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Integrating solar and wind energy with battery storage systems into microgrids is gaining prominence 
in both remote areas and high-rise urban buildings. Optimally designing all distributed energy 
resources (DERs) within a microgrid enhances self-sufficiency, reliability, and economic feasibility. 
However, due to the inherent unpredictability of DERs, a robust stochastic-based optimization 
approach is crucial. This article proposes a Grey Wolf-based multi-objective optimization technique for 
wind-solar-battery-assisted residential microgrids. The method aims to minimize renewable energy 
costs by determining the optimal sizing of components based on a given microgrid load profile. To 
address the global energy trilemma, the microgrid is modeled with economic, reliability, and energy 
indices, ensuring a balanced three-dimensional objective. The proposed algorithm is evaluated across 
three different configurations, with a numerical analysis of the capacity degradation factor to assess 
battery lifetime.

Climate change has become a global concern for governments, industries, local bodies, and individuals. Escalating 
energy demand and an urge to protect the environment have driven a shift towards RESs. This has resulted in 
a significant increase in the total capacity of wind power generation (WPG) and solar power generation (SPG) 
facilities throughout the globe1,2. However, due to the fluctuating nature of RESs, access to large-scale distributed 
grids may not be possible for system stability and power quality concerns. Therefore, the microgrid concept has 
arrived to overcome all these contentions. Moreover, these can be useful for remote area electrification where the 
power supply from the mainstream grid is nonviable and high-rise urban apartments for stable and sustainable 
power supply. A microgrid is an integration of distributed renewable energy resources (DRERs), integrated 
systems with loads, and energy storage devices3.

To utilize the DERs effectively and efficiently, it is essential to analyze the microgrid system numerically and 
develop one optimized model before installation4–6. The sizing of the system can be done by many commercial 
available tools7–9, . However, due to limitations like flexibility in objective function, constraint adaptability, 
large and complex system, handling with stochastic variables, the costumed optimization techniques research 
are widely popular and gaining attentions. However, because of the microgrid’s complex nature and multiple 
constraints, the optimal design is difficult by using the classical method. So, many researchers are proposing the 
optimal sizing of microgrids by enhancing the economic value of the system.

An on-grid renewable energy systems (RESs) optimization technique with multi agent is discussed in10. A 
PV-battery-based techno-economic optimization technique for microgrids is addressed in11,12. Another PV-
battery-based microgrid is presented in13 for optimal size considering the battery life cycle. Though this type of 
system is economical, the use of only one source may not be reliable for remotely located microgrids. Therefore, 
the complementary source wind RES can be added to form a hybrid system. With the advancement of different 
optimization techniques, several research articles presented different sizing techniques for PV-Battery, Wind-
Battery14–16 and PV-Battery-Diesel17, Wind-PV-Battery-Diesel18, Pv-wind-battery-fuel cell19,20 etc. system 
configurations. Also in21, the monte carlo simulation for uncertainty situation is discussed for wind-diesel 
hybrid system. Though the Diesel system addition makes it more reliable and autonomous, the environmental 
adverse effect motivates authors to design one optimized renewable energy-based microgrid for remotely placed 
locations. In22, one simulation-based optimization method is implemented to find the size of the PV panel 
with the battery. Also, it includes a battery degradation model to find the battery life cycle. A PV-battery-based 
configuration for household load23 is presented to find the optimized results considering the reliability and load 
increment. Demand response strategies are addressed in the literature24–27 for optimal sizing taking into account 
the market price of the electricity. Stochastic-based pattern searched optimization algorithm is presented in28,29. 
Moreover, many tools are there for optimization of hybrid system such as7, Moreover, the short lifetime of the 
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battery with increased capital cost leads the researchers to develop an effective sizing of battery for DERs30–34. 
A two-stage approach optimization technique is proposed for life cycle and optimal size estimation35. From 
various applications, it is noticed that Lithium-ion and Lead-acid batteries are dominant technologies. Due to 
the low cost, and ruggedness, lead-acid is widely used36,37 in India.

For the sizing of DERs, the first step is to identify the location and profile of climatic conditions such as 
wind speed and solar irradiance. Inefficient capacity leads to an unreliable system. So, the second step for 
optimization is to model the DERs individually taking into account the extensive load profile and installation 
area constraints. Simultaneously, one effective multi-objective optimization algorithm is selected for sizing and 
reliability assessment in which the levelized cost of energy (LCOE), and loss of power supply probability (LPSP) 
are important indices to evaluate. However, only these indices don’t meet the world energy trilema (WET) index. 
For the sustainable feature of WET, it is also necessary to minimize the excess energy for the remotely placed 
microgrid. Furthermore, the energy index is considered as an additional objective function and modeled as a 
three-dimensional objective to meet the WET index.

A basic and easy-to-implement optimization algorithm is the graphical construction method38 in which the 
number of PV panels with installation area and wind turbine swept area are not considered. This action results in 
the over/under-sizing of the system. Further, the probabilistic algorithm39 also fails to find the optimal solution 
for dynamic response. A global optimum solution can be effectively identified by using artificial intelligent based 
algorithm40–42 such as Genetic algorithm (GA), Particle swarm optimizer(PSO), ant colony optimization (ACO), 
artificial bee colony (ABC), harmony search (HS), and cuckoo search (CS). However, it is found that most of 
the algorithms can’t solve the no-coordinated system and converge in the local optimum point. From the above 
discussion, it is noticed that an integrative approach-based optimization algorithm is required for the sizing of 
DERs in microgrids. The contributions of this article are as follows: 

	1.	 A meta-heuristic multi-objective grey wolf optimization algorithm is proposed for a wind-solar-battery as-
sisted microgrid system which will be a promising solution for remote locations where the grid connection 
is nonviable.

	2.	 A detailed mathematical model is developed for the proposed configuration.
	3.	 A three-dimensional objective function is constructed to meet the WET index.
	4.	 Battery lifetime period is evaluated computationally considering the effect of capacity degradation due to 

corrosion and SOC.

Modeling of microgrid
A residential microgrid which includes residential houses, small-scale industries, and a few agricultural farms is 
studied in this article. This microgrid comprising wind, solar, and battery as the major distributed units is shown 
in Fig. 1. Both the DERs are connected to the DC bus through suitable power electronics converters. A PMSG-
based wind generator is interfaced to the DC bus through a 3-ϕ rectifier and a boost converter forming the wind 
power generating unit. The solar power generating unit consists of a PV array and a boost converter. A battery 
pack is connected with the DC bus via a non-isolated bidirectional converter forming the battery storage unit 
to smooth the power fluctuations arising due to intermittent behavior of wind and PV power generating unit. 
Detailed mathematical modeling is crucial for the optimal size of each distributed unit.

Wind energy generation system model
The power contained in wind (Po) is:

	
Po = 1

2ρAV 3
w � (1)

Wind turbine mechanical power (PW ) is:
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Fig. 1.  Schematic diagram of Wind-PV-Battery based Microgrid.
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PW =

{
0, VW < VW cutin

1
2 ρAV 3

W Cp (λ, β) , VW cutin ≤ VW ≤ VW cutout

PW rat, VW < VW cutout

� (2)

And the tip speed ratio ( λ)  is:

	
λ = ωtR

Vw
� (3)

Where ρ is the air density, A is the rotor blade area, Vw is the wind velocity without rotor interference, Cp is the 
power co-efficient and ωt is the rotor shaft speed of wind turbine, β is the pitch angle, Cp is a function of λ and 
β and is expressed as:

	
Cp (λ, β) = c1

(
c2

λi
− c3β − c4

)
e− e5

λ + c6λ � (4)

	
1
λi

= 1
λ + 0.08β

− 0.035
β3 + 1 � (5)

Where c1 = 0.5176, c2 = 116, c3= 0.4, c4 = 5, c5 = 21, and c6 = 0.0068.

Solar energy generation system model
The PV cell is modeled as a current source, diode, and series and parallel connected resistances.

	
I = IP V − ID

[
exp q (V + RsI)

akT
− 1

]
− V + RsI

Rsh
� (6)

The PV power22 is evaluated by using Eq. 7.

	 PP V = Ff VP V IP V � (7)

Where Ff  is fill factor, VP V  and IP V  are PV voltage and current respectively.

Battery storage system model
The battery model is nothing but a combination of dependent voltage source (Ebat) and series resistance 
(Rbat)43. The corresponding equations are illustrated in (8)–(10). Vb is specified as two different function as 
Vb,ch and Vb,disch.

	

Vb,ch =vo − k
Q

Q + 0.1Qe
i∗ − k

Q

Q − Qe
Qe

+ Lap−1
(

exp (s)
sel (s)

1
s

) � (8)

	

Vb,disch =Vo − k
Q

Q − Qe
i∗ − k

Q

Q − Qe
Qe

+ Lap−1
(

exp (s)
sel (s)

) � (9)

	

SOC =


1 −


 1

Q

t∫

0

ibat (t) dt





 × 100 � (10)

Where v0 is the voltage constant, k is the polarization constant, the maximum capacity of the battery is Q is, Qe 
is the extracted capacity, i∗ is the dynamics of low-frequency current, exp(s) is the dynamics of the exponential 
zone, sel(s) is the modes of the battery (0,1 for discharge and charge mode respectively).

Energy management strategy
The main aim of the optimization technique is to design a wind-solar-battery-based microgrid system with 
coordinated energy management strategies (EMS). The EMS is operated based on data received from the power 
conditioner for wind power, solar power, and battery power concerning the load demand of the microgrid. For 
this, the total RESs generation (Pw+PP V ) SOC is monitored. If the generation exceeds the load power with SOC 
in a safe range, the battery will be charged and the corresponding mathematical expression is presented in Eq. 
12. During this condition, if SOC goes beyond its limit (SOCmin ≤ SOC ≤ SOCmax), the EMS should stop 
the battery and to maintain the power balance, either PV or wind power should be reduced or stop to maintain 
the power balance.

	 Pbat = [Pw + PP V ] − PL� (11)
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Similarly for low generation, the battery power will be delivered to meet the load demand. Again for the low SOC 
region, the battery controller will be stalled and minimum power is delivered to load.

	 Pbat = PL − [Pw + PP V ]� (12)

Aging model
The estimation of battery lifetime is a crucial and complex task for the assessment of reliability evaluation. Here, 
the Schiffer weighted Ah lead acid battery model44 is considered for further evaluation of the remaining capacity 
(Crem) of the battery and this the basic model. In this model, the Crem is calculated by subtracting the capacity 
loss (Cl) from the normalized value of initial battery capacity (Cn0).

	 Crem = Cn0 − Cl� (13)

Further, the loss of battery capacity mainly depends on two essential factors such as battery active mass 
degradation (Cdeg) and corrosion in positive electrode (Ccor)43. Hence, the capacity loss is the addition of Cdeg  
and Ccor .

	 Cl = Cdeg + Ccor � (14)

Calculation of Cdeg :
The battery capacity loss also occurs due to the battery discharge cycle and is denoted as degradation capacity 

(Cdeg). Normally, the nominal battery cycle is provided by manufacturers that 80% capacity is the maximum 
that can be used. However, the battery discharge cycle varies as per application. The degradation due to cycle and 
number of cycles is calculated in Eqs. (13) and (14).

	 Cdeg (t) = Cdeg,me
−cz

(
1− ZW (t)

1.6z0

)
� (15)

Where Cdeg,m is the maximum degradation capacity (80%), cz  is constant (5), ZW  is the number of cycle. 
Again, ZW  is influenced by the state of charge impact (fSOC(t)), battery discharge current (Ibdis) and acid 
stratification impact (facid).

	
ZW (t) = 1

CN

∫ t

0
Ibdis (t) fSOC (t) facid (t) dt� (16)

Battery degradation capacity increases when the SOC of the battery decreases. the battery lifetime impact will be 
higher for longer low SOC from the last fully charged battery. This results in the loss of capacity with mechanical 
stress on the active mass. So, the function for the state of charge impact is denoted as fSOC  which is calculated 
from the last full charge time to the present time.

	 fSOC (t) = 1 + (CSOC0 + CSOCmi (1 − SOCmi) fI (i, n) (t − t0))� (17)

Where cSOC,0 and cSOC,min represents when SOC is 0 and minimum respectively. fI(i, n) is the current 
influenced by sulfate crystal structure. The current influence factor is mainly due to the discharge current from 
a fully charged battery and is given in Eq. (15).

	
fI (i, n) =

√
C10/10
Ib (t)

3
√

e
n(t)
3.6 � (18)

C10 is the charge capacity at 10H current. The number of bad charges is represented by n which increases 
from SOC 0.9 to 1 and is presented as:

	
n (t) = 0.0025 − (0.95 − SOCm)2

0.0025
� (19)

The impact of acid stratification is represented as:

	
facid (t) = 1 + fSF (t)

√
C10/10
|Ib (t)|

� (20)

	 fSF (t + ∆t) = fSF (t) + (fplus (t) − fminus (t)) ∆t � (21)

Where fSF  is the degree of acid stratification, fplus and fminus are increase and decrease of acid stratification 
respectively.

Calculation of Ccor :
The corrosion layer adds resistance with internal battery resistance over the lifetime of the battery in which 

the corrosion layer grows in a positive electrode. The thickness of the layer (∆W ) varies according to the 
corrosion voltage of the positive electrode. The loss of capacity is the proportional function of corrosion layer 
thickness. Therefore, the corrosion layer capacity is determined by Eq. (19).
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Ccor (t) = Ccor,m

∆W (t)
∆Wm

� (22)

Where Ccor,m and ∆Wm are the maximum corrosion layer capacity and thickness respectively. Both the terms 
are calculated as:

	
∆W (t) =

{
ks

(( ∆W (t−∆t)
ks

)1/1.6
+ ∆t

)0.6
, Vcor < 1.74

∆W (t − ∆t) + ks∆t, Vcor > 1.74
� (23)

	 ∆Wm = L.ksm � (24)

Framework of objective function
For a cost-effective and reliable microgrid system, this work has framed a multi-objective-based Grey wolf 
optimization algorithm. These objective functions are framed considering the economic aspect, and reliability 
aspect. However, as per the World Energy Trilemma (WET) index45, this work also evaluates the energy index 
feature. Hence, the objective function incorporates three-dimensional goals which are characterized as follows.

Economic aspect
As per the economic aspect, the only concern is to minimize the index levelized cost of Energy (LCOE). This 
aggregates capital investment, operation, and maintenance costs of all the distributed energy resources. So, the 
objective function is:

	 minDV1,DV2 LCOE� (25)

Where DV1 and DV2 are two decision variables. DV1=nwt, nP V , nb and DV2=SOC The LCOE is the 
derivation of total annual cost which includes capital, operation and maintenance (OM) cost and all sources 
dispatched power (Pdis). The total cost of WPG, SPG, BSS aggregates to the economic term Ct.

	
LCOE =

∑8760
0 Ct(CW , CP , Cb)∑8760

0 Pdis

� (26)

Again, Ct depends on capital recovery factor (RF), So, total capital cost (TCC) is:

	 T CC = Ct × RF � (27)

where RF is recovery factor.

Reliability aspect
The power generation from DERs with microgrids is highly affected due to the unforeseeable nature of RESs.The 
reliability indicator i.e. loss of power supply probability (LPSP) is adopted which is the shortage of power supply 
that doesn’t meet the load demand.

	
LP SP =

∑8760
0 Ploss (t)∑8760

0 PL (t)
� (28)

Energy index aspect
When generation power exceeds the load demand, the excess energy can be sold to the utility grid. However, for 
remote locations where the grid is not accessible, this energy will be dumped which violates the WTE criteria. 
So, the energy index term is calculated to minimize the excess power (EP) which are not served.

	
EP =

8760∑
0

(PL (t) − PDER (t))� (29)

Where PDER (t) = PW (t)+PP V (t) ± Pb(t) The energy index (EI) is:

	
EI = 1 − EP∑8760

0 PL
� (30)

Optimization of microgrid
For reliable and cost-effective microgrid operation, the aim is to choose the optimum size of a wind turbine, PV 
panel, and battery. In this, LCOE, LPSP, and EI are framed as three objective functions. To solve these complex 
structures of microgrids with stochastic climatic conditions, a meta-heuristic multi-objective optimization 
algorithm is proposed for Wind-Solar-Battery-based microgrids. This algorithm mainly determines the 
mathematical model for the social hierarchy of wolf46. It has three best solutions in which the fittest one is 
named α, second and third bests are β and δ respectively. The remaining solutions are named as ω. The search 
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boundaries are defined as a vector, B⃗=[Aw, AP V , Bd ] in which Aw , AP V  and Bd are the defined maximum 
area for PV panel, wind and allowable days for battery respectively.

The flowchart of MOGWOA is presented in Fig. 2 and comprehensive analysis is done in MATLAB. To get 
the optimum solution, the following equations are used for implementation46.

	
−→
D =

∣∣∣−→C −→
Xp(i) − −→

X (i)
∣∣∣ � (31)

	
−→
X (i + 1) = −→

X p(i) − −→
A

−→
D � (32)

	
−→
A = 2−→a r1 − −→a ,

−→
C = 2r2 � (33)

Where i: iteration number, 
−→
A  &

−→
C : Co-efficient vector, 

−→
Xp &

−→
X : Position vector of prey and grey wolf respectively, 

−→a : varies from 2 to 0, r1, r2: [0,1]: random number.
Further, for the three best solutions, the distance is calculated by using Eqs. (34–37).

	
−→
Dα =

∣∣∣−→C1
−→
Xα − −→

X

∣∣∣ ,
−→
X1 =

−→
Xα − −→

A
−→
Dα � (34)

	
−→
Dβ =

∣∣∣−→C −→
Xβ − −→

X

∣∣∣ ,
−→
X2 =

−→
Xβ − −→

A
−→
Dβ � (35)

	
−→
Dδ =

∣∣∣−→C −→
Xδ − −→

X

∣∣∣ ,
−→
X3 =

−→
Xδ − −→

A
−→
Dδ � (36)

Fig. 2.  Flowchart of MOGWOA.
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X (i + 1) =

−→
X 1 + −→

X 2 + −→
X 3

3
� (37)

This algorithm mainly contains three segments. The first one is the initial process. In this, the population size 
is 50 with 500 iterations. All the input data such as wind speed, solar irradiance, atmospheric temperature, and 
load data for one year are loaded. Then, the wind energy generation system, solar energy generation system, and 
battery energy storage system are modeled. From that, the wind power (Pw), solar power (PP V ) and battery 
energy (Eb), total DERs (PDERs) total DERs generation is calculated.

Analysis of optimal solution with performance measure
Here, the Pareto approach is used as the proposed method is also multi-objective optimization, where solutions 
are evaluated based on trade-offs between competing objectives. Instead of seeking a single optimal solution, the 
Pareto method identifies a set of solutions that represent the best possible compromises among the objectives, 
helping decision makers select the most suitable option based on their priorities. All the pareto solution with 
three-dimensional objective functions are obtained and shown in Fig. 3. The optimal point is converging as 
shown in one point. All the pareto solution with three dimensional objective functions are obtained and shown 
in Fig. 3. The optimal point is converging as shown in one point.

The Euclidean distance based approached is considered by calculating the distance between each solution to 
origin. The distance is given in Eq. (38).

	 Dk =
√

(a − ak) + (b − bk) + (c − ck))� (38)

Where Dk  is the distance between the origin and the non-dominant solution, a, b, c are the origin point, ak , bk , 
ck  are the non-dominant Pareto font solution, min Dk  is chosen considering k = 1,2,..., l and l is the length of 
the archive.

The performance measure of MOGOW is measured by inverted generational distance (IGD) and metric 
of spacing (SP)? which is given in Eqs. (39) and (40) respectively. These parameter measures quality of the 
exploitation and exploration from pareto font.

	
IGD =( 1

N

N∑
i=1

dp
i )1/p � (39)

	
SP =(( 1

N − 1)
N∑

i=1

(dav − dm)p))1/p � (40)

Where N is pareto solution number, di is the Euclidean distance between ith pareto solution and each solution, 
dav  is the average of distance.

This optimal solution of MOGWOA is compared with multi objective particle swan optimization (MOPSO) 
by considering the statistical min, max, average and standard values which is shown in Table 1.

Results and discussion
In this article, the load profile of one residential-based microgrid for Chennai, India location is considered for 
the MOGWOA optimization algorithm. This load consists of three different profiles i.e. typical residential load, 
commercial load, and agricultural load as shown in Fig. 4. As the load is situated in the subtropical region of 
South Asia, the load demand increases during summer. For day demand analysis, it is seen that for the forenoon 
from 6 AM to 10 AM, the load demand is higher than afternoon. Again in the evening after 6 AM, the light load 
increases the load demand. In this way, residential load demand is distributed for one year.

Commercial load demand remains high during the working hours of the day i.e. from 9 AM-6 AM and on 
Sunday the commercial load demand becomes half of the daily demand. Considering the agricultural load, the 

Fig. 3.  Pareto front of optimal solution.
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load demand is almost constant as shown in Fig. 4d. The annual solar irradiance, atmospheric temperature, and 
wind speed data are collected from PVGIS, EU as shown in Fig. 4. The battery parameter, wind turbine, PV 
panel, and cost model parameters are given in Table 1.

It is noted that the MOGOW optimization algorithm is used for three sets of configurations such as PV-
battery, Wind-battery, and wind-pv-battery system, and found that the solution for the wind-pv-battery 
system is more reliable configuration for the particular load profile. For clarifications of the optimized results, 
the input cost model parameter is considered as given in Table 2. The optimum system configurations with 
various objective values are given in Table 3. The first column represents the input boundaries for the particular 
configuration and the second column is the optimized parameter rating. Considering the LCOE, the PV battery 
type configuration achieved less as compared to others. However, for the objective function, LPSP, only wind or 
PV with battery fails to meet the reliability indices. Hence wind-pv-battery-based configuration is more reliable. 
The energy index is also less in case III.

Please add the following required packages to your document preamble:

Configuratons

Boundaries System Capacities

LCOE ($/kW) LPSP EI ALCE ($)Wind(m2) PV(m2) Battery (days) Wind (kW) PV (kW) Battery (kWh)

Wind-Battery (5000–20000) – 1–3 2516 – 17810 0.2 0.26 0.3 906790

PV-Battery – 2000–18000 1–3 – 2474.162 16605 0.1025 0.19 0.2 477550

Wind-PV-Battery 4,000–12,000 1500–7,000 1–3 1728.7 885 28648 0.1011 0.173 0.1858 821160

Table 3.  Optimized results for different configurations. Significant values are in bold.

 

Parameters PV Wind Battery Converter

Capital cost ($/kW) 650 1400 130 100

Maintenance cost ($/kW) 33 50 10 NA

Replacement cost ($/kW) NA NA 200 150

Lifespan (year) 25 25 5 15

Table 2.  Cost model parameter for optimized configurations.
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Fig. 4.  Load profile for a microgrid (a) Total load, (b) residential load, (c) commercial load and (d) 
agricultural load.

 

Statistical Parameter

Performance Parameter

MOPSO MOGWOA

IGD SP IGD SP

min 0.0107 0.0143 0.0029 0.0092

max 0.0149 0.123 0.0098 0.076

avg 0.0097 0.0216 0.004 0.0206

std 0.0221 0.0923 0.0022 0.022

Table 1.  Performance comparison of MOPSO and MOGWO.
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For more visualization of the results, the 3D Pareto front (Fig. 3) is analyzed in which the variable parameters 
are LCOE, LPSP, and EI to meet the sustainable energy requirement. Table 1 presents the design and performance 
metrics for three configurations. It is noted that the 1728.7kW of Wind energy generation system, 885kW of 
PV, and 28648kWh of battery is the optimal size for this given microgrid system. The generated wind, PV, and 
battery power for one one-year time scale are shown in Fig. 5. The average RESs share with battery contribution 
for the high load period in May month is shown in Fig. 6a which confirms the sustainable energy management 
within the microgrid (Fig. 7).

During summer, the residential and agricultural load increases due to excess demand. Moreover, PV power is 
more in the daytime, and wind power complements the PV power at night. So the power balance is maintained 
as shown in Fig. 8. The corresponding charge and discharge power of the battery is shown in Fig. 7 which again 
reveals the satisfactory energy management.

Considering the energy index of the system, loss of power and excess energy are complementary to each 
other. It is seen that during the second quarter of the year, 28% of energy can be fed back to the utility grid or can 
be sold to other nearby grids which generate revenue. The energy index of the proposed system configuration is 
0.1858 which indicates less surplus energy.

Battery degradation factor (CD: capacity degradation & Eb: battery capacity) is shown in Fig. 9 concerning 
the battery capacity for one year. Battery capacity has a high impact on the charge and discharge cycle of the 
system. It is seen that the increase in battery energy with depth of discharge of the battery leads to an increase 
in capacity degradation factor (1.75). This is due to the sulfate crystal size increase and also the increase of 
mechanical stress on the active mass (as given in Eqs. 10–21). Battery lifetime calculated for the wind-PV-
battery-based microgrid system is 12.5 years from the annual capacity factor considering 80% of DOD.

All three optimized configuration results are summarized in Table 2. It is noted that the last hybrid 
configuration which is wind-PV-battery meets the desired design criteria i.e. more reliability (LPSP= 0.173) 
and less excess energy with reduced LCOE (0.1011$/kw). However, battery capacity is higher than the two 
other configurations because of the highly fluctuating nature of wind speed. Moreover, for the PV-battery 
configuration, LCOE and battery capacity are comparatively lower than the wind-battery one.
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Fig. 6.  Microgrid operation characteristics (a) generated wind power, (b) PV power, and (c) battery power.
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Fig. 5.  Climatic Profile (a) Wind speed, (b) Solar irradiance and (c) Temperature profile.
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Fig. 8.  Microgrid operation characteristics (a) Cumulative DER power and battery power, (b) Battery energy 
and (c) excess and shortage power.
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Fig. 7.  Battery charge and discharge power.
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Conclusion
In this article, a multi-objective GWO algorithm is proposed for a wind-PV-battery-assisted microgrid model. 
The global search capability of this algorithm converges to the optimal solution and meets the three-dimensional 
WET goal. A three-dimensional objective function considering LCOE, LPSP, and EI is developed to meet the 
design criteria of the microgrid. Therefore, this system delivers reliable and sustainable power to remotely located 
microgrids with reduced surplus energy which is indicated by the energy index term. In addition, microgrid 
operation is described by designing one detailed model for all DERs by taking into account all the constraints. 
Moreover, computational studies are included for the detailed lead-acid battery degradation model to calculate 
the battery replacement during the system lifetime which also enhances the system reliability. The proposed 
configuration achieves affordable per unit cost of electricity (0.12011 $/kW) with high reliability (82%) and less 
EI (0.1858). All the microgrid operation results with the proposed configuration are evidence for the feasibility 
of the MOGWO algorithm.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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