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Efficient attention vision
transformers for monocular depth
estimation on resource-limited
hardware
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Vision Transformers show important results in the current Deep Learning technological landscape,
being able to approach complex and dense tasks, for instance, Monocular Depth Estimation. However,
in the transformer architecture, the attention module introduces a quadratic cost concerning the
processed tokens. In dense Monocular Depth Estimation tasks, the inherently high computational
complexity results in slow inference and poses significant challenges, particularly in resource-
constrained onboard applications. To mitigate this issue, efficient attention modules have been
developed. In this paper, we leverage these techniques to reduce the computational cost of networks
designed for Monocular Depth Estimation, to reach an optimal trade-off between the quality of the
results and inference speed. More specifically, optimization has been applied not only to the entire
network but also independently to the encoder and decoder to assess the model’s sensitivity to these
modifications. Additionally, this paper introduces the use of the Pareto Frontier as an analytic method
to get the optimal trade-off between the two objectives of quality and inference time. The results
indicate that various optimised networks achieve performance comparable to, and in some cases
surpass, their respective baselines, while significantly enhancing inference speed.
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In Computer Vision, most approaches rely on RGB images!>. However, several studies have demonstrated that
incorporating a fourth channel, the depth channel, yields significant improvements>~° by integrating and making
explicit additional information that was previously implicit in the captured image. Utilizing depth information,
however, requires access to depth maps, which can be obtained through specialized hardware using an active
sensing approach. Sensors such as LiDAR or certain types of cameras acquire depth by emitting a physical signal
into the environment and measuring the time taken for its return. Depth plays an essential role in several practical
applications. In robotics, it enhances autonomous navigation and obstacle avoidance®, while in autonomous
driving, it provides a precise understanding of the surrounding environment’. Additionally, in virtual reality,
depth data contributes to more realistic and immersive experiences, improving user engagement®. Despite its
advantages, actively acquiring depth through sensors presents several challenges. First, depth maps generated
by these devices are often sparse, providing depth values only at specific points rather than offering a dense
and comprehensive representation of the scene. Moreover, integrating dedicated hardware imposes additional
constraints on the system, increasing weight and power consumption, which can be critical for resource-limited
applications.

These challenges can be mitigated through passive depth-sensing techniques, which shift the computational
complexity from hardware to software. Unlike active sensing, passive approaches estimate scene depth without
directly perturbing the environment, eliminating the need for specialized depth sensors. One prominent example
of passive depth estimation is Monocular Depth Estimation (MDE)?’, which infers depth information from a
single RGB image. This complex, dense task allows for a more global view of the scene’s depth and minimises
the reliance on specific hardware. In this context, Deep learning models are essential for obtaining accurate
and reliable depth estimates. In particular, transformer architectures succeed in approaching this task with
impressive results. Due to their ability to capture global features via the attention mechanism!?, the transformer
models specific to vision tasks, namely Vision Transformers (ViTs)!!, can predict accurate and precise depth
maps'2~1%. A major limitation of the ViT architecture is the computational cost of its attention module, which
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scales quadratically with the number of tokens being processed. While this module is essential for achieving high
performance, it significantly impacts processing speed and memory usage, making dense prediction tasks such
as MDE highly resource-intensive. This challenge is particularly critical in onboard or real-time applications,
where the device’s processor is also responsible for tasks beyond network inference. In this context, the device
is in a dynamic environment and it should generalize real and new data'>-'® in a reliable and fast way. This fact,
combined with the constrained computational resources of certain hardware platforms, creates a challenging
environment for deploying ViT-based MDE models efficiently. To address this issue, our research focuses on
integrating efficient attention mechanisms into state-of-the-art ViT architectures for MDE, aiming to achieve an
optimal trade-off between performance and inference speed.

This paper provides a comprehensive analysis of the impact of efficient attention modules on various ViT
architectures for MDE that achieve state-of-the-art performance. Specifically, optimizations are applied not only
to the entire network but also independently to the encoder and decoder, enabling a more granular study of how
attention modifications influence different network components. This approach helps identify the most effective
optimizations, ultimately guiding the development of a model that balances inference speed with fidelity to
baseline performance. The architectures under investigation include PixelFormer (PXF)!? and Neural Window
Fully-connected CRFs (NeWCRFs)'?, both of which are computationally intensive models that incorporate
attention mechanisms in both the encoder and decoder. Additionally, we analyse METER!, a lightweight
hybrid architecture that combines transformer-based processing with convolutional layers. By comparing the
effects of optimizations on these models, we aim to understand how fully attention-based networks, such as
PXF and NeWCREFs, perform relative to hybrid architectures like METER. The optimizations explored in this
study introduce structural modifications to the attention mechanism. Specifically, MetaFormer (Meta)'® replaces
the attention module with a token mixer of linear complexity, significantly reducing computational overhead.
Meanwhile, Pyramid Vision Transformers (Pyra)?® adjust the computational granularity of the attention module
by reducing the size of its processing elements, thereby altering its overall complexity. Through this analysis, we
seek to determine the effectiveness of these optimizations in enhancing inference efficiency while maintaining
high-quality depth predictions. Finally, the Mixture-of-Head (MoH) method?! introduces a routing mechanism
to dynamically select the most effective attention heads, further enhancing computational efficiency. The choice
of these types of efficient attention modules is based on the fact that they have been tested on various computer
vision tasks, but not yet to MDE. In all cases considered, these attention modifications have led to promising
results, making it interesting to evaluate their performance on a dense and complex task such as MDE. Moreover,
each optimisation affects the attention modification differently: Meta simplifies the architecture, Pyra compresses
the inputs, while MoH changes the routing of multi-head attention.

Given the structural modifications introduced by these optimizations, it is essential to employ an objective
evaluation framework to assess their impact. To achieve this, our research leverages the Pareto Frontier, a
systematic and analytical tool for identifying optimal solutions in multi-objective problems. In our context,
each candidate model represents a potential solution, and only the Pareto-optimal models, those that are not
outperformed across all objective criteria, are selected. A model is considered dominant if no other model
surpasses it in both prediction quality and inference speed simultaneously. The resulting Pareto-optimal models
define the frontier, representing the best trade-offs between these competing objectives. This approach provides a
rigorous evaluation framework, allowing us to systematically compare optimised models against their respective
baselines. While Pareto analysis has been applied in deep learning evaluations®? and in multi-modal object
tracking®, it has not yet been explored specifically for MDE.

Our experiments are conducted on two benchmark datasets widely used for MDE: NYU Depth V224, which
consists of indoor scenes, and KITTI?®, which focuses on outdoor driving scenarios. By evaluating optimised
networks across these datasets, we aim to assess their performance in diverse real-world conditions, ensuring the
models generalize well to practical applications.

To provide a clear overview, our work can be summarized as follows:

« We conduct an in-depth study on the impact of efficient attention modules on the qualitative and temporal
performance of ViT models for the MDE task.

o We analyse the impact of the efficient attention modules separately on the full network, encoder, and decoder,
obtaining a descriptive evaluation of the optimisation’s contribution.

o We introduce the Pareto Frontier as a systematic method to identify the optimised models that achieve the
optimal trade-off between result quality and inference speed.

The rest of the article is organized as follows: In “Related works” section presents an overview of MDE, describing
ViT architectures for this task and suitable optimizations for their attention modules. In “Methods” section
exposes networks and efficient attention modules used in the experiments. “Results” section presents a detailed
analysis of the experiments carried out. Finally, “Conclusions” section indicates conclusions and potential future
research directions.

Related works

Monocular depth estimation

Depth estimation, in its most general form, concerns determining the distance between an object and the
imaging sensor. From an application perspective, this process is crucial in various real-world domains, including
robotics®, autonomous driving’ and augmented reality®. The depth measurement can be performed actively, by
sensing the depth through dedicated hardware. That approach perceives the scene’s depth by perturbing the
environment with a physical medium, such as LiDAR or Time-of-Flight. Another possible solution is to retrieve
the depth passively, not by measuring but by estimating the value through software solutions. Our application
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context focuses on MDE, which is categorised as a passive method. This approach estimates image depth from
a single RGB image on a per-pixel basis’. Among software-based solutions related to this task, several Deep
Learning methods leverage neural networks to predict depth maps!?-!4. These techniques often achieve accurate
results that are in part attributed to'® attention mechanisms, which enable the extraction of global information
from the input image. However, despite their potential, these models are often constrained by a slow inference
speed, primarily due to the weight of the network and the computational cost of some of their modules. This
situation leads to challenges in scenarios where both precision and real-time performance are necessary.

Our research aims to identify solutions that can mitigate the complexity of MDE models while maintaining
performance and improving inference speed.

Vision transformers for monocular depth estimation

Deep Learning-based solutions are widely used in the MDE task. Early approaches involved using Convolutional
Neural Networks (CNN)? to estimate the depth from a single input image. A representative work that introduces
this type of model is the study by Eigen et al.””. Their approach captures the image context and then reconstructs
the depth map by refining the local details of the obtained representation.

With the advent of Transformers and the attention mechanism!?, these architectures have been extended
to the field of imaging, through the introduction of ViTs'!. These models process input images by tokenizing
them into smaller patches. Due to their ability to capture long-range dependencies and model global spatial
relationships, they have been widely adopted in Computer Vision?® tasks, including MDE. Several networks have
exploited the ViT architecture with specific techniques to improve the quality of the predicted depth map. An
example is the PixelFormer network'?, which after extracting the image representation with a Swin Transformer
backbone?, improves the quality of the predicted depth map by merging encoder and decoder features with
an attention-based approach. Similarly, the NeWCRFs network!? exploits a decoder module that introduces
Conditional Random Fields (CRF) integrated with attention mechanisms. In this framework, each CRF captures
observable image features, such as textures and object positions, to define an energy function, which is then
optimised to retrieve the depth estimation. In contrast to these networks, some recent solutions integrate CNNs
with the capabilities of ViTs, developing hybrid approaches. For instance, METER' is a lightweight model,
combining a transformer-based encoder with a fully convolutional decoder. This architecture is suitable for
experiments were conducted on devices with limited hardware resources and achieves a reasonable balance
between efficiency and performance.

Despite the strong performance of the presented networks for the MDE task, they share common problems
with ViT architectures. Transformer models are often characterized by a high number of parameters and floating
point operations per second (FLOPs), resulting in memory-intensive networks and often slow inference. This
issue is mitigated in lightweight transformer architectures, which achieve reasonable performance while
maintaining lower computational demands. However, another challenge that affects all Transformers is the
quadratic problem of the attention module!®. This module has a quadratic computational cost concerning
the input tokens, leading to a significant speed issue in MDE, as high-resolution inputs require processing a
substantial number of tokens to predict a dense depth map. Recent research on MDE has introduced efficient
attention mechanisms in networks addressing this task’%31; however, the trade-off between performance and
speed remains insufficiently analysed.

This work addresses the optimisation of networks for MDE, which perform well but are limited by the
computational cost of the attention module. Furthermore, this work focuses on achieving a trade-off between
performance and speed through a structured and quantitative evaluation of the modified networks compared
with their original models.

Efficient attention modules

Although in different ways, all the architectures presented use the attention mechanism. This module, in most
cases, determines the model’s performance. However, attention presents a computational problem due to its
quadratic complexity relative to the input tokens!?. In ViT-based networks, where images are divided into a large
number of patches!’, this results in significant computational overhead. This situation poses challenges in time-
critical applications such as autonomous driving or rescue robotics’.

To address this issue, several studies®? have explored techniques to optimise the attention modules. In
particular, these methods aim to reduce the quadratic complexity of the mechanism, proposing new approaches
to speed up the calculation and maintain performance. These methods are specifically designed to modify
attention, in contrast to the promising optimisation present in the current literature’>4, or more general
solutions such as quantisation®®, pruning® and knowledge distillation®” which reduce computational overhead
by optimising the entire network. Regardless of the applied optimisation, modified models will experience a
trade-off between performance and inference speed*>*. There are cases, however, where performance may even
improve once the optimisation is introduced. A consistent example is MoH?!, which modifies the entire multi-
head attention mechanism. Since not all attention heads contribute equally to the final prediction®, the proposed
optimisation employs a specialised routing mechanism to efficiently select the most relevant heads. This method
has been used in computer vision tasks such as classification or image generation, but its application in MDE
has not yet been proven.

Unlike MoH, some optimisations, such as Meta!® and Pyra? focus more specifically on token processing
within the attention module. Meta advances the idea that in ViT architectures, the quality of results depends
primarily on the overall structure of the network, rather than on the attention module. This part of the network
is intended as a token mixer and, given the initial assumption, is replaced with a much simpler module which
performs the token mixing operation in a computationally lighter manner. Pyra optimisation, in particular,
introduces spatially reduced attention, progressively decreasing the input size of the attention mechanism.
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This method allows for the better application of transformation architectures to dense tasks, dealing with less
expensive computational elements. Both methods introduced have already been tested in the MDE task®,
bringing encouraging results from the point of view of maintaining the performance and speed of the optimised
models. However, a precise analytical definition of the trade-off between prediction quality and speed of inference
remains unclear. The Efficient Error Rate introduces a possible approach in*2, but this metric is based on values
primarily influenced by network-wide optimisations, which substantially alter the number of parameters and
the model’s memory weight. Another attempt to measure the trade-off between different objectives of a neural
network was introduced by the work??, in which through the Pareto Frontier a systematic and precise way is
proposed that comes directly from optimisation theory. To the best of our knowledge, the application of this
method is limited in the context of Deep Learning and unexplored in the analysis of optimised models for MDE.

Building on these concepts, we aim to optimise ViT architectures for the MDE task. More specifically,
techniques that modify the complexity of the attention modules have been adopted. The impact of these
modifications will be evaluated in a general and systematic manner, independent of specific network values,
focusing solely trade-off between quality and speed objectives.

Methods

Optimization framework

In this section of the article, the general approach proposed to modify and analyse the networks considered for
the study is presented. As highlighted in the current literature, the issue associated with Transformer models,
related to the quadratic cost of their attention module, has emerged!®3¢. Consequently, the need to optimize this
part of the network arises, applying targeted modifications to mitigate the complexity of attention. However, to
have a clear comparison between the modified networks and the baselines, a standardized process that can be
applied to the networks and optimizations under study is essential.

This need leads to setting the proposed analysis through a specific framework. This approach takes
advantage of the architectural similarities of the elements involved, allowing the various network-optimization
combinations to be easily applied and immediately capture the results relevant to the research. The idea is shown
in Fig. 1. The approach considers each component as a container, capable of integrating the different elements.
In this way, a generic framework is obtained, with different instances depending on the dataset, network and
optimization used.

More specifically, the framework includes a module related to the network architectures to be tested. This
component itself contains two sub-structures: one for the encoder and the other for the decoder. These two
elements are fundamental in the framework because they will integrate the different types of efficient attention
modules and the classical one for the baseline. Thus, by instantiating these containers, it is possible to obtain the
network configurations in a clear and precise manner.

This approach realises a consistent experimental framework that facilitates the reproducibility and the
evaluation of the different modified models. Each network and optimization that realizes a configuration has
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Fig. 1. The general framework used to compare the different network-optimization configurations. The
module Network architecture instantiates the network to be analysed, while the submodule Efficient Attention
Module integrates the attention mechanism used by the encoder, decoder, or the entire network. On the left
side a comparison is shown to illustrate how each optimization modifies the original module. The left module
depicts the optimised attention, while the right one shows its standard version.
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its characteristics that determine the behaviour of the modified network. Details on these different elements are
discussed in the following sections.

Network architectures

METER

METER'" is a hybrid and lightweight ViT network. It achieves strong performance, even in scenarios with
limited hardware resources.

This network uses an encoder that extracts useful features for depth prediction from the input image. This
module comprises different layers, including convolutions with small kernels to maintain fast data processing
and transformer blocks. In particular, this is the only part of the network that has attention modules. This module
is available in three sizes: XXS, XS, and S. Each increment increases the parameters and the network capabilities.
The METER decoder is purely convolutional and is responsible for reconstructing the predicted depth map from
the features extracted by the encoder.

Beyond the architecture, this work introduces a composite loss specific to the MDE task. This approach
integrates different values tailored for depth estimation, considering the pixel-per-pixel difference, cosine
similarity between prediction and ground truth, and penalty factors to enhance detail reconstruction. In
addition, a dedicated data augmentation pipeline enhances the robustness of the network. The latter proposes a
change in the colour and brightness of the input RGB image, called C Shift, to simulate different data acquisition
conditions. Furthermore, virtual data augmentation is also applied to the depth maps, with the D Shift, which
randomly shifts the depth map corresponding to the ground truth to reduce the risk of overfitting on specific
depth values.

PixelFormer

PixelFormer'? approaches the MDE task in a particular form. For each image, the network adaptively predicts
multiple intervals that divide the continuous depth value into a discrete range. Each pixel of the depth map to
be estimated will be associated with a vector of weights, with several elements equal to the number of intervals
estimated. The final depth of each pixel is calculated as a linear combination of the centres of the intervals
predicted for the image, weighted by the values of the probability vector associated with that pixel.

The encoder, a Swin Transformer?, was presented in the original paper as a general backbone for computer
vision tasks. Its feature extraction function is based on a hierarchical organisation to model information at
different resolutions and on non-overlapping windows that, in their context, apply attention computation to the
local context of an input patch. As in the previous model, the network is available in three configurations: tiny,
base and large, each with increasing parameters. PixelFormer’s decoder, on the other hand, introduces the SAM
mechanism that merges features from the encoder with those of the decoder through an attention mechanism to
maximise information extraction from the encoder’s general and decoder-specific features.

NeWCRFs

The NeWCRFs!® network approaches the MDE task based on so-called CRFs. These elements are probabilistic
models that capture spatial relationships in structured data. In MDE, these elements allow dependencies
between pixels to be modelled so that the estimated depth is consistent with that of its neighbours. This approach
applies CRFs on local windows to capture global information while limiting the computational impact to limited
connections between neighbouring pixels.

The network applies this methodology through its decoder, supported by an attention mechanism to precisely
and accurately model the connections between the different local windows related to the CRFs. The encoder
module consists of a Swin Transformer?® that processes the input images, extracting global and hierarchical
features while capturing long-range dependencies between pixels.

Efficient attention module
Meta-optimised modules
As shown, MetaFormer generalises the concept of ViTs by maintaining the overall architecture while allowing
the use of different token mixers to replace the attention module. In particular, the work demonstrates that using
a simple operator, such as pooling, instead of attention supports the hypothesis that the general ViT architecture
is a key factor in model performance.

Taking the original formula of the attention, the difference between this and the one proposed in'? is very
marked. Considering the classical formulation of the attention

T
Attention(Q, K, V) = Softmax <Q\/IG%L ) \% (1)

where Q are the queries, K the keys, V the values, dj, the size of the attention head and Softmax an activation
function'?, the Meta approach proposes the following modification

MetaAttention(z) = Pooling,, () (2)
where, in this case, x is directly the input given to the transformer, and the operator Pooling operates as suggested

by its name, exploiting a kernel of dimension k that aggregates the elements of the input by averaging them
among those that fall in its receptive field.
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Using pooling as a token mixer allows for a module with linear computational complexity concerning the
number of input tokens. In addition, it does not introduce trainable parameters that could burden the network’s
structure.

Pyra-optimised modules
The Pyramid PVT approach is one of the proposed variants designed to mitigate the drawback associated with
the quadratic complexity of the attention module, particularly in transformer-based networks for dense tasks,
such as MDE. In this case, the number of tokens present is exceptionally high, exposing the network to the
adverse effects of having a quadratic complexity dependent on this factor.

The concept presented in?® combines the advantages of convolutional neural networks?® and transformers.
It introduces a pyramid approach that progressively reduces the input’s resolution, maintaining a high-resolution
representation in the first levels for greater accuracy in dense predictions. Although the attention equation closely
resembles the original version shown in Eq. 1, a critical detail represents the core idea of the proposed method.

QSR(K)T

PyraAttention(Q, K, V) = Softmax < \/aTh) > SR(V) (3)

The spatial reduction operator SR manipulates both K and Q keys, defined as follows

SR(z) = Norm (Reshape (z, R) W) 4)
This operation is applied to the input x, which, in our case, are the keys or values. The reduction ratio R applies
a reshape operation to the input. The output is then subjected to a linear projection and normalisation. These

steps reduce the computational cost of the attention operation by as much as R? compared to its original form,
allowing even considerable inputs to be better handled.

MoH-optimised modules
The concept presented by MoH does not modify the attention module itself but rather optimises the routing
mechanism among multiple heads, as is depicted in Fig. 2. Attention remains so at the equation shown in Eq. 1.
In its original form, multi-head attention is formulated as follows:
MultiHead(Q, K, V) = Concat (H', H*,..., H") Wo (5)
= Attention(Qi, K, Vi) (6)

It represents a linear concatenation of the various attention heads, with the matrix Wo as the final step. This
form can be seen from another perspective.

MultiHead(Q, K, V) ZH 1473 )

This is expressed by decomposing the linear projection matrix Wo row by row and describing the multi-head
attention formula as a sum. This point serves as the foundation of the MoH technique. The multi-head attention
set as in?! is defined as follows.

MoH(Q, K, V) Zng we, (8)

m
MetaAttention PyraAttention 91 9n
I T I I Head; Head, Head; Head,
X . I— Router —I
K V Input Input
(b) (© ©)) (e)

Fig. 2. On one side, the classical attention module (a) is compared with the token mixer module of Meta (b)
implemented by the pooling operation, and with the Pyra (c) approach in which key and values are spatially
reduced. On the other side, MoH (e) approach modifies the routing system in the multi-head attention (d),
addressing only some specific heads, and then aggregating them using a weighted sum.
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In this configuration, the routing score g; acts as a router to select the best k heads of attention. This g; value is
non-zero if and only if the ;1 attention head should be activated.

This attention mechanism categorises two types of heads: shared heads, which are always active and capture
useful standard information in different contexts, and routed heads, which may or may not be active and do not
share information between various contexts. The number of each type of head is a design decision to be made by
those implementing the MoH mechanism.

Given this concept, the two-stage routing of the MoH approach is realised by the routing score g;, which is
as follows.

as Softmax (Wx),, if (Wra), € Top-K ({(Wyz), | hs + 1 <i < h}), )

aq Softmax (Wx),, if 1 <4< hs,
9i =
0, otherwise.

[a1, a2] = Softmax (Wyxy) (10)

x indicates the input token and h, the number of shared heads. W, and W,. are the projection matrices
that combine the score of each head type, thus implementing the routing mechanism. The coefficients a1 and
o are learned through the trainable matrix W), to balance the overall contribution of the two kinds of heads.
Learnable elements of the presented routing system are taken into account during training via an additional loss
term specific to the task specific for the task that the network is performing?!. This approach enables the dynamic
selection of the most appropriate attention heads for each token, enhancing inference efficiency and accuracy.

Implementation details

Benchmark datasets

The datasets used in the subsequent experiments to analyse the impact of the chosen architectures are NYU
Depth V22* and KITTI?. These two datasets are benchmarks for the MDE task.

The NYU dataset contains a collection of indoor scenes, with RGB images having a resolution of 640 x 480,
and their associated depth maps, which have a maximum depth of 10 metres. There are 120K training samples,
while there are 654 samples for the test phase.

As far as the KITTI dataset is concerned, it is conceptually opposed to the previous one; in fact, it is a
collection of outdoor images with a resolution of 1241 x 376, and their respective depth maps, which, in this
case, reaches up to 80 metres. The split of the dataset is such that there are 23K training samples and 697 test
samples.

Evaluation metrics

The metrics used to evaluate the experimental results are standard qualitative measures used in MDE?”: Root
Mean Square Error (RMSE, in metres [m]), Absolute Relative error (Absre;), and the accuracy measures 61,
02, and d3. Those metrics are presented in the following equations.

RMSE = (11)
AbSger = (12)
1« )
Yi
0 = — E max | =—, = 13
TN & (yi (13)

In this expressions, y; is the depth ground truth for the ¢; pixel, §; is the estimated depth for the ¢ — th pixel,
and N is the total number of pixels of the image.

For the inference speed test, inference time is measured as the duration in seconds [s] required for the
network to perform the forward pass over the entire test set.

Experimental setup

The training configurations of the models follow the specifications reported in their respective papers!>-!4, with
training conducted on multiple NVIDIA RTX5000 GPUs. In particular, PixelFormer and NeWCRFs were trained
for 20 epochs, using Adam*’ optimiser with parameters 3 = (0.9, 0.999) and weight decay of 10™2, a batch size
of 8 samples, and an initial learning rate of 4 x 10™° reduced linearly to 4 x 10~°, METER was trained for 60
epochs under different configurations, introducing the AdamW optimiser*! with parameters 5 = (0.9, 0.999)
and weight decay of 10", a batch size of 128 samples, and an initial learning rate of 10~ reduced by a factor
of 0.1 every 20 epochs. All the models were implemented through the PyTorch framework*?. Unlike the other
networks in this research, METER operates on smaller image sizes compared to the original samples of both
datasets under consideration. However, depth maps predicted by METER can be compared by upscaling, with
the downside of a lower resolution. Furthermore, the METER article indicates that the KITTI version should be
trained using samples with filled-in depth maps. To ensure a fair comparison between the models in our study,
METER was trained on the KITTI raw dataset, which contains sparse depth maps.
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With regard to the application of the optimisations, an attempt was made to keep the parameters unchanged
from the respective references'®-2!. However, for Meta and Pyra, some modifications, obtained through a trial-
and-error process, were necessary to adapt the pooling and the spatial reduction operator to the embedding sizes
of the respective networks.

The experiments in our work were performed on three different CPUs: Intel Core i9-7920X (19X79), Intel
Core i9-10900X (19X10), and Intel Xeon Gold 6338 (XG38). Testing the inference on a CPU aims to isolate
the impact of optimisations, to prevent parallelization from mitigating their contribution. Moreover, this
scenario reflects real-world applications where networks operate directly on embedded devices. In this context,
a hardware accelerator, such as a GPU, is not always available. In such cases, the processor must manage both
network calculation and other device functionalities. For this reason, all tests were performed on a CPU limited
to a single core. The experiments evaluate the models using standard metrics (RMSE, Absre, 1, d2, 63) and
measure the inference speed for both baseline and optimised networks. The reported metrics describe the mean
performance, and inference speed is defined as the time each network takes to perform a forward pass, one
sample at a time, over the entire test set.

Results

Experiments

The experiments were conducted by applying optimisations to the networK’s attention modules. In particular,
each technique was observed on different parts of the models, analysing the impact on evaluation metrics and
inference speed when the modification is applied to the whole network, to the encoder only, or to the decoder
only. This approach enables the identification of the network parts most affected by the optimisation, highlighting
which region yields the greatest improvements or experiences the most significant performance degradation.
From this perspective, this analysis can identify models that achieve a meaningful trade-off between result
quality and inference speed. To formalise this approach, the notation follows the network structure, where the
encoder always precedes the decoder. More precisely:

o Optimisation Network: the optimisation was applied to all the attention modules in the architecture;

« Optimisation-Base Network: the optimisation was applied only to the attention modules present in the encod-
er of the architecture, while the decoder remained as it was in the non-optimised baseline model;

o Base-Optimisation Network: the optimisation was only applied to the attention modules in the decoder of the
architecture, while the encoder remained as it was in the non-optimised baseline model;

The notation partially applies to METER: it only presents attention to its encoder, and the optimisation will be
referred to as if applied to the entire network. Based on that, Tables 1 and 2 present the result of baseline models
and their optimised versions, grouped by dataset to evaluate their performance on indoor and outdoor samples.
Each test will have three tables, one for each network size: tiny, base and large. Each of these formats increases
the number of parameters of the encoder, resulting in a more computationally demanding network.

Some details become evident from the tests on the NYU Depth V2 dataset. For METER, we observe how the
optimisations, except MoH, have a minimal impact on degrading qualitative metrics while also reducing inference
times. Analysing the different model sizes, we observe that, in general, the Meta and Pyra optimisations enhance
network performance in some cases, with Meta consistently achieving the best inference speed. However, in
the large version of METER, this trend is observed only in inference speed, where the baseline outperforms
the optimised versions. For the deeper architectures, PixelFormer and NeWCRFs, decoder-level optimisations
yield performance comparable to, and in some cases better than, their respective baselines. Other optimisation
applications tend to degrade performance metrics, although they result in reduced inference times. In particular,
it can be seen that, in all dimensions of these networks, Meta is always the fastest when applied to the entire
architecture. This behaviour is attributed to the simplicity of pooling, which replaces the computationally
intensive attention. In indoor scenarios, optimisations generally improve network speed, occasionally at the cost
of performance. However, in some cases, such as with optimised decoders, they maintain competitive evaluation
metrics.

When analysing the results obtained on the outdoor samples of the KITTI dataset, METER exhibits
difficulties in generalising depth maps different from those it was originally developed to work with. Regarding
performance metrics, the optimisations do not replicate the improvements observed with indoor samples. They
tend to improve the delta metrics for the tiny and base sizes while improving the RMSE and Absre; errors in
larger versions. However, the application of efficient attention also increases the network’s speed, resulting in
better times in all the case studies. In deep architectures, we find similar behaviours in the optimisations, with
Meta always presenting the best inference times and the decoder optimisations managing to keep performance
equivalent to the baselines. Again, PixelFormer favours Meta and Pyra, while NeWCRFs work better with MoH.
More specifically, as the size increases, the latter optimisation improves the performance of NeWCRFs.

Overall, the behaviour of the optimisations across the analysed networks follows identifiable trends. For
instance, Meta primarily aims to accelerate inference, but often compromises prediction quality. Pyra is a good
compromise between accuracy and speed. Conversely, MoH tends to enhance performance while yielding a
comparatively smaller gain in speed. Each network, however, prefers certain optimisations over others regarding
quality and speed. METER often works better with Pyra, PixelFormer performs well with the decoder modified
with Pyra and NeWCRFs, and MoH is preferred over the decoder.

For the large versions, comparing the depth maps predicted by the baseline and the best-optimised model
is insightful. As shown in Fig. 3, the predictions of the optimised models closely match those of the baseline
across the analysed networks. In particular, the best-optimised versions of PixelFormer and NeWCRFs present
predictions similar to those of their respective baselines. This is noticeable both in qualitative terms, observing
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Model ‘ RMSE [m] | | Absgre; 4 ‘ 51 1 ‘ 52 1 ‘ 53 1 ‘ 19X79 [s] 4 | 19X10 [s] | | XG38 [s] 4.
()

METER 0.544 0.175 0778 0946 | 0983 | 1591 10.96 16.47
Meta METER 0.553 0.159 0787 | 0948 |0.984 |12.95 9.5 12.96
Pyra METER 0.533 0.162 0773 | 0949 |0.986 |14.86 10.15 14.34
MoH METER 1.109 0.297 0342|0679 |0.874 |16.08 11.11 17.20
PXF 0.392 0.114 0880 |0.982 |0.996 |37092 171.90 112.41
Meta PXF 0.846 0.274 0543 | 0830 |0944 |276.73 132.06 88.88
Meta-Base PXE 0.840 0.266 0547 |0.833 |0947 |294.19 140.01 0.18
Base-Meta PXF 0.395 0.116 0.879 | 0981 |0.995 |0.19 165.79 103.53
Pyra PXF 0.628 0.202 0697 |0921 |0978 |337.07 17120 115.64
Pyra-Base PXF 0.622 0.198 0.700 0.920 0.977 332.02 167.13 112.21
Base-Pyra PXF 0.392 0.114 0.882 |0.982 |0.996 |341.28 167.54 110.18
MoH PXF 0.697 0219 0637 |0.893 |0970 |359.53 190.96 124.26
MoH-Base PXF 0.682 0.218 0.647 0.899 0.972 358.67 187.83 121.90
Base-MoH PXF 0.677 0216 0648 |0900 |0972 |356.17 187.62 115.34
NeWCRFs 0.388 0.112 0885 |0980 |0.995 |576.44 323.96 170.78
Meta NeWCRFs 1.061 0.349 0.430 0.729 0.890 335.38 161.54 109.64
Meta-Base NeWCREs | 0.844 0.274 0541 |0.833 |0946 |510.30 294.72 150.82
Base-Meta NeWCRFs | 1.027 0.353 0448 | 0745 |0.899 | 380.64 192.91 126.68
Pyra NeWCRFs 0.964 0.324 0.477 0.778 0.921 425.37 214.19 142.44
Pyra-Base NeWCREs | 0.627 0.194 069 |0921 |0979 |554.73 327.57 169.94
Base-Pyra NeWCRFs | 0.947 0322 0489 0786 | 0922 | 43461 217.36 148.73
MoH NeWCRFs 0.402 0.116 0878 |0979 |0.994 |480.90 24225 159.40
MoH-Base NeWCRFs | 0.397 0115 0.878 | 0980 |0.995 |588.50 33293 177.68
Base-MoH NeWCREs | 0.382 0.111 0.886 | 0.981 |0.995 |467.82 23377 152.54
(b)

METER 0.497 0.149 0811 ]0951 0987 |28.66 16.84 17.10
Meta METER 0.499 0.146 0811 |0955 |0988 |2252 15.77 16.52
Pyra METER 0.483 0.140 0.823 | 0.960 |0.990 |21.20 16.28 18.12
MoH METER 0.921 0.248 0471 0791 |0938 |25.64 15.33 18.86
PXF 0.338 0.096 0918 |0988 |0.997 |542.79 305.30 181.09
Meta PXF 0.817 0.271 0.569 | 0843 |0.948 |379.05 213.43 133.69
Meta-Base PXF 0.806 0.266 0.571 0.847 0.951 393.54 220.83 141.52
Base-Meta PXF 0.340 0.097 0918 |0.989 |0.997 |511.37 296.31 180.42
Pyra PXF 0.651 0.199 0679 |0910 |0.975 |535.42 299.90 189.79
Pyra—Base PXF 0.621 0.192 0.711 0.922 0.977 522.03 295.70 183.70
Base-Pyra PXF 0.338 0.095 0919 |0.989 |0.998 |528.77 306.64 192.41
MoH PXF 0.675 0213 0655 |0900 |0.973 |581.83 349.55 211.02
MoH-Base PXF 0.666 0.209 0658 |0904 |0973 |577.37 34543 208.24
Base-MoH PXF 0.667 0.210 0666 |0904 |0973 |543.79 32431 193.23
NeWCRFs 0337 0.095 0918 |0989 |0.998 |755.28 45838 241.93
Meta NeWCRFs 1.055 0.359 0431 |0732 |0.891 |442.80 241.67 151.82
Meta-Base NeWCREs | 0.791 0.253 0569 |0.851 |0954 |613.03 368.69 191.87
Base-Meta NeWCRFs | 1.035 0.345 0441 |0744 |0901 |618.69 322.12 194.90
Pyra NeWCRFs 0.968 0.328 0479 0777 |0919 | 695.89 342.69 219.52
Pyra-Base NeWCRFs | 0.632 0.197 0699 |0919 |0976 | 79281 448.06 246.80
Base-Pyra NeWCRFs | 0.959 0.321 0475 0781 |0923 |633.84 346.81 217.15
MoH NeWCRFs 0.349 0.098 0912 | 0987 |0997 |711.95 380.77 24329
MoH-Base NeWCRFs | 0.346 0.099 0913 0.987 0.997 803.02 470.81 261.67
Base-MoH NeWCREs | 0.336 0.096 0919 |0988 |0997 |65092 358.43 219.34
(©)

METER 0.460 0.133 0.834 0.966 0.992 22.02 18.78 21.52
Meta METER 0.485 0.142 0816 |0.961 |0989 |19.92 17.26 16.94
Pyra METER 0477 0.139 0824 |0962 |0.989 |22.07 17.47 23.15
MoH METER 0.835 0.228 0.501 0.847 0.966 24.57 20.85 18.06
PXF 0.324 0.091 0928 |0991 |0.998 |893.15 520.45 294.74
Continued
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Model RMSE [m] | | Absger 4 [61 1+ |62 1 43 1 19X79 [s] | | 19X10 [s] | | XG38 [s] |
Meta PXF 0.720 0.231 0.624 0.882 0.965 629.44 355.11 204.61
Meta-Base PXF 0.693 0.218 0.648 0.896 0.971 638.91 359.58 215.09
Base-Meta PXF 0.321 0.090 0.930 | 0.991 0.998 |873.93 505.98 282.41
Pyra PXF 0.680 0.208 0.657 0.900 0.976 922.30 532.98 312.46
Pyra-Base PXF 0.638 0.198 0.692 0.916 0.976 924.81 541.79 317.44
Base-Pyra PXF 0.322 0.090 0.929 0.991 0.998 | 892.15 514.00 299.51
MoH PXF 0.678 0.212 0.650 0.900 0.973 972.18 576.50 334.21
MoH-Base PXF 0.668 0.208 0.661 0.901 0.973 961.29 570.71 321.89
Base-MoH PXF 0.651 0.201 0.680 0.912 0.975 925.16 545.08 302.05
NeWCRFs 0.322 0.091 0.929 |0.992 |0.998 1345.95 658.96 339.68
Meta NeWCRFs 1.043 0.357 0.434 0.737 0.894 999.90 376.78 225.67
Meta-Base NeWCRFs | 0.692 0.220 0.648 0.896 0.971 1157.19 518.98 271.43
Base-Meta NeWCRFs | 1.019 0.344 0.451 0.752 0.905 1026.18 537.24 303.27
Pyra NeWCRFs 1.038 0.379 0.444 0.739 0.892 1120.98 593.90 335.55
Pyra-Base NeWCRFs | 0.966 0.336 0.459 0.773 0.917 1238.04 682.72 350.57
Base-Pyra NeWCRFs | 0.934 0.309 0.497 0.795 0.930 1071.33 562.12 318.50
MoH NeWCRFs 0.334 0.094 0.923 0.990 0.997 1142.63 605.58 356.84
MoH-Base NeWCRFs | 0.332 0.094 0.923 0.989 0.998 1269.16 694.72 366.10
Base-MoH NeWCRFs | 0.325 0.092 0.925 0.990 0.998 1109.97 585.42 329.66

Table 1. Experimental results on the tiny (a), base (b), and large (c) models with the NYU Depth V2 dataset.
Values in bold represent the best results between the baseline and the optimisations applied for that model. The
lines highlighted in italic show the best trade-offs between RMSE and inference time considering all models.
These points are those values that compose the Pareto frontier.

the disparity maps between the two predictions, and in quantitative terms, with the RMSE between these
two predictions. This behaviour is also understandable because of the similar evaluation metrics between the
baseline and the best-optimised version. METER, however, is more affected by the optimisations, exhibiting a
more pronounced difference between baseline and optimised predictions.

Trade-off performance-inference speed

The experimental setup yielded a comprehensive set of results, extensively illustrating how each type of
optimisation impacts the network and its different modules. However, identifying the optimal trade-off between
the obtained models solely from the tabular results is challenging. For this reason, the results were organised
using the Pareto Frontier. This tool represents the set of optimised solutions where improving one objective
would worsen at least one other. More specifically, all solutions are initially assumed to be optimal. Subsequently,
each of them is compared with the others. Suppose one of the two chosen values is less than or equal to the other,
with at least one of the two inequalities being strict. In that case, the first solution dominates the other, which
is eliminated from the optimal solutions describing the best trade-offs. After this comparison, the remaining
solutions will form the frontier.

In our case study, the two objectives are the RMSE, chosen as a quantitative index of model performance,
and the average of the three CPU times, reporting the best trade-offs for these measures only. The choice of the
RMSE as the indicator of network performance is given by the fact that this metric plays a key role in assessing
the quality of the predicted depth, as it provides an indication of the overall consistency between prediction and
ground truth®.

From these concepts, Pareto Frontiers were constructed by grouping the results by dataset and size of the
networks under analysis, as illustrated in Figs. 4 and 5. Analytically, this approach identifies the optimal trade-
offs between the two selected objectives. Graphically, this corresponds to a frontier where models closest to it are
valuable compromises, while those farther away are sub-optimal solutions. The elements of each Pareto frontier,
optimal solutions between quality and speed, are highlighted in Tables 1 and 2 with a italic line.

The Pareto Frontier provides a summary of the model distributions across different sizes and datasets. Each
point represents a model. A point further to the left indicates a better RMSE, while a point lower on the graph
indicates a faster inference time. As can be seen, in addition to the best models, there are several elements on the
Pareto frontier which, from an analysis of the tables alone, could have turned out to be sub-optimal solutions.
For example, in the case of the PixelFormer tiny architectures on NYU, the best optimisation turned out to be
Meta on the decoder. However, employing the analytical method of the Pareto frontier, we find that all Meta
and Pyra optimisations on the decoder turn out to be the optimal solutions with the best trade-off between
performance and speed of inference. Looking at the graphs, we can see specific trends that the optimisations
tend to present in each case study. Considering Meta optimisation, the models where it is applied generally
exhibit reduced performance but improved inference speed, except when applied only to the decoder, where it
sacrifices speed but achieves better performance.
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Model ‘ RMSE [m] | | Absgre; 4 ‘ 51 1 ‘ 52 1 ‘ 53 1 ‘ 19X79 [s] 4 | 19X10 [s] | | XG38 [s] 4.
()

METER 5.945 7.408 0287 0485 |0.604 |26.16 18.04 8.13
Meta METER 6.065 8.268 0312 |0.506 |0.617 |20.87 17.95 15.38
Pyra METER 6.048 7.615 0312 | 0502 |0.612 |23.61 17.87 17.91
MoH METER 6173 9.508 0320 |0.506 |0.615 |31.97 20.06 18.75
PXF 2324 0.060 0.966 |0.996 |0.999 | 468.91 256.89 160.90
Meta PXF 4.231 0.125 0.837 | 0956 |0.987 |394.75 193.13 126.90
Meta-Base PXF 4312 0.126 0.833 | 0953 |0.987 |420.84 209.51 136.83
Base-Meta PXF 2335 0.060 0.964 |0.995 |0.999 |456.77 236.17 145.98
Pyra PXF 3.150 0.087 0915 |0984 |0.996 |482.70 243.56 17171
Pyra-Base PXE 3.140 0.084 0916 | 0985 |099 | 48227 241.43 158.92
Base-Pyra PXF 2310 0.060 0964 |0.996 |0.999 |49932 259.68 161.13
MoH PXF 3516 0.095 0.895 | 0976 |0.994 |533.67 275.82 17157
MoH-Base PXF 3.600 0.097 0.892 0.977 0.994 525.27 278.92 168.56
Base-MoH PXF 3.546 0.096 0894 0977 |0994 |51621 261.16 161.84
NeWCRFs 2373 0.059 0.965 |0.995 |0.999 |847.32 463.72 234.65
Meta NeWCRFs 6.929 0.284 0.559 0.822 0.932 505.81 235.54 156.89
Meta-Base NeWCREs | 4.201 0.122 0844 | 0959 |0988 |780.12 427.10 207.85
Base-Meta NeWCRFs | 6.069 0219 0662 |0.879 |0958 | 61131 280.70 180.89
Pyra NeWCRFs 5.140 0.177 0.738 0.920 0.976 667.40 306.87 205.90
Pyra-Base NeWCRFs | 3.193 0.088 0914 |0983 |0996 |801.98 45753 23176
Base-Pyra NeWCRFs | 4.750 0.171 0756 |0934 |0981 |697.67 31278 20027
MoH NeWCRFs 2483 0.062 0958 |0994 |0.999 |704.72 355.31 22371
MoH-Base NeWCRFs | 2.432 0.060 0962 |0995 |0999 |821.65 468.97 245.97
Base-MoH NeWCRFs | 2.361 0.060 0.963 |0.995 |0.999 |687.85 347.26 214.89
(b)

METER 5.794 6.625 0302 0504 |0.618 |42.51 29.66 22.16
Meta METER 5.920 7.797 0329 | 0516 |0.622 |44.45 24.12 18.22
Pyra METER 6.052 7.010 0319 |0498 |0.605 |36.50 26.22 26.65
MoH METER 5.958 8.033 0329 | 0514 |0.621 |44.69 31.88 25.17
PXF 2205 0.055 0972 0997 |0.999 |781.45 43731 262.77
Meta PXF 4161 0.120 0.845 | 0956 |0.987 |567.21 300.64 194.17
Meta-Base PXF 4.250 0.119 0.843 0.953 0.986 585.94 317.15 200.21
Base-Meta PXF 2.195 0.054 0972 |0.997 |0.999 | 75456 428.33 258.40
Pyra PXF 3243 0.086 0914 | 0983 |0.99 |781.64 439.35 27537
Pyra—Base PXF 3.254 0.087 0.915 0.983 0.995 780.42 437.67 263.11
Base-Pyra PXE 2.192 0.055 0972 |0.997 |0.999 |792.97 444.23 267.44
MoH PXF 3.561 0.094 0894 | 0975 |0.993 |867.64 514.36 290.09
MoH-Base PXF 3.508 0.093 0901 |0978 |0.994 |870.25 502.47 29532
Base-MoH PXF 3.562 0.093 0.894 |0976 |0993 |837.29 474.92 27332
NeWCRFs 2.185 0.054 0972 |0.999 |0.997 |1152.80 718.32 356.12
Meta NeWCRFs 7.302 0.300 0522 0802 |0922 |679.21 372.90 221.74
Meta-Base NeWCRFs | 4.322 0.122 0.838 |0953 |0986 |876.38 53025 270.77
Base-Meta NeWCRFs | 6.221 0233 0647 |0.872 |0954 |877.22 483.00 279.96
Pyra NeWCRFs 5311 0.186 0725 |0914 |0973 |100L.02 508.04 303.65
Pyra-Base NeWCRFs | 3.250 0.087 0914 |0984 |0996 |1093.31 644.32 339.26
Base-Pyra NeWCRFs | 5.062 0.177 0744 0926 |0977 |951.53 505.20 309.29
MoH NeWCRFs 2272 0.057 0969 |0996 |0.999 |1041.32 557.87 342.92
MoH-Base NeWCRFs | 2.219 0.056 0.970 0.996 0.999 1115.38 672.96 352.22
Base-MoH NeWCREs | 2.203 0.055 0971 099 |0.999 |955.48 52633 316.13
(©)

METER 5.726 7.299 0.332 0.524 0.630 44.05 30.68 34.50
Meta METER 5.711 7.469 0270 |.493 |0625 |41.78 29.97 26.27
Pyra METER 5.744 7.122 0288 |0501 |0.621 |51.37 29.30 38.01
MoH METER 5.714 7.470 0.275 0.498 0.628 63.78 34.45 35.24
PXF 2123 0.052 0975 0997 |0.999 |1498.72 738.41 426.68
Continued
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Model RMSE [m] | | Absger 4 [61 1+ |62 1 53 1 |19X79[s] 1 | 19X10 [s] L | XG38[s] |
Meta PXF 3.426 0.094 0.892 0.977 0.995 959.37 504.63 302.80
Meta-Base PXF 3.454 0.094 0.896 0.978 0.995 984.05 510.99 304.09
Base-Meta PXF 2.108 0.052 0.976 | 0.997 |0.999 |1314.52 729.29 388.99
Pyra PXF 3.273 0.087 0.913 0.983 0.996 1359.07 802.24 430.41
Pyra-Base PXF 3.202 0.086 0.913 0.983 0.996 1383.07 759.66 437.13
Base-Pyra PXF 2.111 0.052 0.975 0.997 | 0.999 1575.81 748.99 412.63
MoH PXF 3.427 0.089 0.906 0.980 0.995 1781.64 830.96 462.96
MoH-Base PXF 3.399 0.089 0.909 0.980 0.995 2491.49 833.11 473.86
Base-MoH PXF 3.311 0.086 0.913 0.982 0.995 2111.08 785.55 429.66
NeWCRFs 2.072 0.052 0.975 |0.997 |0.999 |1863.63 969.38 500.17
Meta NeWCRFs 6.952 0.288 0.545 0.815 0.930 1297.96 555.62 326.76
Meta-Base NeWCRFs | 3.481 0.096 0.895 0.979 0.995 1423.14 725.79 374.50
Base-Meta NeWCRFs | 5.626 0.203 0.691 0.898 0.968 1490.97 796.73 433.06
Pyra NeWCRFs 4.830 0.164 0.762 0.932 0.979 1730.30 837.99 477.72
Pyra-Base NeWCRFs | 3.302 0.087 0.910 0.982 0.996 1813.54 969.33 503.52
Base-Pyra NeWCRFs | 4.529 0.153 0.785 0.944 0.985 1575.83 801.59 460.03
MoH NeWCRFs 2.176 0.053 0.972 0.997 |0.999 1668.14 869.06 503.80
MoH-Base NeWCRFs | 2.123 0.052 0.974 0.997 | 0.999 1709.84 992.06 518.11
Base-MoH NeWCRFs | 2.128 0.052 0.974 0.997 | 0.999 1616.46 855.36 473.46

Table 2. Experimental results on the tiny (a), base (b), and large (c) models with the KITTI dataset. Values
in bold represent the best results between the baseline and the optimisations applied for that model. The lines
highlighted in italic show the best trade-offs between RMSE and inference time considering all models. These
points are those values that compose the Pareto frontier.

METER PixelFormer NeWCRFs

Base GT Input

Opt

Diff

~ KITTI

RMSE =0.411 RMSE =3.755 RMSE = 0.082 RMSE = 1.634 RMSE = 0.139 RMSE = 1.846

Fig. 3. Visual results for the large versions of the networks. For each model and dataset, we show the input
RGB image (Input), the depth ground truth (GT), the prediction of the baseline model (Base), the prediction
of the best-performing optimised model (Opt) and the qualitative and quantitative difference, indicated by the
RMSE, between these two predictions (Diff).

In most cases, Pyra often finds itself in better performance zones than Meta, but in worse zones in terms of
time. This phenomenon is amplified with MoH, which seems to prevail in performance over inference time.
Meta is the optimisation most frequently appearing on the Pareto frontier, while Pyra and MoH occasionally
approach or reach it. Sometimes, we also find baselines within this set.

So far, all results discussed have been based on the RMSE metric, as indicated at the beginning of this
subsection. The RMSE provides an overall view of prediction quality, but has certain limitations. In particular, it
tends to heavily penalise larger errors, without accurately representing the relative consistency between predicted
depths, as it only measures absolute stability with respect to ground truth®.
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Fig. 4. Pareto Frontiers built considering the RMSE and the mean of the three inference times of the models.
The networks in these plots refer to the NYU dataset and are grouped by dataset and size: tiny (a), base (b), and

large (c) models. The models in bold represent the optimal trade-offs, lying on the Pareto Frontier.

To address this limitation, we have also represented the Pareto Frontier plots using the Abs;.; metric as a
quality indicator. This index normalises the error with respect to the true depth, making it particularly suitable
in scenarios with varying scales. Furthermore, Absye; proves to be more robust for assessing relative depth

estimation quality®.
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Fig. 5. Pareto Frontiers built considering the RMSE and the mean of the three inference times of the models.
The networks in these plots refer to the KITTI dataset and are grouped by dataset and size: tiny (a), base (b),
and large (c) models. The models in bold represent the optimal trade-offs, lying on the Pareto Frontier.

Analysing the impact of this change on the Pareto Frontier plots in Fig. 6, it can be seen that the overall
situation remains substantially unchanged. Again, the most effective optimisations in terms of trade-off between
quality and computational costs are those applied exclusively to the decoder. Among these, the Meta optimisation
is frequently found on the optimal frontier, reinforcing what has emerged in previous experiments. It represents
a particularly good choice for achieving a good balance between performance and speed of inference.
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The networks in these plots refer to the NYU dataset and are grouped by dataset and size: tiny (a), base (b), and
large (c) models. The models in bold represent the optimal trade-offs, lying on the Pareto Frontier.

A further observation concerns the size of the frontiers. Compared to the graphs based on the RMSE metric,
the frontiers obtained with Abs,.; tend to include a smaller number of models, thus being more contained. This

suggests that the new metric applies a stricter criterion, favouring models that maintain better proportional
accuracy across varying depth ranges.
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Embedding entropy analysis
The various experiments conducted showed promising results for the optimised architectures, confirming the
validity of the structural changes made to the attention modules, especially from an application perspective.

However, focusing on the PixelFormer and NeWCRFs models, the only ones to have undergone optimisations
on both the encoder and decoder sides, an interesting result emerges. Among all the combinations tested, the
architectures in which only the decoder has been optimised tend to perform best, particularly in terms of accuracy
and also with respect to the trade-off between prediction quality and inference speed. This phenomenon is
clearly observable in the results reported in Tables 1 and 2. In both datasets, models with an optimised decoder
often exceed the baseline, or at least equal it, while maintaining acceptable computational efficiency.

Although not always the fastest in terms of inference time, these models show a more stable and robust
balance compared to the fully optimised ones. This behaviour is further confirmed by the analysis of the Pareto
Frontier, constructed using both the RMSE and the Abs,; metric, as most of the models that lie on the optimal
frontier are precisely those with decoder optimisation.

At this point, in the light of such evident results, it is relevant to question the causes that justify the advantage
obtained by the architectures with optimised decoders, and at the same time to understand the reasons why
performance worsens when optimisations are applied to the encoder module, especially in the PixelFormer and
NeWCRFs models.

The analysis of the results in Tables 1 and 2 lead to the idea that optimised encoders tend to generate
embeddings that are less effective in guiding the depth map reconstruction process. Indeed, the quality metrics
show a greater difficulty in producing consistent predictions faithful to ground truth. This leads us to formulate
the hypothesis that such encoders, once modified, generate degraded latent representations.

Dispersed or unstructured embedding distribution in latent space makes the decoder reconstruction task
more complex, as it struggles to predict accurate depth maps. And this is exactly what we observe in our
experiments. Optimised decoders seem to work effectively when they receive sufficiently rich and coherent
embeddings as input, which does not always seem to be the case when the encoder is modified.

In order to quantify how dispersed the embedding distribution actually is, it is necessary to use a precise
metric established in the literature. The objective is to find a measure that indicates how much the embeddings
produced by the encoder are representative of a compact and well-defined distribution.

Based on this idea, we leverage the theoretical framework of Variational Autoencoders (VAEs), because in
its loss the regularisation term quantifies the trade-off between embedding compactness and informativeness*>.
This term corresponds to the Kullback-Leibler divergence between the distribution learned by the encoder and a
standard Gaussian distribution (H). It includes, among other components, the differential entropy of the learned
distribution, which quantifies the dispersion of the latent encoding, a value that is useful to gather information
needed to verify our hypothesis.

Differential entropy measures, in nats (units of information based on the natural logarithm**), the continuous
volume occupied by the embeddings. A lower, i.e. more negative, value indicates that the embeddings are more
concentrated, so the latent distribution is more compact and less uncertain. While lower, intended as more
negative, differential entropy does not necessarily imply higher informativeness with respect to the input, it
does ensure a less dispersed embedding distribution, which generally makes the decoder’s reconstruction task
easier®’.

This metric assumes that the distribution that the distribution of embeddings follows a standard Gaussian.
This concept may be too restrictive, since embeddings may present multimodal structures or heavy tails, not
captured by a simple covariance matrix. For this reason, it is also useful to analyse information dispersion
through non-parametric methods, such as the Kozachenko-Leonenko entropy estimator (H K L), due to its
robustness to non-standard distributions*.

Again, a lower, more negative, value of the entropy estimated with the Kozachenko-Leonenko estimator,
indicates more compact embeddings with less dispersion, while higher values reflect a greater dispersion of the
point distribution and a possible loss of structure.

To perform the analysis with the tools described above, the embeddings produced as output by the encoder
were considered. This approach was applied to all versions of the PixelFormer and NeWCRFs models, on NYU
Depth V2 and KITTI datasets. The METER network was not included in the analysis, as it does not present the
problem that is the subject of this study. In fact, the optimisations were only applied to the encoder, which is the
only one containing attention modules'*.

It is important to emphasise that the embeddings analysed come from all the architectural combinations
considered (baseline, encoder-optimised, decoder-optimised, full-optimised). It might appear that by
optimising only the decoder, the encoder remains unchanged compared to the non-optimised version. However,
during training, the parameters of each module are updated differently according to the chosen optimisation.
Consequently, the encoder of a decoder-only version never exactly coincides with that of the baseline, but also
incorporates the changes resulting from the overall optimisation.

On the theoretical basis set out above, the implementation of the tools discussed supports the hypothesis
formulated. In all the cases analysed, as shown in Figs. 7 and 8, any modification made to the encoder structure
leads to a deterioration in the compactness of the embeddings it produces. A greater dispersion of the embeddings
may compromises the decoder’s ability to effectively reconstruct the input, with a negative impact on the final
quality metrics. This behaviour is consistent for both entropy indices considered, with stronger evidence in the
case of the Kozachenko-Leonenko entropy estimator, whose non-parametric nature makes it more robust in
non-standard contexts.
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Fig. 7. Embedding dispersion is measured using entropy values, specifically differential Gaussian entropy
(left plot) and Kozachenko-Leonenko entropy (right plot), where a lower value indicates a better encoder
embedding distribution compactness. Results for each network on the NYU Depth V2 dataset are grouped by
model size: tiny (a), base (b), and large (c).

General optimisation comparison

Following the results obtained, it can be observed that optimisations aimed exclusively at the attention
module confirm their effectiveness'®*2. However, at this point in the analysis, it is interesting to compare these
optimisations with more generic and widely used techniques. For this reason, the three neural networks analysed
in this work were subjected to unstructured pruning and dynamic quantization techniques, both applied in post-
training contexts.

The choice fell on these approaches because they were the most suitable for an unbiased comparison, given
the fact that no modification to the network is required. to the network is required to fit them. These techniques
allow a significant reduction in occupied memory and, in specific contexts, may improve inference times without
requiring model retraining. Both techniques were implemented using the native functionality offered by the
PyTorch*? framework.

Focusing on the general optimisations applied, a global unstructured approach was chosen for pruning,
based on the L1 norm, i.e. the absolute value of the weights36. In this application, 70% of the smallest weights
were pruned, selected globally from all convolutional and linear layers in the model. The choice of such a high
pruning percentage was motivated by the aim to clearly observe the impact of this optimisation on the behaviour
of the model.

As for the quantisation method, a dynamic approach was chosen, limited to the linear layers only. In this case,
the weights were converted from 32-bit floating-point representation to 8-bit integer>>.

From the results shown in Table 3, it is clear tha the application of these techniques leads to a worsening
of the metrics analysed. In particular, a decrease in prediction quality metrics was to be expected, since the
optimisations considered have a strong structural impact on the model, modifying its topology®>?¢. In
contrast, the optimisations applied to the attention module alone keep the structure of the architecture almost
unchanged!®-21.
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Fig. 8. Embedding dispersion is measured using entropy values, specifically differential Gaussian entropy
(left plot) and Kozachenko-Leonenko entropy (right plot), where a lower value indicates a better encoder
embedding distribution compactness. Results for each network on the KITTI dataset are grouped by model

size: tiny (a), base (b), and large (c).

The negative effects on the speed of inference can be explained in the way these optimisation are applied. In
the first case, the unstructured pruning introduces sparse matrices to remove the network connections. Even
if that approach reduces the number of effective active weights, those matrices may not be well supported on
generic hardware, leading to the possibility of a less efficient computation®®. For the dynamic quantization, the
concept is similar. The post training quantization may not be completely supported or optimised for a general-
purpose hardware, providing no guarantee of computational speed-up?*.

Optimisations memory footprint

In addition to assessing the impact of optimisations on the performance and speed of neural networks, it is
equally crucial to analyse how the structural characteristics of the models change as a result of a modification to
the attention modules. In the context of efficient models, metrics such as the number of parameters and memory
occupancy are commonly used to describe the memory footprint of the networks™2.

Although the modifications discussed in this research focus exclusively on lowering the computation
complexity of the attention modules and don't primarily focus on memory reduction, observing how they affect
the overall network structure can provide useful insights useful insights into the applicability of the modified
models in real-world usage scenarios.

Significant observations emerge from Table 4, where the information about the different networks is
collected. In particular, it can be seen that Meta optimisation consistently shows the best results in terms of
parameters and memory weight among all the techniques analysed. This behaviour is consistent across all the
application networks and combinations considered. The advantage of Meta is most likely linked to the way it
is implemented!®. In fact, by entirely replacing the structure of the attention module, including all the linear
projection layers, with simple pooling, leads to a substantial reduction in memory and parameters associated
with the network.
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Model ‘ RMSE [m] | ‘ Absger | ‘ &1 1 ‘ 82 1 ‘ 83 1 ‘ XG38 [s] | | Model RMSE [m] | | Absge; | ‘ &1 1 ‘ 62 1 ‘ 83 1 ‘ XG38 [s] |
NYU Depth V2 KITTI

(a)

METER 0.544 0.175 0.778 |0.946 |0.983 |16.47 METER 5.945 7.408 0.287 |0.485 |0.604 |18.13
METERP | 2.789 0.938 0.001 |0.001 |0.001 |15.17 METER P 10.960 1.630 0.023 |0.047 |0.071 |20.26
METERQ |1.334 0.346 0278 |0.560 |0.793 |17.86 METERQ | 6.985 7.390 0183 |0362 |0.499 |17.40
PXF 0.392 0.114 0.880 |0.982 |0.996 |112.41 PXF 2.324 0.060 0.966 |0.996 |0.999 |160.90
PXF P 1.159 0.524 0368 |0.651 |0.829 |136.60 PXF P 17.172 1.609 0112 |0225 0337 |188.94
PXF Q 1.594 0.746 0265 |0.504 |0.706 | 136.03 PXF Q 11.379 0.502 0262 |0.502 0725 |18537
NeWCRFs | 0.388 0.112 0.885 |0.980 |0.995 |170.78 NeWCRFs | 2.373 0.059 0.965 |0.995 |0.999 |234.65
NeWCRFP | 2.355 1.177 0126 |0.303 0509 |187.33 NeWCRFP | 20.433 2.037 0.076 |0.158 |0.261 |255.80
NeWCRFs Q | 1.820 0.845 0235 | 0465 |0.662 |211.43 NeWCRFs Q | 20.951 2.086 0.077 |0.160 |0.261 |303.66
(b)

METER 0.497 0.149 0.811 |0.951 |0.987 |17.10 METER 5.794 6.625 0.302 |0.504 |0.618 |22.16
METER P 2.777 0.930 0.019 0.019 0.019 19.72 METER P 11.206 1.134 0.191 0.199 0.208 29.89
METERQ | 1.487 0.663 0296 |0.555 |0.752 | 19.63 METERQ | 6.046 8.031 0231 |0459 |0.607 |23.59
PXF 0.338 0.096 0.918 |0.988 |0.997 |181.09 PXF 2.205 0.055 0.972 |0.997 |0.999 |262.77
PXFP 2.573 1.287 0.109 0.262 0.463 234.45 PXF P 26.822 2.704 0.055 0.116 0.188 34331
PXF Q 1.487 0.692 0281 |0.550 |0.738 | 238.05 PXF Q 13.297 0.433 0255 | 0427 0571 |334.93
NeWCRFs | 0.337 0.095 0.918 |0.989 |0.998 |241.93 NeWCRFs | 2.185 0.054 0.972 |0.999 |0.997 |356.12
NeWCREF P 2.566 1.283 0.109 0.266 0.464 304.09 NeWCRFs P | 26.995 2.722 0.054 0.115 0.187 368.20
NeWCRFs Q | 1.870 0.908 0202 |0428 |0.635 |358.69 NeWCRFs Q | 18.496 1.808 0.087 |0.186 0308 | 48834
()

METER 0.460 0.133 0.834 |0.966 |0.992 |21.52 METER 5.726 7.299 0332 |0.524 |0.630 |34.50
METERP | 2.207 0.649 0039 |0.093 |0.182 |31.30 METER P 10.732 2.291 0.034 |0.068 |0.103 |51.86
METERQ | 1.728 0.812 0223 |0473 |0.683 |26.41 METERQ | 10.955 4.002 0078 |0.134 |0.172 | 3569
PXF 0.324 0.091 0.928 |0.991 |0.998 |294.74 PXF 2.123 0.052 0.975 |0.997 |0.999 |426.68
PXF P 2.616 1.308 0.105 | 0255 |0.457 |437.33 PXF P 27.298 2.752 0.053 |0.113 |0.184 |683.33
PXF Q 1.387 0.632 0.306 |0.570 |0.761 | 430.85 PXF Q 10.530 0.516 0273 | 0544 |0.766 | 729.44
NeWCRFs | 0.322 0.091 0.929 |0.992 |0.998 |339.68 NeWCRFs | 2.072 0.052 0.975 |0.997 |0.999 |500.17
NeWCRFP | 2.656 1.328 0.105 | 0248 |0.445 |477.79 NeWCRE P | 27.389 2.761 0.053 |0.113 |0.183 |73347
NeWCRFs Q | 2.327 1.144 0.145 |0.329 0531 |56598 NeWCRFs Q | 21.612 2.164 0.070 |0.146 |0.244 |899.43

Table 3. Performance and inference speed of the pruned (P) and quantized (Q) models with respect to the
baselines. Results are reported for the tiny (a), base (b), and large (c) variants on the NYU Depth V2 (left) and
KITTI (right) datasets.

In contrast, the other optimisations considered show a different pattern regarding their impact on memory
footprint. In particular, Pyra optimisation is the technique that leads to the largest increase in the analysed
values. This is due to the spatial reduction modules that introduce new layers?® to consider in the overall network
structure. For what concern MoH optimisation, however, the modified multi-head attention routing system21
does not introduce more overhead, maintaining almost unchanged the network parameters and memory weight.

These results, however, do not significantly impact in the applicability of the modified models. The number
of parameters and memory fluctuations remain bounded in a value near the baseline values. At the same time,
often this increase is accompanied by an increment in quality of predictions. For this reason, optimisations
aimed at the attention modules represent an effective strategy, offering a favourable trade-off between portability,
efficiency and prediction quality, even if at the cost of a slight increase in certain computational metrics.

Resource-constrained device experiments

After analysing various aspects of modified models, in order to go into the applicative details of this study,
experiments were conducted using limited hardware resources devices. In particular, the Jetson Orin Nano
board was considered, a device frequently used in real-world scenarios for tasks involving Deep Learning
models. Its low computational resources, compared to an ordinary device, make it an ideal context for evaluating
the behaviour of optimised models under conditions closer to real-world conditions.

The experiments conducted on this hardware focused on analysing inference times, with the aim of
highlighting the effectiveness of the proposed optimisations. The tests were carried out maintaining the same
configuration used in the previous evaluations. In fact, inference was performed sample by sample on the entire
test set of datasets used in this research. In this context, to adapt to the applicative scenario, we used only the tiny
versions of the networks, which are more suitable for this application.

A detailed analysis of the Table 5 shows how the optimised models perform in the context considered.
In particular, it is observed that Meta optimisation systematically leads to faster models than the baseline,
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Model ‘ Parameters [M] | | Memory [MB] |
(2)

METER 0.71 2.72
Meta METER 0.68 2.60
Pyra METER 1.08 4.11
MoH METER 0.71 2.73
PXF 88.91 339.15
Meta PXF 76.08 290.22
Meta-Base PXF 80.26 306.18
Base-Meta PXF 84.72 323.19
Pyra PXF 103.12 393.38
Pyra-Base PXF 97.55 372.11
Base-Pyra PXF 94.48 360.42
MoH PXF 89.03 339.61
MoH-Base PXF 88.98 339.44
Base-MoH PXF 88.95 339.33
NeWCRFs 88.46 337.43
Meta NeWCRFs 74.23 283.18
Meta-Base NeWCRFs | 79.81 304.46
Base-Meta NeWCRFs | 82.88 316.15
Pyra NeWCRFs 111.04 423.57
Pyra-Base NeWCRFs | 97.09 370.39
Base-Pyra NeWCRFs | 102.40 390.61
MoH NeWCRFs 91.41 348.71
MoH-Base NeWCRFs | 88.53 337.72
Base-MoH NeWCRFs | 91.34 348.43
(b)

METER 1.45 5.53
Meta METER 1.40 5.35
Pyra METER 2.29 8.74
MoH METER 1.45 5.54
PXF 140.43 535.71
Meta PXF 108.28 413.06
Meta-Base PXF 112.47 429.02
Base-Meta PXF 136.25 519.75
Pyra PXF 173.96 663.62
Pyra-Base PXF 168.39 642.34
Base-Pyra PXF 146.01 556.98
MoH PXF 140.72 536.80
MoH-Base PXF 140.67 536.62
Base-MoH PXF 140.48 535.88
NeWCRFs 139.98 533.99
Meta NeWCRFs 106.44 406.02
Meta-Base NeWCRFs | 112.01 427.30
Base-Meta NeWCRFs | 134.40 512.71
Pyra NeWCRFs 181.88 693.81
Pyra-Base NeWCRFs | 167.94 640.62
Base-Pyra NeWCRFs | 153.92 587.17
MoH NeWCRFs 143.10 545.90
MoH-Base NeWCRFs | 140.22 534.90
Base-MoH NeWCREFs | 142.86 544.98
(©)

METER 3.30 12.57
Meta METER 3.22 12.29
Pyra METER 5.53 21.08
MoH METER 3.30 12.58
PXF 270.90 1033.39
Continued
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Model Parameters [M] | | Memory [MB] |
Meta PXF 203.82 777.53
Meta-Base PXF 208.01 793.49
Base-Meta PXF 266.71 1017.43
Pyra PXF 339.34 1294.49
Pyra-Base PXF 333.77 1273.22
Base-Pyra PXF 276.47 1054.66
MoH PXF 271.47 1035.56
MoH-Base PXF 271.42 1035.39
Base-MoH PXF 270.94 1033.56
NeWCRFs 270.44 1031.67
Meta NeWCRFs 201.98 770.49
Meta-Base NeWCRFs | 207.56 791.76
Base-Meta NeWCRFs | 264.87 1010.39
Pyra NeWCRFs 347.26 1324.68
Pyra-Base NeWCRFs | 333.32 1271.50
Base-Pyra NeWCRFs | 284.39 1084.85
MoH NeWCRFs 273.85 1044.66
MoH-Base NeWCRFs | 270.97 1033.67
Base-MoH NeWCREFs | 273.33 1042.66

Table 4. Number of network parameters and memory footprint relative to the tiny (a), base (b), and large
(c) size. Values in bold represent the best values between the baseline and the optimisations applied for that

model.

Model Jetson NYU [s] | | Jetson KITTI [s] J.
METER 328.49 343.79
Meta METER 215.33 221.21
Pyra METER 310.59 336.41
MoH METER 344.43 351.07
PXF 1924.38 2765.59
Meta PXF 1373.43 1970.51
Meta-Base PXF 1543.57 2216.83
Base-Meta PXF 1722.62 2469.82
Pyra PXF 1915.70 2709.43
Pyra-Base PXF 1927.62 2712.86
Base-Pyra PXF 1906.42 2735.54
MoH PXF 2027.07 2876.13
MoH-Base PXF 2000.42 2844.66
Base-MoH PXF 1942.72 2809.53
NeWCRFs 2316.55 3185.19
Meta NeWCRFs 1615.87 2235.18
Meta-Base NeWCRFs | 1958.86 2730.05
Base-Meta NeWCRFs | 2007.11 2779.84
Pyra NeWCRFs 2380.42 3391.28
Pyra-Base NeWCRFs | 2323.66 3241.11
Base-Pyra NeWCRFs | 2368.85 3281.75
MoH NeWCRFs 2482.51 3456.72
MoH-Base NeWCRFs | 2375.26 3329.97
Base-MoH NeWCRFs | 2292.42 3409.21

Table 5. Inference times in seconds from the experiments on Jetson Orin Nano using the tiny versions of the
networks.
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confirming that its modification to the attention module is often the most efficient choice. Models optimised
with Pyra also show an improvement in inference times, particularly when the optimisation is applied to only
one module of the network, although performance is generally lower than in the Meta case. MoH optimisation,
on the other hand, is the least suitable in this context, probably due to the overhead introduced by the routing
mechanism, which may not fit well with resource-limited devices.

This behaviour is also confirmed in the case of the METER model, where once again MoH optimisation is the
one with the worst performance, whereas Meta and Pyra allow significantly shorter inference times®:47.

Conclusions

This work analyses the impact of optimisations on ViT-based architectures for MDE by conducting experiments
on indoor and outdoor scenario. In particular, the focus of the research was the application of efficient attention
modules. To better understand the impact of these optimisations have been applied at different levels within each
network, targeting the entire architecture, the encoder and the decoder. A detailed analysis was conducted to
assess how these optimisations, applied to one of the most computationally intensive components of the models,
influenced network performance in terms of quality and speed. Given the importance of a precise balance
between these two objectives, the Pareto Frontier was important in analysing the trade-offs and analytically
obtaining the optimal ones.

Some modifications led to optimised models with improved inference speed but a significant loss in
performance, as seen in fully modified NeWCRFs with Meta or the application of MoH on METER. On the
other hand, some results showed noteworthy cases where the optimised models have reported promising results,
sometimes even surpassing the respective baseline, together with a consistent improvement in inference time.
This is the case of the models optimised only on the decoder part, where the Pyra and Meta optimisations for
PixelFormer and MoH for NeWCRFs have introduced promising models from the point of view of performance
and speed.

These findings suggest new potential research directions based on the provided results. In particular, future
works could investigate how broader optimisation techniques, such as quantisation, knowledge distillation, and
pruning, behave when applied to the whole network and then to specific components. In addition, it may be worth
investigating how the optimisations presented in this work behave on particularly complex dense tasks, such as
optical flow estimation, where the balance between performance and speed is crucial in practical applications.
In all of these cases, the application of the Pareto Frontier could serve as a valuable tool for objectively analysing
trade-offs in Deep Learning tasks.

Data availability
The data used in this research are publicly available. The NYU Depth V2 dataset can be obtained at the following
link. Similarly, the KITTI dataset is available at the link
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