this optimisation on the behaviour
of the model.

As for the quantisation method, a dynamic approach was chosen, limited to the linear layers only. In this case,
the weights were converted from 32-bit floating-point representation to 8-bit integer35.

From the results shown in Table 3, it is clear tha the application of these techniques leads to a worsening
of the metrics analysed. In particular, a decrease in prediction quality metrics was to be expected, since the
optimisations considered have a strong structural impact on the model, modifying its topology35,36. In
contrast, the optimisations applied to the attention module alone keep the structure of the architecture almost
unchanged19–21.

Fig. 7.  Embedding dispersion is measured using entropy values, specifically differential Gaussian entropy
(left plot) and Kozachenko-Leonenko entropy (right plot), where a lower value indicates a better encoder
embedding distribution compactness. Results for each network on the NYU Depth V2 dataset are grouped by
model size: tiny (a), base (b), and large (c).

Scientific Reports | (2025) 15:24001 17| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The negative effects on the speed of inference can be explained in the way these optimisation are applied. In
the first case, the unstructured pruning introduces sparse matrices to remove the network connections. Even
if that approach reduces the number of effective active weights, those matrices may not be well supported on
generic hardware, leading to the possibility of a less efficient computation36. For the dynamic quantization, the
concept is similar. The post training quantization may not be completely supported or optimised for a general-
purpose hardware, providing no guarantee of computational speed-up35.

Optimisations memory footprint
In addition to assessing the impact of optimisations on the performance and speed of neural networks, it is
equally crucial to analyse how the structural characteristics of the models change as a result of a modification to
the attention modules. In the context of efficient models, metrics such as the number of parameters and memory
occupancy are commonly used to describe the memory footprint of the networks32.

Although the modifications discussed in this research focus exclusively on lowering the computation
complexity of the attention modules and don’t primarily focus on memory reduction, observing how they affect
the overall network structure can provide useful insights useful insights into the applicability of the modified
models in real-world usage scenarios.

Significant observations emerge from Table 4, where the information about the different networks is
collected. In particular, it can be seen that Meta optimisation consistently shows the best results in terms of
parameters and memory weight among all the techniques analysed. This behaviour is consistent across all the
application networks and combinations considered. The advantage of Meta is most likely linked to the way it
is implemented19. In fact, by entirely replacing the structure of the attention module, including all the linear
projection layers, with simple pooling, leads to a substantial reduction in memory and parameters associated
with the network.

Fig. 8.  Embedding dispersion is measured using entropy values, specifically differential Gaussian entropy
(left plot) and Kozachenko-Leonenko entropy (right plot), where a lower value indicates a better encoder
embedding distribution compactness. Results for each network on the KITTI dataset are grouped by model
size: tiny (a), base (b), and large (c).

Scientific Reports | (2025) 15:24001 18| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

In contrast, the other optimisations considered show a different pattern regarding their impact on memory
footprint. In particular, Pyra optimisation is the technique that leads to the largest increase in the analysed
values. This is due to the spatial reduction modules that introduce new layers20 to consider in the overall network
structure. For what concern MoH optimisation, however, the modified multi-head attention routing system21
does not introduce more overhead, maintaining almost unchanged the network parameters and memory weight.

These results, however, do not significantly impact in the applicability of the modified models. The number
of parameters and memory fluctuations remain bounded in a value near the baseline values. At the same time,
often this increase is accompanied by an increment in quality of predictions. For this reason, optimisations
aimed at the attention modules represent an effective strategy, offering a favourable trade-off between portability,
efficiency and prediction quality, even if at the cost of a slight increase in certain computational metrics.

Resource-constrained device experiments
After analysing various aspects of modified models, in order to go into the applicative details of this study,
experiments were conducted using limited hardware resources devices. In particular, the Jetson Orin Nano
board was considered, a device frequently used in real-world scenarios for tasks involving Deep Learning
models. Its low computational resources, compared to an ordinary device, make it an ideal context for evaluating
the behaviour of optimised models under conditions closer to real-world conditions.

The experiments conducted on this hardware focused on analysing inference times, with the aim of
highlighting the effectiveness of the proposed optimisations. The tests were carried out maintaining the same
configuration used in the previous evaluations. In fact, inference was performed sample by sample on the entire
test set of datasets used in this research. In this context, to adapt to the applicative scenario, we used only the tiny
versions of the networks, which are more suitable for this application.

A detailed analysis of the Table 5 shows how the optimised models perform in the context considered.
In particular, it is observed that Meta optimisation systematically leads to faster models than the baseline,

Model RMSE [m] ↓ AbsRel ↓ δ1 ↑ δ2 ↑ δ3 ↑ XG38 [s] ↓ Model RMSE [m] ↓ AbsRel ↓ δ1 ↑ δ2 ↑ δ3 ↑ XG38 [s] ↓
NYU Depth V2 KITTI

(a)

 METER 0.544 0.175 0.778 0.946 0.983 16.47 METER 5.945 7.408 0.287 0.485 0.604 18.13

 METER P 2.789 0.938 0.001 0.001 0.001 15.17 METER P 10.960 1.630 0.023 0.047 0.071 20.26

 METER Q 1.334 0.346 0.278 0.560 0.793 17.86 METER Q 6.985 7.390 0.183 0.362 0.499 17.40

 PXF 0.392 0.114 0.880 0.982 0.996 112.41 PXF 2.324 0.060 0.966 0.996 0.999 160.90

 PXF P 1.159 0.524 0.368 0.651 0.829 136.60 PXF P 17.172 1.609 0.112 0.225 0.337 188.94

 PXF Q 1.594 0.746 0.265 0.504 0.706 136.03 PXF Q 11.379 0.502 0.262 0.502 0.725 185.37

 NeWCRFs 0.388 0.112 0.885 0.980 0.995 170.78 NeWCRFs 2.373 0.059 0.965 0.995 0.999 234.65

 NeWCRF P 2.355 1.177 0.126 0.303 0.509 187.33 NeWCRF P 20.433 2.037 0.076 0.158 0.261 255.80

 NeWCRFs Q 1.820 0.845 0.235 0.465 0.662 211.43 NeWCRFs Q 20.951 2.086 0.077 0.160 0.261 303.66

(b)

 METER 0.497 0.149 0.811 0.951 0.987 17.10 METER 5.794 6.625 0.302 0.504 0.618 22.16

 METER P 2.777 0.930 0.019 0.019 0.019 19.72 METER P 11.206 1.134 0.191 0.199 0.208 29.89

 METER Q 1.487 0.663 0.296 0.555 0.752 19.63 METER Q 6.046 8.031 0.231 0.459 0.607 23.59

 PXF 0.338 0.096 0.918 0.988 0.997 181.09 PXF 2.205 0.055 0.972 0.997 0.999 262.77

 PXF P 2.573 1.287 0.109 0.262 0.463 234.45 PXF P 26.822 2.704 0.055 0.116 0.188 343.31

 PXF Q 1.487 0.692 0.281 0.550 0.738 238.05 PXF Q 13.297 0.433 0.255 0.427 0.571 334.93

 NeWCRFs 0.337 0.095 0.918 0.989 0.998 241.93 NeWCRFs 2.185 0.054 0.972 0.999 0.997 356.12

 NeWCRF P 2.566 1.283 0.109 0.266 0.464 304.09 NeWCRFs P 26.995 2.722 0.054 0.115 0.187 368.20

 NeWCRFs Q 1.870 0.908 0.202 0.428 0.635 358.69 NeWCRFs Q 18.496 1.808 0.087 0.186 0.308 488.34

(c)

 METER 0.460 0.133 0.834 0.966 0.992 21.52 METER 5.726 7.299 0.332 0.524 0.630 34.50

 METER P 2.207 0.649 0.039 0.093 0.182 31.30 METER P 10.732 2.291 0.034 0.068 0.103 51.86

 METER Q 1.728 0.812 0.223 0.473 0.683 26.41 METER Q 10.955 4.002 0.078 0.134 0.172 35.69

 PXF 0.324 0.091 0.928 0.991 0.998 294.74 PXF 2.123 0.052 0.975 0.997 0.999 426.68

 PXF P 2.616 1.308 0.105 0.255 0.457 437.33 PXF P 27.298 2.752 0.053 0.113 0.184 683.33

 PXF Q 1.387 0.632 0.306 0.570 0.761 430.85 PXF Q 10.530 0.516 0.273 0.544 0.766 729.44

 NeWCRFs 0.322 0.091 0.929 0.992 0.998 339.68 NeWCRFs 2.072 0.052 0.975 0.997 0.999 500.17

 NeWCRF P 2.656 1.328 0.105 0.248 0.445 477.79 NeWCRF P 27.389 2.761 0.053 0.113 0.183 733.47

 NeWCRFs Q 2.327 1.144 0.145 0.329 0.531 565.98 NeWCRFs Q 21.612 2.164 0.070 0.146 0.244 899.43

Table 3.  Performance and inference speed of the pruned (P) and quantized (Q) models with respect to the
baselines. Results are reported for the tiny (a), base (b), and large (c) variants on the NYU Depth V2 (left) and
KITTI (right) datasets.

Scientific Reports | (2025) 15:24001 19| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Model Parameters [M] ↓ Memory [MB] ↓

(a)

 METER 0.71 2.72

 Meta METER 0.68 2.60

 Pyra METER 1.08 4.11

 MoH METER 0.71 2.73

 PXF 88.91 339.15

 Meta PXF 76.08 290.22

 Meta-Base PXF 80.26 306.18

 Base-Meta PXF 84.72 323.19

 Pyra PXF 103.12 393.38

 Pyra-Base PXF 97.55 372.11

 Base-Pyra PXF 94.48 360.42

 MoH PXF 89.03 339.61

 MoH-Base PXF 88.98 339.44

 Base-MoH PXF 88.95 339.33

 NeWCRFs 88.46 337.43

 Meta NeWCRFs 74.23 283.18

 Meta-Base NeWCRFs 79.81 304.46

 Base-Meta NeWCRFs 82.88 316.15

 Pyra NeWCRFs 111.04 423.57

 Pyra-Base NeWCRFs 97.09 370.39

 Base-Pyra NeWCRFs 102.40 390.61

 MoH NeWCRFs 91.41 348.71

 MoH-Base NeWCRFs 88.53 337.72

 Base-MoH NeWCRFs 91.34 348.43

(b)

 METER 1.45 5.53

 Meta METER 1.40 5.35

 Pyra METER 2.29 8.74

 MoH METER 1.45 5.54

 PXF 140.43 535.71

 Meta PXF 108.28 413.06

 Meta-Base PXF 112.47 429.02

 Base-Meta PXF 136.25 519.75

 Pyra PXF 173.96 663.62

 Pyra-Base PXF 168.39 642.34

 Base-Pyra PXF 146.01 556.98

 MoH PXF 140.72 536.80

 MoH-Base PXF 140.67 536.62

 Base-MoH PXF 140.48 535.88

 NeWCRFs 139.98 533.99

 Meta NeWCRFs 106.44 406.02

 Meta-Base NeWCRFs 112.01 427.30

 Base-Meta NeWCRFs 134.40 512.71

 Pyra NeWCRFs 181.88 693.81

 Pyra-Base NeWCRFs 167.94 640.62

 Base-Pyra NeWCRFs 153.92 587.17

 MoH NeWCRFs 143.10 545.90

 MoH-Base NeWCRFs 140.22 534.90

 Base-MoH NeWCRFs 142.86 544.98

(c)

 METER 3.30 12.57

 Meta METER 3.22 12.29

 Pyra METER 5.53 21.08

 MoH METER 3.30 12.58

 PXF 270.90 1033.39

Continued

Scientific Reports | (2025) 15:24001 20| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Model Jetson NYU [s] ↓ Jetson KITTI [s] ↓
METER 328.49 343.79

Meta METER 215.33 221.21

Pyra METER 310.59 336.41

MoH METER 344.43 351.07

PXF 1924.38 2765.59

Meta PXF 1373.43 1970.51

Meta-Base PXF 1543.57 2216.83

Base-Meta PXF 1722.62 2469.82

Pyra PXF 1915.70 2709.43

Pyra-Base PXF 1927.62 2712.86

Base-Pyra PXF 1906.42 2735.54

MoH PXF 2027.07 2876.13

MoH-Base PXF 2000.42 2844.66

Base-MoH PXF 1942.72 2809.53

NeWCRFs 2316.55 3185.19

Meta NeWCRFs 1615.87 2235.18

Meta-Base NeWCRFs 1958.86 2730.05

Base-Meta NeWCRFs 2007.11 2779.84

Pyra NeWCRFs 2380.42 3391.28

Pyra-Base NeWCRFs 2323.66 3241.11

Base-Pyra NeWCRFs 2368.85 3281.75

MoH NeWCRFs 2482.51 3456.72

MoH-Base NeWCRFs 2375.26 3329.97

Base-MoH NeWCRFs 2292.42 3409.21

Table 5.  Inference times in seconds from the experiments on Jetson Orin Nano using the tiny versions of the
networks.

Model Parameters [M] ↓ Memory [MB] ↓

 Meta PXF 203.82 777.53

 Meta-Base PXF 208.01 793.49

 Base-Meta PXF 266.71 1017.43

 Pyra PXF 339.34 1294.49

 Pyra-Base PXF 333.77 1273.22

 Base-Pyra PXF 276.47 1054.66

 MoH PXF 271.47 1035.56

 MoH-Base PXF 271.42 1035.39

 Base-MoH PXF 270.94 1033.56

 NeWCRFs 270.44 1031.67

 Meta NeWCRFs 201.98 770.49

 Meta-Base NeWCRFs 207.56 791.76

 Base-Meta NeWCRFs 264.87 1010.39

 Pyra NeWCRFs 347.26 1324.68

 Pyra-Base NeWCRFs 333.32 1271.50

 Base-Pyra NeWCRFs 284.39 1084.85

 MoH NeWCRFs 273.85 1044.66

 MoH-Base NeWCRFs 270.97 1033.67

 Base-MoH NeWCRFs 273.33 1042.66

Table 4.  Number of network parameters and memory footprint relative to the tiny (a), base (b), and large
(c) size. Values in bold represent the best values between the baseline and the optimisations applied for that
model.

Scientific Reports | (2025) 15:24001 21| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

confirming that its modification to the attention module is often the most efficient choice. Models optimised
with Pyra also show an improvement in inference times, particularly when the optimisation is applied to only
one module of the network, although performance is generally lower than in the Meta case. MoH optimisation,
on the other hand, is the least suitable in this context, probably due to the overhead introduced by the routing
mechanism, which may not fit well with resource-limited devices.

This behaviour is also confirmed in the case of the METER model, where once again MoH optimisation is the
one with the worst performance, whereas Meta and Pyra allow significantly shorter inference times46,47.

Conclusions
This work analyses the impact of optimisations on ViT-based architectures for MDE by conducting experiments
on indoor and outdoor scenario. In particular, the focus of the research was the application of efficient attention
modules. To better understand the impact of these optimisations have been applied at different levels within each
network, targeting the entire architecture, the encoder and the decoder. A detailed analysis was conducted to
assess how these optimisations, applied to one of the most computationally intensive components of the models,
influenced network performance in terms of quality and speed. Given the importance of a precise balance
between these two objectives, the Pareto Frontier was important in analysing the trade-offs and analytically
obtaining the optimal ones.

Some modifications led to optimised models with improved inference speed but a significant loss in
performance, as seen in fully modified NeWCRFs with Meta or the application of MoH on METER. On the
other hand, some results showed noteworthy cases where the optimised models have reported promising results,
sometimes even surpassing the respective baseline, together with a consistent improvement in inference time.
This is the case of the models optimised only on the decoder part, where the Pyra and Meta optimisations for
PixelFormer and MoH for NeWCRFs have introduced promising models from the point of view of performance
and speed.

These findings suggest new potential research directions based on the provided results. In particular, future
works could investigate how broader optimisation techniques, such as quantisation, knowledge distillation, and
pruning, behave when applied to the whole network and then to specific components. In addition, it may be worth
investigating how the optimisations presented in this work behave on particularly complex dense tasks, such as
optical flow estimation, where the balance between performance and speed is crucial in practical applications.
In all of these cases, the application of the Pareto Frontier could serve as a valuable tool for objectively analysing
trade-offs in Deep Learning tasks.

Data availability
 The data used in this research are publicly available. The NYU Depth V2 dataset can be obtained at the following
link. Similarly, the KITTI dataset is available at the link

Received: 28 March 2025; Accepted: 6 June 2025

References
	 1.	 Voulodimos, A., Doulamis, N., Doulamis, A. & Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.

Intell. Neurosci. https://doi.org/10.1155/2018/7068349 (2018).
	 2.	 Islam, S. et al. A comprehensive survey on applications of transformers for deep learning tasks. Expert Syst. Appl. 241, 122666.

https://doi.org/10.1016/j.eswa.2023.122666 (2024).
	 3.	 Zhou, T., Fan, D., Cheng, M., Shen, J. & Shao, L. RGB-D salient object detection: A survey. Comput. Vis. Media 7, 37–69. ​h​t​t​p​s​:​/​/​d​

o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​4​1​0​9​5​-​0​2​0​-​0​1​9​9​-​z​​​​ (2021).
	 4.	 Y. Hu, Z. Chen & W. Lin. RGB-D semantic segmentation: A review. In Proceedings of the IEEE International Conference on

Multimedia & Expo Workshops. https://doi.org/10.1109/ICMEW.2018.8551554(2018).
	 5.	 Maiano, L., Papa, L., Vocaj, K. & Amerini, I. DepthFake: A depth-based strategy for detecting deepfake videos. In Proceedings of

the Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges, 13646, 17–31.
https://doi.org/10.1007/978-3-031-37745-7_2(2023).

	 6.	 Dong, X., Garratt, M. A., Anavatti, S. G. & Abbass, H. A. Towards real-time monocular depth estimation for robotics: A survey.
IEEE Trans. Intell. Transp. Syst. 23, 16940–16961. https://doi.org/10.1109/TITS.2022.3160741 (2022).

	 7.	 Wang, Y.et al. Pseudo-LiDAR from visual depth estimation: bridging the gap in 3D object detection for autonomous driving. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8437–8445. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​C​V​P​R​.​
2​0​1​9​.​0​0​8​6​4​​​​​(​2​0​1​9​)​.​​​

	 8.	 El Jamiy & F. and Marsh, R. Survey on depth perception in head mounted displays: distance estimation in virtual reality, augmented
reality, and mixed reality. IET Image Processing, 13, 707–712. https://doi.org/10.1049/iet-ipr.2018.5920(2019).

	 9.	 Zhao, C., Sun, Q., Zhang, C., Tang, Y. & Qian, F. Monocular depth estimation based on deep learning: An overview. Sci. China
Technol. Sci. 63, 1612–1627. https://doi.org/10.1007/s11431-020-1582-8 (2020).

	10.	 Vaswani, A. et al. Attention is All you Need. In Proceedings of the International Conference on Neural Information Processing
Systems, 6000–6010. https://doi.org/10.5555/3295222.3295349(2017).

	11.	 Dosovitskiy, A. et al. An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929v2 (2021).
	12.	 Agarwal, A. & Arora, C. Attention attention everywhere: monocular depth prediction with skip attention. In Proceedings of the IEEE/

CVF Winter Conference on Applications of Computer Vision, 5850–5859. https://doi.org/10.1109/WACV56688.2023.00581(2023).
	13.	 Yuan, W., Gu, X., Dai, Z., Zhu, S. & Tan, P. Neural window fully-connected CRFs for monocular depth estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3906–3915. https://doi.org/10.1109/CVPR52688.2022.00389
(2022).

	14.	 Papa, L., Russo, P. & Amerini, I. METER: A mobile vision transformer architecture for monocular depth estimation. Trans. Circ.
Syst. Video Technol. 33, 5882–5893. https://doi.org/10.1109/TCSVT.2023.3260310 (2023).

	15.	 Ye, N. et al. Ood-control: generalizing control in unseen environments. IEEE Trans. Pattern Anal. Mach. Intell. 46, 7421–7433.
https://doi.org/10.1109/TPAMI.2024.3395484 (2024).

Scientific Reports | (2025) 15:24001 22| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

https://doi.org/10.1155/2018/7068349
https://doi.org/10.1016/j.eswa.2023.122666
https://doi.org/10.1007/s41095-020-0199-z
https://doi.org/10.1007/s41095-020-0199-z
https://doi.org/10.1109/ICMEW.2018.8551554
https://doi.org/10.1007/978-3-031-37745-7_2
https://doi.org/10.1109/TITS.2022.3160741
https://doi.org/10.1109/CVPR.2019.00864
https://doi.org/10.1109/CVPR.2019.00864
https://doi.org/10.1049/iet-ipr.2018.5920
https://doi.org/10.1007/s11431-020-1582-8
https://doi.org/10.5555/3295222.3295349
http://arxiv.org/abs/2010.11929v2
https://doi.org/10.1109/WACV56688.2023.00581
https://doi.org/10.1109/CVPR52688.2022.00389
https://doi.org/10.1109/TCSVT.2023.3260310
https://doi.org/10.1109/TPAMI.2024.3395484
http://www.nature.com/scientificreports

	16.	 Zhu, L. et al. Vision-language alignment learning under affinity and divergence principles for few-shot out-of-distribution
generalization. Int. J. Comput. Vis. 132, 3375–3407. https://doi.org/10.1007/s11263-024-02036-4 (2024).

	17.	 Ye N. et al. Ood-bench: quantifying and understanding two dimensions of out-of-distribution generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3906–3915. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​C​V​P​R​5​2​6​8​8​.​2​0​2​2​.​0​0​7​7​9​​​​​(​
2​0​2​2​)​.​​​

	18.	 L.,Zhu,Y., Yang, Q.,Gu, X. Wang, C., Zhou, N.Y. CRoFT: Robust fine-tuning with concurrent optimization for ood generalization
and open-set OOD detection. arXiv:abs/2405.16417 (2024).

	19.	 Yu, W. et al. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 10809–10819. https://doi.org/10.1109/CVPR52688.2022.01055(2022).

	20.	 Wang, W. et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of
IEEE/CVF International Conference on Computer Vision, 548–558. https://doi.org/10.1109/ICCV48922.2021.00061(2021).

	21.	 Jin, P., Zhu, B., Yuan, L. & Yan, S. MoH: multi-head attention as mixture-of-head attention. arXiv:2410.11842 (2024).
	22.	 Nia, V.P., Ghaffari, A., Zolnouri, M. & Savaria, Y. Rethinking pareto frontier for performance evaluation of deep neural networks.

arXiv:abs/2202.09275 (2022).
	23.	 Peng, C. et al. PNAS-MOT: multi-modal object tracking with pareto neural architecture search. IEEE Robot. Autom. Lett. 9, 4377–

4384. https://doi.org/10.1109/LRA.2024.3379865 (2024).
	24.	 Silberman, N., Hoiem, D., Kohli, P. & Fergus, R. Indoor segmentation and support inference from RGBD images. Comput. Vis.

ECCV 2012(7576), 746–760. https://doi.org/10.1007/978-3-642-33715-4_54 (2012).
	25.	 Geiger, A., Lenz, P., Stiller, C. & Urtasun, R. Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237. ​h​t​t​p​s​:​/​/​d​o​

i​.​o​r​g​/​1​0​.​1​1​7​7​/​0​2​7​8​3​6​4​9​1​3​4​9​1​2​9​7​​​​ (2013).
	26.	 O’Shea, K. & Nash, R. An Introduction to Convolutional Neural Networks. arXiv:1511.08458v2 (2015).
	27.	 Eigen, D., Puhrsch, C. & Fergus, R. Depth map prediction from a single image using a multi-scale deep network. In Proceedings of

the 28th International Conference on Neural Information Processing Systems, vol. 2, pp. 2366–2374. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​5​5​5​/​2​9​6​9​0​3​
3​.​2​9​6​9​0​9​1​(​2​0​1​4​)​.​​​​​​​

	28.	 Salman, K. et al. Transformers in vision: A survey. ACM Comput. Surv. 54, 1–41. https://doi.org/10.1145/3505244 (2022).
	29.	 Z. Liu et al. Swin transformer: hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986(2021).
	30.	 J. Yan, H. Zhao, P. Bu & Y. Jin. Channel-wise attention-based network for self-supervised monocular depth estimation. In

Proceedings of the International Conference on 3D Vision, 464–473. https://doi.org/10.1109/3DV53792.2021.00056(2021).
	31.	 Ning, C. & Gan, H. Trap attention: monocular depth estimation with manual traps. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 5033–5043. https://doi.org/10.1109/CVPR52729.2023.00487(2023).
	32.	 Papa, L., Russo, P., Amerini, I. & Zhou, L. A survey on efficient vision transformers: Algorithms, techniques, and performance

benchmarking. IEEE Trans. Pattern Anal. Mach. Intell. 46, 7682–7700. https://doi.org/10.1109/TPAMI.2024.3392941 (2024).
	33.	 Zhou, Y., Yi, Z. & Yen, G. G. Efficient fine-tuning of vision transformer via path-augmented parameter adaptation. Inform. Sci. 703,

121948. https://doi.org/10.1016/j.ins.2025.121948 (2025).
	34.	 Zhou, Y. et al. Multiobjective evolutionary generative adversarial network compression for image translation. IEEE Trans. Evolut.

Comput. 28, 798–809. https://doi.org/10.1109/TEVC.2023.3261135 (2024).
	35.	 Liu, Z., Wang, Y., Han, K., Ma, S. & Gao, W. Post-training quantization for vision transformer. arXiv:abs/2106.14156 (2021).
	36.	 Zhu, M., Tang, Y. & Han, K. Vision transformer pruning. arXiv:abs/2104.08500 (2021).
	37.	 Touvron H. et al. Training data-efficient image transformers and distillation through attention. arXiv:abs/2012.12877 (2021).
	38.	 Schiavella, C., Cirillo, L., Papa, L., Russo, P. & Amerini, I. Optimize vision transformer architecture via efficient attention modules:

A study on the monocular depth estimation task. In Image Analysis and Processing - ICIAP 2023 Workshops, 14365, 383–394.
https://doi.org/10.1007/978-3-031-51023-6_32(2024).

	39.	 Voita, E., Talbot, D., Moiseev, F., Sennrich, R. & Titov, I. Analyzing multi-head self-attention: specialized heads do the heavy lifting,
the rest can be pruned. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 5797–5808.
https://doi.org/10.18653/v1/P19-1580(2019).

	40.	 Kingma, D.P. & Ba, J. Adam: A method for stochastic optimization. arXiv:abs/1412.6980 (2017).
	41.	 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv:abs/1711.05101. (2019)
	42.	 Paszke, A. et al. PyTorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International

Conference on Neural Information Processing Systems, 8026-8037. https://doi.org/10.5555/3454287.3455008(2019).
	43.	 Kingma, D.P., & Welling, M. Auto-encoding variational bayes. arXiv:abs/1312.6114 (2022).
	44.	 Cover, T. M. & Thomas, J. A. Entropy, relative entropy, and mutual information. Elements Inf. Theory 2, 13–55. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​

1​0​0​2​/​0​4​7​1​7​4​8​8​2​X​.​c​h​2​​​​ (2006).
	45.	 Kozachenko, L. F. & Leonenko, N. N. Sample estimate of the entropy of a random vector. Problems Inform. Trans. 23(2), 95–101

(1987).
	46.	 Hua, Y. & Tian, H. Depth estimation with convolutional conditional random field network. Neurocomputing 214, 546–554. ​h​t​t​p​s​:​/​

/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​n​e​u​c​o​m​.​2​0​1​6​.​0​6​.​0​2​9​​​​ (2016).
	47.	 Zhang, N., Nex, F., Vosselman, G. & Kerle,N. Lite-mono: A lightweight CNN and transformer architecture for self-supervised

monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18537–
18546. https://doi.org/10.1109/CVPR52729.2023.01778(2023).

Author contributions
C.S. and L.C. took care of the experimental part. All authors participated in the drafting and reviewing of the
manuscript.

Funding
 This study has been financially supported by Sapienza University funds (RM123188F4A97C9C).

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.S.

Reprints and permissions information is available at www.nature.com/reprints.

Scientific Reports | (2025) 15:24001 23| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

https://doi.org/10.1007/s11263-024-02036-4
https://doi.org/10.1109/CVPR52688.2022.00779
http://arxiv.org/2405.16417
https://doi.org/10.1109/CVPR52688.2022.01055
https://doi.org/10.1109/ICCV48922.2021.00061
http://arxiv.org/abs/2410.11842
http://arxiv.org/2202.09275
https://doi.org/10.1109/LRA.2024.3379865
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
http://arxiv.org/abs/1511.08458v2
https://doi.org/10.5555/2969033.2969091(2014).
https://doi.org/10.5555/2969033.2969091(2014).
https://doi.org/10.1145/3505244
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/3DV53792.2021.00056
https://doi.org/10.1109/CVPR52729.2023.00487
https://doi.org/10.1109/TPAMI.2024.3392941
https://doi.org/10.1016/j.ins.2025.121948
https://doi.org/10.1109/TEVC.2023.3261135
http://arxiv.org/2106.14156
http://arxiv.org/2104.08500
http://arxiv.org/2012.12877
https://doi.org/10.1007/978-3-031-51023-6_32
https://doi.org/10.18653/v1/P19-1580
http://arxiv.org/1412.6980
http://arxiv.org/abs/abs/1711.05101
https://doi.org/10.5555/3454287.3455008
http://arxiv.org/1312.6114
https://doi.org/10.1002/047174882X.ch2
https://doi.org/10.1002/047174882X.ch2
https://doi.org/10.1016/j.neucom.2016.06.029
https://doi.org/10.1016/j.neucom.2016.06.029
https://doi.org/10.1109/CVPR52729.2023.01778
http://www.nature.com/scientificreports

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025

Scientific Reports | (2025) 15:24001 24| https://doi.org/10.1038/s41598-025-06112-8

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Efficient attention vision transformers for monocular depth estimation on resource-limited hardware
	﻿﻿Related works
	﻿Monocular depth estimation
	﻿Vision transformers for monocular depth estimation
	﻿Efficient attention modules

	﻿﻿Methods
	﻿Optimization framework
	﻿Network architectures
	﻿METER
	﻿PixelFormer
	﻿NeWCRFs

	﻿Efficient attention module
	﻿Meta-optimised modules
	﻿Pyra-optimised modules
	﻿MoH-optimised modules

	﻿Implementation details
	﻿Benchmark datasets
	﻿Evaluation metrics
	﻿Experimental setup

	﻿﻿Results
	﻿Experiments
	﻿Trade-off performance-inference speed
	﻿Embedding entropy analysis
	﻿General optimisation comparison
	﻿Optimisations memory footprint
	﻿Resource-constrained device experiments

	﻿﻿Conclusions
	﻿References

