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Massive-multiple input and Multiple Outputs Non orthogonal multiple access (M-MIMO–NOMA) 
systems require efficient signal detection techniques to mitigate interference and enhance spectral 
efficiency, especially under diverse channel conditions and varying modulation schemes. This study 
investigates the performance of the Successive Interference Cancellation with Reinforcement Learning 
(SIC-RL) detector compared to conventional methods, including the Minimum Mean Square Error 
(MMSE), Maximum Likelihood Detection (MLD), Approximate Message Passing (AMP), Gauss–Seidel 
(GS), Conjugate Gradient (CG), and zero-forcing equalizer (ZFE). The analysis was conducted for 16-
QAM, 64- Quadrature Amplitude Modulation (QAM), and 256-QAM in Rayleigh fading channels with 
10% error. The simulation results indicate that SIC-RL outperforms traditional detectors in terms of 
bit error rate (BER), power spectral density (PSD), and computational complexity. At a BER of 10⁻3, 
SIC-RL achieves an SNR 11.2 dB (512-QAM), 6.6 dB (256-QAM), 5 dB (64-QAM) and 5.8 dB (64-QAM 
with 10% channel error) as compared with conventional methods. The PSD analysis shows that SIC-
RL exhibits a 35% and 20% lower spectral leakage compared to contemporary methods, ensuring 
better spectral efficiency for diverse channel conditions. In terms of computational complexity, 
SIC-RL achieves near-logarithmic growth with the number of antennas, significantly reducing the 
processing burden compared to MLD, which has exponential complexity. Although ZFE and CG are 
computationally efficient, they suffer from noise amplification and poor BER performance. GS and AMP 
balance complexity and performance but still fall short of SIC-RL gains. Overall, SIC-RL has emerged 
as an optimal solution for massive MIMO signal detection, achieving a superior trade-off between 
BER, PSD, and computational efficiency across diverse modulation schemes and channel conditions. 
Critically, SIC-RL achieves near-quadratic complexity O(N2

t ), contrasting the exponential complexity 
O(MNt ) of MLD and the cubic complexity O(N3

t ) of MMSE and ZFE, making it scalable for large 
antenna arrays. Iterative methods such as AMP, GS, and CG achieve lower complexity, but suffer from 
convergence issues or degraded BER. Despite requiring initial training, SIC-RL provides a favorable 
trade-off between the detection accuracy and processing cost, positioning it as a computationally 
efficient and high-performance detector for next-generation MIMO–NOMA systems.
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Massive multiple-input multiple-output (MIMO) combined with non-orthogonal multiple access (NOMA) has 
become a cornerstone technology for next-generation wireless communication systems, particularly in 5G and 
the emerging 6G networks. Massive MIMO boosts the spectral efficiency by employing a large number of antennas 
at the base station, enabling spatial multiplexing for multiple users. Concurrently, NOMA allows multiple users 
to share the same time and frequency resources by employing power- or code-domain multiplexing, thereby 
increasing user connectivity and resource utilization. While the integration of MIMO and NOMA promises 
substantial performance gains, it also introduces significant signal detection challenges owing to intensified 
multiuser interference (MUI), complex channel characteristics, and increased computational overhead1. 
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Signal detection is a critical aspect in Massive MIMO–NOMA (M-MIMO–NOMA) systems to ensure reliable 
communication, an improved bit error rate (BER), and efficient power allocation. Traditional detection methods, 
such as the minimum mean square error (MMSE) and zero-forcing (ZF), are less effective in the presence of 
severe MUI. To address these limitations, advanced techniques, such as successive interference cancellation 
(SIC), maximum likelihood detection (ML), and machine learning-based methods, have been proposed. Among 
them, Approximate Message Passing (AMP) stands out as a low-complexity, iterative technique based on belief 
propagation that is suitable for detecting signals in sparse MIMO environments. However, AMP’s performance 
of AMP deteriorates in non-Gaussian channels owing to convergence issues2. Similarly, iterative algorithms, 
such as Gauss–Seidel (GS) and Conjugate Gradient (CG), offer a balance between accuracy and computational 
load by avoiding costly matrix inversion, making them suitable for large-scale systems. Despite these advances, 
the dynamic nature of wireless environments, particularly under Massive MIMO–NOMA configurations, limits 
the performance of static detection strategies. SIC remains a widely used technique in NOMA for separating 
superimposed signals, but it suffers from error propagation and reduced efficacy under time-varying or low-
SNR conditions3,4. In this context, reinforcement learning (RL) has emerged as a promising solution that 
offers adaptive and data-driven approaches to dynamically optimize detection strategies. By learning from 
the environment, RL enhances the robustness of SIC against interference and channel variations, thereby 
improving the system reliability and user fairness5. However, existing studies on RL-based signal detection have 
limitations. Conventional SIC-based models often assume ideal channel estimation and static user behavior, 
which are unrealistic in practical deployments6. Moreover, RL approaches typically require large datasets and 
high computational resources, which constrain their adaptability to real-time scenarios. Additionally, the spatial 
correlation inherent in massive MIMO channels has not been fully exploited by many current RL frameworks, 
leading to suboptimal detection accuracy. To address these challenges, there is a growing need for hybrid 
detection schemes that combine the advantages of SIC and RL. Such hybrid approaches aim to overcome error 
propagation, reduce computational complexity, and enhance adaptability under various channel conditions. 
The core objective of this study is to develop a hybrid Successive Interference Cancellation with Reinforcement 
Learning (SIC-RL) signal detection framework tailored for M-MIMO–NOMA systems, focusing on improving 
detection accuracy, minimizing latency, and enhancing system robustness under interference and noise7. By 
intelligently integrating RL with SIC, the proposed method seeks to optimize real-time detection strategies, 
making it highly suitable for large-scale, interference-prone environments characteristic of 5G and beyond8.

The proposed hybrid signal detection in Massive MIMO–NOMA enhances detection efficiency by integrating 
traditional SIC with RL-based optimization. SIC mitigates multiuser interference sequentially, but its performance 
degrades in complex environments. RL dynamically adjusts detection strategies by learning from signal patterns 
and channel conditions, thereby improving the robustness against noise and interference. This hybrid approach 
balances the computational complexity and detection accuracy, making it highly effective for large-scale NOMA 
networks in 5G and beyond, ensuring enhanced spectral efficiency and user fairness. By intelligently balancing 
computational efficiency and adaptability, the proposed technique improves the spectral efficiency and system 
reliability, making it a robust solution for next-generation Massive MIMO–NOMA networks. Despite recent 
progress in the signal detection of Massive-MIMO–NOMA systems, current approaches such as SIC coupled 
with RL are challenged by several issues. These exhibit poor adaptability to various channel conditions and 
inconsistent performance under various modulation schemes. Most current designs are optimized for optimal 
or static cases and fail to be robust in dynamic or actual fading scenarios. Moreover, learning models tend to have 
very high complexity and slow convergence, rendering real-time processing problematic. There has also been 
insufficient investigation into modulation-aware and channel-aware adaptive RL methods, indicating that more 
efficient, scalable, and generalizable detection schemes in real-world 5G/6G systems are necessary. This study 
makes the following major contributions to massive MIMO signal detection.

	1.	 Development of SIC-RL for Better Signal Detection: We introduce a new Successive Interference Cancel-
lation with Reinforcement Learning (SIC-RL) approach that considerably enhances signal detection under 
16-QAM, 64-QAM, 256-QAM, and 512-QAM modulation. This approach efficiently reduces interference 
and compensates for Rayleigh fading channels with up to 10% channel estimation error, outperforming tra-
ditional methods such as MMSE, Maximum Likelihood Detection (MLD), AMP, GS, CG, and zero-forcing 
equalizer (ZFE).

	2.	 Comprehensive Performance Evaluation: Large-scale simulations show that SIC-RL provides better SNR 
gains at BER = 10–3, i.e., 11.2 dB (512-QAM), 6.6 dB (256-QAM), 5 dB (64-QAM), and 5.8 dB (64-QAM with 
10% channel error), compared to state-of-the-art detectors. Moreover, power spectral density (PSD) analysis 
shows that SIC-RL minimizes spectral leakage by 35% and 20%, providing better spectral efficiency for mas-
sive MIMO systems under various channel conditions.

	3.	 Computational Complexity Reduction: In comparison to conventional detectors such as MLD, which have 
exponential complexity, SIC-RL achieves near-logarithmic growth in complexity, which makes it extremely 
scalable for massive antenna arrays. This makes real-time implementation efficient, with an improved trade-
off between BER, PSD, and computational efficiency, rendering SIC-RL the best option for future wireless 
networks.

	4.	 The proposed method advances academia by introducing an intelligent adaptive signal detection approach, 
bridging machine learning, and wireless communication. The industry benefits from improved spectral effi-
ciency and lower latency in the next-generation networks. Societally, enhanced connectivity supports appli-
cations, such as smart cities and IoT, ensuring seamless, energy-efficient, and high-capacity communication 
systems.
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Literature review
The authors in9 proposed a deep learning-based method for shared spectrum environment signal detection and 
classification, utilizing convolutional neural networks (CNNs) to enhance the performance in dynamic wireless 
environments. This research clearly demonstrates the interference and channel variation robustness of deep 
learning. It suffers from the limitation that it depends heavily on large amounts of labeled training data, which 
can limit its real-world applicability, particularly in fast-evolving spectrum environments. In10, the authors 
investigated deep learning-based signal detection in massive MIMO–NOMA systems and presented better 
detection accuracy along with interference robustness. This research successfully incorporated neural networks 
for performance improvement over the traditional approaches. Nevertheless, this work does not include a 
proper complexity analysis, and real-time implementability is in question. Moreover, the generalizability of the 
model to various channel conditions needs to be verified. A comparative study using hybrid AI approaches 
would strengthen the results. The authors in11 proposed deep-learning-based MIMO systems with an open-
loop autoencoder to optimize end-to-end wireless communication. This work demonstrates the performance 
improvements in channel estimation and signal detection. However, its drawback is the use of idealized 
assumptions, that is, perfect Channel State Information (CSI) availability, which can impede real-world 
applications. Furthermore, the computational complexity and training overhead can pose deployment issues 
in resource-constrained settings. In12. Researchers have explored deep learning-based signal detection in co-
channel interference, displaying better detection capability than conventional algorithms. This study successfully 
incorporated neural networks to prevent interference and secure communication reliability. Nevertheless, 
real-time utilization is constrained by the use of large amounts of training data and computational power. The 
work also mostly concerned simulated environments with no practical applicability verification. Real-world 
deployability and the reduction of complexity are areas for future research. The writers in13 introduced a deep 
learning-powered multi-signal detection framework for carrier frequency and bandwidth estimation, showing 
high performance in challenging environments. In this study, CNNs and LSTMs were successfully combined to 
improve the signal classification. Its dependency on large datasets and computationally expensive training hinder 
real-time adaptability. The performance in dynamic, low-SNR environments also requires further confirmation, 
limiting practical applications within resource-constrained wireless networks. The authors in14 suggested an 
ML method for signal detection in low-SNR scenarios with enhanced classification performance compared 
with conventional methods. Deep learning models were used to promote noise robustness. Nonetheless, the 
research mainly concentrated on simulated data; thus, its applicability in real-world cases is modest. Moreover, 
the computational requirements of the proposed models may delay their deployment within resource-limited 
devices. Future research could work on generalization to varied signal scenarios as well as real-world data. The 
authors of15 proposed an efficient hybrid iterative strategy for signal detection in massive MIMO uplinks for an 
AWGN channel. This method enhances the accuracy of detection while reducing the computational expense. 
The drawback of this study is that it treats AWGN channels alone, without discussing practical scenarios for 
fading. Furthermore, the paper does not provide a critical comparison of the approach with state-of-the-art 
deep learning-based detection methodologies that are becoming mainstream for massive MIMO systems. The 
authors in16 introduce a novel method for MIMO NOMA signal detection by combining SIC with ML methods. 
The hybrid technique is designed to improve the detection performance and system capacity in challenging 
communication environments. Although the combination of SIC and ML is promising, this paper does not 
adequately discuss the possible computational complexity and latency problems inherent in ML methods, 
which may impact real-time application viability. Future studies should concentrate on refining these factors 
to make the model practically deployable in real situations. In17, the authors proposed a low-complexity signal-
detection network based on the Gauss–Seidel iterative method for massive MIMO systems. This method lowers 
the computational complexity without sacrificing the detection accuracy, making it applicable to large-scale 
scenarios. The authors present a theoretical analysis and simulation results to support performance improvements. 
The limitation of this work is that it depends on idealized system assumptions, which do not necessarily reflect 
practical hardware degradations or realistic channel conditions that could influence performance in practical 
implementations. The authors in18 introduce a Bi-LSTM-based deep learning solution for 5G signal detection 
and channel estimation with better accuracy than conventional techniques. This research successfully highlights 
the advantage of using deep learning to improve wireless communication. However, the study does not include 
a thorough complexity analysis; therefore, the computationally acceptable nature of the proposed model for 
real-time implementation is uncertain. In addition, the study does not fully compare its method with the 
current best techniques, restricting the analysis of its relative performance and scalability. The authors of19 
presents a comparative review of data detection methods for 5G massive MIMO systems based on performance, 
complexity, and sustainability. It successfully compared many detection algorithms and their trade-offs. The 
study is mostly based on theoretical analysis and does not extend the extensive real-world verification. It also 
did not investigate the effects of hardware impairments and energy efficiency in real-world deployments. Future 
work should involve experimental observations and investigate new deep-learning-based detection methods. 
The authors in20 introduced a decoupled signal detection (DSD) method for the uplink of 5G heterogeneous 
networks’ massive MIMO systems. This technique enables the base station to decouple uplink signals from 
different user classes to improve detection efficiency. The authors derived a mathematical model for centralized 
and distributed antenna configurations and proved that DSD offers superior performance when combined 
with linear and successive interference cancellation methods. However, the research fails to comprehensively 
cover the effects of hardware faults and real-world environmental conditions on the suggested DSD algorithm, 
which might influence its application in real-world scenarios. The authors in21 investigated the influence of 
antenna spacing on Differential Spatial Modulation (DSM) and Spatial Modulation (SM) in 5G compact wireless 
devices. It effectively analyzes the performance variations under constrained antenna configurations. However, 
the limitations include a lack of experimental validation, restricted channel models, and the absence of power 
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efficiency and hardware complexity considerations in practical deployment scenarios. Table 1 indicated the 
comparative table of proposed and published work:

Problem formulation
MIMO–NOMA is a key technology for next-generation wireless networks that enhances the spectral efficiency 
and user connectivity. Combining MIMO spatial multiplexing with NOMA’s power-domain multiplexing allows 
multiple users to share the same time and frequency resources, improving system capacity and fairness. Unlike 
conventional orthogonal schemes, MIMO–NOMA supports massive connectivity, making it ideal for 5G and 
beyond applications. It efficiently manages user interference through successive interference cancellations while 
optimizing power allocation. This hybrid approach significantly boosts network throughput, reduces latency, 
and supports diverse applications including IoT, smart cities, and ultra-reliable communications. Massive 
MIMO is one of the central technologies in contemporary wireless communication, which utilizes a large 
number of antennas at the base station to serve multiple users simultaneously. This significantly increases the 
spectral and energy efficiency and ensures strong connectivity in dense networks. Signal detection in massive 
MIMO systems is extremely complicated owing to several challenges. First, the huge channel matrix amplifies 
the computational complexity of the detection algorithms. Conventional techniques, such as ML detection, are 
rendered impractical with exponential complexity22. Second, hardware impairments and channel estimation 
errors, such as phase noise and nonlinear distortion, impair the detection performance. Third, the spatial 
correlation between the antennas makes interference mitigation more challenging. Although linear detectors 
such as ZFE and MMSE provide suboptimal but practical solutions, sophisticated techniques, including message 
passing and deep learning-based detectors, are on the rise to effectively manage complexity. Therefore, the 
design of high-performance, low-complexity detection algorithms is an important problem in massive MIMO 
systems. Figure 1 shows an M-MIMO system.

Let us consider a massive MIMO system with Nt​ transmit antennas and Nr  receive antennas, where 
Nr ≫ Nt​. The received signal in a narrowband flat-fading channel can be modelled as23:

	 y = Hx + n� (1)

Fig. 1.  M-MIMO system.

 

References Method SNR at the BER of 10–3 PSD
10 Deep learning method 6.6 dB  − 900
11 Autoencoder 10.3 dB
14 Machine learning 12 dB
15 Hybrid iterative technique 18 dB
16 SIC-ML 6 dB  − 800
18 Bi-LSTM 18 dB
19 Linear detection method 21 dB
20 Decoupled signal detection 15 dB
21 Message Passing Neural network 9 dB
22 Information Geometry Approach 11 dB
23 Adversarial Network Approach 6.8 dB

Proposed method SIC-RL for 512-QAM, 256-QAM, 64-QAM and 64-QAM (10% error) 11.2 dB, 6.6 dB, 3.2 dB, , 4.2 dB, 5.8 dB and 7.8 dB  − 500 and − 490

Table 1.  Comparison table summarizing different and proposed methods.
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where y ∈ CNr×1 is the received signal vector, H ∈ CNr×Nt  is the channel matrix with independent and 
identically distributed complex Gaussian entries hij ∼ Cℵ(0,1),  x ∈ CNt×1 is the transmitted signal vector 
drawn from a modulation constellation, and  n ∈ CNr×1 is the noise. The goal of signal detection is to estimate 
the transmitted vector x given the received signal y and channel matrix H . The optimal detection problem is 
formulated as follows.

	
x = arg min

x∈X Nt

∥ y − Hx∥2
� (2)

where X  is the set of transmitted symbols. Because of the high complexity of ML detection (exponential in 
Nt), suboptimal practical methods, such as ZF, MMSE, and MPA, are usually used. For systems with hardware 
impairments, an additional distortion term η is introduced, modifying the received-signal equation as follows:

	 y = Hx + η + n� (3)

where η ∼ Cℵ(0, σ2
ηI) represents the nonlinear distortions and phase noise. Robust detection algorithms, 

such as RL-based approaches integrated with SIC, should be utilized to mitigate these impairments and 
improve performance. The SIC-RL detector solves massive MIMO signal detection problems through iterative 
interference mitigation and RL-aided decision optimization. SIC detects symbols sequentially with lower error 
propagation, and RL adjusts the detection thresholds according to channel conditions and hardware distortions. 
The proposed method increases robustness against nonlinearity and noise and achieves better performance than 
conventional methods, such as MMSE24. SIC-RL learns optimal action policies and achieves enhanced detection 
accuracy and improved computational efficiency. Thus, it is applicable to realistic large-scale MIMO scenarios 
with hardware distortions.

Proposed system model
SIC-RL is a sophisticated signal-detection method aimed at improving the performance of massive MIMO 
systems. Conventional SIC iteratively detects and cancels the interference from previously detected symbols 
to enhance the signal recovery of overloaded MIMO systems. Conventional SIC has the drawback of error 
propagation, particularly under high noise and correlated channel conditions. RL is incorporated into SIC 
to optimize the detection sequence and make the detection process more interference-robust. In SIC-RL, an 
RL agent learns to dynamically choose the best order of symbol detection to minimize error propagation. The 
system is represented as a Markov Decision Process (MDP), with states being the partially detected symbol 
vector, actions being the choice of the next symbol to decode, and rewards derived from detection accuracy 
and interference reduction. Using algorithms such as Q-learning or deep reinforcement learning (DRL), the 
agent learns the optimum detection sequence with time. This method largely improves the massive MIMO 
performance by enhancing the detection accuracy, particularly under high user density and hardware 
impairment cases. SIC-RL is adaptive to changing channel conditions and alleviates deep fades and correlated 
interference that worsen traditional linear detectors such as ZF and MMSE. In addition, it has less computational 
complexity than ML detection; therefore, it is more suitable for real-time processing. SIC-RL is also resistant to 
nonlinear hardware distortion, and it is applicable in practical implementations for 5G and the future. SIC-RL, 
with its clever utilization of reinforcement learning, increases spectral efficiency, decreases BER, and provides 
guaranteed communication in large-scale MIMO systems. Therefore, it is a great candidate for next-generation 
wireless networks. SIC, together with RL, for signal detection in a massive MIMO system attempts to iteratively 
detect and improve symbol estimates and learn an optimal detection policy. The received signal in a narrowband 
massive MIMO system is expressed as

	 y = Hx + n� (4)

SIC detects MIMO signals by sequentially decoding and cancelling out stronger signals to reduce interference 
from weaker signals. It initially sorts users according to their signal strength or Signal-to-Interference-plus-
Noise Ratio (SINR), detects the strongest signal, and then cancels out its contribution from the observed 
signal. It repeats for other signals, thereby gradually decreasing interference. While SIC enhances the detection 
accuracy, it is subject to error propagation if the initial decisions are erroneous. Additions such as RL-based 
refinement enhance the robustness of real-world implementation. The SINR for each detected symbol xk ​ at the 
k − th iteration is

	
SINRk = |hk|2∑Nt

j=k+1 |hj |2 + σ2 � (5)

where hk ​ is the effective channel coefficient of the selected user. The decoding order was determined by sorting 
the SINR values in the descending order. For the detected symbol xk ​, the estimated signal is

	
xk = arg min

xk∈χ

∣∣∣∣xk − hH
k yk

∥hk∥2

∣∣∣∣� (6)

After detecting xk ​, the received signal is updated by cancelling the detected component as follows:
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	 yk+1 = yk − hkxk � (7)

RL improves MIMO detection through dynamic symbol-decision refinement learned through policies. It 
optimizes the detection order, reduces error propagation, and accommodates changes in the channel conditions. 
Through the use of reward-based learning, RL-based detectors enhance the signal estimation precision, leading 
to more robust MIMO systems against interference and hardware impairments. The RL-based reward function 
for improving signal detection is given by:

	 Rk = − ∥ yk − Hxk∥2� (8)

where xk ​ denotes the estimated symbol vector at step k. The RL agent updates the detection policy π(x | y) 
using a Q-learning update. In a Rayleigh fading channel, the channel matrix H  is typically modelled as

	 H = Htrue + E� (9)

where Htrue​ is the true Rayleigh fading channel matrix,  E ∈ CNr×Nt ∼ CN(0, σ2
e)  represents the channel 

estimation error, modelled as an independent Gaussian matrix, and σ2
e = 0.12 = 0.01 ensures a 10% estimation 

error. Thus, the estimated channel used in SIC-RL detection is

	 H = Htrue + 0.1 · Htrue� (10)

The received signal considering channel estimation error is then:

	 y = Hx + n = (1.1Htrue) x + n� (11)

This error affects SIC-RL-based detection, requiring the RL agent to learn robust policies that compensate for 
the biased channel estimate. The Q-learning update in RL-based signal detection optimizes decision making by 
learning from past actions, refining detection accuracy, mitigating error propagation in SIC, and adapting to 
dynamic channel conditions in massive MIMO systems.

	
Q(s, a) ← Q(s, a) + α[Rk + γmax

a′
Q(s′, a′) − Q(s, a)]� (12)

Q(s, a) is the state-action value function,  α is the learning rate, γ is the discount factor, s is the state (received 
signal and detected symbols), a is the action (symbol decision), and s′ is the next state after taking action a. The 
RL-SIC detector refines the detected symbols using the policy π ∗ (x | y), improving upon the traditional SIC-
based detection in massive MIMO. The final detected signal vector is

	
x = arg min

x∈X Nt

π ∗ (x | y)� (13)

The proposed method enhances detection accuracy, mitigates error propagation in SIC, and adapts to nonlinear 
distortions in hardware-impaired systems. The 10% error channel estimation in Rayleigh fading affects SIC-
RL detection by causing bias in signal reconstruction, resulting in compromised detection accuracy. The RL-
based detector needs to learn from this flaw, develop robust procedures to reduce error propagation, guarantee 
enhanced symbol detection, and improve the performance in dynamic massive MIMO systems. Table 2 lists the 
pseudocode for the proposed method.

Simulation results
In this study, we used Matlab-2016 to estimate the performance of the proposed SIC-RL and conventional signal 
detectors with a Rayleigh channel. The parameters used in this study are listed in Table 3. The selected parameters 
ensure an accurate evaluation of the SIC-RL detection in Massive MIMO. Large Nt, Nr ​ models realistic MIMO 
scenarios, whereas 64, 256, and 512-QAM represent different modulation complexities. Rayleigh fading with 
10% error adds real-world impairments. Q-learning with an adaptive ϵ-greedy policy enhances decision-making. 
The BER PSD and complexity assess the detection performance under different noise conditions, ensuring a 
robust evaluation.

In Q-learning-based signal detection for SIC-RL in Massive-MIMO–NOMA systems, particularly under 
varying modulation schemes and diverse channel conditions, the exploration rate plays a crucial role in 
balancing the trade-off between exploring new actions and exploiting learned policies. Typically, the exploration 
rate, denoted as ε in the ε-greedy policy, starts at a relatively high value (ε = 1), to encourage the agent to explore 
a wide range of possible detection actions. Over time, ε decayed gradually to a lower threshold ( εmin = 0.01) 
to favor exploitation as the Q-values converged. Decay can follow a linear, exponential, or adaptive schedule. For 
instance, in exponential decay, the rate is updated using εt = ε0 × exp(−λt), where λ is the decay rate and t 
is the episode count. This decay ensures that during the early learning phases, the RL agent experiences varied 
interference patterns, channel conditions, and modulation effects, thereby improving its generalization across 
environments. In SIC-RL, such decay allows the system to initially explore various signal ordering and decoding 
strategies under high-order modulations and then converge towards optimized detection strategies tailored to 
dynamic channel characteristics and modulation-aware interference patterns, ensuring both robustness and 
efficiency in signal reconstruction. The Fig. 2 illustrates the exponential decay of the exploration rate (ε) over 
1000 episodes in a Q-learning-based SIC-RL system. Initially, ε was high, which encouraged the exploration 
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Parameter Value

M-MIMO 256 × 256

Modulation Scheme 64-QAM, 256-QAM and 512-QAM

Channel Model Rayleigh Fading

Channel Estimation Error 10%(σ2
e = 0.010)

Detection Algorithm SIC with RL Refinement

RL Algorithm Q-learning with ϵ greedy policy

Learning Rate (α) 0.1

Discount Factor (γ) 0.9

Exploration Rate (ϵ) 0.1 (decayed over iterations)

Training Episodes 10,000

Performance metrics BER, PSD and Complexity

Table 3.  Simulation parameters.

 

Table 2.  SIC-RL algorithm for M-MIMO signal detection.
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of various detection strategies. As the training progresses, ε decreases gradually, favoring the exploitation of 
learned policies and ensuring stable and efficient signal detection under diverse conditions.

In SIC-RL for massive-MIMO–NOMA signal detection, the initial Q-table values are typically set to zero or 
small random values. This neutral initialization implies that the agent has no prior knowledge of the optimal 
detection policy, allowing a fair exploration of all possible actions (e.g., user decoding orders and modulation-
specific strategies). Each Q-table entry corresponds to a state-action pair, where the state may represent features 
such as the estimated SINR, modulation type, and user index, while the action could be the selection of the next 
user to decode in the SIC process. The convergence criteria are based on the stabilization of the Q-values and 
consistent performance of the signal detection metrics (BER). Typically, convergence is assumed when.

	a.	 The change in Q values over successive episodes fell below a small threshold (∆Q < 0.001).
	b.	 The selected actions (detection sequences) stabilize across multiple episodes.
	c.	 Performance metrics like BER or throughput plateau, indicating policy maturity.

In addition, in dynamic channel or modulation environments, a windowed moving average of the performance 
is often used to confirm convergence under variable conditions. Early stopping or adaptive learning rates may 
be introduced to improve convergence in nonstationary environments. Table 4 lists the initialization and Final 
Q-table. In the Q-learning framework, Q (state, action) represents the expected reward for selecting an action 
in a given state. The reward function, represented by get Reward, is a placeholder in this example, but in a 
real system, it reflects the performance of signal detection, such as the Bit Error Rate (BER) or throughput, 
depending on the system’s objectives. The convergence of the Q-learning algorithm was monitored by tracking 
the maximum change in the Q-table across episodes. If the change between consecutive Q-table updates was 
below a specified threshold, the system was considered to have converged. Additionally, the epsilon parameter, 
which controls the exploration–exploitation trade-off, decays over time, gradually reducing exploration and 
shifting the focus towards exploiting the learned policies as the agent gains experience in the environment.

Figure 3 illustrates the BER vs. SNR graph, which compares different signal detection techniques in a Massive 
MIMO system using 512-QAM. The BER of 10–3 is attained at the SNR of 20 dB, 18.8 dB, 17.7 dB, 16 dB, 14.3 dB, 
13.4 dB and 11.2 dB by the ZFE, CG, GS, AMP, MLD, MMSE and SIC-RL. The SIC-RL detector achieved the 
BER at the lowest SNR, outperforming all methods, followed by MMSE and MLD. AMP, GS, and CG showed 
moderate performance, whereas ZFE had the highest SNR owing to noise amplification. It is also noted that 
the proposed SIC-RL achieve a SNR gain of 8.8 dB, 7.6 dB, 6.4 dB, 4.8 dB, 3.1 dB and 2.2 dB as compared with 
the contemporary detectors. The graph highlights the effectiveness of SIC-RL in improving detection accuracy, 
especially at a low SNR. As the SNR increased, the BER decreased exponentially for all methods, demonstrating 
their reliability at higher signal quality, with SIC-RL providing the best error resilience.

The BER vs. SNR plot for 256-QAM modulation in a Massive MIMO system, comparing various detection 
methods, is presented in Fig. 4. The BER of 10–3 is achieved at the SNR of 18 dB by ZFE, 16.3 dB by CG, 14.5 dB 
by 13.1, 10.9 dB by MLD, 9.7 by MMSE and 6.6 dB by SIC-RL. The numerical results show that SIC-RL performs 
better than the traditional methods by achieving an SNR gain in the range 11.4 dB of 3.1 dB. The SIC-RL method 
performed the best, with the lowest SNR, followed by the MMSE and MLD. AMP, GS, and CG performed 
moderately well, whereas ZFE had the highest SNR because of noise amplification. With an increasing SNR, the 
BER decreases exponentially, which means that the detection accuracy is better. SIC-RL performs considerably 
better than all other approaches, particularly at a low SNR, and shows the strength of reducing errors. This 
indicates that SIC-RL is a highly efficient detection method for high-order QAM in Massive MIMO systems.

In Fig. 5, a graph of BER vs. SNR for 64-QAM is shown. With the SNR of 16 dB by ZFE, 14.3 dB by CG, 
13.1 dB by GS, 11.7 dB by AMP, 10.2 dB by MLD, 8.3 dB by MMSE and 5 dB by SIC-RL respectively, the BER 

Fig. 2.  Exponential decay of exploration rate in SIC-RL.
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is 10^-3. It is observed that the SIC-RL considered in this paper got maximum detection as it has been able 
to attain SNR gain of 11 dB, 9.3 dB, 8.1 dB, 6.7 dB, 5.2 dB and 3.2 dB over the Conventional techniques. It is 
observed that signal detection requires less SNR than 256 and 512 QAM. The detection quality is improved 
over 256-QAM and 512-QAM with a lower modulation complexity and lower symbol density. 64-QAM has 
fewer symbol points, and thus a larger Euclidean distance between symbols; therefore, detection is less prone 
to noise and interference. This resulted in a reduced BER for the same SNR. In comparison, 256-QAM and 
512-QAM contain denser constellations with greater vulnerability to interference and noise and require greater 
SNR for successful detection. The SIC-RL detector remains the best compared to the other methods with the 
least BER, followed by MMSE and MLD. The ZFE method exhibited the worst performance owing to the noise 
amplification. Generally, 64-QAM is more accurate in detection and has lower SNR requirements, which renders 
it a stronger candidate for actual wireless communication.

Fig. 3.  BER performance comparison of the proposed SIC-RL detector with conventional M-MIMO signal 
detection techniques for 512-QAM modulation.

 

Q-table initialization

Episode 100: Max Q-delta = 0.087957, 
Epsilon = 0.6105

Episode 200: Max Q-delta = 0.008298, 
Epsilon = 0.3742

Episode 300: Max Q-delta = 0.190878, 
Epsilon = 0.2309

Episode 400: Max Q-delta = 0.099890, 
Epsilon = 0.1440

Episode 500: Max Q-delta = 0.119246, 
Epsilon = 0.0913

Converged at episode 572 with max 
Q-delta = 0.000150

Final Q-table

3.0104 0.1165  − 0.0986  − 0.1119 0.1365

0.0228 0.1831  − 0.1067 0.0344 2.4947

 − 0.0944  − 0.1123 0.1143 0.1716 3.1286

 − 0.1571 0.1671 2.6084 0.3815 0.4077

0.2604 0.5225 2.9035 0.1332  − 0.0152

0.4372 2.6889 0.2940  − 0.1313  − 0.1131

3.0322 0.3085  − 0.0926  − 0.0003 0.0837

0.2193  − 0.0970  − 0.2662  − 0.0344 2.4377

 − 0.0565  − 0.0712 0.4423 0.2513 3.2862

0.0047  − 0.0321 0.4962 1.0086 2.5073

Table 4.  Q-table initialization and final Q-table.
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The analysis of 64-QAM BER performance under 5% channel error shows the robustness of every detector 
to inaccurate channel estimation. It reveals how sophisticated algorithms such as SIC-RL can keep the BER very 
low even with moderate channel errors, demonstrating their efficacy in real-world applications. This analysis 
is crucial for the design of efficient communication systems that can perform well even with estimation errors. 
Figure 6 illustrates the BER performance of various signal detectors for 64-QAM under 5% channel estimation 
error. At a BER of 10–3, the SNR values were approximately ZFE (13.8 dB), CG (12 dB), CS (10.2 dB), AMP 
(8.6 dB), MLD (7.7 dB), MMSE (6 dB), and SIC-RL (4.2 dB). The proposed SIC-RL detector outperformed the 
others significantly, achieving an SNR gain in the range of 1.8 dB 9.6 dB as compared with the conventional 
schemes. The results highlight that a significant improvement in performance is indicative of increased detection 
accuracy and noise robustness. Thus, SIC-RL is extremely well suited to high-data-rate and error-prone 
communication systems, particularly in situations where ideal channel knowledge is not practical.

The BER curves of 64-QAM with 10% channel error are shown in Fig. 7. The BER of 10–3 is achieved at the 
SNR of 17.4 dB, 16 dB, 14.4 dB, 13.2 dB, 11.8 dB 10 dB and 5.8 dB by the proposed SIC-RL and conventional 
schemes. The proposed SIC-RL significantly enhances the BER performance by achieving an SNR gain in the 
range of 4.2 dB 11.6 dB as compared with contemporary schemes. The BER vs. SNR performance of 64-QAM 
with 10% channel error, traditional detection algorithms (ZFE, CG, GS, AMP, MMSE, MLD) exhibit significant 
degradation in BER performance because of the effect of channel estimation errors. Traditional detection 

Fig. 5.  BER performance comparison of the proposed SIC-RL detector with conventional M-MIMO signal 
detection techniques for 64-QAM modulation.

 

Fig. 4.  BER performance comparison of the proposed SIC-RL detector with conventional M-MIMO signal 
detection techniques for 256-QAM modulation.

 

Scientific Reports |        (2025) 15:24641 10| https://doi.org/10.1038/s41598-025-06492-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


algorithms use precise channel state information (CSI) for equalization and detection; however, channel errors 
create mismatches, enhancing noise and interference. This leads to an elevated BER, particularly at lower SNR 
values. Conversely, the SIC-RL exhibited superior BER performance. The RL approach dynamically adjusts 
in accordance with channel variations and learns optimal detection techniques independently of channel 
shortcomings. It handles interference and noise effectively without heavy dependence on a given CSI, and 
is therefore resistant to channel errors. This flexibility enables the SIC-RL to perform better than traditional 
detectors with a significantly lower BER at all SNR values, particularly in adverse channel conditions.

The results in highlight the robustness of the proposed SIC-RL detector under 20% channel estimation error. 
It achieves a notable SNR gain of 14.5 dB to 2.6 dB over traditional detectors at a BER of 10–3, demonstrating 
superior noise resilience and enhanced reliability in highly impaired communication environments. Figure 8 
presents the BER performance of various signal detectors for 64-QAM with 20% channel estimation error. At 
a BER of 10–3, the approximate SNR values are as follows: ZFE (22.3  dB); CG (19  dB) CS, (16.2  dB) AMP, 
(14.3  dB) MLD, (12  dB) MMSE, (10.4  dB); and SIC-RL (7.8  dB). The proposed SIC-RL detector shows a 
significant performance advantage, achieving a SNR gain in the range of 14.5 dB to 2.6 dB as compared with the 
contemporary algorithms, confirming its robustness in severely impaired channel conditions.

The Power Spectral Density (PSD) performance estimation of MIMO systems is an important analysis of 
spectral efficiency, interference cancellation, and signal integrity. PSD facilitates power distribution evaluation 

Fig. 7.  Analysis of BER performance comparison of the proposed SIC-RL detector with conventional 
M-MIMO signal detection techniques for 64-QAM modulation with 10% channel error.

 

Fig. 6.  Analysis of BER performance comparison of the proposed SIC-RL detector with conventional 
M-MIMO signal detection techniques for 64-QAM modulation with 5% channel error.
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over frequencies to utilize the optimal bandwidth with minimal spectral leakage. PSD assists in comparing 
detection algorithms to determine their contributions to noise amplification and interference cancellation. 
Correct PSD estimation is important for adaptive modulation, beamforming, and interference cancellation 
in next-generation wireless communications to improve the overall system capacity, energy efficiency, and 
reliability of the communication. In Fig. 9, we compare the PSD performance of the 256X256 MIMO for 64-QAM 
under a Rayleigh channel for the signal detection schemes. PSD values of − 130, − 190, − 230, − 310, − 380, − 460 
and − 530 were achieved using the ZFE, CG, CS, AMP, MLD, MMSE, and SIC-RL schemes. The proposed SIC-
RL significantly improves the spectral access performance by minimizing the out-of-band emission (OBE) 
to − 530. It can be observed from the numerical values that the ZFE has greater PSD values, indicating more noise 
amplification. MMSE and MLD demonstrated better noise reduction. The SIC-RL had the lowest PSD value, 
indicating successful interference suppression. AMP, GS, and CG provide equal trade-offs. The comparison 
helps choose good detectors for resilient signal processing in next-generation wireless communication systems.

Figure  10 shows the PSD performance of the signal detectors for 64-QAM in Rician channel with 10% 
channel error. PSD values of − 52, − 110, − 157, − 210, − 290, − 340 and − 410 were achieved by the ZFE, CG, CS, 
AMP, MLD, MMSE, and SIC-RL schemes. The proposed SIC-RL outperformed contemporary detectors by 
achieving a PSD gain in the range of − 352 to − 70. The PSD performance comparison of different detectors for 
64-QAM with 10% channel error demonstrated their insensitivity to channel distortions. The ZFE has the highest 
PSD, which reflects increased noise, and the SIC-RL has the lowest, reflecting better interference cancellation. 
MMSE and MLD offer improved noise suppression compared to AMP, GS, and CG, which have a trade-off 
between complexity and performance. The results show that sophisticated detection techniques improve spectral 
efficiency in the presence of channel imperfections.

Fig. 9.  Power spectral density analysis of various signal detectors for 64-QAM modulation, illustrates the 
spectral containment and out-of-band emission characteristics of proposed and conventional detectors.

 

Fig. 8.  Analysis of BER performance comparison of the proposed SIC-RL detector with conventional 
M-MIMO signal detection techniques for 64-QAM modulation with 20% channel error.
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Complexity
The complexity of signal detection in MIMO systems is essential for performance optimization, resource 
management, and real-time processing. With MIMO growing to Massive MIMO, detection complexity directly 
affects the processing time, power, and hardware feasibility. Optimal detection algorithms, such as MLD, are 
available but have exponential complexity, rendering them unsuitable for large systems. MMSE and ZFE are 
based on matrix inversion, resulting in cubic complexity O(N3

t ), which is computationally expensive for large 
numbers of antennas. Iterative techniques such as AMP, GS, and CG minimize the computational cost, but 
can suffer from convergence problems. SIC-RL adds learning-based detection, trade-off performance, and 
flexibility, but at the cost of heavy training25. By analyzing complexity, researchers can select effective detectors 
using system constraints, including latency, power consumption, and processing capability. Complexity analysis 
will aid in devising low-complexity high-performance detection methods for advanced radio system26. Table 5 
presents a complexity analysis of the proposed and conventional detectors.

The complexity and antenna analyses are illustrated in Fig.  11. In Massive-MIMO–NOMA systems, 
the computational complexity of SIC-RL scales logarithmically with the number of antennas, denoted by 
O(logN ). This reflects the efficient detection process in SIC combined with reinforcement learning, which 
scales more gracefully as the number of antennas increases. In contrast, Maximum Likelihood Detection (MLD) 
exhibits exponential complexity, O(2n), due to the exhaustive search required to evaluate all possible symbol 
combinations, making it computationally intensive as the number of antennas grows. The log–log plot visually 
demonstrates that while SIC-RL’s complexity increases slowly with the number of antennas, MLD’s complexity of 
the MLD grows exponentially, highlighting the scalability advantages of SIC-RL in large-scale Massive-MIMO–
NOMA systems.

Algorithms Complexity Remarks

SIC-RL O(N2
t )

The RL agent has to learn optimal detection strategies through several iterations and needs significant training and computational 
resources. The decision-making process entails updating Q-values or policy networks, which is more complex with an increasing 
number of antennas and modulation schemes

MMSE O(N3
t ) Requires computing the inverse of the Gram matrix HH H + N0I , leading to O(N3

t ) complexity. As Nt ​ increases, matrix 
inversion becomes computationally expensive

MLD O(MNt ),
MLD searches for the most likely transmitted symbol by evaluating all possible symbol combinations, leading to an exponential 
complexity of O(MNt ), where MMM is the modulation order. This makes MLD impractical for large-scale MIMO

AMP O(N2
t ) AMP progressively optimizes detection by belief propagation, needing several iterations to converge. Complexity grows linearly per 

iteration but with an upper bound dependent on the number of iterations, which makes it burdensome for highly correlated channels

GS O(N2
t ) Iteratively solves linear systems by updating each variable sequentially. The convergence rate depends on matrix properties, leading 

to slow convergence for ill-conditioned MIMO channels. Complexity per iteration is O(N2
t ).

ZFE O(N3
t ) Requires direct inversion of HH H , similar to MMSE, resulting in O(N3

t ) complexity. Additionally, noise amplification degrades 
performance, requiring extra processing for noise mitigation

Table 5.  Complexity analysis.

 

Fig. 10.  Power spectral density analysis of various signal detectors for 64-QAM modulation with 10% 
channel error, illustrates the spectral containment and out-of-band emission characteristics of proposed and 
conventional detectors.
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Conclusion
This study presents an in-depth evaluation of SIC-RL for massive MIMO signal detection across diverse 
modulation schemes and channel conditions. Comparative analysis with conventional detectors, including 
MMSE, MLD, AMP, GS, CG, and ZFE, demonstrated the superiority of SIC-RL in terms of BER, PSd), 
and computational complexity. Notably, at BER = 10⁻3, SIC-RL achieves substantial SNR gains of 11.2  dB 
for 512-QAM, 6.6  dB for 256-QAM, 5  dB for 64-QAM, and 5.8  dB for 64-QAM under 10% channel error, 
highlighting its robustness under challenging wireless environments. From a spectral efficiency perspective, 
SIC-RL reduces spectral leakage by 35% and 20% compared with traditional methods, making it an ideal 
choice for next-generation wireless networks requiring high data rates and minimal spectral contamination. 
Although ZFE and CG offer computational advantages, they suffer from poor BER performance owing to 
noise amplification. GS and AMP strike a balance between complexity and accuracy but still lag behind SIC-
RL in terms of detection accuracy and adaptability to channel variations. Importantly, MLD provides optimal 
detection, but is computationally prohibitive for large-scale MIMO systems, whereas SIC-RL achieves near-
logarithmic complexity growth, making it a feasible and scalable solution. One of the main limitations of the 
proposed method is that it relies on training data for convergence, resulting in performance loss in fast-changing 
channels and a higher computational cost for high-order modulation schemes. The key objective of this study 
is to establish a robust, adaptive, and computationally efficient signal detection strategy for large-scale MIMO–
NOMA networks. Future research will focus on extending the SIC-RL framework to hybrid beamforming 
architectures and integrating it with intelligent reflecting surfaces (IRS) and reconfigurable intelligent surfaces 
(RIS) to further enhance detection under dynamic wireless environments. Moreover, efforts will be directed 
toward developing transfer-learning-based SIC-RL models that can be generalized across diverse channel 
distributions, reducing the training overhead. Another promising direction is to investigate the feasibility of 
hardware implementation using field-programmable gate arrays (FPGAs) or system-on-chip (SoC) platforms 
to validate latency and energy efficiency. Ultimately, the future aim is to build a unified SIC-RL framework that 
seamlessly adapts to real-world 6G communication scenarios, thereby enabling ultra-reliable, low-latency, and 
spectrum-efficient wireless communication.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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