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Plasma extracellular vesicles (EVs) are cell-derived lipid particles and reportedly play a role in sepsis 
pathogenesis. This study aimed to identify EV cargo proteins in septic patients and explore their 
association with key sepsis pathophysiology. Plasma EVs were subjected to Tandem Mass Tag (TMT)-
based quantitative proteomic analysis. We identified 522 differentially expressed (DE) EV proteins in 
septic patients (n = 15) compared to the healthy controls (n = 10). The KEGG analysis of the DE proteins 
revealed multiple functional pathways linked to sepsis, e.g., complement/coagulation, platelet 
activation, phagosome, inflammation, and neutrophil extracellular trap formation. Weighted Gene 
Coexpression Network Analysis of 1,642 EV proteins identified nine unique protein modules, some of 
which were highly correlated with the sepsis diagnosis and diverse endotype markers including organ 
injury, inflammation, coagulopathy, and endothelial activation, and mortality. ROC analysis revealed 
a list of novel EV proteins that exhibited strong diagnostic performance. Cell type-specific enrichment 
analysis revealed the cellular origins of EVs, including immune and epithelial cells, neurons, and glial 
cells. Thus, the current study discovered complex proteomic signatures in plasma EVs that are closely 
associated with key pathophysiological responses in sepsis. These findings support the importance of 
EV cargo proteins in the patients’ immune responses, coagulation, and endothelial activation and lay 
the foundation for future mechanistic study of plasma EVs and their clinical application as potential 
diagnostic and prognostic markers.
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TCEP	� Tris(2-carboxyethyl) phosphine hydrochloride
CAA	� Chloroacetamide
TEAB	� Triethylammonium bicarbonate
TFA	� Trifluoroacetic acid
ACN	� Acetonitrile
MP	� Master pool
bRPLC	� basic pH reversed-phase liquid chromatography
HPLC	� High-Performance Liquid Chromatography
LC-MS/MS	� Liquid chromatography with tandem mass spectrometry
FA	� Formic acid
DDA	� Data-dependent acquisition
m/z	� mass-to-charge ratio
MS1	� Precursor mass
MS2	� Fragment mass
HCD	� Higher-energy collisional dissociation
FDR	� False discovery rate
SAM	� Sepsis signature proteins in plasma EVs
PPI	� Protein-Protein Interaction
ROC	� Receiver operating characteristic
PCA	� Principal Component analysis
DISCO	� Deeply integrated human single-cell omics
NTA	� Nanoparticle tracking analysis
GO-CC	� Gene ontology cellular components
EC	� Endothelial cell
MM	� Module membership
PS	� Protein significance
BUN	� Blood urea nitrogen
Cr	� Creatinine
PLT	� Platelet count
INR	� International normalized ratio
PTT	� Partial thromboplastin
PT	� Prothrombin time
WBC	� White blood cell count
Hg	� Hemoglobin
Hct	� Hematocrit
K	� Potassium
Na	� Sodium
PRM	� Parallel Reaction Monitoring

Sepsis is induced by a dysregulated host response to infection and characterized clinically by hyperinflammation, 
hemodynamic collapse, endothelial injury, coagulopathy, and multiple organ dysfunction1,2. Sepsis is the 
leading cause of in-hospital death in the United States3,4. While antibiotic therapy and supportive care such 
as vasopressor and fluid resuscitation have significantly improved sepsis survival in the past decades, further 
progress remains a challenge. Numerous clinical trials aimed at modulating the immune response have failed 
in part due to complex sepsis pathogenesis and high heterogeneity of septic patients in demographics, causative 
pathogens, organ involvement, and immune profiles5,6. To address these challenges, omics- and systems 
medicine-based approaches have been employed to identify sepsis endotypes based on gene expression patterns, 
immune response profiles, and pathophysiological outcomes5.

Extracellular vesicles (EVs) are cell-derived lipid particles with heterogeneous and biologically active cargo 
molecules containing various proteins and nucleic acids and have emerged as key mediators of intercellular 
communication under various physiological and pathophysiological conditions7,8. Given their multifaceted 
biological and pathophysiological effects, uncovering the protein composition of EVs could potentially reveal 
mechanisms of underlying diseases, promote the discovery of novel biomarkers, help risk stratification, and 
refine therapeutic targets9,10. In sepsis, EVs have been studied for their roles in pathophysiological responses 
such as inflammation, coagulation, and various organ dysfunctions11–14, and as potential biomarkers11,15. 
Identifying EV cargo proteins is a critical first step toward fully understanding the contents and functions of 
plasma EVs in human sepsis.

In the current study, we conducted mass spectrometry-based proteomic profiling of EV cargo using 
Tandem Mass Tag (TMT) technology for 15 septic patients admitted to the ICU and 10 healthy participants. 
The TMT-based proteomic method enables precise proteomic quantification and offers the advantages of high 
sensitivity, accuracy, and reliability of detection with minimal technical variability16. We identify a long list of 
proteins differentially expressed (DE) in septic EVs. Employing various bioinformatics tools such as the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO), we systematically analyze the 
functions of various differentially expressed proteins and their specific functional pathways. Using Weighted 
Gene Co-expression Network Analysis (WGCNA), we also investigate the module-trait relationship between the 
EV cargo proteins and various traits, such as multiple plasma endotype markers linked to sepsis pathophysiology 
and pathogenesis, as well as clinical laboratory and outcome data. The revelation of the functional pathways 
associated with the EV proteins offers a mechanistic insight into sepsis pathogenesis. Finally, ROC analysis 

Scientific Reports |        (2025) 15:21871 2| https://doi.org/10.1038/s41598-025-06430-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


identified a list of EV cargo proteins, some of them newly identified, that exhibited strong diagnostic performance 
for sepsis.

Results
Patient cohort
The enrollment criteria include (1) with a clinical, surgical, or radiological identified source of infection, (2) 
having organ dysfunction with SOFA score ≥ 4, and (3) between the ages of 18 and 80 years. A cohort of 15 septic 
patients with a mean age of 53.7 (23–78) years was enrolled for this study, and 53% of them were male. Similarly, 
a cohort of 10 healthy controls with a mean age of 40.4 (25–66) years was included. The average SOFA score for 
the 15 septic patients at admission was 11.3 (range 6–18) and the 28-day mortality rate was 26.7%. A detailed 
summary of the demographic and clinical laboratory data can be found in Table 1.

Plasma EV characterization
As illustrated in Fig. 1, we isolated plasma EVs from 10 healthy control (HC) individuals and 15 septic patients 
using ultracentrifugation. While the method has a limitation of EV purity, it has been widely used and accepted 
with a higher yield than other methods. To enhance EV purity, we optimized the EV isolation steps by increasing 
the number of washing and ultracentrifugation cycles using control plasma samples. Three rounds of washing 
and ultracentrifugation enabled us to identify the highest percentage of exosome proteins, according to the 
comparison with the ExoCarta Top 100 list, enriching exosome proteins to 7.33% with the 409 total identified 
proteins (Supplementary Table S1). Thus, we used the three times of ultracentrifugation and washing to enrich 
EVs using plasma samples from sepsis patients and HC individuals. After the EV enrichment, we conducted a 
nanoparticle tracking analysis (NTA) to evaluate the density and size of the isolated EV samples. The numbers 
of plasma EVs were 5.8 ± 3.8 × 109/mL and 16.6 ± 11.3 × 109 /mL (mean ± SD) in the HC individuals and septic 
patients, respectively (Fig.  2A). The number of septic EVs showed a significant increase compared to HC 
EVs, with P value of 0.0031. The average sizes of the isolated EVs were 98.9 ± 9.4 nm in HC individuals and 
100.2 ± 10.1  nm in septic patients (Fig.  2B), with overall even size distributions between the sepsis patients 
and HC individuals (Fig. 2C). Additionally, we examined the relative abundance of CD9 and Alix (PDCD6IP), 
markers of endosomal EVs by immunoblotting (Fig.  2D and Supplementary Figure S1). Alix is reportedly 
crucial for exosome formation and secretion, while CD9 is a tetraspanin protein expressed on the exosome 
surface17. Across all samples from HC individuals and septic patients, Alix (PDCD6IP) and CD9 were found on 
the expected sizes. Of note, both Alix (PDCD6IP) and CD9 were confirmed in the EV-enriched proteomes, but 
not in the corresponding plasma proteomes (Supplementary Tables S3 and S15).

Proteomic profiling of EV cargo proteins
To profile plasma EV cargo proteins, we conducted the TMT-based quantitative proteomic analysis of the EV 
proteins. We acquired 1,918,398 MS/MS spectra with 154,249 spectra matched to peptides. This resulted in the 
identification of 18,348 peptides and 2371 proteins. A total of 1642 proteins were quantified across all 25 samples 
without any missing values (Supplementary Table S2 and S3). The statistical analysis revealed 522 proteins that 
were differentially expressed with a q-value < 0.05, which represents a False Discovery Rate (FDR), in septic 
patients as compared to healthy individuals (Fig.  3A). Out of the 522 differentially expressed proteins, 301 

Healthy (n = 10) Sepsis (n = 15)

Age (years) 40.4 (25–66) 53.7 (23–78)

Sex (M/F) 2/8 8/7

Ethnicity

 Black 2 (20%) 4 (26.7%)

 Asian 0 (0%) 1 (6.7%)

 Hispanic 0 (0%) 0 (0%)

 White 8 (80%) 10 (66.7%)

 Other 0 (0%) 0 (0%)

SOFA score 11.3 (6–18)

ICU stay (Day) 18.1 (4–54)

28-day Mortality 4 (26.7%)

Hematology Labs

 INR (≤ 1.2) 1.6 (1.1-3)

 PTT (30–40 s) 37.2 (23–66)

 Platelets (150–300 × 10^3/µL) 195.7 (41–445)

Chemistry Labs

 Lactate (< 2 mmol/L) 2.8 (1-11.5)

 Creatinine (0.7–1.3 mg/dL) 1.7 (0.38–3.34)

Table 1.  Demographic and clinical data of septic and healthy subjects. Demographics with average (range) or 
count (percent). INR, international normalized ratio; PTT, partial thromboplastin time.
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proteins were upregulated, which included neutrophil defensin 1 and 3 (DEFA1, DEFA3), ADP-ribosylation 
factor 5 (ARF5), nicotinamide phosphoribosyl transferase (NAMPT), histone H4 (H4C1), mitogen-activated 
protein kinase 4 (MAPK4), C-reactive protein (CRP), serum amyloid A-1 protein (SAA1), histone HIST2H3PS2 
(H3-2), histone H2A type 2-C (H2AC2). Among the 221 downregulated EV proteins from the lowest q-value 
were CD5 antigen-like (CD5L) proteins, haptoglobin-related protein (HPR), Immunoglobulin heavy constant 
mu (IGHM), Immunoglobulin heavy variable 2–5 (IGHV2-5), Immunoglobulin heavy variable 3/OR16-
13 (IGHV3OR16-13), Immunoglobulin lambda variable 3–27 (IGLV3-27), and apolipoprotein L1 (APOL1) 
(Supplementary Table S4).

To assess potential sex differences in EV proteomes, we compared EV proteomic profiles between male and 
female subjects in both the combined cohort and the sepsis group alone. The statistical analysis results indicated 
no difference in EV proteomes between male and female subjects in both comparisons (Supplementary Figure 
S2).

To evaluate the discrimination capability of the differentially expressed proteins between the sepsis and 
control groups, we conducted principal component analysis (PCA) of the 522 differentially expressed EV 

Fig. 1.  TMT-based quantitative proteomic analysis of plasma EVs in septic and healthy subjects. Human 
plasma samples were prepared from 15 septic patients and age/sex-matched 10 HC individuals. Plasma 
extracellular vehicles (EVs) were purified using ultra-centrifugation. Cargo proteins were extracted from EVs 
using ultra-sonication and subsequently subjected to reduction, alkylation, and enzymatic digestion. The 
peptides were then labeled with TMT reagents and separated into 24 fractions before being subjected to mass 
spectrometry and statistical and bioinformatic analyses.
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proteins, which revealed a clear separation between the two groups with no overlap (Fig. 3B). Of note, five of the 
fifteen sepsis samples were positioned outside the 95% confidence interval in the PCA plot. Since we used two 
TMT experimental batches, we examined whether the batch effect affected this variation within the group, but 
did not observe any obvious batch effect (Supplementary Figure S3). Therefore, the observed distribution of the 
five samples likely reflects the patient heterogeneity, rather than technical artifacts.

To determine functional pathways associated with the differentially expressed proteins, we conducted KEGG 
pathway18 analysis and identified the multiple enriched pathways that include the complement and coagulation 
cascades as the most enriched pathway with the lowest P value (56.08 of -Log10 (P value)), followed by phagosome 
pathway, malaria infection-related pathways, neutrophil extracellular trap formation, platelet activation pathway 
and a number of other pathways (Fig.  3C, Supplementary Table S5). Supplementary Figure S4 illustrates 30 
out of 138 proteins in the complement and coagulation systems, which were the most enriched according to 
the KEGG analysis and their functionally associated pathways. To investigate further the key proteins in the 
enriched pathways of the differential EV proteins, we conducted protein-protein interaction (PPI) analyses using 
the STRING database (Supplementary Figure S5A ~ S5D). Among the proteins enriched in the complement and 
coagulation cascades pathway, proteins such as Fibrinogen alpha chain (FGA), Vitronectin (VTN), and Plasma 
protease C1 inhibitor (SERPING1) were the key proteins (Supplementary Figure S5A). Among the proteins 
enriched in the phagosome pathway, which is most enriched after the complement and coagulation cascades, 
Platelet glycoprotein 4 (CD36), Integrin alpha-M (ITGAM), and Integrin beta-2 (ITGB2) were shown as the 
key proteins (Supplementary Figure S5B). In the Malaria pathway, which implies a response to an infection, 
ICAM1, CD36, and Platelet endothelial cell adhesion molecule (PECAM1) were among the important proteins 
(Supplementary Figure S5C). In the neutrophil extracellular trap formation pathway, ICAM1, ITGB2, and 
Low-affinity immunoglobulin gamma Fc region receptor II-a (FCGR2A) were among the important proteins 
(Supplementary Figure S5D). Subsequently, we conducted a Gene Ontology Cellular Components (GO-
CC) analysis to determine the subcellular origins of the differentially expressed proteins in the EVs (Fig. 3D 
and Supplement Table S6). The extracellular space was the most enriched cellular compartment, followed by 
extracellular region, extracellular exosome, extracellular vesicle, extracellular organelle, and extracellular 
membrane-bound organelle in the analysis. These GO-CC results suggest that the differentially expressed EV 

Fig. 2.  Characterization of plasma EVs from septic patients and health controls. The concentration of EVs 
(A) and the mean EV size (B) isolated from the plasma of Healthy control (Control) individuals and septic 
patients (Sepsis) were quantified using a nanoparticle tracking analysis (Viewsizer 3000, Horiba Scientific). 
Comparative analysis was conducted based on EV samples from 15 septic patients and 10 HC individuals. The 
bar in the middle of the dots indicates the mean value. An unpaired t-test was used for the statistical analysis 
(**: P ≤ 0.01, and ns: not significant). (C) The representative size distribution for two EV samples is presented. 
(D) Western blot of Alix (PDCD6IP) and CD9 in the EVs isolated from a group of HC individuals and septic 
patients. Alix: PDCD6IP (Programmed cell death 6-interacting protein), CD9: tetra-spanin membrane protein.
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proteins in septic patients are primarily derived from extracellular compartments, confirming their origin within 
the EV proteome and highlighting the extracellular space and vesicle-related compartments as major sources. 
In addition to GO-CC, GO Molecular Function (GO-MF) analysis of the differentially expressed EV proteins 
revealed enrichment for antigen binding and various protein binding activities. GO Biological Process (GO-BP) 
analysis of the differentially expressed proteins revealed enrichment for immune system processes, including 
adaptive immune response, immune effector processes, and leukocyte-mediated immunity (Supplementary 
Figure S6).

EV protein clusters are closely correlated with sepsis diagnosis
To further understand the potential role of the EV cargo proteins in sepsis pathophysiology, we conducted 
WGCNA with the total EV proteins that have been quantified – with or without differential expression – 
and obtained protein clusters (modules) that have similar expression patterns across the plasma samples 
(Supplementary Figures S7-S8), representing a group of proteins potentially from the same pathways19. The 
WGCNA was conducted using all quantified EV proteins, regardless of statistical significance. This approach 
allows for unbiased detection of protein co-expression modules, capturing biologically relevant patterns that 
might be overlooked when restricting the analysis only to differentially expressed proteins. The WGCNA yielded 
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9 modules (Supplementary Table S7). Among them, the M3, M4, and M6 modules exhibited the highest correlation 
with the sepsis diagnosis (P value ≤ 0.001) followed by M5 and M7 with 0.01 < P ≤ 0.05 (Fig. 4A, Supplementary 
Table S8). Interestingly, M3 and M4 modules were negatively correlated with the sepsis diagnosis trait, showing 
down-regulation of the eigenprotein (meta-expression profile of the proteins in the module) in sepsis (Figs. 4B 
and D), while the M5, M6, and M7 modules were positively correlated with the sepsis diagnosis, showing up-
regulation of eigenprotein (Figs. 4F, H, and J). To find key proteins, we examined module membership (MM) 
and protein significance (PS) values in each module. For the M3 module, Haptoglobin-related protein (HPR), 
Hepatocyte growth factor activator (HGFAC), and CD5L were the key proteins, exhibiting high correlation with 
sepsis diagnosis and strongly representing the M3 module. (Fig. 4C). These proteins are considered as key proteins 
involved in the sepsis pathogenesis process. For the M4 module, Apolipoprotein L1 (APOL1), Apolipoprotein 
A1 (APOA1), and Myeloid and Erythroid Nuclear Termination Stage-Specific Protein (MENT) were the key 
proteins, exhibiting high correlation with sepsis diagnosis and strongly representing the M4 module. (Fig. 4E). 
For the M5 module, H4C1, MAPK4, and Histone 3.1 (H3C1) are the key proteins, exhibiting high correlation 
with sepsis diagnosis and strongly representing the M5 module. (Fig. 4G). For the M6 module, Defensin A1 
(DEFA1), High-affinity immunoglobulin epsilon receptor subunit gamma (FCER1G), and Leukosialin (SPN) 
were the key proteins, exhibiting high correlation with sepsis diagnosis and strongly representing the M6 module 
(Fig. 4I). Similarly, in the M7 module, CRP, Lipopolysaccharide-binding protein (LBP), and Ceruloplasmin (CP) 
were the key proteins, exhibiting a high correlation with sepsis diagnosis and strongly representing the M7 
module. (Fig. 4K). It is noteworthy that the M8 module was significantly associated with sepsis-related mortality, 
showing higher eigenprotein expression in non-survivors than in survivors (P < 0.01; Fig. 4L). Although the M8 
module did not show a significant correlation with sepsis diagnosis, MM-PS analysis revealed a moderate but 
significant correlation (cor = 0.5, P = 0.00064; Fig. 4M). SERPINA7, A1BG, and THBS2 were identified as key 
proteins in the M8 module, showing strong correlation with sepsis mortality.

EV protein clusters are associated with pathophysiological markers of sepsis
The pathophysiology of sepsis is complex and heterogeneous from patient to patient. To capture this, we designed 
a set of plasma markers known to be linked to sepsis pathophysiology, including organ injury, coagulation, 
inflammation, and endothelial cell (EC) activation. As illustrated in Fig. 4A, using a Luminex multiplex platform 
and clinical laboratory tests, we measured the plasma samples from the two groups of participants for their 
organ injury markers (S100B, enolase2, Tie-2, angiopoietin-1, angiopoietin-2, BUN, Cr, SOFA), coagulation 
markers (vWF-A2, thrombomodulin/BDCA-3, P-selectin/CD62P, ADAMTS13, coagulation factor III/tissue 
factor, serpin C1/AT-III, serpin E1/PAI-1, CXCL4/PF4, D-dimer, Platelet, INR, PTT, PT), inflammation markers 
(IL6, IL1β, TNFα, IL8, CXCL2, WBC), EC activation markers (syndecan1, VCAM-1, ICAM-1, E-selectin), 
hemogram (Hg, Hct, Hg, K, Na, Lactate), and the clinical outcomes (length of ICU stay, 28-day mortality).

We discovered that all the plasma markers in the Luminex panel, except for CXCL2 and Tie2 (Angiopoietin-1 
receptor), were markedly upregulated in the septic cohort compared with the healthy controls (Supplementary 
Table S9). Moreover, as shown in Fig. 4A, the modules highly related to sepsis diagnosis, such as M3, M4, M5, 
M6, and M7, were significantly correlated to sepsis-related pathophysiological markers. Among the markers, 
M3 module were highly correlated with Angiopoietin-1, ADAMTS13, CXCL4/PF4, IL1β, TNFα, and E-selectin, 
whereas M4 module was closely correlated with angiopoietin-1, thrombomodulin, Coagulation factor/tissue 
factor, serpin C1/AT-III, CXCL4/PF4, IL1β, syndecan-1, and VCAM-1. The correlated traits with the M5 module 
were S100B, Enolase2, Serpin E1/PAI-1, and D-dimer. For M6 module, thrombomodulin/BDCA-3, P-selectin/
CD62P, ADAMTS13, IL1β, and TNFα are significantly regulated. In M7 module, there were no traits correlated 
with P ≤ 0.01. Interestingly, in the right panel of Fig. 4A, the WBC traits exhibited a high correlation with the M6 
module, which, not surprisingly, may suggest that M6’s correlation with the coagulation and inflammation traits 
are probably linked to circulating WBC or vice versa.

Fig. 3.  Proteomic analysis of differentially expressed EV proteins in septic patients compared to HC 
individuals. (A) A volcano plot for the plasma EV proteins from 15 septic patients and 10 HC individuals. 
The x-axis represents the fold-change of septic patients/HC individuals in the Z score scale (a standardized 
measure that indicates how far a data point is away from the mean of a distribution. Z score of 1 presents 1 
standard deviation). The y-axis represents the P value of statistical analysis in -Log10 scale. The curved lines 
indicate the boundary for a q-value of 0.05. Proteins with q < 0.05 are differentially expressed in septic patients, 
and representative proteins among them are highlighted in red. (B) Principal Component Analysis (PCA) 
for the 522 differentially expressed EV proteins between septic (n = 15) and HC individuals (n = 10). (C) The 
enriched pathways in the KEGG Pathway analysis18 were displayed using the GO plot package. The GO plot 
shows the up/down-regulation of differentially expressed proteins in sepsis, displaying the –Log10 (P value) 
and z-score values for each pathway. The red circles represent upregulated proteins in each pathway, while the 
blue circles represent downregulated proteins. The size of the trapezoids in the inner circle of the GO circle 
reflects the –Log10 (P value) of the enriched pathway. The color of the trapezoids corresponds to the z-score. 
The z-score in the package is calculated as follows: z-score = (the number of upregulated proteins – the number 
of downregulated proteins)/square root (the number of proteins). (D) GO analysis of Cellular Components 
(GO-CC) describes where the differentially expressed EV proteins originate from. GO-CC enrichment analysis 
selected the top 11 as representative lists based on –Log10 (P value). The count represents the number of 
enriched proteins in GO terms. The % represents the proportion of genes in the input list associated with the 
specific GO term.

◂
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Another noticeable result in WGCNA was that the M8 module showed a high correlation with 28-day 
mortality even though it was not correlated to sepsis diagnosis. Since the M8 module is highly correlated with 
the traits related to coagulation (vWF, coagulation factor III, and PTT) and EC activation (syndecan1, VCAM1, 
and ICAM1), it suggests that these traits may be connected to the 28-day mortality in these septic patients. 
To investigate mortality-associated proteomic changes, we compared plasma EV proteins between sepsis non-
survivors (n = 4) and healthy controls (n = 10). This analysis revealed 245 significantly altered proteins (q < 0.05). 
In contrast, the comparison between survivors (n = 11) and controls revealed 623 significantly altered proteins 
(Supplementary Figure S9). In addition, the M8 module was significantly correlated with 28-day mortality, as 
determined by comparing sepsis survivors and non-survivors. Out of 43 proteins in the M8 module, 15 proteins 
were significantly elevated in sepsis patients who died within 28 days compared to survivors (Supplementary 
Figure S10). Among these, PKM, A1BG, HPX, and SERPINA7 not only showed increased abundance in the 
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mortality group but were also significantly different between healthy controls and sepsis patients, highlighting 
their potential as both diagnostic and prognostic biomarkers for sepsis-related mortality. These findings also 
suggest distinct EV proteomic signatures associated with sepsis survival outcomes.

Figure 5 shows the top player proteins in each of these EV protein modules that showed a close correlation 
with the physiological traits of sepsis. Specifically, we plotted PS and MM of each protein in the modules to 
determine significant proteins from M3 to M6 modules in relation to their respective top 4 traits beside sepsis 
diagnosis trait with significant correlation with P ≤ 0.01 (Figs. 5 and Supplementary Table S8). Other traits that 
exhibited significance at P < 0.01 in the M3 (A), M4 (B), and M6 (C) modules, but not presented in Fig. 5, are 
displayed in Supplementary Figure S11.

Cell-type and pathway analyses of the WGCNA module proteins
Since the M3, M4, and M6 modules were identified as critical modules showing strong correlations with the 
sepsis diagnosis (P ≤ 0.001), and to a lesser degree with M5 and M7 modules (0.001 < P ≤ 0.01), each of the 
five modules was subjected to cell-type as well as KEGG pathway enrichment analysis to identify the specific 
cell types from which the proteins are originated and the functional pathways they belong to. We utilized the 
DISCO database, which contains information on cell-type marker genes annotated through single-cell RNA 
sequencing, and the top 10 enriched cell types were selected based on -Log10 (P value) (Fig. 6). The M3 proteins 
were enriched mainly for epithelial cells, immune cells, glial cells, and fibroblasts (Fig. 6A). The most enriched 
pathways for these proteins were the complement and coagulation cascades by KEGG pathway analysis (Fig. 6B, 
Supplementary Table S12). Since the M3 proteins were mostly downregulated in sepsis, these data suggest that 
the M3 proteins related to the pathways were likely downregulated during sepsis, such as coagulation factor 
V (F5) in the coagulation cascade and C4b-binding protein (C4BP) in the complement cascade (Supplement 
Figure S1 and Supplement Table S4). The M4 proteins were enriched for fibroblasts, immune cells, epithelial 
cells, and neuronal cells, and functionally linked to the proteasome pathway (Fig. 6C-D). The M5 module was 
enriched for immune cells and mainly related functionally to proteasome and metabolic pathways (Fig.  6E-
F). The M6 proteins were enriched for hematopoietic stem cells and arterial endothelial cells and functionally 
related to actin cytoskeleton, leukocyte trans-endothelial migration, and platelet activation (Fig. 6G-H). The M7 
module was enriched for neuronal cells, melanocytes, epithelial cells, and fibroblasts (Fig. 6I). The complement 
and coagulation cascades were the most enriched pathway for the M7 module (Fig. 6J). The module proteins 
are related to the upregulation of the pathways, such as CD59 in the complement cascade and coagulation 
factor X (F10) in the coagulation cascade (Supplement Figure S1 and Supplement Table S4). Finally, to access 
key proteins in each related pathway, we conducted interactome analysis for the modules using STRING 
PPI (Supplementary Figure S12- S16, Supplementary Table S11). While C1Q family proteins related to the 
complement and coagulation cascades are noticeable in the M3 module, the apolipoprotein family in the M4 
module was examined significantly. In the M5 module, proteins related to metabolic pathways, such as the 
Elongation factor family (EEF), Alcohol dehydrogenase 6 (ADH6), and histone proteins, were key proteins. In 
the M6 module, Cell division control protein 42 homolog (CDC42) and Profilin-1 (PFN1) in the actin filament 
organization and proteins of some integrin beta (ITGB) family in the extracellular matrix organization were 
significantly detected, while in the M7 module, Antithrombin-III (SerpinC1) and Complement factor I (CFI) 
were key proteins.

Selection of EV proteins highly correlated with the sepsis diagnosis
Finally, to test the discrimination abilities of EV candidate markers for sepsis, we performed ROC analyses on 
the 522 differentially expressed proteins in the sepsis cohort (Supplementary Table S13). We selected the top 
highly discriminative proteins in AUCs > 0.8 with a significant Z score as shown in Table 2. With the Z score, we 
narrowed down the proteins more correlated with the sepsis diagnosis among many strong AUC proteins. The 
candidates, all closely associated with sepsis diagnosis, are grouped in the four functional pathways − complement 
and coagulation cascade, immune responses, endothelial activation and metabolic pathways. Integrin beta-
2 (ITGB2), von Willebrand factor (VWF), and Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) are the 

Fig. 4.  The module–trait relationships by the WGCNA analysis of plasma-derived EV proteome data. (A) 
A heatmap illustrating Pearson correlations between eigenprotein expression levels of 9 WGCNA modules 
and the values of the sepsis-related traits of the plasma samples. The meanings of abbreviations for the traits 
in clinical lab data are as follows: BUN: blood urea nitrogen, Cr: creatinine, SOFA: sequential organ failure 
assessment, PLT: platelet count, INR: international normalized ratio, PTT: partial thromboplastin, PT: 
prothrombin time, WBC: White blood cell count, Hg: hemoglobin, Hct: hematocrit, K: potassium, and Na: 
sodium. The correlations were color-coded on a scale ranging from 1 (indicating a positive correlation, red) to 
-1 (indicating a negative correlation, blue). The size of each circle corresponds to the P value, while the color 
indicates the correlation value. (B, D, F, H, J, L) Relative eigenprotein abundances for the modules that showed 
a significant correlation with the sepsis diagnosis were shown on the box plots; M3 (B), M4 (D), M5 (F), M6 
(H), and M7 (J). (L) Relative eigenprotein abundance for the M8 module that showed a significant correlation 
with the sepsis-related mortality was shown on the box plot. (C, E, G, I, K, M) MM-PS plots show the 
relationship between the module membership (MM) for each module and protein significance (PS) for sepsis 
diagnosis; M3 (C), M4 (E), M5 (G), M6 (I), and M7 (K). (M) MM-PS plots show the relationship between 
MM for M8 and PS for the sepsis-related mortality. The key driving proteins were marked by black arrows in 
the plots. An unpaired t-test was used for the statistical analysis of eigenprotein expression (*, P < 0.05; ***, 
P < 0.001; ****, P < 0.0001).
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Fig. 5.  The Module membership (MM) and protein significance (PS) plots in the M3-M6 modules. The 
traits in Luminex that correlate to M3 ~ M6 modules in P ≤ 0.01 were selected to analyze MM-PS plots and 
find significant proteins in sepsis pathophysiology. (A) MM-PS plots show the relationship between module 
membership (MM) for the M3 module and protein significance (PS) for the top 4 traits except diagnosis 
(TNFα, ADAMTS13, CXCL4/PFA4, IL1β). The key driving proteins were marked by black arrows. The protein 
list in the plot is presented in Supplementary Table S8. (B) MM-PS plots show the relationship between MM 
for the M4 module and PS for the top 4 traits except diagnosis (Syndecan1, Angiopoietin-1, Serpin C1/AT-III, 
CXCL4/PF4). (C) MM-PS plots show the relationship between MM for the M5 module and PS for the top 4 
traits except diagnosis (D-dimer, SERPINE1, S100B, and Enolase2). (D) MM-PS plots show the relationship 
between MM for the M6 module and PS for the top 4 traits except diagnosis (TNFα, P-selectin/CD62P, 
thrombomodulin/BDCA3, ADAMTS13).
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Fig. 6.  Cell-type enrichment and pathway analysis of the EV proteins in the M3, M4, M5, M6, and M7 
modules. (A, C, E, G, I) Cell-type enrichment analysis for proteins in the modules using the DISCO database, 
highlighting the top 10 enriched cell types for each module, based on -Log10 (P value). Each bar color 
represents a specific cell type. (A) is for M3, (C) for M4, (E) for M5, (G) for M6, and (I) for M7. (B, D, F, H, J) 
KEGG pathway analysis for the modules was performed and the top 10 significant pathway terms were selected 
for each module based on P value, showing upregulated pathways in red and downregulated pathways in blue. 
(B) is for M3, (D) is for M4, (F) is for M5, (H) is for M6, and (J) is for M7.

 

Scientific Reports |        (2025) 15:21871 11| https://doi.org/10.1038/s41598-025-06430-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


top three of the upregulated markers in the complement and coagulation pathways. ADP-ribosylation factor 5 
(ARF5), Golgi-associated plant pathogenesis-related protein 1 (GLIPR2), and Sphingosine 1-phosphate receptor 
4 (S1PR4) are the top three of them in the immune responses, while Neutrophil defensin 1 (DEFA1), DFEA3, 
and S100-A9 (Protein S100-A9) are the top three in the endothelial activation. H4C1 (Histone H4), MAPK4 
(Mitogen-activated protein kinase 4), and SLC16A3 (Monocarboxylate transporter 4) are the top three in the 
pathways related to metabolism. While these proteins seemed highly correlated to sepsis diagnosis in a positive 
way, HPR (Haptoglobin-related protein), HGFAC (Hepatocyte growth factor activator), TNN (Tenascin-N), 
APOL1 (Apolipoprotein L1), and PF4 (Platelet factor 4) are correlated to sepsis diagnosis in a negative way.

Subsequently, we constructed a multivariate analysis model to evaluate the discriminative potential of the 
differentially expressed proteins. A multivariate exploratory Receiver Operating Characteristic (ROC) curve 
analysis revealed the strong discriminatory potential of the model with high predictive accuracy (Supplemental 

Gene name Gene description AUC Z score References

Complement and Coagulation Cascade

Upregulation

ITGB2 Integrin beta-2 0.96 1.44 23

VWF von Willebrand factor 0.95 1.96 24

ITIH4 Inter-alpha-trypsin inhibitor heavy chain H4 0.94 1.39 28

SERPINE1 Plasminogen activator inhibitor 1 (PAI-1) 0.91 1.32 63

SAA1 Serum amyloid A-1 protein 0.93 2.68 64

SERPINA1 Alpha-1-antitrypsin 0.86 1.92 38

Downregulation

PF4 Platelet factor 4 0.97 -2.77 65

Immune responses

Upregulation

ARF5 ADP-ribosylation factor 5 1 1.40 29

GLIPR2 Golgi-associated plant pathogenesis-related protein 1 1 1.79 30

S1PR4 Sphingosine 1-phosphate receptor 4 0.99 1.45 31

SPN Leukosialin 0.97 1.58 33

CXCR2 C-X-C chemokine receptor type 2 0.92 1.65 66

Downregulation

HGFAC Hepatocyte growth factor activator 1 -2.09 34

HPR Haptoglobin-related protein 0.98 − 3.32 35

Endothelial activation

Upregulation

DEFA1 Neutrophil defensin 1 0.99 2.04 36

DEFA3 Neutrophil defensin 3 0.99 2.01 36

S100A9 Protein S100-A9 0.99 1.52 37

S100A8 Protein S100-A8 0.96 1.56 37

CDC42 Cell division control protein 42 homolog 0.86 0.81 39

Downregulation

TNN Tenascin-N 0.97 -2.71 67

Metabolism

Upregulation

H4C1 Histone H4 0.99 2.64 44

MAPK4 Mitogen-activated protein kinase 4 0.97 2.58 40

SLC16A3 Monocarboxylate transporter 4 0.97 1.97 41

CP Ceruloplasmin 0.96 1.51 42

H3C1 Histone H3.1 0.95 2.15 44

Downregulation

APOL1 Apolipoprotein L1 0.99 -3.16 45

Table 2.  ROC analysis of selected EV cargo proteins correlated highly with sepsis diagnosis. The ROC analysis 
was performed to estimate the discriminating power between the sepsis and control groups for the selected 
driving proteins in the M3, M4, M5, M6, and M7 modules overlapped with differentially expressed proteins in 
sepsis with q ≤ 0.05. Among the proteins with AUC ≥ 0.8, the top 5 to 6 in the highest Z score (upregulation) 
or one or two of the lowest Z score (downregulation) were selected, which represent intense discrimination 
and most fold changes. The values in parentheses indicate the lower and upper AUC values within the 95% 
confidence interval of the repeated AUC analyses conducted by 500 bootstrappings.
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Figure S17 and Supplemental Table S18). Notably, the predictive accuracy increased as the number of selected 
variables increased, plateauing at 94.2% when 15 or more features were included. ROC curve analysis further 
confirmed the robustness of the models, with Area Under the Curve (AUC) values ranging from 0.980 (95% CI: 
0.884–1) for 5 features to 0.999 (95% CI: 1–1) for 100 features. Feature importance analysis identified several 
top-ranked discriminative proteins contributing to group separation. Among the top features ranked by average 
importance were PF4, APOL1, and HPR, followed by several immunoglobulin variants (such as IGHV3OR16, 
IGLV4-60, IGLV3-27), histone proteins (such as H3-2, H2AC20, H4C1), and acute-phase proteins (such as 
SAA1 and APOA1). These proteins collectively enhanced the predictive power of the multivariate model for 
distinguishing between control and sepsis groups.

EV cargo proteome vs. plasma proteome
Although the EV cargo proteins could be a useful resource for the sepsis diagnosis, many of the EV proteins, such 
as vWF and SERPINE, can be detectable from the plasma proteome (Supplementary Table S14). We compared 
the EV cargo proteome with the plasma proteome from the same subjects. Plasma proteome analysis identified 
8,658 peptides (Supplementary Table S15) and 1,072 proteins (Supplementary Table S16), of which 309 were 
differentially expressed in the sepsis patients (Fig. 7A, Supplementary Table S17). Among the 1072 proteins, 797 
proteins were shared between plasma and EV proteomes, and 275 and 1574 proteins were unique in the plasma 
and EVs, respectively (Fig. 7B). Among the 309 differentially expressed proteins in the plasma proteome, 116 
proteins were shared between plasma and EV proteomes, and 193 and 406 proteins were unique in the plasma 
and EVs, respectively (Fig. 7C). Among the 406 differentially expressed proteins unique to EVs, 302 proteins 
were quantified only in EV, while 104 proteins were quantified in both EV and plasma proteome but differential 
only in EV proteome. This data suggests that ~ 50% (104 out of 220 proteins) of the plasma proteome that overlap 
with the differential EV proteome were not differential in the plasma proteome, emphasizing the importance of 
analyzing EV proteome to understand the functional pathways of sepsis. To better understand the correlation 
between the expression level of EV and plasma proteome, we conducted a correlation analysis between them. 
The median correlation coefficients between EV and plasma proteome were ~ 0.42 for total proteomes (Fig. 7D) 
and ~ 0.65 for differentially expressed proteins (Fig.  7E), indicating a moderate correlation between them. 
These results suggest that a significant number of potential sepsis-related proteins identified from EVs would 
not be detectable or not differential in the plasma proteome, emphasizing the importance of EV proteins in 
understanding sepsis functional pathways.

Discussion
Using TMT-based deep proteomic profiling, we discovered more than 500 EV cargo proteins differentially 
expressed in septic patients when compared to that of healthy controls. Network analysis identified four 
functional pathways linked to these EV proteins: complement and coagulation cascades, inflammation and 
immune responses, endothelial activation and vascular injury, and proteins related to metabolism. These 
functional pathways are linked to and have been characterized as an integrated part of the complex sepsis 
pathophysiology that determines the clinical outcome of sepsis, suggesting the importance of EV proteome 
signatures in sepsis pathogenesis.

Sepsis is often associated with complement and coagulation dysfunction20,21. Supporting the role of plasma 
EVs in sepsis pathogenesis of innate immune activation and procoagulation, the bioinformatics analysis with 
KEGG pathway and STRING PPI revealed the complement and coagulation cascades and platelet activation as 
the most enriched pathways associated with the EV cargo proteins. Moreover, as detailed in Table 2, several top 
players in septic EVs associated with complements and coagulation cascades have high AUC values, suggesting 
their potential role in the sepsis pathophysiology. ITGB2 (CD18), an important integrin expressed on leukocytes, 
consists of a part of the complement receptor complexes CD11a/CD18 and CD11b/CD18 and binds to ICAM-1 
on endothelial cells22, affecting neutrophil function in sepsis23. VWF is reportedly increased in septic patients24 
and contributes to endothelial cell dysfunction25. WVF also has been studied as a sepsis biomarker candidate 
with ADAMTS13 and has been integrated into clinical use in conjugation with other clinical parameters26. 
SERPINE1 or plasminogen activator inhibitor 1 (PAI-1) inhibits plasminogen activation to lead to impaired 
fibrinolysis, which is important to prevent excessive clotting27. ITIH4 (Inter-alpha-trypsin inhibitor heavy chain 
H4) has not been well studied in sepsis but the upregulation of ITIH4 is detected in LPS-induced systemic 
inflammation of pigs28.

We identified a few enriched pathways that are closely related to inflammation and host immune responses, 
such as phagosome, infection-related pathways, endocytosis, and chemokine signaling pathways. The top 
proteins with high AUC values are ARF5, GLIPR2, S1PR4, CXCR1, SPN, CXCR2, HGFAC, and HPR. ARF5 
is involved in the ADP-ribosylation factor family of guanine-nucleotide-binding (G) proteins and primarily 
associated with membrane traffic29. GLIPR2 plays a role in innate immune regulation related to Toll-like 
receptor 430. S1PR4 is abundant in immune cells, suggesting that the increased S1PR4 may be involved in the 
dysregulated immune response in sepsis31. Blocking of CXCR1 and CXCR2 is reported to attenuate the severity 
of lipopolysaccharide-induced hyperinflammation32. SPN is expressed on most leukocytes including T-cells, 
neutrophils, and monocytes, and promotes inflammation through induction of proinflammatory cytokines such 
as TNFα, IL12, and IL633. Among the downregulated EV cargo proteins, HGFAC has not been studied in sepsis, 
but HGF was studied as an anti-inflammatory regulator in sepsis34, which indicates a potential role of HGFAC 
on sepsis-associated inflammation. HPR in septic plasma is reported higher in septic patients than in those only 
with local infections35. In our cohort, the HPR level in plasma was not significantly changed but decreased in 
EVs. Interestingly, in the M3 module, many immunoglobulin-related proteins were also significantly decreased 
in sepsis, such as IGLV1-5, IGLV4-69, IGLV7-43, and IGHV3-35. However, the immunoglobulins were removed 
from the list of the sepsis-related proteins because of their poor specificity.
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Endothelial activation and vascular injury are one of the hallmarks of sepsis pathogenesis and were well 
reflected in the EV proteomic data. Various pathways related to endothelial activation leading to immune 
responses, such as neutrophil extracellular trap formation, actin cytoskeleton regulation, EC matrix-receptor 
interaction, and leukocyte trans-endothelial migration, were the most significant terms related to endothelial 
cell activation. DEFA1, DEFA3, S100A9, S100A8, CDC42, and TNN were differentially expressed in the septic 
EV cargos with strong AUROC and higher Z score when they were tested for sepsis diagnosis. Antimicrobial 
peptides, α-defensins, are constitutively expressed in neutrophils. A study found that the increased expression 
of DEFA1 (α-defensins-1) and DEFA3 (α-defensins-3) induces endothelial barrier dysfunction leading to more 
severe organ damage and mortality in mouse sepsis36. S100A8 and S100A9 proteins are involved in promoting 
endothelial cell activation through PI3K/Akt/mTOR pathway in human umbilical vein endothelial cells and are 

Fig. 7.  Comparative analysis of differentially expressed proteins between the EV and plasma proteomes in 
septic patients. (A) The volcano plot displays the differentially expressed proteins between septic patients and 
HC in the plasma proteome. The x-axis represents the Z score, indicating the magnitude of change, while 
the y-axis represents the –Log10 (P value), indicating the statistical significance. The most representative 
upregulated and downregulated proteins were colored in red. (B) The Venn diagram shows the overlapping 
proteins between the total plasma proteome and the total EV proteome. (C) The Venn diagram illustrates 
the overlapping differentially expressed proteins between the plasma proteome and the EV proteome. (D-
E) Histograms show the protein abundance correlations between plasma proteins and EV proteins for all 
quantified proteins (D) and differentially expressed proteins (E) at the level of individual samples. The red 
dashed line indicates the median correlation coefficient value for each proteome.
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known as important regulators in cardiovascular inflammation37. Finally, we detected SERPINA1 and CDC42 
with strong AUROC, which have been reported as potential sepsis biomarkers based on mRNA profiles38. As a 
regulatory factor in actin cytoskeleton and leukocyte trans-endothelial migration pathways, CDC42 contributes 
to vascular leakage and organ dysfunction in sepsis39.

KEGG analysis of the M5 module revealed the upregulation of several metabolic pathways. The key 
words for those pathways within the 522 differential proteins are Proteasome, Carbon metabolism, Metabolic 
pathway, and Pyruvate metabolism. The discriminative EV proteins related metabolism in septic patients 
are MAPK4 (AUC = 0.97), SLC16A3 (AUC = 0.97), CP (AUC = 0.96), and various histone proteins including 
H4C1 (AUC = 0.99), H3C1 (AUC = 0.95), and H2AX (AUC = 0.95) in the upregulated candidates, while APOL1 
(AUC = 0.99) were detected in the downregulated proteins with strong AUROC and higher Z score. MAPK4 
(Mitogen-activated protein kinase 4) is known as a noncanonical activator of AKT/mTOR signaling, which is 
related to metabolism40. SLC16A3 (Monocarboxylate transporter 4) is essential for the transport of lactate and 
pyruvate41 and its role in sepsis is not well studied yet. CP (Ceruloplasmin) is reported to show a significant 
correlation with sepsis-related factors such as CRP and plays a role in liver dysfunction42. Various histone 
proteins, such as Histone H4 (H4C1), Histone H3.1 (H3C1), and Histone H2AX (H2AX) were significantly 
increased in septic EV proteome, except Histone H1.3 (H1-3), which decreased. The elevated extracellular 
histone levels are associated with the severity of sepsis and organ failure43,44 especially H2B, H3, and H4. APOL1 
is an important protein in lipid metabolism, facilitating lipid transfer and protecting against lipid oxidation. 
The downregulation of APOL1 is reported in septic patients showing reduced lipid metabolism as a significant 
change in sepsis45.

In summary, using Tandem Mass Tag (TMT)-based quantitative proteomics, we profiled plasma EV proteins 
and conducted comprehensive bioinformatic analyses in septic patients and healthy controls. Our study identified 
numerous differentially expressed proteins in septic EVs, many of which were enriched in functional pathways 
related to sepsis pathogenesis. In line with previous studies on sepsis EVs, we confirmed the presence of well-
known proteins such as ITGB2, vWF, and SERPINE1. Notably, we also discovered a set of novel EV proteins 
− such as GLIPR2, S1PR4, and DEFA1/DEFA3 − that are closely associated with sepsis diagnosis and endotype 
markers, potentially involved in immune regulation, endothelial activation, and metabolic alterations. Several 
of these proteins showed strong diagnostic performance and were uniquely detected in EVs, but not in plasma, 
underscoring the added value of EV proteomic profiling. The analysis of enriched EV cargo offers insights into 
sepsis mechanisms beyond what plasma analysis alone can provide. By integrating these novel EV proteins with 
established sepsis endotype markers and functional pathways, we aim to enhance our understanding of sepsis 
pathogenesis, improve endotype classification, support mechanistic studies, and explore their application as 
potential diagnostic and prognostic biomarkers in sepsis.

Limitations of the study
Several limitations should be acknowledged. EVs were isolated using ultracentrifugation, which, although 
traditionally considered the gold standard, is associated with lower purity compared to alternative methods 
such as size-exclusion chromatography. To address this, we implemented a multi-step washing protocol aimed 
at minimizing contaminants. Additionally, while the sample size was determined based on a power analysis 
targeting a 1.5-fold change in protein expression with sufficient statistical power, the total number of samples—15 
septic patients and 10 healthy controls—remains relatively modest. This limited cohort size may constrain the 
generalizability of our findings and reduce sensitivity to detect subtle intergroup or endotype-specific differences. 
Future studies incorporating larger and independent cohorts will be needed to validate these findings, likely 
using a targeted quantification such as the parallel reaction monitoring (PRM), and further elucidate the role of 
EV-associated proteins in sepsis pathophysiology and their potential clinical applications.

Methods
Human subjects and blood collection
This study is part of an ongoing prospective observational study in septic patients conducted according to the 
policies and procedures as approved by the Institutional Review Board of the University of Maryland (HP-
00081592). Informed consent was obtained for each septic patient and health control subject enrolled in the 
study. All subjects have been de-identified according to Sect. 164.514 of the HIPPA Privacy Rule. Some indirect 
identifiers, such as patient IDs known to hospital staff or patients themselves, specific age, location, ethnicity, 
family and past medical history, have been removed from the study. According to Sepsis-3 guidelines2, the 
clinical criterion for sepsis is defined as infection plus a Sequential Organ Failure Assessment (SOFA) score ≥ 2. 
Septic patients between the ages of 18 and 80 years old with a SOFA ≥ 4 and suspected or confirmed infection 
upon admission to an ICU were enrolled. Patients with active malignancy or ongoing chemotherapy, critical 
illness not secondary to infection, or cardiac arrest prior to arrival were excluded. Age and sex-matched healthy 
(< 2 systemic conditions without functional impairment) control patients were recruited from the surrounding 
campus. Blood was collected in ethylenediaminetetraacetic acid (EDTA)-coated tubes within 24  h of ICU 
admission and immediately processed for plasma preparation. The plasma samples were stored at -80 °C for 
further analysis.

Human plasma EV isolation
Figure 1 illustrates the overall study design and workflow, as detailed below. Frozen plasma samples were thawed 
on ice to proceed with ultracentrifugation for EV isolation. Six hundred µL of plasma samples were diluted 
with the same volume of cold Dulbecco’s Phosphate Buffered Saline (DPBS) and centrifuged at 12,000 x g for 
30 min at 4 °C. The supernatant was further diluted with 4 mL of cold DPBS and applied to ultracentrifugation 
at 110,000 x g for 1 h at 4 °C (MLA-80 fix-angle rotor, Beckman Coulter, Sykesville, MD, USA). We performed 
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pilot experiments to determine the impact of washing steps on EV pellets based on the total proteins and the 
known exosome proteins recovered in the pellets after each step. These pilot data suggest that two washing 
steps after the initial ultracentrifugation – 3 rounds of ultracentrifugation - were optimal as they offered the 
best exosome protein recovery with minimal total protein loss (Supplementary Table S1). After the final pellet 
washing, the DPBS supernatant was removed, and the EV pellets were resuspended with 100 µL of cold DPBS. 
A small portion (5%) of EV samples was used for protein quantification and nanotracking particle analysis. For 
the subsequent proteomics analysis, the reconstituted EV samples were mixed with the same volume of 8 M 
Urea in 100 mM Tris buffer (pH 8). To detect EV markers on the EV samples, the Western blot was performed 
with 25 µg of each EV sample using rabbit anti-Alix antibody (#18269, Cell Signaling Technology, MA, USA) 
and rabbit anti-CD9 antibody (#ab92726, Abcam) (Supplementary Figure S1). The images were taken using 
ChemidocTouch Imaging System (Biorad, CA).

Sample Preparation for mass spectrometry analysis
EV protein extraction and digestion EV protein preparation for mass spectrometry analysis was conducted as 
described previously with minor modifications46–48. To extract proteins from plasma EVs, sample lysis was 
performed using ultrasonication (Branson sonifier 250, ultrasonics, Danbury, CT, USA) in 5 M urea and 50 mM 
Tris(hydroxymethyl)aminomethane hydrochloride (pH 8.0, Tris–HCl) for 1 min, with the samples maintained 
on the ice during the procedure. The protein was quantified using a bicinchoninic acid (BCA) assay kit (Pierce, 
Rockford, IL, USA). For reduction and alkylation, the samples were added with 10 mM Tris (2-carboxyethyl) 
phosphine hydrochloride (TCEP) and 40 mM chloroacetamide (CAA) to the final concentration. The mixture 
was incubated for 1 h at room temperature. Subsequently, the protein digestion was initiated using LysC (Lysyl 
endopeptidase mass spectrometry grade; Fujifilm Wako Pure Chemical Industries Co., Ltd., Osaka, Japan) at a 
ratio of 1:100 for 3 h at 37 °C. This was followed by additional digestion with trypsin (sequencing grade modified 
trypsin; Promega, Fitchburg, WI, USA) at a ratio of 1:50 at 37 °C overnight. Prior to trypsin digestion, the urea 
concentration was reduced from 8 M to 2 M by adding three volumes of 50 mM triethylammonium bicarbonate 
(TEAB). The acidification of the samples was achieved with a final concentration of 1% trifluoroacetic acid 
(TFA), followed by desalting using C18 Stage-Tips (3  M EmporeTM; 3  M, St. Paul, MN, USA). The eluted 
peptide solution was subsequently subjected to vacuum drying using a Savant SPD121P SpeedVac concentrator 
(Thermo Scientific, Waltham, MA, USA).

Preparation of TMT-labeled EV peptides To conduct quantitative mass spectrometry analysis, we labeled 
the prepared peptides with 2 batches of 14-plex TMTpro, a set of isobaric labels used for quantifying proteins 
from multiple samples simultaneously, according to the manufacturer’s instructions (Thermo Fisher Scientific). 
Briefly, TMT labeling reactions were conducted in acetonitrile (ACN) and 100 mM TEAB at room temperature 
for 1  h. The remaining free TMT tags were quenched by adding 100 mM Tris-HCl buffer (pH 8.0; Thermo 
Scientific) and incubating for over 5 min at room temperature. TMT-labeled EV peptides from each batch were 
pooled and dried using SpeedVac. For the normalization of data from 2 batches of the TMT experiment, we 
included the master pool (MP) in the last channel of each batch. The MP was prepared by mixing equal volumes 
from all 25 EV samples and was divided into each batch after completing the TMT labeling. To minimize the 
batch effect, the batch allocation and the order of 25 EV samples were block-randomized, keeping diagnosis, sex, 
and age balanced using an in-house R-script.

Preparation of TMT-labeled plasma peptides Plasma samples were prepared in the same way as described for 
the plasma EV samples with the exception of the ultracentrifugation steps, which was omitted. These plasma 
proteins were enzymatically digested and labeled the same ways as described for EV protein samples.

Pre-fractionation The peptides from each TMT experimental batch were subjected to basic pH reversed-phase 
liquid chromatography (bRPLC) fractionation on an Agilent 1260 High-Performance Liquid Chromatography 
(HPLC) system (Agilent Technologies, Santa Clara, CA, USA). This process included reconstituting peptides 
in solvent A (10 mM TEAB in water, pH 8.5), loading them onto an Agilent 300 Extend-C18 column (5 μm, 
4.6 mm x 250 mm, Agilent Technologies), and resolving them over 90 min using a gradient of solvent B (10 mM 
TEAB in 90% ACN and 10% water, pH 8.5) at a flow rate of 0.3 mL/min. This led to the collection of 96 fractions, 
which were subsequently concatenated into 24 fractions and dried using a SpeedVac.

LC-MS/MS
Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis were conducted as described 
previously with minor modifications46,47. For the analysis involving LC-MS/MS, an Orbitrap Fusion Lumos 
Tribrid Mass Spectrometer (Thermo Fisher Scientific) was employed, coupled with an Ultimate 3000 RSLCnano 
nanoflow liquid chromatography system (Thermo Fisher Scientific). The peptides from each fraction were 
reconstituted in 0.5% formic acid (FA) and loaded onto a trap column (Acclaim PepMap 100, LC C18, 5 μm, 
100 μm × 2 cm, nanoViper) at a flow rate of 8 µL/min. Subsequently, these peptides were separated at a flow 
rate of 0.3 µL/min through a gradient of solvent B (0.1% FA in 95% ACN) on an analytical column (Easy-Spray 
PepMap RSLC C18, 2 μm, 75 μm × 50 cm) equipped with an EASY-Spray ion source operating at a voltage of 
around 2.4 kV. The total duration of the run was 120 min. For MS analysis, the data-dependent acquisition 
(DDA) mode was employed, encompassing a full scan range of mass-to-charge ratio (m/z) 300 to 1800 in the 
“Top Speed” mode, with each cycle lasting 3 s. Both precursor mass (MS1) and fragment mass (MS2) scans were 
conducted for the precursor and the fragmentation ions of the peptide, respectively. MS1 scans were executed 
at a resolution of 120,000 at an m/z 200, while MS2 scans were carried out by fragmenting precursor ions using 
the higher-energy collisional dissociation (HCD) method, set to 35% of collision energy, and detected at a mass 
resolution of 50,000 at an m/z of 200. Automatic gain control targets were established at one million ions for 
MS1 and 0.05 million ions for MS2. The maximum ion injection time was set at 50 ms for MS1 and 100 ms for 
MS2. The precursor isolation window was defined as an m/z 1.6 with an offset of m/z 0.4. Dynamic exclusion 
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was implemented for 30 s, and singly charged ions were rejected. Internal calibration was executed using the lock 
mass option (m/z 445.12002) derived from ambient air49,50.

Mass spectrometry data
Data analysis was performed as described in our previous study with minor modifications47. The MS/MS 
data acquired from LC-MS/MS analyses were subjected to a database search using MSfragger 3.4 algorithm 
embedded in the Thermo Proteome Discoverer software package (version 2.4.1.15, Thermo Scientific) against 
the UniProt human protein database, which included both Swiss-Prot and TrEMBL entries (released in January 
2019) and common contaminants51. During MS2 preprocessing, the top ten peaks within each 100 m/z window 
were chosen for database search. The following parameters were applied for the database search: Trypsin was 
designated as the protease, allowing for a maximum of two missed cleavages. Fixed modifications included 
carbamidomethylation of cysteine (+ 57.02146 Da) and TMT pro tags (+ 304.20715 Da) on lysine and peptide 
N termini. Methionine oxidation (+ 15.99492 Da) was considered as a variable modification. A minimum 
peptide length of six amino acids was set. MS1 and MS2 tolerances were established at 10 ppm and 20 ppm, 
respectively. False discovery rate (FDR) filtering was applied at 1% for both peptides and proteins using the 
percolator node and protein FDR validator node. For protein quantification, the integration mode employed 
the most confident centroid option, with a reporter ion tolerance of 20 ppm. The MS order was set to MS2, and 
HCD was selected as the activation type. Peptide quantification used both unique and razor peptides, while 
protein groups were considered for peptide uniqueness. The co-isolation threshold was set at 50%. Reporter ion 
abundance calculations were based on signal-to-noise ratios, with missing intensity values replaced with the 
minimum value. An average reporter signal-to-noise threshold of 10 was applied. Corrections for isobaric tags 
and data normalization were disabled. Protein grouping followed a strict parsimony principle, grouping proteins 
sharing the same set or subset of identified peptides. Protein groups lacking unique peptides were filtered out. 
The final protein groups were generated by iterating through all spectra, selecting PSMs with the highest number 
of unambiguous and unique peptides, and summing the reporter ion abundances of PSMs for corresponding 
proteins52.

Luminex multiplex assays
Luminex panels were designed with the following analytes from R&D Systems; 14 plex including IL6 (Interleukin6), 
TNFα (Tumor necrosis factor alpha), IL1β (Interleukin1 beta), IL8 (Interleukin8), CXCL2 (Chemokine (C-X-C 
motif) ligand 2), S100B (S100 calcium-binding protein B), Enolase2, Syndecan1, E-selectin, VCAM1 (Vascular 
cell adhesion protein 1), ICAM1 (Intercellular Adhesion Molecule 1, also known as CD54), Tie2, Angiopoietin1, 
and Angiopoietin2: 6 plex including vWF-A2 (Von Willebrand factor A2 domain), d-dimer, thrombomudulin, 
P-selectin, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), 
and Coagulation factor III/Tissue factor: and 3 plex including SerpinC1 (Antithrombin III), SerpinE1 (PAI-1), 
and CXCL4/PF4 (Platelet factor 4). Plasma samples were thawed on ice and centrifuged at 12,000 x g for 10 min. 
The supernatants were applied to the antibody-conjugated magnetic bead and proceeded further following the 
manufacturer’s instructions. The fluorescent antibody reaction was measured on a Luminex 200 machine, and 
the analysis was performed with the Luminex xPONENT software.

Statistical and bioinformatics
Experimental design and statistical rationale Experimental design and statistical analyses were performed as 
described previously with minor modifications46,47. The total number of plasma-derived EV samples used in this 
study was 25, composed of 15 septic patients and 10 healthy controls. These numbers were determined based on 
our power analysis using the pwr package in R46. Since our goal was to detect proteins with 1.5-fold differences 
between groups, the required minimum sample size was 7.934 when the significance level was 0.0003, power was 
0.8, sigma was 0.2, and delta was 0.585 (= log21.5). This sigma value of 0.2 was derived from our in-house TMT 
proteomics experiments. The significance level of 0.0003 was determined based on our in-house data. When 
we identified approximately thousands of proteins, a majority of the proteins with P value < 0.0003 showed 
q-value < 0.05. Based on this sample size analysis, we decided to use 10 or more samples per group. The statistical 
analysis of the mass spectrometry data was conducted using the Perseus software package (version 1.6.15.0)53. 
Because TMT-based proteomics enables simultaneous analysis of multiple samples within a single run, no 
missing values were observed within each individual TMT batch. However, as the experiment included two 
independent TMT batches, we observed some missing values when integrating data across batches. To ensure 
consistency, proteins with missing values across the two batches were excluded from the downstream statistical 
analysis. For normalization, the reporter ion intensity values were divided by the MP values of each protein, 
and the relative abundance values for each sample were subtracted by the median values of each sample after 
the log2 transformation. Subsequently, a z-score transformation was applied to the data. The P values between 
the comparison groups were calculated using the student’s two-sample t-test, because the protein abundances 
showed normal distribution, according to our normality test using the Shapiro–Wilk test in the dplyr package 
in R54. The Shapiro–Wilk test showed that the majority of proteins exhibited a normal distribution (p > 0.05). 
All statistical comparisons were performed using two-tailed Student’s t-tests. Proteins with q-values < 0.05 were 
considered differentially expressed. Given the context of handling multiple comparisons, the FDR was calculated 
by comparing data with and without permutations between groups. The q-values were calculated using a 
permutation-based FDR method with 250 randomizations and an FDR threshold set at 0.05. This permutation-
based approach is considered more robust in proteomics datasets with relatively small sample sizes. The q-values 
for the volcano plot were calculated by significance analysis of microarray (SAM) and a permutation-based FDR 
estimation with 0.1 of the S0 value55.
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Bioinformatic analysis The proteins that displayed differential expression were employed in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway18 and Gene Ontology (GO) analysis embedded in 
DAVID bioinformatics resources (version 6.8)56. The gene set enrichment was performed using a GO plot57 
to visualize the KEGG pathway results using the package in R. For interactome analysis, the STRING Protein-
Protein Interaction (PPI) database version 11 was utilized58. Additionally, the weighted gene co-expression 
network analysis (WGCNA) was performed using the R software package59. Receiver operating characteristic 
(ROC) curve and Principal Component Analysis (PCA) data were generated using the MetaboAnalyst tool60. 
Also, multivariate ROC analysis was conducted using the MetaboAnalyst platform to assess the classification 
performance of selected protein features. The classification method was set to Partial Least Squares Discriminant 
Analysis (PLS-DA), with the built-in feature ranking method specific to PLS-DA. The number of latent 
variables (LV) was specified as 2. If the specified LV exceeds the number of features, the default value of 2 LVs is 
automatically applied. To initiate the analysis, ROC curves were generated using Monte Carlo Cross-Validation 
(MCCV) with balanced subsampling. In each iteration of MCCV, two-thirds (2/3) of the samples were used 
to evaluate feature importance (training set), while the remaining one-third (1/3) served as the testing set for 
model validation. This subsampling procedure was repeated 100 times to ensure robust estimation of model 
performance. Balanced subsampling was applied to ensure an equal representation of each class in both sets. 
The top-ranking features (2, 3, 5, 10, ., up to 100) were subsequently used to construct classification models, 
and performance was assessed based on the resulting ROC curves and AUC values. These models were then 
validated on the remaining one-third (1/3) of the samples that had been held out. This procedure was repeated 
multiple times to ensure robust estimation of model performance, including calculation of the Area Under 
the Curve (AUC) and its corresponding confidence intervals. The top features identified through this iterative 
process were used to build biomarker classification models capable of distinguishing between experimental 
groups with high predictive accuracy. Additionally, for the cell-type database, we employed a database of Deeply 
Integrated human Single-Cell Omics data (DISCO), which provides information on marker proteins for 461 
cell types derived from single-cell RNA-seq data61. The P values between the cell-type database and WGCNA 
modules were evaluated using the Fisher exact test62. Pearson correlation was calculated between the plasma and 
EV proteomes, and the results were visualized using histograms.

Data availability
All Mass Spectrometry data and search results are available and have been deposited to the ProteomeXchange 
Consortium (https://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier 
PXD056258. Reviewers can access the dataset by using ‘reviewer_pxd056258@ebi.ac.uk’ as the ID and ‘s9p3Q-
JWHn81m’ as the password.
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