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Fault detection is essential in guaranteeing the reliability, security, and productivity of contemporary 
technological and industrial systems. Faults that go unnoticed may result in disastrous failures as 
well as prohibitive downtimes in industries as varied as healthcare, manufacturing, and autonomous 
functioning. Conventional fault detection technologies tend to possess low accuracy rates, weak 
feature extraction, as well as limitations in generalizability across variegated faults. To overcome 
these shortcomings, this paper puts forward an Attention-GRU-Based Fault Classifier (AGFC-
Net), which employs a sophisticated attention mechanism for improved feature extraction and 
correlation learning. Through the fusion of attention layers with Gated Recurrent Units (GRU), 
AGFC-Net is able to focus on key fault features, learn temporal dependencies, and provide better 
classification performance even under noisy conditions. Experimental results show that AGFC-Net 
attains a fault detection accuracy of 99.52%, better than conventional machine learning and deep 
learning algorithms. The suggested method presents a stronger, adaptive, and scalable solution for 
autonomous fault diagnosis, opening the door to intelligent and trustworthy fault detection systems in 
future power grids and industrial applications.
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A transmission line is a critical component of an electrical power system, acting as the conduit through which 
electrical energy is transferred from generating stations to wider distribution networks. With the global rise 
in electricity demand over recent decades, maintaining stable and reliable transmission lines has become 
increasingly essential. However, transmission lines are prone to various types of faults caused by environmental 
conditions such as lightning, wind, and storms, as well as by equipment aging, insulation failure, or external 
mechanical impacts. If these faults are not detected and addressed promptly, they can result in large-scale power 
outages, damaging infrastructure and disrupting grid stability. Therefore, accurate and timely fault identification 
is a crucial requirement for the secure operation of modern power systems.

The process of detecting and classifying faults in electrical transmission lines is inherently complex due to the 
dynamic nature of the power system and the interactions among its numerous components. Transmission lines 
operate within vast, interconnected electrical networks that include generators, transformers, circuit breakers, 
and protective relays. These elements continuously interact with one another, making it essential that fault 
detection systems not only identify the occurrence of faults but also classify them accurately according to their 
type and origin. Faults in transmission systems can manifest in different forms, such as single line-to-ground 
faults, line-to-line faults, double line-to-ground faults, or symmetrical three-phase faults. Each type has unique 
electrical characteristics and implications, requiring tailored detection and protection strategies to minimize 
equipment damage and restore system stability.

In modern power systems, fault detection forms a foundational element of the protection mechanism. 
Upon the occurrence of a fault, the protection scheme must quickly and reliably detect the event, determine 
the nature and location of the fault, and trigger the appropriate control action–typically by isolating the faulty 
section using circuit breakers and relays. Traditional fault detection approaches have relied heavily on hardware-
based solutions like electromechanical relays and threshold-based mechanisms, which, despite their simplicity, 
often lack adaptability and fail to meet the accuracy and speed requirements of today’s dynamic grids. With the 
increasing complexity of power systems, such conventional approaches have shown limitations in response time, 
feature generalization, and adaptability to various fault scenarios, particularly in systems with renewable energy 
sources and decentralized architectures. Recent developments in sensor technologies and data acquisition 
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systems have resulted in the installation of intelligent monitoring equipment across the power grid. Such devices 
continuously monitor a broad variety of electrical parameters, such as voltage, current, frequency, and phase 
angle, and offer high volumes of high-resolution data. Utilization of this data through advanced computational 
methods has been a major driver for creating more precise and adaptive fault detection models. In particular, 
model-based techniques are increasingly being used to surmount the inflexibility of conventional rule-based 
systems.

Machine learning (ML) and pattern recognition algorithms have proven to be strong contenders for fault 
detection and diagnosis. By learning from past or simulated fault data, these systems are able to automatically 
develop intricate patterns of association between system measurements and fault states. For example, support 
vector machines (SVM), artificial neural networks (ANN), and decision tree algorithms have been used to 
classify faults in three-phase transmission lines successfully. These models are capable of identifying non-linear 
patterns and enhancing generalization through supervised learning, thus improving their performance under 
fluctuating system conditions.

Nevertheless, despite classical ML models providing superior flexibility and prediction accuracy compared 
to previous threshold-based techniques, they tend to rely on hand-designed features and are incapable 
of describing the temporal evolution of electrical signals. This is especially challenging in fault cases where 
electrical parameters change over time in subtle but informative patterns. Furthermore, ML models might not 
be as robust as required for real-time use, particularly in the presence of noise and operating variations. These 
challenges have motivated the use of deep learning techniques, which can automatically learn relevant feature 
representations from raw input data without requiring cumbersome preprocessing.

Some of the deep learning models, including convolutional neural networks (CNNs), long short-term memory 
(LSTM) networks, and hybrid models, have been put forward for electrical fault diagnosis. These models can 
learn intricate spatial and temporal relationships within the data. Although effective, some models continue to 
have difficulty in balancing model complexity, interpretability, and computational expense. In addition, most 
models do not have mechanisms to concentrate on the most informative regions of the input data, resulting in 
lower efficiency and vulnerability to irrelevant information.

To overcome these shortcomings, this paper proposes an Attention-GRU-Based Fault Classifier (AGFC-
Net), a deep learning model that integrates the advantages of convolutional layers, attention mechanisms, and 
gated recurrent units (GRUs) as shown in Fig. 1. Convolutional layers are utilized to derive spatial features from 
multivariate time-series like voltage and current readings. The attention mechanism receives these features, which 
selectively attends to the most pertinent signal sections to minimize noise effects and maximize interpretability. 
The GRU layers are used later to detect temporal dependencies, enabling the model to comprehend how electrical 
parameters change with time during fault conditions. This blend helps AGFC-Net attain increased classification 
performance and retain computational efficiency and noise robustness. The dataset employed in this study 
comprises about 12,000 annotated samples symbolizing both faulty and normal operating states of an emulated 
three-phase transmission system. Each sample includes six features: line voltages (Va, Vb, Vc) and line currents 
(Ia, Ib, Ic), captured under different fault types and conditions. The defects range over all combinations of phase 
fault possibilities and encompass differences in fault location and impedance, offering a wide and all-inclusive 
training set. This annotated dataset is ideal for supervised learning since the model can learn discriminative 
features that distinguish normal operation from different types of faults.

The primary goal of this study is to create a strong, precise, and scalable model that can perform real-time 
fault detection and classification in power transmission lines. Through the incorporation of attention-based 
learning and GRU architecture, AGFC-Net aims to address the issues of conventional machine learning and deep 
learning models. The long-term aim is to be able to contribute to the development of intelligent fault detection 
systems not only capable of recognizing complex fault patterns but also appropriate for implementation within 
contemporary power grids requiring real-time monitoring and decision-making.

Fig. 1.  AGFC-Net.
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Literature survey
Saberia et al.1 contrasted the support vector machine (SVM) and artificial neural networks (ANN) for the 
detection of faults in centrifugal pumps. They were interested in various kernels used in SVM, such as Gaussian 
and linear kernels, and observed that SVM outperformed ANN, particularly under noisy conditions. Noise had 
little effect on SVM’s capacity to classify faults correctly, thus, it is a more robust approach for real-world 
applications. However, ANN was more vulnerable to noise, which had a negative effect on its performance.Zhao 
et al.2 also developed a Condition-Based Monitoring (CBM) system based on a Dempster–Shafer-based Genetic 
Backpropagation (DGBB) model and ANN for bearing failure diagnosis. The system was able to detect faults 
successfully by mimicking vibration patterns and comparing them with experimental sensor data. The model 
showed high classification accuracy and was therefore an efficient model for monitoring the health of industrial 
machinery. The sensitivity of the model to changing fault conditions was also one of the major strengths.Yang3 
proposed the application of a recursive high-order parameter neural network (RHPNN) for the classification of 
faults in analogue integrated circuits, specifically for open- and short-circuit faults. The model tackled parametric 
variations due to faults and greatly improved detection accuracy over conventional methods, demonstrating the 
ability of neural networks to deal with dynamic circuit faults.Grimaldi and Mariani4 used ANN in On-Board 
Diagnostics (OBD) of automotive engines to improve fault detection. Their application successfully detected 
faults in engine parts from sensor measurements such as temperature, pressure, and exhaust emissions. Using 
ANN helped in real-time detection and diagnosis, making it ideal for applications where there is a need to 
quickly identify faults for maintenance and safety purposes.Yousaf et al.5 created a hybrid fault detection model 
using Long Short-Term Memory (LSTM) networks and Discrete Wavelet Transform (DWT) for the detection of 
faults in high voltage direct current (HVDC) systems. The proposed model was found to have 99.04% accuracy 
in fault detection while being robust against other external faults. This model particularly performed well under 
dynamic operations and had excellent generalization potential for real-time detection, which made it applicable 
for large-scale power grid systems.B. Samanta et al.6 have compared the classification accuracy of SVM and 
ANNs in gear fault detection. Vibration signals from rotating machines with healthy and faulty gears were 
utilized to create features for classification. ANN with derivative/integral preprocessing achieved a test accuracy 
of 97.92%. Nevertheless, SVM performed better than ANN in most cases, especially when combined with GA-
based feature selection and parameter tuning. Though ANN proved more accurate in certain instances, SVM 
showed reduced training times and superior overall performance.Andrade et al. citeAndrade2021 implemented 
artificial neural networks based on non-linear autoregressive exogenous (NARX) for fault detection in pneumatic 
systems. The method proved to be effective in classifying faults with a minimal computational time as opposed 
to traditional techniques. The research highlighted ANN-based methods’ flexibility towards intricate systems 
involving numerous interdependent components. Je-Gal et al.8 introduced a time-frequency feature fusion 
approach to identify faults in marine engines. The method fused wavelet transforms with deep learning 
algorithms to extract useful features from vibration signals. The approach was highly accurate in fault 
identification even under low sampling rates and noisy signals, demonstrating its promise for maritime use 
where the data bandwidth is restricted. Aherwar9 presented a review of fault detection in gearboxes using 
vibration analysis in time, frequency, and time-frequency domains. The article emphasized the utility of AI 
methodologies, such as ANN, to enhance fault detection accuracy. The AI-based methodologies were shown to 
be more computationally efficient and appropriate for real-time monitoring based on their low computational 
cost. Ge et al.10 used Support Vector Machine (SVM) for fault detection in sheet metal stamping processes. The 
model was able to classify faults like misalignment and overloading, even with a small amount of training data. 
SVM performed better than ANN, and hence it is a potential candidate for industrial fault detection applications 
where data is limited. Puig et al.11 proposed a passive fault detection technique based on Group Method of Data 
Handling Neural Networks (GMDHNN) and constraint satisfaction algorithms. The technique was centered on 
fault detection without needing active testing or intervention in the system. It demonstrated better accuracy in 
highly uncertain complex systems than conventional methods. Shi et al.12 used wavelet transforms and ANN for 
damage detection in civil engineering structures. Through vibration data analysis, their model obtained high 
training accuracy (99.52%). This hybrid method effectively integrated wavelet-based feature extraction with 
ANN classification and applied it to real-time infrastructure health monitoring. Efatinasab et al.13 suggested 
Bayesian Neural Networks (BNN) for fault zone prediction in smart grids. The model’s capability to model input 
uncertainty minimized false alarms and enhanced prediction accuracy. This work proved that uncertainty 
modeling can improve reliability when combined with neural networks in uncertain environments like power 
grids. Jamil et al.14 proposed a fault detection system for power transmission lines based on an ANN. The method 
successfully identified and classified the faults, irrespective of fault location or impedance. The system showed 
high classification accuracy under diverse conditions, enhancing both speed and reliability in transmission 
systems. Yadav and Dash15 surveyed the use of ANN in transmission line protection, highlighting the advantages 
of employing ANN for fault detection and classification. The study concluded that ANN models are efficient and 
effective at dealing with complex fault structures and classifying faults in real time, improving the robustness and 
efficiency of power grid protection schemes. Veerasamy et al.16 proposed an LSTM-based approach for the 
detection of high impedance faults (HIF) in power systems with PV integration. Their approach detected with 
92.42% accuracy and proved to be robust against noisy and complex input data, making it pertinent in the 
context of smart grid systems with renewable energy integration. Mohanty et al.17 used the Cumulative Sum 
(CUSUM) technique for power system fault detection. The technique improved noise resistance and frequency 
deviation robustness, making it more applicable in high-voltage conditions with signal quality issues. The 
research showed that the method improved the accuracy of fault detection. Silva et al.18 integrated the wavelet 
transform with ANN for fault detection in transmission lines. Their approach achieved perfect classification 
accuracy in simulations and performed well with real-world data. This fusion of wavelet-based feature extraction 
and ANN classification proved highly effective for real-time fault detection in power distribution systems. An 
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algorithm for fault classification with a combination of Discrete Wavelet Transform (DWT) and Back-
Propagation Neural Networks (BPNN) was presented by C. Pothisarn and A. Ngaopitakkul19. Fault signals were 
simulated with ATP/EMTP, and Daubechies4 was employed as the mother wavelet. Components in the first 
decomposition scale of high frequency were utilized for classification. The technique classified faults with 
varying types, locations, and inception angles with an accuracy of more than 97.22% , which shows greater 
efficiency and accuracy compared to conventional techniques. Yong Deng20 introduced a better diagnostic 
approach for analog circuits based on a hierarchical Levenberg-Marquardt (LM) Discrete Volterra Series (DVS) 
algorithm with a condensed closest neighbor (CNN) classifier, which is referred to as IDVS-CNN. The approach 
made DVS parameter calculation simpler through hierarchical design and Bayesian information criteria. The 
model obtained macro and micro F1 scores of 0.903 and 0.894, respectively, with improved fault identification 
ability and reduced computational complexity. Lamya Gabera21 suggested a fault detection model for digital 
VLSI circuits based on deep learning, i.e., a Stacked Sparse Autoencoder (SSAE). The process included test 
pattern generation, feature reduction, and classification through a softmax layer. The model was evaluated on 
eight ISCAS’85 benchmark circuits with a maximum fault coverage of 99.2% and a validation accuracy of up to 
99.7%, demonstrating its efficacy in detecting stuck-at faults. Papia Ray et al.22 introduced an SVM-based 
approach for fault classification of long transmission lines with distance estimation, optimized by Particle Swarm 
Optimization. Energy and entropy features were extracted by Wavelet Packet Transform (WPT), and then 
feature selection and normalization were applied. The model performed 99.21% accuracy on a 400 kV, 300 km 
transmission line with 10 short-circuit fault types, and fault distance error less than 0.21%. Applied to a TCSC 
system, accuracy was 98.36% with an error of around 0.29%, justifying the efficacy of the model in fault detection 
of a power system. Fouad Suliman23 proposed this research that investigates fault identification in photovoltaic 
(PV) systems based on Support Vector Machines (SVMs) and Extreme Gradient Boosting (XGBoost) optimized 
with the Bees Algorithm (BA) and Particle Swarm Optimization (PSO). A small PV array was employed to 
replicate real faults, such as line-to-line and open-circuit faults. BA remarkably improved classifier accuracy, of 
which BA-XGBoost had 87.56% accuracy and BA-SVM 70.79%, both of which outperformed models based on 
PSO. The study emphasizes the efficacy of BA in enhancing fault classification accuracy and its applicability for 
wider use in intelligent fault detection systems in various applications encompassing renewable energy and 
machine learning integration. AHMED SAMI ALHANAF24 developed This work emphasizes the usage of deep 
learning models–CNN, LSTM, and CNN-LSTM hybrid–for fault detection, classification, and location in smart 
grids with renewable integration. Based on voltage and current signals, these models exhibited strong 
performance on IEEE 6-bus and 9-bus systems in the presence of distributed generators (DGs) and network 
topology variations. The models proved to be more accurate than conventional techniques. Other works 
proposed DRNNs and CNNs for fault prediction from PMU measurements and attained high accuracy (even 
99.92%), albeit a few of them were without fault location capability. Though with robust results, most of them 
need to be further tested on varied grid configurations and DG environments. Ting Huang25 This work proposes 
a deep learning-based fault diagnosis technique that both integrates feature extraction and fault occurring time 
delays effectively. The technique couples sliding window processing with a hybrid CNN-LSTM architecture. 
Sliding windows convert multivariate time series (MTS) data into samples that preserve temporal and feature 
information. CNN layers automatically perform feature extraction, while LSTM layers preserve temporal 
relationships and delays. When applied to the Tennessee Eastman chemical process, the new approach 
outperforms the other methods with higher predictive accuracy and better noise robustness. A comparative 
study of five popular methods supports its improved performance, demonstrating its suitability for fault 
diagnosis of complex industrial processes. Xinming Li26 The Energy-Driven Graph Neural OOD (EGN-OOD) 
detector addresses the challenge of out-of-distribution (OOD) detection in intelligent fault diagnosis for 
construction machinery. By combining graph neural networks with energy-based models, it effectively captures 
complex fault relationships. Sensor-acquired vibration data is transformed into graph representations using the 
Maximal Information Coefficient, enabling the modeling of nonlinear fault interactions. Xinming Li27 The GCI-
ODG framework addresses the challenge of distribution shifts in intelligent fault diagnosis for wind turbines. 
Leveraging Graph Causal Intervention (GCI), it enhances out-of-distribution (OOD) generalization by capturing 
both local and global patterns through a hierarchical graph representation of multi-condition time-series data. 
An adaptive expert ensemble mechanism enables dynamic feature extraction using pseudo-environment labels, 
improving robustness without explicit environmental data. Additionally, causal inference techniques such as 
backdoor adjustment isolate stable, environment-invariant features, reducing spurious correlations.

Methodology
The AGFC-Net model is designed for the complex problem of fault detection in electrical power systems by 
making use of multiple advanced techniques. The first phase of the model is composed of two convolutional 
layers, conv1 and conv2, which aim to extract crucial spatial features from the input data, which will be composed 
of voltage and current measurements from several phases of the transmission lines. These convolutional layers 
learn directly relevant patterns from raw data; these contain vital characteristics of a system in fault due to 
variations in voltage and current. In addition, after every convolutional layer, the process includes applying batch 
normalization to help standardize activations while promoting a smooth, fast convergence speed in training.

Incorporation of the attention mechanism further enhances the model by enabling it to focus its attention 
on the most important features. This calculates attention weights using a linear transformation followed by a 
softmax operation that represents scaling critical information and filtering out the noise. It is very effective in 
fault detectiowell-scaled because it allows the model to filter out those pieces of information that are not useful 
and place its focus on the highly indicative features of system faults.

After the convolutional and attention layers, the model applies a GRU layer to catch sequential dependencies 
and temporal patterns. Electrical faults tend to be dynamic in nature, and fault detection in such cases is 
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dependent on the model’s ability to understand how certain patterns change over time. The GRU layer allows the 
model to monitor these changes and identify complex time-dependent fault patterns that other models might 
not detect. The update and reset gates in the GRU allow the model to learn what parts of the data are important 
for each time step, which makes it more sensitive to subtle variations in the behavior of the system.

To prevent overfitting and to generalize better to unseen data, regularization techniques will apply dropout 
and batch normalization throughout the network. Dropout is applied in training, where it disables a proportion 
of neurons at random, forcing the model to learn more robust features and not rely too heavily on any single 
neuron. Batch normalization, as mentioned earlier, makes sure that the activations within the network are well 
scaled and centered, further improving the model’s ability to generalize.

The output layer of the model finally uses a sigmoid activation function to convert the output into a probability 
between 0 and 1, indicating the likelihood of a fault occurring. This is a binary classification type of approach 
that allows the model to classify the system in both normal and faulty conditions.

These combined features allow the model, AGFC-Net, to provide very high accuracy in fault detection 
because it includes convolutional layers for feature extraction, attention for focusing on the relevant data, GRU 
layers for capturing the temporal dependencies, and regularization techniques for robustness. Furthermore, this 
model has much faster processing times and can therefore be applied to real-time applications for fast fault 
detection and response to faults in modern electrical power grids. The integration of these techniques results 
in a model that significantly outperforms traditional fault detection methods in terms of both accuracy and 
efficiency as shown in Table 1.

The proposed Attention-Guided Feature Compression Network (AGFC-Net) introduces a novel architectural 
synergy that emphasizes efficiency, interpretability, and robustness, despite previous studies exploring the 
integration of convolutional neural networks (CNNs), gated recurrent units (GRUs), and attention mechanisms 
for time-series classification and fault diagnosis. Before temporal modeling with a GRU, localized temporal 
features are extracted using 1D convolutional layers in AGFC-Net. These features are then further tuned 
using a lightweight attention method applied at the feature level. The network may prioritize salient feature 
representations early in the pipeline thanks to this attention-guided compression, which lessens the recurrent 
layer’s learning load and enhances the model’s overall focus.To improve regularization and reduce overfitting, 
the architecture additionally includes batch normalization and dropout following each convolutional level. A 
binary classification output is the result of the successive dimensionality reduction intended for the fully linked 
layers. AGFC-Net, in contrast to traditional CNN-GRU-Attention models, has an emphasis on a simple yet 
efficient design that is suited for real-time fault detection scenarios in environments with limited resources. 
The main innovation of AGFC-Net is this simplified combination of temporal modeling and attention-guided 
feature compression.

Experimental setup
To evaluate the performance of the AGFC-Net model (Fig. 1), we conduct experiments on the pre-processed 
dataset. The model is trained using a subset of the data and tested on an independent validation set. The following 
steps are followed during the experiments:

Training and validation split
The dataset is split into training (70%), validation (15%), and test (15%) sets. The training set is used to train the 
model, while the validation set is used to tune hyperparameters and prevent overfitting.

Model evaluation metrics
The model’s performance is evaluated using standard metrics, including accuracy, precision, recall, and F1-score. 
These metrics are essential for assessing the model’s ability to detect faults accurately and distinguish between 
normal and faulty conditions.

Comparison with baseline models
The AGFC-Net model is compared to traditional fault detection methods, such as Support Vector Machines 
(SVM) and Artificial Neural Networks (ANN). The comparison focuses on both accuracy and processing time, 
as the ability to detect faults in real-time is crucial for power system operation.

Author Model Accuracy (%)

Yousaf5 LSTM and DWT 99.04

Samanta6 SVM and ANNs 97.92

Veerasamy16 LSTM 92.42

Ngaopitakkul19 ATP/EMTP and Daubechies4 97.22

Lamya Gabera21 SSAE 99.21

Proposed model AGFC_net 99.52

Table 1.  Comparison of AGFC-Net with existing models.
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Training time and convergence
The training time and convergence speed of the AGFC-Net model are also evaluated. The batch normalization 
and dropout techniques are specifically assessed for their impact on training efficiency and the model’s ability 
to converge quickly.

Real-time application testing
To simulate real-time fault detection, the trained model is tested on streaming data representing a power 
system in operation. The goal is to assess how quickly and accurately the AGFC-Net model can detect faults in 
a dynamic, real-world environment.

Data collection
Definition

The dataset for this study, which consists of readings of line voltages (Va, Vb, Vc) and line currents (Ia, Ib, Ic) 
both under normal and fault conditions in a power system. It contains 12,000 labeled data points for the target 
variable Output (S) referring to the status of the system as normal or faulty. To facilitate fault analysis, a simulated 
power system was constructed using MATLAB. The system architecture includes four 11 kV generators, 
arranged such that two generators are placed at each end of the transmission line. Intermediate transformers are 
incorporated to replicate realistic power transmission conditions and enable the study of fault behaviour at the 
line’s midpoint. The system is evaluated under both steady-state (normal) operation and various fault scenarios. 
During these simulations, line voltage and current measurements are recorded at the transmission line’s output 
terminal. This process yields a substantial collection of labeled time-series data, encompassing both normal and 
faulty operating conditions, suitable for training and evaluating fault classification models. Preprocessing steps 
include

•	 Handling missing values: The missing values will be checked in the dataset. Then, missing values will be 
handled either by imputation or deletion of related records, as applicable.

•	 Elimination of less important columns: The columns that do not contribute any information for predicting 
the model are eliminated; ’Unnamed: 7’ and ’Unnamed: 8’ are two such columns.

•	 Label encoding: The target variable Output (S) will be encoded to express the fault and normal conditions.
•	 Data splitting: The dataset was split into 70% for training and 30% for testing. This ensures an adequate num-

ber of data points for both model validation and training.
•	 Normalization: StandardScaler from scikit-learn was applied for feature normalization on the feature dataset 

(Ia, Ib, Ic, Va, Vb, Vc). This standardization ensures that the features have a mean of 0 and a standard deviation 
of 1, which accelerates model convergence during the training process.

Preprocessing
Before training the AGFC-Net model, the raw data is preprocessed to ensure it is suitable for machine 
learning tasks. The dataset consists of voltage and current measurements from various phases of a three-phase 
transmission line under both normal and fault conditions. The preprocessing steps begin with data cleaning, 
where any missing or anomalous data points are identified and handled. Outliers are removed to avoid skewing 
the model’s performance. The raw voltage and current values are then normalized to a consistent range, ensuring 
that the features are on the same scale and improving the convergence during training. This is particularly 
important for deep learning models like AGFC-Net, as normalization helps to prevent issues such as vanishing 
or exploding gradients. Additionally, the data is split into three subsets: a training set (70%), a validation set 
(15%), and a test set (15%) to allow for model evaluation and tuning. The training set is used to train the model, 
the validation set is used to optimize hyperparameters and prevent overfitting, and the test set is used to evaluate 
the final model’s performance. By performing these preprocessing steps, we ensure that the dataset is clean, 
normalized, and ready for training, enabling the AGFC-Net model to learn more effectively from the data.

Feature engineering
Six input features have direct feeds into the model, and no feature engineering is done above that. Now, those 
visualizations to get a better view of the feature distributions and their relationships with the target variable are 
correlation heatmaps (Fig. 2), KDEs (Fig. 3), and QQ plots (Fig. 4, Fig. 5). We can determine the strength of 
linear relationships between inputs and the target through correlation analysis; therefore, it helps decide how to 
retain all six features. Furthermore, we will use the QQ plot to check the normality of feature distributions so 
that features are proper for the model, particularly when linearity or normality is of more advantage for training.

Proposed model
Architecture
The suggested architecture of the proposed model (you can refer Fig. 1), the AGFC-Net, The basic core consists 
of:

•	 Convolutional layers: Two 1D Convolutional layers extract spatial features from sequences of input meas-
urements of current and voltage. These layers have a kernel size of 3 and zero padding to keep the length of 
the sequence constant.

	 The 1D convolution operation is defined as: 
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Conv1D(x)i = σ

(
K∑

k=1

wk · xi+k−1 + b

)

 where x is the input sequence, w and b are the weights and biases of the convolutional filter, K  is the kernel size, 
and σ is the activation function (LeakyReLU).

•	 Inclusion of Attention Mechanism: An attention layer is incorporated within the model to facilitate dynamic 
feature prioritization during training. The process gives different input features different levels of importance 
by calculating attention weights. The weights are obtained through a linear transformation of the feature 
embeddings, followed by softmax normalization over the scores. This causes the model to give increased 
importance to the relevant features in context, thus improving its discriminative power.

	 The attention mechanism is given by: 

	 Attention(x) = Softmax(Wattn · x + battn)

 where Wattn and battn are the weights and biases for the attention layer, and the softmax function is used to 
normalize the attention weights.

Fig. 3.  Strip plots of different sets of variables.

 

Fig. 2.  Visualization of data properties.
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•	 GRU layer: A GRU layer is applied to capture sequential dependencies in the data, helping the model capture 
temporal features that may signify faults in the system. The GRU update rules are as follows: 

	

zt =σ(Wz · [ht−1, xt])
rt =σ(Wr · [ht−1, xt])
h̃t = tanh(Wh · [rt ⊙ ht−1, xt])
ht =(1 − zt) ⊙ ht−1 + zt ⊙ h̃t

 where zt and rt are the update and reset gates, h̃t is the candidate hidden state, ht is the new hidden state, and 
⊙ denotes element-wise multiplication.

•	 Fully connected layers: The output from the GRU layer is passed through several fully connected layers with 
LeakyReLU activation, which reduces the dimension of the output to ultimately predict the fault condition. 
These layers are given by: 

	

FC1(y) =σ(W1 · y + b1)
FC2(y) =σ(W2 · y + b2)

Output(y) =σ(W3 · y + b3)

 where Wi and bi are the weights and biases for the fully connected layers, and σ is the LeakyReLU activation 
function for intermediate layers and sigmoid activation function for the output layer.

•	 Regularization: Batch normalization and dropout techniques are applied to prevent overfitting and help the 
network generalize well. The batch normalization operation is defined as: 

Fig. 4.  Pair plot of features.
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BN(x) = x − µ√

σ2 + ϵ

 where µ and σ2 are the mean and variance of the batch, and ϵ is a small constant. Dropout is applied as: 

	 Dropout(x) = x · mask

 Where the mask is a binary vector sampled from a Bernoulli distribution.

Fig. 5.  Feature distribution visualizations.
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•	 Binary classification: The final output layer uses a sigmoid activation function to generate probabilities be-
tween 0 and 1, representing the likelihood of a fault occurring in the system: 

	
Output(y) = 1

1 + e−y

Working
The AGFC model works by first applying convolutional layers, conv1 and conv2, to extract important features 
from the input data, which consists of voltage and current measurements. These layers automatically learn 
relevant patterns in the data, with batch normalization applied after each convolutional layer to stabilize 
training. Regularization is applied using dropout layers to prevent overfitting, ensuring the model generalizes 
well to unseen data. It then applies the attention mechanism (attnlayer), allowing the model to focus on the 
most important features by assigning attention weights, which help the model filter out the noise and select 
relevant information for fault detection. The GRU layer finally captures sequential dependencies in the data, 
thus enabling the model to detect temporal patterns and dynamic fault behaviors. These techniques combined 
enable the AGFC model to efficiently and accurately detect faults with improved performance on both accuracy 
and processing time.

Results
Model performance
The model proposed here performed exceptionally well, as attested by its training and validation metrics. More 
than 50 epochs have led to the highly effective reduction of training loss-which does reach stabilization around 
0.02-after a rapid increase at the very beginning. Similarly, there was a trend in validation loss, which stabilized 
at around 0.03. This proves that the learning is effective, showing strong generalization to unseen data. Actually, 
for the first epochs, training accuracy had risen very well, achieving more than 98% by the 10th epoch and 
99.52% at the end of the training. The validation accuracy corresponded to the training one and reached 99.52% 
as well. Both loss and accuracy metrics (Fig. 6) convergence proves that the model had successfully avoided 
those situations where it overfitted or underfitted the data and thus was making reliable and stable predictions. 
The results further confirm the fact that this model is highly capable and persistently performs well on the 
training dataset and the validation set.

Confusion matrix
The confusion matrix in Fig. 7 indicates the performance of the model concerning the classification of the 
test dataset. The model correctly classified 1302 as class 0 and 1081 as class 1, thus showing good ability in 
differentiation between the classes. This is the least false positives of 4 class 0 samples being treated as class 1, and 
only 14 instances of class 1 being reported as class 0. These results suggest extremely balanced quality between 
sensitivity and specificity with little misclassification. In addition, the high number of correctly classified samples 
along with low errors further confirms the robustness and reliability of the model. This performance is in line 
with the overall accuracy of 99.52% discussed above.

Classification report
The classification report evaluates the performance of a classification model by reporting key metrics for each 
class: precision, recall, F1-score, and support shown in Table 2. Precision is given as the fraction of correctly 
classified positive samples out of all those classified as positive, and recall is the fraction of actual positive 

Fig. 6.  Accuracy and loss plot.
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samples identified. The F1-score is the harmonic mean of precision and recall. High scores were reflected in 
both classes because precision, recall, and F1-scores stood at above 0.99; hence, the classification would prove to 
be balanced and accurate. The number of support column points of real samples in each class indicates that the 
dataset generally maintains balance. With 1306 samples for Class 0 and 1095 for Class 1, the overall accuracy 
of the model stands at 99.54%, with macro and weighted averages suggesting consistency across classes. These 
metrics collectively demonstrate that the model is strong in its classification capabilities.

Comparison with other models
Comparison of various models for classification shows significant differences in accuracy Table 3. Traditional 
machine learning models like SVM (99.21%) and ANN (97.92%) are proven to be highly efficient, but they are 
slightly beaten by deep learning-based models like LSTM-DWT (99.04%) and DWT-BPNN (97.22%). Although 
LSTM-based models are typically good at capturing sequential dependencies, the performance of these models 
is unpredictable, as seen in the case of Veerasamy’s LSTM model that resulted in a lower accuracy of 92.42%. 
Conversely, the highest accuracy of 99.52% is attained by the proposed Attention-GRU-Based Fault Classifier 

 Author  Model  Accuracy

M. Z. Yousaf LSTM-DWT 99.04

Veerasamy LSTM 92.42

 C. Pothisarn DWT-BPNN 97.22

B. Samanta ANN 97.92

P. Ray SVM 99.21

Proposed Model AGFC 99.52

Table 3.  Comparison of models and their accuracy.

 

Class Precision Recall F1-Score Support

0 0.99 1.00 0.99 1306

1 1.00 0.99 0.99 1095

Accuracy 0.99 2401

Macro Avg 0.99 0.99 0.99 2401

Weighted Avg 0.99 0.99 0.99 2401

Additional Metrics

Accuracy CI (95%) (0.9896, 0.9963)

Prediction Variance 0.2477

Ground Truth Variance 0.2481

Chi-squared Test p-value 0.0000 × 100

Table 2.  Classification report with confidence interval and statistical metrics.

 

Fig. 7.  Confusion matrix.
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(AGFC-Net) outperforming all tested models. The uniqueness of AGFC-Net is that it combines an attention 
mechanism with GRU architecture, allowing the model to learn to selectively attend to the most important 
temporal features without the inclusion of irrelevant information. This focused attention facilitates more efficient 
extraction of complex fault-related patterns and enhances robustness against noisy data. In contrast to more 
complicated hybrid structures like CNN-LSTM or Transformer models, AGFC-Net attains better performance 
while requiring less computational complexity, thereby being well suited for real-time industrial applications. Its 
capacity for combining interpretability, efficiency, and accuracy puts AGFC-Net in an extremely effective and 
scalable fault classification solution.

Conclusion and future scope
In this paper, we proposed a model called AGFC-Net, a classifier based on attention-GRU for effective fault 
detection in electrical power systems. The proposed model utilized convolutional layers that extract spatial 
features and apply the attention mechanism to find relevant features. GRU layers are used further to capture 
sequential dependency. Fully connected layers combined with techniques of batch normalization and dropout 
helped refine features and avoid overfitting, respectively. As the technique was for the binary classification 
approach, the model could easily make effective predictions regarding fault conditions.

The proposed experimental results confirm that AGFC-Net can potentially detect faults in power systems if 
the input measurements of current and voltage are fed to the model. The integration of attention mechanisms 
and GRU layers into the model enhances its spatial features as well as temporal features, significantly improving 
its fault detection ability.

Future scope and limitations
Despite the promising results obtained from the proposed AGFC-Net, several avenues for further exploration 
exist:

•	 Application to multiclass fault detection: Future work may involve the development of a multiclass 
fault-classification model, which would allow the classification of various types of faults in the power system 
beyond binary classification.

•	 Incorporation of additional features: The model can be extended by incorporating additional features such 
as environmental conditions, equipment health data, or other electrical parameters that might improve the 
accuracy of fault detection and classification.

•	 Real-time fault detection: Implementing the AGFC-Net in real-time fault detection systems can provide 
practical benefits by enabling immediate responses to faults, thereby preventing damage to the power system 
and reducing downtime.

•	 Optimization of model architecture: Further optimization of the model architecture, including experiment-
ing with different types and combinations of neural network layers, may lead to performance and efficiency 
improvements, especially for large-scale systems.

•	 Transfer learning and domain adaptation: Exploring the applicability of transfer learning techniques and 
domain adaptation could allow the model to be used in different power systems with unique configurations 
and operating conditions, thus improving its generalization capabilities across varied environments.

However, there are several limitations associated with the AGFC-Net model that must be considered:

•	  Dependence on labeled data: The model’s performance is highly dependent on the availability of labeled 
data, which might not always be readily available in real-world scenarios. Labeling large datasets can be 
time-consuming and expensive, and without sufficient labeled data, the model’s ability to generalize may be 
hindered.

•	  Limited generalization to unseen fault types: While the model performs well on the faults in the training 
dataset, its generalization to unseen fault types or scenarios not present in the dataset remains a challenge. 
Future work should focus on improving the model’s robustness to new and diverse fault patterns.

•	  Real-time processing challenges: Although the model is designed for faster processing times, real-time fault 
detection in large-scale power systems with high-frequency data may still pose significant computational 
challenges. Optimizing the model to handle high-speed data in real time is a crucial area for future improve-
ment.

•	 Scalability in large networks: The model’s scalability to handle very large power systems, with complex in-
terconnections and a large number of faults, remains an open issue. There is a need for methods that enable 
efficient processing and fault detection in extensive networks with limited computational resources.

•	 Sensitivity to data quality: The AGFC-Net model’s performance can be significantly impacted by poor-quali-
ty data, such as noisy measurements or missing values. While preprocessing techniques help mitigate this, the 
model’s reliability is still affected by the quality of the data it receives.

Data availability
No data was generated during the study.
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