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This study proposes ConditionCDVAE+, a crystal diffusion variational autoencoder (CDVAE) based deep 
generative model for inverse design of van der Waals (vdW) heterostructures. To address the challenges 
of traditional experimental methods relying on trial-and-error and existing models struggling to 
incorporate target property constraints, this work achieves breakthroughs through three innovative 
stages: (1) introduce the SE(3)-equivariant graph neural network EquiformerV2 as the encoder-decoder 
within the CDVAE framework to enhance the generation quality of the model; (2) design a module 
integrating Low-rank Multimodal Fusion and Generative Adversarial Networks to map properties and 
structures into a joint latent space; and (3) for the first time propose a generative model for the vdW 
heterostructures, by conducting experimental validation on the dataset constructed from Janus III–VI 
vdW heterostructures. Experiments demonstrate that ConditionCDVAE+ achieves optimal root mean 
square error for crystal reconstruction, with improved generation quality. Density Functional Theory 
calculations confirms 99.51% of generated samples converge to energy minima, indicating superior 
ground-state convergence. The effectiveness of the model under conditional guidance has also been 
extensively validated. This framework provides an efficient solution for target-oriented design of vdW 
heterostructures and holds promise for accelerating the development of novel optoelectronic devices.

Since the first discovery of graphene exfoliated from graphite in 20041, the materials science community has 
witnessed blossom of two-dimensional materials due to their exotic electronic, optical, and mechanical properties 
compared to corresponding bulk materials2,3. With further research, scientists discovered that combining 
different two-dimensional materials into van der Waals (vdW) heterostructures allows for the modulation of 
their electronic, optical, and mechanical properties, thereby expanding their applications in electronic devices, 
optoelectronic materials, and catalysis4. Due to the lack of strict lattice matching requirements and diverse 
bandgap properties5, various vdW heterostructures can be created by integrating various two-dimensional 
materials in a relatively flexible manner. With the extensive exploration of two-dimensional materials in 
recent years6–9, the number of possible two-dimensional materials has reached thousands, and the potential 
combinations of vdW heterostructures could even reach millions. However, traditional design methods through 
experiments such as mechanical stacking, physical epitaxy growth, and chemical vapor deposition (CVD) still 
rely heavily on empirical experiments and lack systematic design strategies.

In the context of the development of computational materials science, high-throughput density functional 
theory (DFT) calculations have been widely utilized to discover vdW heterostructures with powerful 
functionalities, leading to the creation of a series of databases10–13. Nevertheless, due to the intrinsic sophistication 
in physics and numerical method, DFT calculations often results in significant computational costs despite of 
these achievements. Fortunately, with the introduction of machine learning algorithms such as ALIGNN14 and 
CGCNN15, researchers can train models using data generated from first-principles calculations or classical 
molecular dynamics simulations to predict the properties of materials. This strategy of combining machine 
learning with high-throughput calculations enables researchers to screen potential vdW heterostructures in a 
shorter time frame16,17. Such strategy provides new momentum for the advancement of materials science, yet it 
still does not address the inverse design challenge of generating novel structures with favored property.

1School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644000, 
China. 2Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, 
Yibin 644000, China. 3Chemical Defense Institute, Academy of Military Sciences, Beijing 102205, China. 4Multiscale 
Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, 
Fuzhou 350108, China. 5State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 
710049, China. email: qyhuang@suse.edu.cn; zheliu_academia@hotmail.com; daidecai0558@163.com

OPEN

Scientific Reports |        (2025) 15:23023 1| https://doi.org/10.1038/s41598-025-06432-9

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-06432-9&domain=pdf&date_stamp=2025-6-24


In recent years, deep generative models, as an advanced artificial intelligence technology, have been widely 
applied in the field of materials design18. By learning from extensive materials data, deep generative models 
are capable of generating innovative material structures, especially those deviated from scientific intuition. For 
example, Noh et al. proposed iMatGen, an inverse design framework based on 3D voxel structural representation 
and variational autoencoders, which successfully predicted several synthesizable novel structures19. Long et al. 
introduced the CCDCGAN model, which combines generative adversarial networks (GAN) with constrained 
feedback, enabling the generation of stable and synthesizable crystal structures20. Both methods demonstrate 
the potential of deep generative models to generate reasonable crystal structures. In spite of such exciting 
breakthroughs, it is noteworthy that these models address crystal invariance features through data augmentation 
strategies, which does not fully resolve the challenge of generating stable periodic structures. Most recently, 
Xie et al. proposed the Crystal Diffusion Variational Autoencoder (CDVAE), which successfully incorporates 
invariance neural networks to account for the invariance of crystal structures in terms of permutation, 
translation, rotation, and periodicity21. This innovative approach significantly enhances the generation and 
characterization capabilities for crystalline materials. However, existing deep generative models for materials 
often lack effective conditional guidance mechanisms when handling target-property constraints, resulting in 
structures that struggle to meet diverse functional requirements. Therefore, developing an efficient, stable, and 
flexible deep generative model for inverse design that can effectively incorporate target properties remains a 
significant challenge in the field of materials science.

In this study, we propose ConditionCDVAE+, an improved model based on CDVAE, specifically 
designed for the application scenario of inverse design of vdW heterostructures. The framework of the model 
is illustrated in Fig.  1. The model primarily consists of three components: a variational autoencoder (VAE) 
module, a diffusion module, and a conditional guidance module. To achieve improved generation performance, 
we employ EquiformerV222-based encoders and decoders in both the VAE and diffusion modules. Through 
this enhancement, ConditionCDVAE+ demonstrates superior reconstruction and generation performance 
compared to CDVAE on the Janus 2D III–VI van der Waals Heterostructures (J2DH-8) dataset23. Furthermore, 
we introduce a conditional guidance approach that combines Generative Adversarial Networks (GAN)24 and 
Low-rank Multimodal Fusion (LMF)25, enabling the generation of valid and diverse vdW heterostructures based 
on target properties, offering a novel solution to explore the vast material space of vdW heterostructures.

Results
This section demonstrates the inverse design performance of the ConditionCDVAE+ model on vdW 
heterostructures. Derived from CDVAE21, ConditionCDVAE+ employs the equivariant graph neural network 
EquiformerV222 as both the encoder and decoder, significantly enhancing the model’s ability to capture angular 
resolution and directional information. Moreover, ours model innovatively integrates LMF and GAN to achieve 
inverse design objectives. The detailed model architecture is described in the Methods section. This study 
compares ConditionCDVAE+ with four baseline models: (1) FTCP26, a general inverse design framework based 
on VAE that enables reversible representation of crystals through encoding real-space and reciprocal-space 
features; (2) CDVAE, which generates physically stable inorganic crystal structures through a diffusion process 
combined with periodic invariant graph neural networks; (3) DiffCSP27 an improvement upon CDVAE that 
synchronously generates lattice and fractional coordinates via a joint equivariant diffusion model, effectively 
handling the periodicity and symmetry of crystal structures; and (4) DP-CDVAE28, which incorporates a diffusion 
probabilistic model (DDPM)29 to generate crystal structures through an improved coordinate denoising process, 
resulting in structures that are closer to the ground state calculated by DFT.

We employed the Janus 2D III–VI van der Waals Heterostructures (J2DH-8) dataset to evaluate the model’s 
performance on vdW heterostructures. The J2DH-8 dataset was constructed by Sa et al. using the high-throughput 
first-principles calculation platform ALKEMIE30, which systematically generated 19,926 two-dimensional 
Janus III–VI vdW heterostructures by vertically stacking 45 types of III-VI monolayer materials (MX, MM
X2, M2XX , and MM XX , where M, M  = Al, Ga, In and X, X  = S, Se, Te) with various rotation angles and 
interlayer flip patterns23. To validate the generalizability of our model, we also conducted partial evaluations on 
the MP-2031 dataset. The MP-20 dataset encompasses a wide range of inorganic materials, including most of the 
experimentally discovered materials with less than 20 atoms in a unit cell. For both datasets, we adopted a 6:2:2 
ratio for random partitioning into training, validation, and test sets.

Reconstruction performance
This section evaluates the ability of ConditionCDVAE+ to reconstruct crystal structures from its encoded latent 
vectors. We assess the reconstruction performance by comparing the similarity between the reconstructed 
structures decoded from the latent vectors and the ground-truth structures in the dataset. Similarity is calculated 
using the StructureMatcher algorithm from the pymatgen library32. The StructureMatcher algorithm performs 
Niggli reduction on the input pair of structures and then compares the lattice parameters and atomic positions. 
To ensure the rigorousness of the evaluation, we adopt the default settings from CDVAE21: stol=0.5, angle_
tol=10, ltol=0.3. The match rate represents the percentage of reconstructed structures that meet the criteria. 
For matched structures, the normalized root mean square distance (RMSE) between paired atoms is calculated.

Table 1 presents the reconstruction performance of several models on the MP-20 and J2DH-8 datasets. As 
to J2DH-8 dataset, ConditionCDVAE+ achieves the best performance, with a match rate of 25.35% and an 
RMSE of 0.1842. Compared with FTCP, this model exhibits a slightly higher match rate and a significantly 
lower RMSE. When it comes to the comparison with CDVAE, ConditionCDVAE+ improves the match rate by 
23% and reduces the RMSE by 13%. On the MP-20 dataset, ConditionCDVAE+ also achieves the best RMSE 
performance. The model demonstrates significant improvements in both match rate and RMSE, which can be 
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Dataset Method Match rate (%) ↑ RMSE ↓

MP-20

FTCP21 69.89 0.1593

DiffCSP27 51.49 0.0631

CDVAE21 45.43 0.0356

DP-CDVAE28 32.42 0.0383

ConditionCDVAE+ 41.54 0.0291

J2DH-8

FTCP 24.06 0.3694

DiffCSP 10.06 0.2637

CDVAE 20.52 0.2124

DP-CDVAE 9.56 0.2456

ConditionCDVAE+ 25.35 0.1842

Table 1.  Reconstruction performance of ConditionCDVAE+ and baseline models on MP-20 and J2DH-8 
datasets. Best results are marked in bold.

 

Fig. 1.  Training and generation flow chart of ConditionCDVAE+. In the first step of the training process, 
the latent vector z, produced by the encoder, is fused with the conditional property vector c through LMF to 
obtain the conditional latent vector zc. Then, zc is processed by multiple MLPs to predict the lattice parameters 
L, atom types (including the number of atoms) A, and properties of the structure. Subsequently, the A and 
fractional coordinates X , with different levels of noise added, are input into the decoder along with the L 
and zc to denoise the Ā and X̄ . In the second step of training, noise and c are served as inputs to the GAN to 
generate z′ with the target c. Subsequently, the discriminator evaluates the scores of z and z′ to compute their 
Wasserstein distance, and updates the parameters of the generator and discriminator. During the generation 
process, the generator samples a target latent vector z from the latent space using c. Subsequently, z undergoes 
feature fusion with the c through LMF, yielding the zc. This fused representation is then processed by MLPs, 
followed by Langevin dynamics-based denoising conditioned on zc, ultimately producing the final structure.
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attributed to the Attention Re-normalization mechanism in EquiformerV2, enabling more effective information 
aggregation when handling complex geometric structures22.

Generation performance
In order to evaluate the generative performance of the model, we adopted the assessment methodology from 
CDVAE. To be specific, Validity represents the percentage of generated materials that are valid. Structural 
validity is based on the criterion proposed by Court et al.33: a structure is considered valid if the minimum 
distance between any pair of atoms is greater than 0.5 Å. Compositional validity is determined by ensuring 
charge neutrality through SMACT34. COV evaluates the similarity between generated structures and ground-
truth structures based on structural and compositional fingerprints35,36. COV-R represents the percentage of 
ground-truth structures covered by the generated structures, while COV-P indicates the percentage of high-
quality structures generated (with thresholds for structural and compositional distances set at δstruc. = 0.4 
and δcomp. = 10). For detailed information, please refer to Fig. S1. Property measures the Wasserstein distance 
between the property distributions of generated structures and ground-truth structures, which quantifies the 
similarity between two probability distributions. Therefore, we specifically evaluate the structural density ρ( 
total atomic mass per volume) and the number of elements (#elem.). Validity and COV are calculated based on 
9,600 structures randomly sampled by the model, while Property is computed using 1,000 structures that pass 
the Validity test and selected at random in the meanwhile.

Table 2 shows that the ConditionCDVAE+ model achieves 100% Structure Validity and Composition 
Validity on the J2DH-8 dataset, performing comparably to CDVAE and slightly outperforming other baseline 
models. In terms of COV-R, ConditionCDVAE+ achieves the best performance along with other baseline 
models apart from excluding FTCP. For COV-P, ConditionCDVAE+ delivers the highest generation quality. In 
terms of the property metrics, although ConditionCDVAE+ is slightly underperforms CDVAE in ρ, it shows 
significant improvement in (#elem.). On the MP-20 dataset, ConditionCDVAE+ demonstrates convincing 
generalizability. Compared to CDVAE and CDVAE-based models, it exhibits similar performance and excels in 
property metrics.

DFT local optimizations performance
To validate the effectiveness of the generated structures, newly generated structures absent from the the 
training set are selected for DFT relaxation calculations. Verifying the proximity of the generated structures 
to the relaxed ground-state configurations is a key metric for evaluating model performance. Following the 
evaluation framework established by Luo37 and Pakornchote28, we adopted the following quantitative metrics: 
Convergence Rate, which refers to the percentage of structures successfully optimized by VASP, and Average 
Iteration Steps, which represents the average number of iterations required for the relaxation process to achieve 
energy convergence. Unreasonable atomic arrangements in the initial structures may cause divergence in the 
self-consistent field calculations, thus requiring more ionic relaxation steps to meet the convergence criteria. 
As shown in Table 3, ConditionCDVAE+ exhibits higher convergence rates and lower average iteration steps 
compared with the baseline CDVAE model. ConditionCDVAE+ also demonstrates excellent performance in 
terms of the average energy difference between the model-generated structures and their relaxed counterparts. 

Dataset Method Convergence rate (%) ↑ Avg iteration step ↓ Avg energy diff (eV) ↓

J2DH-8
CDVAE 95.16 63.20 4.4113

ConditionCDVAE+ 99.50 62.39 4.2308

Table 3.  Performance comparison in DFT local optimizations between ConditionCDVAE+ and CDVAE on 
J2DH-8 dataset. Best results are marked in bold.

 

Dataset Method

Validity (%) ↑ COV (%) ↑ Property ↓

Struc. Comp. R. P. ρ #elem.

MP-20

FTCP21 1.55 48.37 4.72 0.09 23.71 0.7363

DiffCSP27 100.0 83.25 99.71 99.76 0.3502 0.3398

CDVAE21 100.0 86.70 99.15 99.49 0.6875 1.432

DP-CDVAE28 99.59 85.44 98.93 98.96 0.4037 0.9179

ConditionCDVAE+ 99.91 82.43 99.59 99.37 0.3426 0.2118

J2DH-8

FTCP 88.47 87.42 13.32 0.00 3.165 0.4175

DiffCSP 37.81 99.94 100.00 13.51 0.9699 0.4355

CDVAE 100.00 100.00 100.00 80.84 0.1040 0.2404

DP-CDVAE 100.00 99.50 100.00 68.30 0.1606 0.0604

ConditionCDVAE+ 100.00 100.00 100.00 87.41 0.1067 0.0964

Table 2.  Generation performance of ConditionCDVAE+ and baseline models on MP-20 and J2DH-8 datasets. 
Best results are marked in bold.
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Overall, the improved model generates structures that are closer to the ground state compared with those of 
CDVAE. Fig. 2 displays the stable configurations of 6 exemplary vdW heterostructures with negative formation 
energies after relaxation.

Given the substantial computational resources required for DFT calculations, this section merely uses 
CDVAE as the baseline model to validate the effectiveness of the improvements on the J2DH-8 dataset. The 
evaluation focuses on 400 randomly generated structures that are not present in the training set (The screened 
structures are not limited to those appearing in the test and validation sets). The screening process employs the 
StructureMatcher algorithm, where structures with an RMSD not less than 0.3 Å9 are considered potentially 
novel.

Inverse design performance
Based on the J2DH-8 dataset, ConditionCDVAE+ is trained using formation energy and chemical formula 
as independent guidance for the target-property guided generation of novel vdW heterostructures. Using 
formation energy as a guidance for inverse design significantly increases the probability of sampling candidate 
heterostructures with thermodynamic stability, thereby reducing the time cost in the inverse design process. The 
formation energies of the generated structures were predicted by CGCNN15 trained on J2DH-8. Fig. 3a shows 
the original formation energy distribution of the dataset and the distribution of randomly sampled structures 
without conditional training. The resemblance between the two distributions indicates that the model has learned 
the structure-property relationships in vdW heterostructures. In Fig. 3b, we used formation energies of -0.2 eV 
and 0 eV as conditional guidance for sampling and the results demonstrate significant changes in the formation 
energy distributions with the former shifts toward -0.2 eV and the latter shifts toward 0 eV. To accelerate the 
sampling of vdW heterostructures with desired stoichiometries, chemical formula guided sampling is performed 
as well. In Fig. 3c and d, we compared randomly generated structures with those generated from three different 
chemical formula. The results demonstrate that the conditionally guided model more readily samples vdW 
heterostructures with stoichiometries consistent with the input chemical formula, significantly accelerating the 
exploration of the vdW heterostructure material space with specific favored stoichiometry.

To validate the effectiveness of incorporating conditional information into the latent space via LMF under 
single guidance, we evaluated the changes in the latent space distribution under the conditions of formation 
energy and chemical formula. respectively. The mapping of latent vectors was conducted using t-SNE38 for two-
dimensional visualization. In Fig. 4, (a) and (c) displays the results without feature fusion, while the (b) and 
(d) shows the results with feature fusion. As shown in Fig. 4 (a) and (b), in the latent space with feature fusion, 
structures with formation energy < 0 eV are distributed in the center, while those with > 0 spread toward the 
bottom-left and top-right, exhibiting an overall 45◦ symmetry. In Fig. 4 (c) and (d), a transition from disordered 
distributions to evident aggregation of heterostructures with the same chemical formula can be observed. This 
result demonstrates that LMF effectively clusters heterostructures with similar properties in the latent space, 
thereby enhancing the model’s conditional generation capability and accuracy.

Discussion
The ConditionCDVAE+ model proposed in this study demonstrates significant advantages in the inverse design 
of vdW heterostructures. By introducing EquiformerV2 as encoder and decoder , the model achieves significant 
reduction in RMSE regarding reconstruction performance, which directly reflects the enhanced representation 

Figure 2.  Visualization of relaxed vdW heterostructures with negative formation energies.
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capability for angular resolution and directional information. This is attributed to its equivariant feature 
processing mechanism based on irreducible representations22.

In terms of generation performance, the model demonstrated 100% structural and compositional validity on 
the J2DH-8 dataset, indicating that the generated vdW heterostructures satisfy fundamental physical stability 
requirements. The model not only demonstrated superior performance in terms of structural quality (COV-P) 
compared to baseline models, it also achieved comparable performance on the MP-20 dataset with property 
distribution ρ remains to be further optimized. DFT relaxation verification further confirmed the practical 
rationality of the generated structures, with a convergence rate of 99.51% and a lower average energy difference 
compared with CDVAE. The relatively fewer ionic steps indicate that the the model-generated structures are 
closer to the energy minima before relaxation, significantly reducing subsequent computational costs. In terms 
of inverse design performance, our conditional guidance module, combining LMF and GAN, achieved more 
precise target property constraints. Under single-condition guidance based on formation energy and chemical 
formula, the model achieved outstanding performance with desired structure generated in an orchestrated 
manner. Notably, due to the uneven distribution of formation energy in vdW heterostructures within the 
dataset, sampling in regions with more concentrated formation energy yields better performance compared 
to other regions. It is believed that supplementary dataset containing additional vdW heterostructures with 

Fig. 3.  Formation energy and vdW heterostructures of randomly sampled and condition-guided structures. 
(a) The formation energy distribution of 9600 randomly sampled structures compared to the original dataset. 
(b) The formation energy distribution of 100 structures sampled under two formation energy conditions. (c) 
The vdW heterostructures distribution of 50 randomly sampled structures. (d) The vdW heterostructures 
distribution of 50 structures sampled restrained to three chemical formula conditions.
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diverse property data could further enhance model performance. Subsequently, we conducted an ablation study 
on single-property conditional guidance. By comparison with the latent vector distributions before and after 
feature fusion (as shown in Fig. 4), significant potential of the LMF module in constructing a property-structure 
joint latent space can be demonstrated. The methods and benchmarks introduced here will provide valuable 
references for future work in the field of vdW heterostructure inverse design and offer new approaches for 
functional material design.

Despite the fact that ours model delivered very promising results in inverse design of complex 
heterostructures, a few improvements can still be implemented in the future work. First, it is surprising that 
the model not only learn the atomic type relationship between M and X in III-VI monolayer materials and 
resulting vdW heterostructures, but also realized that generated vdW heterostructures with novelty should 
exhibit vacuum spaces to prevent interlayer bondings (as shown in Fig. 2). However, it is worth pointing out 
that current three-dimensional periodic modeling does not align well with structural characteristics of ‘semi-
periodic’ vdW heterostructures. As a result, this mismatch leads to a small number of generated structures where 
the two single layers are significantly separated along the z-axis. Additionally, we observed that the model tends 
to generate structures with atomic substitutions and different rotation angles on the J2DH-8 dataset, which may 
be attributed to the limited structural diversity in the dataset. During the screening of novel heterostructures, we 
identified that while configurations recognized as “novel” by the StructureMatcher algorithm met the symmetry 
matching criteria, these structures occasionally maintained high similarity to existing configurations in terms of 
atomic stacking sequences and local bonding environments, which might lead to false identification of structural 
novelty. In future work, we plan to address this limitation by developing more robust feature matching methods. 
The evaluation of novelty is presented in Table S2. In the future, we plan to construct a vdW heterostructure 
dataset with more diversified heterostructures to further investigate the performance of the generative model. 
Second, the current conditional guidance is limited to single-property constraints, which rarely happens in the 
application of materials. On the contrary, multi-objective optimization capabilities require further exploration 
through Pareto frontier analysis to cope with more complex scenario39. While LMF feature fusion effectively 
aggregates latent space distributions, the ability to guide conditions for complex physical properties still requires 
further investigation. In the future, we will investigate how to perform periodic modeling tailored to ‘semi-
periodic’ properties and introduce key properties such as absorption coefficient and bandgap as multi-objective 
conditional guidance to discover novel and stable vdW heterostructures.

Fig. 4.  Heterostructures distribution in latent space. (a, b) Comparison of formation energy distributions 
between samples without (a) and with (b) feature fusion. (c, d) Comparison of chemical formula distributions 
between samples without (c) and with (d) feature fusion.
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Methods
NCSN diffusion model
Score-based generative models represent a significant approach within the realm of diffusion models. This 
methodology is rooted in the estimation and sampling of the Stein score associated with the logarithm of data 
density. Song and Ermon explored this novel principle in generative modeling and proposed an enhanced 
framework. The overarching strategy of the model involves estimating the gradient of the data density through 
score matching, followed by the generation of samples utilizing Langevin dynamics. During this process, 
challenges such as the manifold assumption and regions of low data density are addressed by perturbing the data 
with varying levels of Gaussian noise. A noise-conditioned score network (NCSN) is trained to jointly estimate 
the scores across all noise levels, thereby improving the model’s robustness and versatility40.

In the NCSN40 framework, adhering to the original design of CDVAE21, we established distinct sequences of 
progressively increasing standard deviations for both the fractional coordinates X  and atom types A, denoted 
as {σX}TX

t=1 and {σA}TA
t=1, respectively. This methodological approach facilitates the incorporation of Gaussian 

noise into the data in a structured manner.

	

q(Xt | X0) = X0 + N (0, σ2
Xt

I)

q(At | A0) = 1
1 + σAt

pA0 + σAt

1 + σAt

pcomp
� (1)

In Eq.  (1), pcomp denotes the one-hot encoding of the crystal chemical formula predicted by the Multilayer 
Perceptron MLP . To estimate the scores of all perturbed data distributions, we train an equivariant graph 
network, sx((Xt, At, L) | zc; σA, σX), to minimize the Fisher divergence between the model and the data 
distributions, where zc represents the latent vector after conditional feature fusion, and L signifies the lattice 
parameters of the crystalline structure..

During the reverse process, we iteratively denoise the coordinates of each atom towards their true values 
using the Langevin dynamics algorithm, and progressively update the atomic types to converge towards the 
authentic probability distribution.

	

Xt−1 = Xt + ηtsxX ((Xt, At, L) | zc) + N (0, η2
t I)

pAt−1 = sxA ((Xt, At, L) | zc)
� (2)

In Eq. (2), the subscript of sx denotes the specific component being predicted, while ηt represents the step size.

Equivariant graph neural networks
Equivariant graph neural networks (EGNNs) significantly improve model performance by preserving equivariance 
under geometric transformations of input data, such as rotations and reflections. Specifically, EGNNs formulate 
equivariant feature embeddings through irreducible representations (irreps). For the SE(3) group (encompassing 
three-dimensional rotations and translations), these equivariant features are mathematically formalized via 
Wigner-D matrices D(L)(R), where the L corresponds to the angular momentum quantum number, which 
rigorously quantifies the angular momentum state of the system, and R denotes the rotation matrix within the 
SE(3) symmetry framework.

The proposed framework implements the EquiformerV2, an equivariant graph neural network, as both 
encoder and decoder. EquiformerV2 constitutes an enhanced equivariant Transformer model that integrates 
the attention mechanism of Transformers with principles of equivariance22, thereby incorporating geometric 
invariance under rotations and reflections of input data. Unlike Invariant graph neural networks employed 
in CDVAE (e.g., DimeNet++41 and GemNet-T42), which rely on invariant features for message passing, 
EquiformerV2 systematically constructs equivariant irreducible representations (irreps) from vector spaces 
of irreducible representations. Compared to other equivariant GNNs such as NequIP43, EquiformerV2 
demonstrates enhanced scalability to higher values of L, thereby facilitating the superior extraction of angular 
resolution and directional information. We compared the reconstruction performance of EquiformerV2 and 
NequIP, as shown in Table S1. This advancement significantly enhances the model’s capability to accurately 
predict both the magnitude and orientation of intermolecular forces during interaction computations.

To systematically explore the material space of vdW heterostructures with wide-ranging interlayer rotation 
angles, the selection of a high-performance encoder decoder holds critical significance for our investigation. 
Within the encoder design, node embeddings x′′

i , post processing through Transformer blocks, are projected 
into a latent vector via a Feed Forward Network (FFN). Notably, in the decoder architecture, the latent vector zc 
serving as conditional prior knowledge is concatenated with atom embeddings xi and edge degree embeddings 
dij  and eij , thereby enabling context-aware feature fusion for local geometric reconstruction.

	

x′
i = Linear(concat(xi, zci ))

e′
i = 1

rf

∑
j∈N (i)

(D−1
ij (SO(2)Linear(concat(dij , zcij , eij))))� (3)

In Eq.  (3), D−1
ij  represents the inverse rotation matrix that restores computational results to the original 

coordinate system, while rf  denotes the scaling factor. Subsequently, The resulting node embedding x′′
i , derived 

from the summation of x′
i and e′

i, is processed through Transformer blocks and subsequently bifurcated into 
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dual prediction pathways: FFN dynamically refines the probability distribution of atomic types, and SO(2)-
equivariant graph attention layer estimates noise scores for coordinate vectors.

ConditionCDVAE+
The transition from target properties to material structure and composition represents one of the critical steps 
in inverse design, where conditional guidance plays an indispensable role. To implement such guidance, we 
propose ConditionCDVAE+ through dual modifications to the original CDVAE21 architecture, with its training 
and generation workflow illustrated in Fig. 1. During the initial training phase, the model employs the LMF25 
method to achieve feature fusion between target properties and latent vectors. This integration establishes a 
property-structure co-optimized latent space (visualized in Fig. 4). Following completion of preliminary model 
and LMF training, we introduce GAN – a module inspired by architectural principles from CVAE-GAN44 
and LatentGAN45 – to generate initial latent vectors conditioned on target material properties. The proposed 
framework implements a dual-phase training regimen analogous to Con-CDVAE, wherein gradient clipping 
is first applied to stabilize parameter optimization during the model initialization stage46, followed by gradient 
penalty enforcement in subsequent iterations to maintain the discriminator’s compliance with K-Lipschitz 
continuity constraints47.

During the generation phase, random noise vectors are synthesized with conditional inputs through the 
generator to produce targeted latent vectors. These vectors subsequently undergo conditioning via LMF-
mediated feature fusion, yielding property-informed latent representations with embedded prior constraints. 
Subsequently, the properties of the structures were predicted using MLP, implementing a 100 : 1 screening ratio 
to select optimal zc vectors demonstrating closest alignment with target properties. The decoder subsequently 
employs Langevin dynamics conditioned on zc to iteratively refine atomic coordinates and elemental species, 
thereby yielding the final crystallographic configuration.

Low-rank multimodal fusion
Discrete attributes (e.g., atomic species) and continuous attributes (e.g., bandgap and formation energy) were 
subjected to distinct processing methodologies prior to feature fusion. Specifically, continuous attributes 
underwent expansion through Gaussian basis functions48.

	
ϕj(x) = exp

(
− (x − µj)2

2σ2
j

)
, j = 1, 2, . . . , Nj � (4)

In Eq. (4) The variable x represents the input properties, where µj  and σj  denote the mean and standard deviation 
of the j-th Gaussian basis function, respectively. These parameters are typically initialized and optimized based on 
the underlying data distribution through iterative learning processes. Following this expansion, the transformed 
properties xexpanded = [ϕj(x)]Nj

j=1 emerge as a higher-dimensional representation determined by Nj  Gaussian 
basis functions. Meanwhile, discrete attributes undergo transformation using embedding layers to obtain vector 
representations compatible with subsequent computational operations.

The LMF methodology was employed to integrate conditional vectors with latent vectors through feature 
fusion. Initially, the weight matrix W  undergoes tensor decomposition into M  modality-specific low-rank 
factors, where M denotes the number of modal. Each modality-adaptive feature matrix wm manifests as

	
Wm =

R∑
i=1

M⊗
m=1

w(i)
m , w(i)

m ∈ Rdm×dh � (5)

where R specifies the predefined rank, dh denotes the desired output dimensionality and dm corresponds to the 
input modality dimension25. Following the derivation of modality-specific feature matrices wm associated with 
modality M, each modality undergoes dimensional augmentation through unitary padding with scalar unity, 
followed by performing an outer product operation on the latent vectors and property vectors to obtain Z .

	
zc =

(
R∑

i=1

M⊗
m=1

w(i)
m

)
· Z � (6)

Ultimately, the tensor fusion process is performed like Eq. (6), yielding zc. We prioritize the training of LMF 
along with Encoder, Decoder, and MLP as the first step.

Generative adversarial networks
In the second step, we employ the Conditional Wasserstein Generative Adversarial Network with Gradient 
Penalty (CWGAN-GP)49 to implement the GAN module. As illustrated in Fig. 1, this architecture consists of 
two neural networks trained in adversarial balance: the conditional generator G for latent vector generation and 
the discriminator D for authentic evaluation.

The generator G takes as input the concatenation of noise z̃ and the conditional property c, and consists of 
5 hidden layers and 1 fully connected layer. The five sequentially connected hidden layers gradually expand 
the latent dimension from the original input size to 1,024 units, with each layer incorporating a leaky ReLU 
activation function50 and batch normalization. The discriminator, on the other hand, is composed of 3 hidden 
layers and 1 fully connected layer, with the hidden layers progressively increasing the unit dimension from the 

Scientific Reports |        (2025) 15:23023 9| https://doi.org/10.1038/s41598-025-06432-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


input size to 512 units, each equipped with a leaky ReLU activation function and Dropout51. The fully connected 
layers of both the generator and the discriminator do not include activation functions.

After the generator G produces the latent vector z′ based on the given conditional attribute c, it concatenates 
z′ with the conditional property c and inputs it into the discriminator to obtain the authenticity score D(z′ | c) 
of the generated latent vector; similarly, the authenticity score of the real latent vector is D(z | c). Based on this, 
the discriminator loss with gradient penalty can be derived as

	 LD = −Ez∼Pdata [D(z | c)] + Ez̃∼Pg

[
D(z′ | c)

]
+ λEẑ∼Pẑ

[
(∥∇ẑD(ẑ | c)∥2 − 1)2]

� (7)

In Eq. (7), λ is the weight coefficient for the gradient penalty, set to 10; ẑ is an interpolated sample between the 
real and generated samples; and ∥∇ẑD(ẑ | c)∥2 represents the L2 norm of the gradient of the discriminator’s 
output with respect to its input. By penalizing deviations of this value from 1, it ensures that the discriminator’s 
gradients do not become excessively large, thereby improving training stability. The generator updates its 
parameters by minimizing LG = −Ez̃∼Pg [D(G(z̃ | c) | c)] to produce samples that are closer to real data. The 
model employs the asynchronous update strategy from Wasserstein GAN52 for training, where the discriminator 
parameters are updated five times for each generator iteration. Both networks are trained using the Adam 
optimizer53, with initial learning rates set to 0.0002 for both, and β1 and β2 set to 0.5 and 0.999, respectively. 
During training, the same Learning Rate Scheduler as in Step One is used, reducing the learning rate to 0.6 times 
its original value if no improvement in loss is observed after 30 iterations. The minimum learning rate is set to 
0.00001.

DFT calculations
The DFT calculations are based on the Vienna Ab initio Simulation Package (VASP)54, employing the Projector 
Augmented Wave (PAW) method55. The exchange-correlation functional is chosen as the Perdew-Burke-
Ernzerhof (PBE) functional within the framework of the Generalized Gradient Approximation (GGA)56. During 
the self-consistent calculations, the convergence thresholds are set to 10−6 eV for energy and 0.05 eV · Å−1 
for interatomic forces. The cutoff energy for the plane-wave basis set is uniformly set to 550 eV . To address the 
limitations of traditional DFT in describing long-range van der Waals interactions, this study incorporates the 
zero-damping form of the DFT-D3 dispersion correction method57.

Data availibility statement
The code is available on Github: https://github.com/GaoShikun/ConditionCDVAEplus. Data are available from 
the corresponding author upon reasonable request.
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