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Extreme wildfire events (EWE), although a rare natural hazard, account for a substantial portion 
of global wildfire damage, requiring proactive anticipation and mitigation due to their increasing 
occurrence. Wildfire spread simulators are crucial for reducing damage, but they rely heavily on 
accurate fuel maps, which are often outdated, have low resolution, or are unavailable in many regions. 
While land cover maps are more up-to-date, high-resolution globally, and widely available, there is 
no universally accepted method to convert land cover maps into fuel maps. In this work, an automatic 
methodology for generating high-resolution fuel maps from land cover maps called zone-adaptive fuel 
mapping (ZAFM) is proposed. ZAFM is a consistent local approach that makes use of public resources 
to create a fuel map. The proposed methodology has been tested using, as a study case, an EWE 
that occurred in the north-east of Spain during the summer of 2022. To assess the accuracy of the 
proposed fuel mapping method, we compared the fire spread forecast using the ZAFM fuel map with 
fire evolutions based on different fuel maps derived from the land cover map of the study area. The 
accuracy assessment, based on the F2-score metric, reveals that ZAFM achieves the highest F2-score 
of approximately 0.90, while the F2-scores for the other fuel maps range from 0.78 to 0.89, with no 
individual simulation reaching 0.90. ZAFM was also evaluated against other publicly available fuel 
maps covering Catalonia, and once again achieved higher F2-scores in the case study simulations. 
These results highlight the superior predictive performance of ZAFM and underscore the importance of 
using up-to-date, high-resolution data to improve wildfire spread forecasts. Furthermore, since ZAFM 
relies on open-access data maps, it can be applied worldwide with any available high-resolution land 
cover map.
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Extreme wildfire events (EWEs) pose a significant challenge to societies around the world. Although they 
constitute a minority among all natural hazard events, their destructive power and impact on human lives are 
often disproportionate1,2. These wildfires surpass the current control capacity, even in regions that are well 
prepared and experienced in firefighting3–5. EWEs can be caused by a combination of factors such as dry and 
hot weather conditions, strong winds, accumulation of flammable materials, and difficult terrain6,7. These 
factors create an environment where wildfires can intensify and spread rapidly, making them difficult to contain 
and extinguish. Moreover, the increase in global temperature caused by climate change results in a significant 
increase in the frequency of EWEs8. Therefore, preventing and anticipating their behaviour is a critical aspect 
in minimizing their impact9,10. Over the past few decades, significant advances have been performed in forest 
fire spread simulators with the aim of providing reliable predictions of wildfire behaviour. These tools have been 
proven to be very useful in providing critical information to incident commanders, assisting in decision-making 
on evacuation plans, resource deployment, and containment strategies11–14.

To accurately assess and respond to a wildfire, it is important to provide information on several key parameters 
that describe the environment where the fire is taking place. The description of the environment includes data 
on the landscape, fuel, topography, and weather of the affected area15. The main factors driving the creation and 
evolution of EWEs are weather conditions and fuel characteristics16.

In fire simulation, these fuel characteristics are represented through fuel maps, which play a crucial role in 
fire modelling, analysis and fire risk assessment on a global scale17,18. In regions like Australia, integrating fuel 
models into fire danger rating systems (such as AFDRS) has improved responses to extreme fires19. In North 

Computer Architecture and Operating Systems Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola 
del Vallès, Spain. email: paula.sanchez.gayet@uab.cat; carles.carrillo@uab.cat

OPEN

Scientific Reports |        (2025) 15:22254 1| https://doi.org/10.1038/s41598-025-06402-1

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-06402-1&domain=pdf&date_stamp=2025-6-24


America, studies have shown that detailed fuel mapping reduces uncertainty in fire behaviour prediction20. 
Similarly, in South America, research highlights its role in planning controlled burns to prevent uncontrolled 
wildfires21. Therefore, continuing to advance fuel mapping is essential for enhancing fire management strategies 
worldwide, especially considering that accessing publicly available fuel maps is not always straightforward. Due 
to the high temporal and spatial variability of fuels, many existing maps can quickly become outdated or may 
lack the resolution needed to capture local heterogeneity18.

In Europe, for example, the availability of public fuel maps for wildland management is particularly challenging, 
especially at local or regional scale. In some fire-prone areas, such as Spain, Greece, and Portugal, some fuel 
maps have been developed. For instance, Previncat provides a 20 m resolution fuel map for Catalonia22, while 
ArcFuel delivered forest fuel maps with a 50 m spatial resolution for Greece and Portugal at the national level, 
as well as for selected regions in Italy (Calabria and Sardinia) and Spain (Málaga and Córdoba)23. Additionally, 
in Portugal, FUMOD has been used to generate fuel maps at a 100 m resolution24. However, depending on the 
region, it is often more difficult to find fuel maps at the local or regional scale. Recently, some European-scale 
fuel maps have been developed, such as those from FirEUrisk25–27 at a 1 km resolution, the EFFIS European 
Fuel Map at a 250 m resolution28, and the FIRE-RES Pan-European Fuel Map at a 100 m resolution29. At the 
continental level, similar efforts have been made in other parts of the world, including South America30, Africa30, 
and even at the global scale31. At these broader scales, cartography of fuel types has usually been generated from 
the integration of land use databases32 since land cover maps are more easily available and updated periodically, 
making them a valuable alternative. A land cover map is a map that provides a global classification of Earth’s 
surface types, categorizing areas into classes such as forests, shrublands, grasslands, croplands, water bodies, 
urban areas, and more. At the pan-European level, commonly used land cover maps include, for example, the 
CORINE Land Cover (CLC) map33, which categorizes land cover into 44 classes and has been regularly updated 
since its first release in 1990, with the most recent version from 2018. Another option is the WorldCover map34, 
which provides global land cover products with 11 classes for the years 2020 and 2021 at a 10 m resolution.

Since most forest fire spread simulators do not accept land cover data as fuel input data, a translation 
procedure to create fuel maps from land cover classes is required. For that reason, scientists typically apply 
specific heuristics that translate land cover classes into fuel map classifications (commonly known as fuel 
models) based on their own judgment and the specific characteristics of the burn location. A fuel model defines 
a set of quantitative vegetation characteristics that can be visually identified in the field.

There are several sets of fuel models, but the most widely used ones are those by Anderson35 and Scott and 
Burgan20. The first one is a set of 13 fuel models and the second one expands the fuel classification to around 40 
types, therefore, it is difficult to define a direct objective translation of land cover classes into fuel models as there 
are several models that could be appropriate for a given land cover class. As a result, depending on the criteria 
employed, the resulting fuel maps could be very different, and consequently the simulations obtained using each 
fuel map configuration can differ greatly from each other. To address this issue, we propose the Zone-Adaptive 
Fuel Mapping (ZAFM) methodology that provides an objective systematic way to generate a high-resolution fuel 
map for a given area using open-access data maps.

Other methodologies for generating fuel maps have also been developed. The traditional approach, which 
relies on fieldwork, is the most widely used but also the most expensive and time-consuming17. As a result, 
efforts are being made to improve vegetation characterization36–38 and to develop fuel maps using alternative 
approaches, such as remote sensing.

Remote sensing has become an increasingly viable alternative due to its affordability and the growing 
availability of remote sensing products17. Several authors have explored fuel type mapping using multispectral 
and hyperspectral remote sensing data39. More recently, many studies have focused on integrating remote sensing 
with machine learning algorithms to enhance the accuracy and efficiency of fuel mapping. For instance40–42, 
employ neural networks32, uses Support Vector Machines (SVM)43, utilizes K-Means clustering and Support 
Vector Machines (SVM), while44 applies an ensemble of machine learning methods.

However, all these machine learning-based approaches have certain limitations. They require extensive 
labelled training data, and the quality and quantity of this data significantly influence the accuracy of the resulting 
maps45. Additionally, models trained in one ecosystem or region often perform poorly when applied to different 
areas, limiting their effectiveness on a continental or global scale46. Training and fine-tuning these models is also 
resource-intensive47. In contrast, the ZAFM methodology does not require training data, is highly generalizable, 
and can be applied globally wherever low-resolution fuel maps and knowledge about regional fuel types are 
available. It also has low computational demands, enabling rapid map production. Regarding remote sensing 
data, using raw imagery typically requires atmospheric correction and extensive pre-processing43. Furthermore, 
data quality can be compromised by atmospheric conditions. In this context, ZAFM presents a clear advantage 
by relying on an already validated high-resolution land cover map.

LiDAR technology is emerging as an effective alternative for fuel mapping at a regional scale, as it provides 
valuable information on surface fuels even when obscured by the forest canopy18,48. Recent studies have leveraged 
LiDAR data from UAVs49 and Airborne Laser Scanning (ALS)50. Additionally, new methodologies that integrate 
multispectral or hyperspectral data with LiDAR have been developed, offering innovative approaches to wildfire 
fuel assessment51–53.

While LiDAR provides valuable information for fuel mapping, both terrestrial and airborne LiDAR systems 
are often limited to specific regions and face challenges when mapping at continental and global scales54. LiDAR 
data is costly, and many regions lack access to it. Furthermore, processing high-density point clouds requires 
significant computational resources and time55. In contrast, ZAFM (Zonal Airborne Fuel Mapping) does not 
require active sensors or expensive data, making it more suitable for large-scale and rapid mapping efforts.

This paper is organized as follows: The description of the ZAFM methodology is presented in the “Methods” 
section, exemplifying its applicability through a specific case study. In the “Results” section, the metrics used to 
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evaluate the accuracy of the proposal are introduced, followed by the presentation of experimental results. In 
the “Discussion” section, the results are compared with those from previous studies. Finally, the “Conclusions” 
section summarizes the key findings and discusses potential directions for future research.

Methods
As stated in the introduction, there is no standard conversion between the classification of a certain land cover 
map and the fuel models required to execute any forest fire spread simulator, consequently, scientists apply some 
heuristics to translate one into the other. Obviously, using heuristics implies that any crosswalk from a land cover 
map to a fuel map will have an implicit uncertainty due to the decisions made when associating a land cover class 
with a fuel model.

In order to analyse the impact of using different conversion heuristics on the spread of a wildfire, we used the 
WorldCover map (WCM)34 as the land cover map to be translated, and the Scott and Burgan fire behaviour fuel 
model classification (FBFM40)20 as the set of fuels used to generate the translated fuel map.

At first glance, it is clear that defining a crosswalk from land cover classes to fuel models is not a straightforward 
assignment. On the one hand, the WCM system primarily focuses on land cover classification based on satellite 
imagery interpretation. On the other hand, fuel and fire behaviour models consider vegetation characteristics 
and other combustible materials that influence fire spread and intensity. Although some WCM classes may have 
a clear correspondence to a fuel model such as artificial surfaces, there exist other classes that are a challenge to 
classify, like grasslands or forests. This is due to factors such as the complexity and variability of vegetation types, 
fuel loading, vegetation structure, and spatial arrangement within a given fuel model56. Moreover, it is important 
to note that the transformation between WCM classes and fire behaviour fuel models is context-specific and can 
vary depending on the region and ecosystem type. Therefore, a single WCM class could correspond to more than 
one fuel model, and depending on the area, it would be appropriate to choose one or the other. In conclusion, 
creating a direct class-to-fuel correspondence would require making decisions that introduce subjectivity, and it 
would not fully represent the local vegetation conditions.

Study site
To properly analyse the impact of the conversion map process, a real case that can be considered as a near EWE 
according to the EWE’s characteristics described in1 has been studied. The selected case is a forest fire that took 
place in El Pont de Vilomara during the summer of 2022 in the region of Catalonia, Spain57. This fire rapidly 
burned around 14 hectares during the first 15 min and it reached 100 hectares in less than 1 h. Figure 1 shows 
the point where the fire started (ignition point on July 17 at 13:20), an intermediate burned area (orange shape 
on July 17 at 16:30), and the final burned area (red shape on July 18 at 00:20). The forest fire spread simulations 
conducted in this work were initiated using the fire perimeter corresponding to 16:30 hours. This decision was 
made because the fire’s initial rapid spread, driven by spot fires, resulted in highly unpredictable and intense 
behaviour. The exact locations of spot fires are difficult to determine and replicate, making it challenging to 
simulate the fire’s behaviour accurately. To avoid these complexities and focus on the propagation dynamics, all 
simulations reported in this work use the intermediate perimeter as the initial one.

As it can be observed in Fig. 1, the fire had extreme burning potential on its right flank due to the presence of 
a large forest mass. Furthermore, it threatened urbanized areas such as El Pont de Vilomara village on the left side 
and a housing estate called Les Brucades at the head of the fire front (between the horns of the fire).

Since this work aims to highlight how the quality of forest fire spread forecasts is influenced by the fuel 
map used, this has been the only degree of freedom that has been applied to all the simulations carried out in 
the experimental section. That is, the rest of the input data required for the forest fire spread simulator, such as 

Fig. 1.  El Pont de Vilomara fire. The triangle marks the ignition point, the orange area shows intermediate 
spread, and the red area shows the final burned extent57. Map derived from the Orthophoto of Catalonia 
1:2,500 of the Institut Cartogràfic i Geològic de Catalunya (ICGC), used under a CC BY 4.0 license58. 
Composition created using QGIS v3.34 (https://qgis.org).
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topographic parameters (including aspect, elevation, slope, and canopy cover), meteorological conditions, and 
fuel moisture have been kept constant. The only input data that varies for each simulation is the underlying fuel 
map.

To fully comprehend the influence of an appropriate choice of heuristic correspondence, we have generated 
all possible fuel maps by considering all possible class-to-fuel combinations. As the choice of fuel models 
depends on local conditions, we focused specifically on the fuels relevant to the bioclimatic regime in which the 
case study fire occurred. Since the fire is located in Catalonia, it falls within the arid/semi-arid bioclimatic regime 
according to25, therefore, and also using the classification proposed in the same work, we included only the fuel 
models applicable to this regime.

Figure 2 illustrates all possible crosswalks of WCM classes to FBFM40 models for the study area. For each 
WCM class, a correspondence group can be created, covering all possible FBFM40 models that the WCM 
class could be substituted for. Therefore, considering all possible combinations of fuel models using these 
correspondence groups, one comes up with 108 different fuel maps which we will refer to as scenarios. Each one 
of these scenarios will be identified with an index i, consequently, any particular scenario will be referred to as 
scenario i, where i ranges from 0 to 107. At this point, a question arises: which of the possible fuel map scenarios 
is most suitable for simulating forest fire spread while ensuring maximum accuracy? To answer this question, 
the next section is devoted to describing a new deterministic methodology for converting a high-resolution 
land cover map into a unique high-resolution fuel map, based on open data maps. As it will be later shown, this 
proposal outperforms any heuristic used to translate the land cover map into a fuel map within the study site.

Zone-adaptive fuel mapping methodology
As introduced above, to address the challenge of creating a high-resolution fuel map from a high-resolution 
land cover map, we propose the zone-adaptive fuel mapping (ZAFM) methodology. This approach provides 
a consistent and deterministic method for generating a high-resolution fuel map for a given area using open-
access data. A flowchart illustrating the ZAFM methodology has been included in Fig. 3. As can be observed, 
ZAFM is composed of three main blocks: Input data, Data homogenization and ZAFM steps. Subsequently, a 
more detailed explanation of each block is included, as well as the required notation.

Input data
To apply this methodology, two maps are required: a high-resolution land cover map of the study area and a 
low-resolution reference fuel map of the same area to identify the fuel models present in the region (see Input 
data in Fig. 3). For the case study, El Pont de Vilomara, the 10 m WorldCover map from 202134 has been used 
as a land cover map. Since the fire occurred in 2022, one can consider that this data is sufficiently up-to-date 
for this study case. As a reference low-resolution fuel map, the European FirEUrisk fuel map26 has been used, 
which is a 1 km resolution map at the European level that employs the FBFM40 fuel models20. Since both maps 
differ in extent and resolution, a data homogenization process must be done before initiating the creation of the 
high-resolution fuel map (ZAFM scenario). This homogenization process is subsequently described, followed by 
a detailed description of the ZAFM steps.

Data homogenization
The WCM, as its name suggests, is a worldwide map with a resolution of 10 m, while the FirEUrisk fuel map is 
a pan-European map with a resolution of 1 km. The WCM was downloaded in .TIF format with the projection 
EPSG:4326, while the FirEUrisk map was also downloaded in .TIFF format but with the EPSG:3035 projection.

Fig. 2.  Correspondence groups between WCM classes and FBFM40 fuel models. Only the land cover classes 
that are present in the study area have been taken into account.
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Therefore, the first thing to do consists of homogenizing both maps in size, resolution and projection. For this 
work, we will use the EPSG:25831 projection, so both the WCM and FirEUrisk map will need to be reprojected. 
This can be done using the following GDAL command:

Fig. 3.  Flowchart of the ZAFM methodology.
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Since the proposed methodology aims to generate a fuel map for the area affected by a fire, both maps need to 
be clipped to the same extent. This can also be done using a GDAL command. After the -te option, the cropping 
extent should be defined. xmin = 402812.385, ymin = 4612876.541, xmax = 412046.546, ymax = 4628612.510 
define the bounding box coordinates for cropping the map in the Study Site.

Once both maps cover the same area, they must be adjusted to the same resolution. The main objective of 
this work is to create a high-resolution fuel map; therefore, the low-resolution FirEurisk map will be corrected to 
achieve a 10 m resolution. To accomplish this, a cell replication process is applied to the fuel map to match the 
land cover map’s 10 m resolution:

Finally, if both maps are not aligned, we can force them to align using the following command. Here, xmin, 
ymin, xmax, and ymax represent the coordinates of the corners of W CM_25831_crop.tif : 

Although this process maintains the original effective resolution, this cell replication process is essential to 
implement the ZAFM methodology. Data homogenization in Fig. 3 shows the resulting land cover and fuel map 
after the homogenization process has been applied to the study area.

Definitions and notations
Once both maps, the land cover map and the fuel map, are aligned to the same resolution (10 m), the process of 
generating a high-resolution fuel map can begin. To facilitate the description of the steps involved in this process, 
certain definitions and notations are required.

The maps involved in this process are rasters that can be represented using a matrix notation. Both the WCM 
and FirEUrisk map have the same dimensions thanks to the homogenization process, thus they have n × m cells 
of a dimension of 10 m × 10 m each, therefore, the resulting ZAFM map will also have the same dimensions. 
Consequently, one can refer to these three maps as three matrices in the following way:

•	 W CMn×m: Matrix of size n × m that represents the high-resolution land cover map.
•	 F irEUriskn×m: Matrix of size n × m that represents the fuel map with augmented resolution to align its 

cells with the W CMn×m cells.
•	 ZAF Mn×m: Matrix of size n × m, which corresponds to the resulting map of the proposed methodology.

So any map cell can be referred to as W CMij , F irEUriskij  and ZAF Mij , respectively, where i = 1, . . . , n 
and j = 1, . . . , m.

Furthermore, we have divided the correspondence groups shown in Fig. 2 into two categories: Direct and 
Multiple correspondence groups. The first category includes those in which there is only one FBFM40 fuel model 
that substitutes the WCM class, such as WCM class 80 (Permanent water), which has a direct correspondence to 
NB8 fuel model. The set of land cover classes belonging to these Direct correspondence group is called CDirect. 
The second type of correspondence groups includes cases where there is more than one option to substitute the 
corresponding WCM class. For instance, the correspondence group associated with WCM class 20 (Shrubland) 
is a Multiple correspondence group because three fuel models (SH2, SH5, and SH7) can be associated with this 
land cover class. All land cover classes belonging to this type of correspondence groups are included in the 
CMultiple set. Figure 4 illustrates this grouping scheme and, for the particular case study reported in this work, 
the land cover sets CDirect and CMultiple are the following ones:

CDirect = {50, 60, 70, 80, 90, 95, 100}
CMultiple = {10, 20, 30, 40}

Finally, we have defined a function CG(c) that, given a land cover class c, it returns the set of fuel models 
belonging to the correspondence group of that class. Therefore, for a class belonging to CDirect, CG(c) will 
return a set, which will contain a single element, meanwhile for a class belonging to CMultiple the obtained set 
will have more than one element.
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Global implementation
If one wants to apply the methodology to an area outside of Catalonia, there are different approaches. To apply 
the methodology to Europe using the FirEUrisk map, it is only necessary to determine the bioclimatic regime25 
of the area and create the Direct and Multiple correspondence groups for the corresponding regime (as in Fig. 
4). If the methodology is applied in another region of Europe or with a different map instead of FirEUrisk, 
creating the appropriate Direct and Multiple correspondence groups using the set of fuel models from the base 
map to be improved is necessary. If no expert is available to create them, an alternative approach would be 
to assign all relevant fuel types to each land use category. For example, if the land use category is shrubland, 
both the Burgan20 and Anderson35 sets of standard fire behaviour fuel models include the “shrubland” fuel 
type with multiple possible fuel models. Once the correspondence groups and the map to be improved are 
available, the methodology can be applied to any region worldwide. If it is not possible to create the Multiple 
correspondence group, an alternative is to improve the map using only direct categories to ensure at least high-
resolution representation in areas that are typically non-burnable.

ZAFM steps
This section describes the steps involved in the procedure to map a given ZAF Mij  cell to a fuel model f . The 
mapping process uses the land cover class c from the corresponding cell of the WorldCover map (W CMij) and 
the information about fuel models from the FirEUrisk map. This process will be applied to all cells of the ZAFM 
map and consists of three steps, which are the key components of the proposed methodology. For land cover 
classes belonging to the CDirect set, this process is straightforward and it is addressed in the first step. However, 
for those land cover classes belonging to CMultiple the process is more complex and it requires the second and 
third steps. These steps are applied at each cell (i, j) of the W CM  matrix (W CMij) and the corresponding land 
cover class c (W CMij) is used to select which step to apply to map c to a fuel model f into the corresponding 
ZAF Mij  cell. A detailed explanation of these steps is subsequently introduced.

•	 Step 1:
	 If c ∈ CDirect, CG(c) will be the set of fuels associated with this class, containing a single element, that is, the 

specific fuel model (f ) directly associated with c.

Fig. 4.  Direct and multiple correspondence groups between WCM classes and FBFM40 fuel models. Only the 
land cover classes present in the study area have been considered.
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	 Therefore, cell (i, j) in the ZAF M  map will be assigned this fuel model, as follows:

		
ZAF Mij = f if c ∈ CDirect and CG(c) = {f}� (1)

 

	 In other words, this step fills the cells in the ZAF M  map where the land cover class of the current cell has a 
direct correspondence with a specific fuel model. This step is illustrated in Step 1 of the ZAFM flowchart (Fig. 
3).

•	 Step 2:
	 If c ∈ CMultiple, CG(c) is a set of potential fuel models for c. To identify the specific fuel model (f ) to assign 

from the options in CG(c), we consider the fuel model present in the enhanced-resolution fuel map at the 
same location (F irEUriskij).

	 If f ∈ CG(c), then the cell (i, j) in the ZAF M  map will be assigned this fuel model:

		
ZAF Mij = f if c ∈ CMultiple and f ∈ CG(c)� (2)

 

	 This fuel model assignment is exemplified in Step 2 of the ZAFM flowchart (Fig. 3).
•	 Step 3:
	 If c ∈ CMultiple, CG(c) is a set of potential fuel models for c. As in Step 2, to identify the specific fuel model 

(f ) to assign from the options in CG(c), we consider the fuel model present in the high-resolution fuel map 
at the same location (F irEUriskij).

	 If f /∈ CG(c), a proximity criterion will be used. For that purpose, first, all positions [k, l] in the F irEUrisk 
map that contains the fuel models within CG(c) are identified. Next, the Euclidean distance from (i, j) to 
each of these positions is evaluated using the formula: 

	 d((i, j), (k, l)) =
√

(i − k)2 + (j − l)2.� (3)

 

	 The selected fuel model (f ) from CG(c) will be the one located at the position (k, l) that is closest to (i, j), 
meaning that the distance d is minimized. Thus, we have:

		
ZAF Mij = f if c ∈ CMultiple, F irEUriskij /∈ CG(c), and f ∈ CG(c) at nearest (k, l)� (4)

 

	 This final step is illustrated in Step 3 of Fig. 3.

For an easier understanding of the complete ZAFM methodology, a pseudocode of the proposed mapping 
procedure has been included (Algorithm 1).
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Algorithm 1.  Pseudocode for ZAFM Methodology.

It provides a structured and clear representation of the proposed methodology and serves as a detailed guide 
for implementing each of the described steps, ensuring reproducibility and transparency of the process. The 
ZAFM methodology offers several advantages: it is consistent, as it removes subjectivity in assigning fuel models; 
it is reliable, as it relies on publicly validated maps; and it is deterministic, meaning that given the same high-
resolution land cover map and the same low-resolution fuel map, the resulting high-resolution fuel map will 
always be the same. Additionally, in this method, the assignment of fuel models depends on local conditions, 
so the same land cover category can be assigned different fuel models based on the specific location of the cell.

Results
The proposed Zone-Adaptive Fuel Map (ZAFM) methodology defines a deterministic process to convert a high-
resolution land cover map into a unique high-resolution fuel map, based on open data sources. The obtained 
fuel map applying ZAFM is referred to as the ZAFM scenario. This section focuses on evaluating the accuracy 
of the proposed ZAFM scenario in comparison to other heuristic methods for converting land cover maps into 
fuel maps. As it was previously mentioned, using the correspondence groups of the study area (Fig. 4), we could 
generate 108 fuel maps by exploring all logical combination scenarios (from scenario 0 to scenario 107). In order 
to determine the forecasting agreement between simulation results obtained when using these 108 scenarios 
plus the ZAFM scenario and the real fire propagation, we have conducted forest fire spread simulations keeping 
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all simulator input data fixed except for the fuel map. As a forest fire spread simulator, we have used Fire Area 
Simulator (FARSITE)59. FARSITE is a widely used forest fire spread simulator not only for forecast purposes but 
also for prevention activities when applying fuel management policies. Despite the results shown in this work 
correspond to simulations obtained using this forest fire spread simulator, the methodology used is simulator 
independent, and, therefore, the obtained conclusions can be directly extrapolated to any other wildfire spread 
simulator.

Accuracy metrics
Typically, the area burned by a wildfire and the simulated burnt area generated by a certain forest fire spread 
simulator are represented with shapes on a map (see for example Fig. 1). Since the simulation results often differ 
from the real behaviour of the forest fire, both shapes (real and simulated) typically mismatch. The location of 
one shape in the map divides the map into two possible zones: burnt and not-burnt sections. Therefore, forest 
fire spread prediction can be defined as a categorical forecast, where the observed event is the real area that has 
been burned by the wildfire and the forecasted event corresponds to the area that the forest fire spread simulator 
generates as output. It may be noticed that the simulation time must be the same as the real-time of the fire 
evolution, otherwise, both events could not be compared. Under these conditions, the area where the fire occurs 
can be divided into four different zones referred to as: Hits, Misses, False Alarms and Correct Negatives. Hits refer 
to zones that have been burned in both scenarios (real and simulated), Misses are areas burned in the real fire but 
not in the simulation, False Alarms are those areas burned only in the simulation but not in reality and, finally, 
Correct Negatives corresponds to the zone that has not been burnt neither by the real fire nor by the simulation. 
This last zone (Correct Negatives) will depend on the size of the map cut to carry out the simulation, which for 
the purpose of this study is not relevant, therefore, we do not consider this zone for the metrics subsequently 
presented.

Based on these concepts, the primary metrics used for accuracy purposes are False Alarm Rate (FAR) and 
Probability of Detection (POD).

FAR measures the proportion of the wrong events forecast, see Eq. (5). It is sensitive to False Alarms but ignores 
the Misses. Therefore, it could be a good metric to determine whether a simulation generates overestimated 
areas, that is, the predicted fire evaluations are larger than the real fire propagation area. A perfect comparison 
has a FAR value equal to 0.

	
F AR = F A

(Hits + F A) � (5)

POD considers the observed and positively estimated events, see Eq. (6). Thus, it represents the probability 
of an event being detected. The POD is sensitive to Misses but ignores False Alarms. Consequently, it is a good 
metric for detecting underestimated forecasts. The ideal value for the POD is 1.

	
P OD = Hits

Hits + Misses
� (6)

Finally, we have also included as an accuracy metric the F2-score (F2), whose definition is included in Eq. (7):

	
F2 = (1 + 22) · Hits

(22 · Hits) + 4 · False Alarms + Misses
� (7)

The ideal F2-score is 1. It prioritizes Hits while allowing some False Alarms without significant penalties. This is 
especially important for wildfire simulations, where firefighting efforts are usually not accounted for. In these 
cases, overestimating the fire’s spread is not overly problematic, as it can represent the fire’s potential behaviour 
in the absence of intervention.

To streamline the graphical presentation of the 109 simulations conducted, 108 using all possible heuristic 
fuel maps and the one using the proposed ZAFM scenario, while ensuring that all simulations are analysed, 
we grouped them into 5 clusters. This clustering was based on their similarity in Hits, Misses, and False Alarms 
relative to the real burned area and was performed using the K-means method. The number of clusters for 
grouping the simulations was determined automatically. Each simulation has been represented as one data point 
in a three-dimensional space with coordinates corresponding to Hits, Misses, and False Alarms. To ensure fair 
and consistent comparisons between different fire simulations, these three measures have been normalized. 
Normalization has been achieved by dividing each measure (Hits, Misses or False Alarms) by the area of the 
union of the predicted fire and the real fire (Hits+Misses+FA). This normalization ensures a clear picture of how 
well the simulation model performs, regardless of the specific dimensions of the fire. The five clusters are shown 
in Fig. 5. Each cluster is represented by a different colour, which will be used consistently throughout the rest of 
the paper for clarity and reference.

Accuracy assessment
The simulations were conducted using the 109 different fuel maps (108 created using all possible fuel combinations 
and one generated with the ZAFM methodology), with the topography and weather conditions kept constant, 
making the fuel map the unique element that varies from one simulation to the other. The simulation duration 
(determined by the initial and final time of the fire) was 7 h and 50 min. The absence of precise information 
led to the exclusion of suppression efforts in the fire modelling process. The fire spread shape obtained for each 
simulation within each cluster and the fire spread shape obtained when using the ZAFM scenario are shown in 
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Fig. 6. In particular, all simulation results obtained for all fuel map configurations belonging to a given cluster 
have been overlapped in the same image using the reference cluster colour for each overlapped shape. This 
overlapping process results in a degraded colour image. This coloured map for each cluster, somehow represents 
a probabilistic map where areas with more intense colours indicate regions with a high probability of being 
burned, and the transparent areas represent zones with a low probability of being burned. Furthermore, Fig. 6f 
shows the burnt area obtained when simulating the study case using the ZAFM fuel map. Finally, the real final 
burned area is the one enclosed by the black perimeter.

Fig. 6.  The simulations are shown divided into clusters in Figs. (a), (b), (c) and (d). For each cluster, the 
more colour intensity indicates that more simulations have burned that area (higher overlap). In Fig. (f), the 
simulation obtained using the ZAFM methodology is displayed. The real fire perimeter is outlined in black.

 

Fig. 5.  K-means clustering method grouping simulations into five clusters based on the number of Hits, Misses, 
and False Alarms.
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If we look at Fig. 6a, we can see that Cluster 1 underestimates the spread of the fire in both the eastern and 
western regions, while also missing significant parts of the northern area near Les Brucades. This could be due 
to the selected fuel models slowing down the fire’s advance, which has critical implications for early warning 
systems. An early warning system for forest fires aims to detect and predict the potential severity and spread 
of a fire as early as possible. The system aims to provide timely information and warnings to enable effective 
firefighting and evacuation efforts. If the fuel map leads to an underestimation of the fire’s potential severity, it 
can result in a delayed or inadequate response.

A similar issue is observed in Clusters 2 (Fig. 6b) and 3 (Fig. 6c), particularly in the north, where both clusters 
also fail to capture the full extent of the fire around Les Brucades. However, Cluster 2 tends to overestimate the 
burned area in both the west, near El Pont de Vilomara, and the east, leading to a wider fire spread than seen in 
reality. Cluster 3, while being slightly better at representing the burned areas, also shares the same tendency to 
overestimate certain sections.

On the other hand, Clusters 4 (Fig. 6d) and 5 (Fig. 6e) provide a better representation of the burned area, with 
few Misses but a higher number of False Alarms. Cluster 4 significantly overestimates the fire’s spread, predicting 
more extensive burning than what actually occurred. In contrast, Cluster 5 appears to offer the most accurate 
representation of reality among all the clusters.

When we look at the ZAFM simulation (Fig. 6f), it shows a much closer alignment with the real fire perimeter, 
effectively balancing overestimation and underestimation, both of which are relatively small. At first glance, it 
appears to be one of the best representations, however, to properly analyse this aspect, we used the quantitative 
metrics POD, FAR, and F2-score, which offer a more detailed evaluation of the simulation’s performance 
compared to what can be observed in the simulations.

Since this study consists of analysing the global accuracy for all scenarios compared to the real fire evolution, 
all these metrics have been evaluated for all scenarios using the real fire spread as the element to compare to.

To evaluate the performance of the different scenarios and the ZAFM methodology, we created a boxplot 
displaying the F2-score for the five clusters and the ZAFM scenario (represented by the orange dashed line), 
as shown in Fig. 7. The F2-score is the chosen metric for determining which simulation performs best, as it 
prioritizes the detection of burned areas while accounting for overestimation.

In Fig. 7 we can see that the ZAFM methodology achieves the highest F2-score, around 0.90, consistently 
outperforming all clusters. This indicates that ZAFM methodology is highly effective in predicting the burned 
areas, achieving a good balance between high detection rates and low overestimation. Cluster 5 shows the best 
performance among the clusters, with F2-scores mostly above 0.86 and the highest median score. This cluster’s 
performance is closest to ZAFM, suggesting that the scenarios in Cluster 5 are nearly as effective as ZAFM. 
Cluster 2 has the lowest F2-scores, with values clustering around 0.79 to 0.80. This suggests that the scenarios in 
Cluster 2 are less effective in predicting the burned areas, either due to underestimating the burned extent or 
overestimating non-burned areas.

Overall, the ZAFM method clearly outperforms the cluster groups, demonstrating its strength in creating 
high-resolution fuel maps that accurately predict fire spread. Clusters 5 and 1 are the closest in performance to 
ZAFM, but there is still a noticeable gap, highlighting ZAFM’s superior predictive capability.

Discussion
As just shown, the ZAFM methodology generates a fuel map that, for the case study, provides the best simulation 
of wildfire spread compared to 108 other simulations obtained from heuristically generated fuel maps. These 
maps highlight the complexity of the problem associated with creating accurate fuel maps, allowing for a fair 

Fig. 7.  Boxplot of F2-score for the clusters and for the ZAFM (orange dashed line).
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comparison between fuel maps of the same resolution. However, it is possible that none of these maps directly 
corresponds to an existing fuel map. For this reason, this section compares the simulation results obtained by 
applying the ZAFM methodology with two existing fuel maps of the study site. The selected methodologies were 
those for which publicly accessible fuel maps were available for download. The maps used include:

•	 The PREVINCAT fuel map with a 20m resolution for Catalonia22.
•	 The FIRE-RES Pan-European fuel map with a 100m resolution29.

The PREVINCAT fuel map was developed using LiDAR data to extract structural variables from the forest canopy, 
such as tree height, diameter, canopy cover, and basal area. Additionally, it incorporates existing information on 
vegetation formations across Catalonia22. The Pan-European fuel map FIRE-RES was generated using CORINE 
Land Cover 2018, ESA WorldCover 2021, the Aridity Index (AI) and a decision tree classification approach29. 
Another map that also covers Catalonia is the EFFIS European fuel map, which has a 250 m resolution28. 
However, this map could not be used because it contains areas with missing data within the study area, making 
it impossible to perform simulations.

Since the objective was to evaluate the performance of each fuel map, the simulations were carried out using 
the same input data as the one used for ZAFM. The only variable input in the simulations was the underlying 
fuel map. To enable simulations, each fuel map was reprojected to EPSG:25831 and cropped to match the extent 
of the study area. The simulation results have been included and can be seen in Fig. 8.

To make the comparison, the F2-score metric was used. Comparison of F2-scores on the three fuel maps 
reveals notable differences in simulation performance. The simulation based on the ZAFM methodology 
achieved the highest F2-score (0.90), followed by PREVINCAT (0.86), and finally FIRE-RES (0.84).

The PREVINCAT fuel map integrates high-resolution LiDAR-derived forest structure variables (such as 
height, diameter, canopy cover and basal area) together with detailed field-based vegetation formation data. This 
combination typically provides a very accurate representation of fuel characteristics. Consequently, the results 
using this map should initially be optimal. However, ZAFM outperforms PREVINCAT. The main reason for this 
result is temporal factors. PREVINCAT is based on data from 2016, generating an updated PREVINCAT map 
involves a lot of field work and manual actions that require a long period of time. By contrast, ZAFM uses more 
recent satellite-derived information from 2021, which is closer in time to the fire event.

In contrast, the FIRE-RES fuel map achieved the lowest F2-score. Although FIRE-RES and ZAFM share some 
input data (ESA WorldCover 2021) the lower resolution of FIRE-RES likely limits its ability to capture fine-scale 
fuel heterogeneity, which can lead to a slight reduction in accuracy compared to the other maps.

Overall, these results suggest that while detailed field and LiDAR-based maps like PREVINCAT are highly 
valuable, up-to-date information and finer resolution (as used in ZAFM) may play a decisive role in improving 
the predictive accuracy of wildfire simulations.

Conclusions
Extreme wildfire events (EWEs) are becoming one of the most serious natural hazards due to climate change. 
Dealing with this issue requires informed decisions based on a solid understanding of fire behaviour, for which 
fire spread simulators are essential. However, the accuracy of these simulations relies heavily on the quality of fuel 
maps, which are difficult to obtain, especially when high-resolution, up-to-date, and detailed maps are needed. 
To address this, we proposed the Zone-Adaptive Fuel Mapping (ZAFM) methodology, which offers a novel, 
consistent, and deterministic approach for converting high-resolution land cover maps into high-resolution 
fuel maps. ZAFM uses public resources and it adapts to local conditions, providing a more accurate picture of 
vegetation and fire behaviour. The proposal ZAFM methodology has been applied to a case study, El Pont de 
Vilomara wildfire that took place in 2022 in Catalonia, Spain. To carry out the experimental study, the FARSITE 
forest fire spread simulator was used. The evolution of the El Pont de Vilomara fire has been simulated using 
109 fuel map scenarios, 108 heuristic fuel maps derived by exploring all possible combinations of land cover 

Fig. 8.  Simulations obtained using (a) PREVINCAT fuel map, (b) FIRE-RES fuel map and (c) ZAFM 
methodology.
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categories matched to fuel models and the ZAFM scenario. The obtained burned areas have been compared 
to determine the accuracy of the proposal. The results show that ZAFM consistently outperforms all other 
fuel maps, achieving the highest value for the F2-score metric (approximately 0.90), which indicates a superior 
balance between accurately detecting burned areas and minimizing overestimation.

ZAFM was also compared with other publicly available fuel maps that cover Catalonia, and simulations 
were conducted for the case study to assess its performance against other methodologies. The results showed 
that ZAFM consistently outperformed the two other maps used in the comparison, suggesting that up-to-date 
information and higher resolution play a critical role in enhancing the predictive accuracy of wildfire simulations.

By relying on a consistent and zone-adaptive approach, ZAFM eliminates the subjectivity involved in the 
manual conversion of land cover data to fuel maps. This methodology provides a more reliable alternative for 
wildfire simulations and has the potential to be applied in various regions, contributing to more informed and 
effective fire mitigation strategies.

Data availability
The data that support the findings of this study are available from the corresponding author PS on request.
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