www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Fault detection in electrical power
systems using attention-GRU-
based fault classifier (AGFC-Net)

Deepen Khandelwal', Prateek Anand%?2, Mayukh Ray? & Sangeetha R. G.12"*

Fault detection is essential in guaranteeing the reliability, security, and productivity of contemporary
technological and industrial systems. Faults that go unnoticed may result in disastrous failures as
well as prohibitive downtimes in industries as varied as healthcare, manufacturing, and autonomous
functioning. Conventional fault detection technologies tend to possess low accuracy rates, weak
feature extraction, as well as limitations in generalizability across variegated faults. To overcome
these shortcomings, this paper puts forward an Attention-GRU-Based Fault Classifier (AGFC-

Net), which employs a sophisticated attention mechanism for improved feature extraction and
correlation learning. Through the fusion of attention layers with Gated Recurrent Units (GRU),
AGFC-Net is able to focus on key fault features, learn temporal dependencies, and provide better
classification performance even under noisy conditions. Experimental results show that AGFC-Net
attains a fault detection accuracy of 99.52%, better than conventional machine learning and deep
learning algorithms. The suggested method presents a stronger, adaptive, and scalable solution for
autonomous fault diagnosis, opening the door to intelligent and trustworthy fault detection systems in
future power grids and industrial applications.
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A transmission line is a critical component of an electrical power system, acting as the conduit through which
electrical energy is transferred from generating stations to wider distribution networks. With the global rise
in electricity demand over recent decades, maintaining stable and reliable transmission lines has become
increasingly essential. However, transmission lines are prone to various types of faults caused by environmental
conditions such as lightning, wind, and storms, as well as by equipment aging, insulation failure, or external
mechanical impacts. If these faults are not detected and addressed promptly, they can result in large-scale power
outages, damaging infrastructure and disrupting grid stability. Therefore, accurate and timely fault identification
is a crucial requirement for the secure operation of modern power systems.

The process of detecting and classifying faults in electrical transmission lines is inherently complex due to the
dynamic nature of the power system and the interactions among its numerous components. Transmission lines
operate within vast, interconnected electrical networks that include generators, transformers, circuit breakers,
and protective relays. These elements continuously interact with one another, making it essential that fault
detection systems not only identify the occurrence of faults but also classify them accurately according to their
type and origin. Faults in transmission systems can manifest in different forms, such as single line-to-ground
faults, line-to-line faults, double line-to-ground faults, or symmetrical three-phase faults. Each type has unique
electrical characteristics and implications, requiring tailored detection and protection strategies to minimize
equipment damage and restore system stability.

In modern power systems, fault detection forms a foundational element of the protection mechanism.
Upon the occurrence of a fault, the protection scheme must quickly and reliably detect the event, determine
the nature and location of the fault, and trigger the appropriate control action-typically by isolating the faulty
section using circuit breakers and relays. Traditional fault detection approaches have relied heavily on hardware-
based solutions like electromechanical relays and threshold-based mechanisms, which, despite their simplicity,
often lack adaptability and fail to meet the accuracy and speed requirements of today’s dynamic grids. With the
increasing complexity of power systems, such conventional approaches have shown limitations in response time,
feature generalization, and adaptability to various fault scenarios, particularly in systems with renewable energy
sources and decentralized architectures. Recent developments in sensor technologies and data acquisition
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systems have resulted in the installation of intelligent monitoring equipment across the power grid. Such devices
continuously monitor a broad variety of electrical parameters, such as voltage, current, frequency, and phase
angle, and offer high volumes of high-resolution data. Utilization of this data through advanced computational
methods has been a major driver for creating more precise and adaptive fault detection models. In particular,
model-based techniques are increasingly being used to surmount the inflexibility of conventional rule-based
systems.

Machine learning (ML) and pattern recognition algorithms have proven to be strong contenders for fault
detection and diagnosis. By learning from past or simulated fault data, these systems are able to automatically
develop intricate patterns of association between system measurements and fault states. For example, support
vector machines (SVM), artificial neural networks (ANN), and decision tree algorithms have been used to
classify faults in three-phase transmission lines successfully. These models are capable of identifying non-linear
patterns and enhancing generalization through supervised learning, thus improving their performance under
fluctuating system conditions.

Nevertheless, despite classical ML models providing superior flexibility and prediction accuracy compared
to previous threshold-based techniques, they tend to rely on hand-designed features and are incapable
of describing the temporal evolution of electrical signals. This is especially challenging in fault cases where
electrical parameters change over time in subtle but informative patterns. Furthermore, ML models might not
be as robust as required for real-time use, particularly in the presence of noise and operating variations. These
challenges have motivated the use of deep learning techniques, which can automatically learn relevant feature
representations from raw input data without requiring cumbersome preprocessing.

Some of the deep learning models, including convolutional neural networks (CNNs), long short-term memory
(LSTM) networks, and hybrid models, have been put forward for electrical fault diagnosis. These models can
learn intricate spatial and temporal relationships within the data. Although effective, some models continue to
have difficulty in balancing model complexity, interpretability, and computational expense. In addition, most
models do not have mechanisms to concentrate on the most informative regions of the input data, resulting in
lower efficiency and vulnerability to irrelevant information.

To overcome these shortcomings, this paper proposes an Attention-GRU-Based Fault Classifier (AGFC-
Net), a deep learning model that integrates the advantages of convolutional layers, attention mechanisms, and
gated recurrent units (GRUs) as shown in Fig. 1. Convolutional layers are utilized to derive spatial features from
multivariate time-series like voltage and current readings. The attention mechanism receives these features, which
selectively attends to the most pertinent signal sections to minimize noise effects and maximize interpretability.
The GRU layers are used later to detect temporal dependencies, enabling the model to comprehend how electrical
parameters change with time during fault conditions. This blend helps AGFC-Net attain increased classification
performance and retain computational efficiency and noise robustness. The dataset employed in this study
comprises about 12,000 annotated samples symbolizing both faulty and normal operating states of an emulated
three-phase transmission system. Each sample includes six features: line voltages (Va, Vb, Vc) and line currents
(Ta, Ib, Ic), captured under different fault types and conditions. The defects range over all combinations of phase
fault possibilities and encompass differences in fault location and impedance, offering a wide and all-inclusive
training set. This annotated dataset is ideal for supervised learning since the model can learn discriminative
features that distinguish normal operation from different types of faults.

The primary goal of this study is to create a strong, precise, and scalable model that can perform real-time
fault detection and classification in power transmission lines. Through the incorporation of attention-based
learning and GRU architecture, AGFC-Net aims to address the issues of conventional machine learning and deep
learning models. The long-term aim is to be able to contribute to the development of intelligent fault detection
systems not only capable of recognizing complex fault patterns but also appropriate for implementation within
contemporary power grids requiring real-time monitoring and decision-making.
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Fig. 1. AGFC-Net.
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Literature survey

Saberia et al.! contrasted the support vector machine (SVM) and artificial neural networks (ANN) for the
detection of faults in centrifugal pumps. They were interested in various kernels used in SVM, such as Gaussian
and linear kernels, and observed that SVM outperformed ANN, particularly under noisy conditions. Noise had
little effect on SVM’s capacity to classify faults correctly, thus, it is a more robust approach for real-world
applications. However, ANN was more vulnerable to noise, which had a negative effect on its performance.Zhao
et al.? also developed a Condition-Based Monitoring (CBM) system based on a Dempster-Shafer-based Genetic
Backpropagation (DGBB) model and ANN for bearing failure diagnosis. The system was able to detect faults
successfully by mimicking vibration patterns and comparing them with experimental sensor data. The model
showed high classification accuracy and was therefore an efficient model for monitoring the health of industrial
machinery. The sensitivity of the model to changing fault conditions was also one of the major strengths.Yang?
proposed the application of a recursive high-order parameter neural network (RHPNN) for the classification of
faults in analogue integrated circuits, specifically for open- and short-circuit faults. The model tackled parametric
variations due to faults and greatly improved detection accuracy over conventional methods, demonstrating the
ability of neural networks to deal with dynamic circuit faults.Grimaldi and Mariani* used ANN in On-Board
Diagnostics (OBD) of automotive engines to improve fault detection. Their application successfully detected
faults in engine parts from sensor measurements such as temperature, pressure, and exhaust emissions. Using
ANN helped in real-time detection and diagnosis, making it ideal for applications where there is a need to
quickly identify faults for maintenance and safety purposes.Yousaf et al.> created a hybrid fault detection model
using Long Short-Term Memory (LSTM) networks and Discrete Wavelet Transform (DWT) for the detection of
faults in high voltage direct current (HVDC) systems. The proposed model was found to have 99.04% accuracy
in fault detection while being robust against other external faults. This model particularly performed well under
dynamic operations and had excellent generalization potential for real-time detection, which made it applicable
for large-scale power grid systems.B. Samanta et al.® have compared the classification accuracy of SVM and
ANNSs in gear fault detection. Vibration signals from rotating machines with healthy and faulty gears were
utilized to create features for classification. ANN with derivative/integral preprocessing achieved a test accuracy
of 97.92%. Nevertheless, SVM performed better than ANN in most cases, especially when combined with GA-
based feature selection and parameter tuning. Though ANN proved more accurate in certain instances, SVM
showed reduced training times and superior overall performance.Andrade et al. citeAndrade2021 implemented
artificial neural networks based on non-linear autoregressive exogenous (NARX) for fault detection in pneumatic
systems. The method proved to be effective in classifying faults with a minimal computational time as opposed
to traditional techniques. The research highlighted ANN-based methods’ flexibility towards intricate systems
involving numerous interdependent components. Je-Gal et al.? introduced a time-frequency feature fusion
approach to identify faults in marine engines. The method fused wavelet transforms with deep learning
algorithms to extract useful features from vibration signals. The approach was highly accurate in fault
identification even under low sampling rates and noisy signals, demonstrating its promise for maritime use
where the data bandwidth is restricted. Aherwar® presented a review of fault detection in gearboxes using
vibration analysis in time, frequency, and time-frequency domains. The article emphasized the utility of AI
methodologies, such as ANN, to enhance fault detection accuracy. The Al-based methodologies were shown to
be more computationally efficient and appropriate for real-time monitoring based on their low computational
cost. Ge et al.!? used Support Vector Machine (SVM) for fault detection in sheet metal stamping processes. The
model was able to classify faults like misalignment and overloading, even with a small amount of training data.
SVM performed better than ANN, and hence it is a potential candidate for industrial fault detection applications
where data is limited. Puig et al.!! proposed a passive fault detection technique based on Group Method of Data
Handling Neural Networks (GMDHNN) and constraint satisfaction algorithms. The technique was centered on
fault detection without needing active testing or intervention in the system. It demonstrated better accuracy in
highly uncertain complex systems than conventional methods. Shi et al.!> used wavelet transforms and ANN for
damage detection in civil engineering structures. Through vibration data analysis, their model obtained high
training accuracy (99.52%). This hybrid method effectively integrated wavelet-based feature extraction with
ANN classification and applied it to real-time infrastructure health monitoring. Efatinasab et al.!* suggested
Bayesian Neural Networks (BNN) for fault zone prediction in smart grids. The model’s capability to model input
uncertainty minimized false alarms and enhanced prediction accuracy. This work proved that uncertainty
modeling can improve reliability when combined with neural networks in uncertain environments like power
grids. Jamil et al.'* proposed a fault detection system for power transmission lines based on an ANN. The method
successfully identified and classified the faults, irrespective of fault location or impedance. The system showed
high classification accuracy under diverse conditions, enhancing both speed and reliability in transmission
systems. Yadav and Dash'® surveyed the use of ANN in transmission line protection, highlighting the advantages
of employing ANN for fault detection and classification. The study concluded that ANN models are efficient and
effective at dealing with complex fault structures and classifying faults in real time, improving the robustness and
efficiency of power grid protection schemes. Veerasamy et al.'® proposed an LSTM-based approach for the
detection of high impedance faults (HIF) in power systems with PV integration. Their approach detected with
92.42% accuracy and proved to be robust against noisy and complex input data, making it pertinent in the
context of smart grid systems with renewable energy integration. Mohanty et al.!” used the Cumulative Sum
(CUSUM) technique for power system fault detection. The technique improved noise resistance and frequency
deviation robustness, making it more applicable in high-voltage conditions with signal quality issues. The
research showed that the method improved the accuracy of fault detection. Silva et al.!® integrated the wavelet
transform with ANN for fault detection in transmission lines. Their approach achieved perfect classification
accuracy in simulations and performed well with real-world data. This fusion of wavelet-based feature extraction
and ANN classification proved highly effective for real-time fault detection in power distribution systems. An
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algorithm for fault classification with a combination of Discrete Wavelet Transform (DWT) and Back-
Propagation Neural Networks (BPNN) was presented by C. Pothisarn and A. Ngaopitakkul'®. Fault signals were
simulated with ATP/EMTP, and Daubechies4 was employed as the mother wavelet. Components in the first
decomposition scale of high frequency were utilized for classification. The technique classified faults with
varying types, locations, and inception angles with an accuracy of more than 97.22% , which shows greater
efficiency and accuracy compared to conventional techniques. Yong Deng® introduced a better diagnostic
approach for analog circuits based on a hierarchical Levenberg-Marquardt (LM) Discrete Volterra Series (DVS)
algorithm with a condensed closest neighbor (CNN) classifier, which is referred to as IDVS-CNN. The approach
made DVS parameter calculation simpler through hierarchical design and Bayesian information criteria. The
model obtained macro and micro F1 scores of 0.903 and 0.894, respectively, with improved fault identification
ability and reduced computational complexity. Lamya Gabera®! suggested a fault detection model for digital
VLSI circuits based on deep learning, i.e., a Stacked Sparse Autoencoder (SSAE). The process included test
pattern generation, feature reduction, and classification through a softmax layer. The model was evaluated on
eight ISCAS’85 benchmark circuits with a maximum fault coverage of 99.2% and a validation accuracy of up to
99.7%, demonstrating its efficacy in detecting stuck-at faults. Papia Ray et al?? introduced an SVM-based
approach for fault classification of long transmission lines with distance estimation, optimized by Particle Swarm
Optimization. Energy and entropy features were extracted by Wavelet Packet Transform (WPT), and then
feature selection and normalization were applied. The model performed 99.21% accuracy on a 400 kV, 300 km
transmission line with 10 short-circuit fault types, and fault distance error less than 0.21%. Applied to a TCSC
system, accuracy was 98.36% with an error of around 0.29%, justifying the efficacy of the model in fault detection
of a power system. Fouad Suliman?®® proposed this research that investigates fault identification in photovoltaic
(PV) systems based on Support Vector Machines (SVMs) and Extreme Gradient Boosting (XGBoost) optimized
with the Bees Algorithm (BA) and Particle Swarm Optimization (PSO). A small PV array was employed to
replicate real faults, such as line-to-line and open-circuit faults. BA remarkably improved classifier accuracy, of
which BA-XGBoost had 87.56% accuracy and BA-SVM 70.79%, both of which outperformed models based on
PSO. The study emphasizes the efficacy of BA in enhancing fault classification accuracy and its applicability for
wider use in intelligent fault detection systems in various applications encompassing renewable energy and
machine learning integration. AHMED SAMI ALHANAF?* developed This work emphasizes the usage of deep
learning models-CNN, LSTM, and CNN-LSTM hybrid-for fault detection, classification, and location in smart
grids with renewable integration. Based on voltage and current signals, these models exhibited strong
performance on IEEE 6-bus and 9-bus systems in the presence of distributed generators (DGs) and network
topology variations. The models proved to be more accurate than conventional techniques. Other works
proposed DRNNs and CNNss for fault prediction from PMU measurements and attained high accuracy (even
99.92%), albeit a few of them were without fault location capability. Though with robust results, most of them
need to be further tested on varied grid configurations and DG environments. Ting Huang? This work proposes
a deep learning-based fault diagnosis technique that both integrates feature extraction and fault occurring time
delays effectively. The technique couples sliding window processing with a hybrid CNN-LSTM architecture.
Sliding windows convert multivariate time series (MTS) data into samples that preserve temporal and feature
information. CNN layers automatically perform feature extraction, while LSTM layers preserve temporal
relationships and delays. When applied to the Tennessee Eastman chemical process, the new approach
outperforms the other methods with higher predictive accuracy and better noise robustness. A comparative
study of five popular methods supports its improved performance, demonstrating its suitability for fault
diagnosis of complex industrial processes. Xinming Li?® The Energy-Driven Graph Neural OOD (EGN-OOD)
detector addresses the challenge of out-of-distribution (OOD) detection in intelligent fault diagnosis for
construction machinery. By combining graph neural networks with energy-based models, it effectively captures
complex fault relationships. Sensor-acquired vibration data is transformed into graph representations using the
Maximal Information Coeflicient, enabling the modeling of nonlinear fault interactions. Xinming Li*’ The GCI-
ODG framework addresses the challenge of distribution shifts in intelligent fault diagnosis for wind turbines.
Leveraging Graph Causal Intervention (GCI), it enhances out-of-distribution (OOD) generalization by capturing
both local and global patterns through a hierarchical graph representation of multi-condition time-series data.
An adaptive expert ensemble mechanism enables dynamic feature extraction using pseudo-environment labels,
improving robustness without explicit environmental data. Additionally, causal inference techniques such as
backdoor adjustment isolate stable, environment-invariant features, reducing spurious correlations.

Methodology
The AGFC-Net model is designed for the complex problem of fault detection in electrical power systems by
making use of multiple advanced techniques. The first phase of the model is composed of two convolutional
layers, convl and conv2, which aim to extract crucial spatial features from the input data, which will be composed
of voltage and current measurements from several phases of the transmission lines. These convolutional layers
learn directly relevant patterns from raw data; these contain vital characteristics of a system in fault due to
variations in voltage and current. In addition, after every convolutional layer, the process includes applying batch
normalization to help standardize activations while promoting a smooth, fast convergence speed in training.

Incorporation of the attention mechanism further enhances the model by enabling it to focus its attention
on the most important features. This calculates attention weights using a linear transformation followed by a
softmax operation that represents scaling critical information and filtering out the noise. It is very effective in
fault detectiowell-scaled because it allows the model to filter out those pieces of information that are not useful
and place its focus on the highly indicative features of system faults.

After the convolutional and attention layers, the model applies a GRU layer to catch sequential dependencies
and temporal patterns. Electrical faults tend to be dynamic in nature, and fault detection in such cases is
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dependent on the model’s ability to understand how certain patterns change over time. The GRU layer allows the
model to monitor these changes and identify complex time-dependent fault patterns that other models might
not detect. The update and reset gates in the GRU allow the model to learn what parts of the data are important
for each time step, which makes it more sensitive to subtle variations in the behavior of the system.

To prevent overfitting and to generalize better to unseen data, regularization techniques will apply dropout
and batch normalization throughout the network. Dropout is applied in training, where it disables a proportion
of neurons at random, forcing the model to learn more robust features and not rely too heavily on any single
neuron. Batch normalization, as mentioned earlier, makes sure that the activations within the network are well
scaled and centered, further improving the model’s ability to generalize.

The output layer of the model finally uses a sigmoid activation function to convert the output into a probability
between 0 and 1, indicating the likelihood of a fault occurring. This is a binary classification type of approach
that allows the model to classify the system in both normal and faulty conditions.

These combined features allow the model, AGFC-Net, to provide very high accuracy in fault detection
because it includes convolutional layers for feature extraction, attention for focusing on the relevant data, GRU
layers for capturing the temporal dependencies, and regularization techniques for robustness. Furthermore, this
model has much faster processing times and can therefore be applied to real-time applications for fast fault
detection and response to faults in modern electrical power grids. The integration of these techniques results
in a model that significantly outperforms traditional fault detection methods in terms of both accuracy and
efficiency as shown in Table 1.

The proposed Attention-Guided Feature Compression Network (AGFC-Net) introduces a novel architectural
synergy that emphasizes efficiency, interpretability, and robustness, despite previous studies exploring the
integration of convolutional neural networks (CNNs), gated recurrent units (GRUs), and attention mechanisms
for time-series classification and fault diagnosis. Before temporal modeling with a GRU, localized temporal
features are extracted using 1D convolutional layers in AGFC-Net. These features are then further tuned
using a lightweight attention method applied at the feature level. The network may prioritize salient feature
representations early in the pipeline thanks to this attention-guided compression, which lessens the recurrent
layer’s learning load and enhances the model’s overall focus.To improve regularization and reduce overfitting,
the architecture additionally includes batch normalization and dropout following each convolutional level. A
binary classification output is the result of the successive dimensionality reduction intended for the fully linked
layers. AGFC-Net, in contrast to traditional CNN-GRU-Attention models, has an emphasis on a simple yet
efficient design that is suited for real-time fault detection scenarios in environments with limited resources.
The main innovation of AGFC-Net is this simplified combination of temporal modeling and attention-guided
feature compression.

Experimental setup

To evaluate the performance of the AGFC-Net model (Fig. 1), we conduct experiments on the pre-processed
dataset. The model is trained using a subset of the data and tested on an independent validation set. The following
steps are followed during the experiments:

Training and validation split
The dataset is split into training (70%), validation (15%), and test (15%) sets. The training set is used to train the
model, while the validation set is used to tune hyperparameters and prevent overfitting.

Model evaluation metrics
The model’s performance is evaluated using standard metrics, including accuracy, precision, recall, and F1-score.
These metrics are essential for assessing the model’s ability to detect faults accurately and distinguish between
normal and faulty conditions.

Comparison with baseline models

The AGFC-Net model is compared to traditional fault detection methods, such as Support Vector Machines
(SVM) and Artificial Neural Networks (ANN). The comparison focuses on both accuracy and processing time,
as the ability to detect faults in real-time is crucial for power system operation.

Author Model Accuracy (%)
Yousaf® LSTM and DWT 99.04
Samanta® SVM and ANNs 97.92
Veerasamy'® LSTM 92.42
Ngaopitakkul'® | ATP/EMTP and Daubechies4 | 97.22
Lamya Gabera®' | SSAE 99.21
Proposed model | AGFC_net 99.52

Table 1. Comparison of AGFC-Net with existing models.
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Training time and convergence

The training time and convergence speed of the AGFC-Net model are also evaluated. The batch normalization
and dropout techniques are specifically assessed for their impact on training efficiency and the model’s ability
to converge quickly.

Real-time application testing

To simulate real-time fault detection, the trained model is tested on streaming data representing a power
system in operation. The goal is to assess how quickly and accurately the AGFC-Net model can detect faults in
a dynamic, real-world environment.

Data collection
Definition

The dataset for this study, which consists of readings of line voltages (Va, Vb, Vc) and line currents (Ia, Ib, Ic)
both under normal and fault conditions in a power system. It contains 12,000 labeled data points for the target
variable Output (S) referring to the status of the system as normal or faulty. To facilitate fault analysis, a simulated
power system was constructed using MATLAB. The system architecture includes four 11 kV generators,
arranged such that two generators are placed at each end of the transmission line. Intermediate transformers are
incorporated to replicate realistic power transmission conditions and enable the study of fault behaviour at the
line’s midpoint. The system is evaluated under both steady-state (normal) operation and various fault scenarios.
During these simulations, line voltage and current measurements are recorded at the transmission line’s output
terminal. This process yields a substantial collection of labeled time-series data, encompassing both normal and
faulty operating conditions, suitable for training and evaluating fault classification models. Preprocessing steps
include

« Handling missing values: The missing values will be checked in the dataset. Then, missing values will be
handled either by imputation or deletion of related records, as applicable.

« Elimination of less important columns: The columns that do not contribute any information for predicting
the model are eliminated; "'Unnamed: 7> and "'Unnamed: 8 are two such columns.

« Label encoding: The target variable Output (S) will be encoded to express the fault and normal conditions.

« Data splitting: The dataset was split into 70% for training and 30% for testing. This ensures an adequate num-
ber of data points for both model validation and training.

o Normalization: StandardScaler from scikit-learn was applied for feature normalization on the feature dataset
(Ta, Ib, Ic, Va, Vb, Vc). This standardization ensures that the features have a mean of 0 and a standard deviation
of 1, which accelerates model convergence during the training process.

Preprocessing

Before training the AGFC-Net model, the raw data is preprocessed to ensure it is suitable for machine
learning tasks. The dataset consists of voltage and current measurements from various phases of a three-phase
transmission line under both normal and fault conditions. The preprocessing steps begin with data cleaning,
where any missing or anomalous data points are identified and handled. Outliers are removed to avoid skewing
the model’s performance. The raw voltage and current values are then normalized to a consistent range, ensuring
that the features are on the same scale and improving the convergence during training. This is particularly
important for deep learning models like AGFC-Net, as normalization helps to prevent issues such as vanishing
or exploding gradients. Additionally, the data is split into three subsets: a training set (70%), a validation set
(15%), and a test set (15%) to allow for model evaluation and tuning. The training set is used to train the model,
the validation set is used to optimize hyperparameters and prevent overfitting, and the test set is used to evaluate
the final model’s performance. By performing these preprocessing steps, we ensure that the dataset is clean,
normalized, and ready for training, enabling the AGFC-Net model to learn more effectively from the data.

Feature engineering

Six input features have direct feeds into the model, and no feature engineering is done above that. Now, those
visualizations to get a better view of the feature distributions and their relationships with the target variable are
correlation heatmaps (Fig. 2), KDEs (Fig. 3), and QQ plots (Fig. 4, Fig. 5). We can determine the strength of
linear relationships between inputs and the target through correlation analysis; therefore, it helps decide how to
retain all six features. Furthermore, we will use the QQ plot to check the normality of feature distributions so
that features are proper for the model, particularly when linearity or normality is of more advantage for training.

Proposed model
Architecture

The suggested architecture of the proposed model (you can refer Fig. 1), the AGFC-Net, The basic core consists
of:

« Convolutional layers: Two 1D Convolutional layers extract spatial features from sequences of input meas-
urements of current and voltage. These layers have a kernel size of 3 and zero padding to keep the length of
the sequence constant.

The 1D convolution operation is defined as:
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where z is the input sequence, w and b are the weights and biases of the convolutional filter, K is the kernel size,
and o is the activation function (LeakyReLU).

« Inclusion of Attention Mechanism: An attention layer is incorporated within the model to facilitate dynamic
feature prioritization during training. The process gives different input features different levels of importance
by calculating attention weights. The weights are obtained through a linear transformation of the feature
embeddings, followed by softmax normalization over the scores. This causes the model to give increased
importance to the relevant features in context, thus improving its discriminative power.

The attention mechanism is given by:

Attention(x) = Softmax(Wattn -  + battn)

where Watn and baten are the weights and biases for the attention layer, and the softmax function is used to

normalize the attention weights.
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Fig. 4. Pair plot of features.

« GRU layer: A GRU layer is applied to capture sequential dependencies in the data, helping the model capture
temporal features that may signify faults in the system. The GRU update rules are as follows:

2t =0 (W - [he—1,24])
re =0 (Wy - [he—1, x4])
hy =tanh(Wy, - [re © hy—1,x4])
he =(1—2¢) © hee1 + 2 © he

where z; and r; are the update and reset gates, ilt is the candidate hidden state, h; is the new hidden state, and
© denotes element-wise multiplication.

o Fully connected layers: The output from the GRU layer is passed through several fully connected layers with
LeakyReLU activation, which reduces the dimension of the output to ultimately predict the fault condition.
These layers are given by:

FCi(y) =o (W1 -y +b1)
FCa(y) =0 (W2 -y + b2)
Output(y) =c(W3 -y + b3)

where W; and b; are the weights and biases for the fully connected layers, and o is the LeakyReLU activation
function for intermediate layers and sigmoid activation function for the output layer.

+ Regularization: Batch normalization and dropout techniques are applied to prevent overfitting and help the
network generalize well. The batch normalization operation is defined as:
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Fig. 5. Feature distribution visualizations.
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where 2 and o2 are the mean and variance of the batch, and ¢ is a small constant. Dropout is applied as:

BN(z) =

Dropout(z) = x - mask

Where the mask is a binary vector sampled from a Bernoulli distribution.
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« Binary classification: The final output layer uses a sigmoid activation function to generate probabilities be-
tween 0 and 1, representing the likelihood of a fault occurring in the system:

Working

The AGFC model works by first applying convolutional layers, convl and conv2, to extract important features
from the input data, which consists of voltage and current measurements. These layers automatically learn
relevant patterns in the data, with batch normalization applied after each convolutional layer to stabilize
training. Regularization is applied using dropout layers to prevent overfitting, ensuring the model generalizes
well to unseen data. It then applies the attention mechanism (attnlayer), allowing the model to focus on the
most important features by assigning attention weights, which help the model filter out the noise and select
relevant information for fault detection. The GRU layer finally captures sequential dependencies in the data,
thus enabling the model to detect temporal patterns and dynamic fault behaviors. These techniques combined
enable the AGFC model to efficiently and accurately detect faults with improved performance on both accuracy
and processing time.

Results

Model performance

The model proposed here performed exceptionally well, as attested by its training and validation metrics. More
than 50 epochs have led to the highly effective reduction of training loss-which does reach stabilization around
0.02-after a rapid increase at the very beginning. Similarly, there was a trend in validation loss, which stabilized
at around 0.03. This proves that the learning is effective, showing strong generalization to unseen data. Actually,
for the first epochs, training accuracy had risen very well, achieving more than 98% by the 10th epoch and
99.52% at the end of the training. The validation accuracy corresponded to the training one and reached 99.52%
as well. Both loss and accuracy metrics (Fig. 6) convergence proves that the model had successfully avoided
those situations where it overfitted or underfitted the data and thus was making reliable and stable predictions.
The results further confirm the fact that this model is highly capable and persistently performs well on the
training dataset and the validation set.

Confusion matrix

The confusion matrix in Fig. 7 indicates the performance of the model concerning the classification of the
test dataset. The model correctly classified 1302 as class 0 and 1081 as class 1, thus showing good ability in
differentiation between the classes. This is the least false positives of 4 class 0 samples being treated as class 1, and
only 14 instances of class 1 being reported as class 0. These results suggest extremely balanced quality between
sensitivity and specificity with little misclassification. In addition, the high number of correctly classified samples
along with low errors further confirms the robustness and reliability of the model. This performance is in line
with the overall accuracy of 99.52% discussed above.

Classification report

The classification report evaluates the performance of a classification model by reporting key metrics for each
class: precision, recall, F1-score, and support shown in Table 2. Precision is given as the fraction of correctly
classified positive samples out of all those classified as positive, and recall is the fraction of actual positive
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g 3
&
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Fig. 6. Accuracy and loss plot.
Scientific Reports|  (2025) 15:24133 | https://doi.org/10.1038/s41598-025-06493-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Confusion Matrix

Actual

Predicted

Fig. 7. Confusion matrix.
Class Precision | Recall | F1-Score | Support
0 0.99 1.00 0.99 1306
1 1.00 0.99 0.99 1095
Accuracy 0.99 2401
Macro Avg 0.99 0.99 0.99 2401
Weighted Avg | 0.99 0.99 0.99 2401
Additional Metrics
Accuracy CI (95%) (0.9896, 0.9963)
Prediction Variance 0.2477
Ground Truth Variance 0.2481
Chi-squared Test p-value | 0.0000 x 10°

Table 2. Classification report with confidence interval and statistical metrics.

Author Model Accuracy
M. Z. Yousaf LSTM-DWT | 99.04
Veerasamy LSTM 92.42
C. Pothisarn DWT-BPNN | 97.22
B. Samanta ANN 97.92
P. Ray SVM 99.21
Proposed Model | AGFC 99.52

Table 3. Comparison of models and their accuracy.

samples identified. The Fl-score is the harmonic mean of precision and recall. High scores were reflected in
both classes because precision, recall, and F1-scores stood at above 0.99; hence, the classification would prove to
be balanced and accurate. The number of support column points of real samples in each class indicates that the
dataset generally maintains balance. With 1306 samples for Class 0 and 1095 for Class 1, the overall accuracy
of the model stands at 99.54%, with macro and weighted averages suggesting consistency across classes. These
metrics collectively demonstrate that the model is strong in its classification capabilities.

Comparison with other models

Comparison of various models for classification shows significant differences in accuracy Table 3. Traditional
machine learning models like SVM (99.21%) and ANN (97.92%) are proven to be highly efficient, but they are
slightly beaten by deep learning-based models like LSTM-DWT (99.04%) and DWT-BPNN (97.22%). Although
LSTM-based models are typically good at capturing sequential dependencies, the performance of these models
is unpredictable, as seen in the case of Veerasamy’s LSTM model that resulted in a lower accuracy of 92.42%.
Conversely, the highest accuracy of 99.52% is attained by the proposed Attention-GRU-Based Fault Classifier
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(AGFC-Net) outperforming all tested models. The uniqueness of AGFC-Net is that it combines an attention
mechanism with GRU architecture, allowing the model to learn to selectively attend to the most important
temporal features without the inclusion of irrelevant information. This focused attention facilitates more efficient
extraction of complex fault-related patterns and enhances robustness against noisy data. In contrast to more
complicated hybrid structures like CNN-LSTM or Transformer models, AGFC-Net attains better performance
while requiring less computational complexity, thereby being well suited for real-time industrial applications. Its
capacity for combining interpretability, efficiency, and accuracy puts AGFC-Net in an extremely effective and
scalable fault classification solution.

Conclusion and future scope

In this paper, we proposed a model called AGFC-Net, a classifier based on attention-GRU for effective fault
detection in electrical power systems. The proposed model utilized convolutional layers that extract spatial
features and apply the attention mechanism to find relevant features. GRU layers are used further to capture
sequential dependency. Fully connected layers combined with techniques of batch normalization and dropout
helped refine features and avoid overfitting, respectively. As the technique was for the binary classification
approach, the model could easily make effective predictions regarding fault conditions.

The proposed experimental results confirm that AGFC-Net can potentially detect faults in power systems if
the input measurements of current and voltage are fed to the model. The integration of attention mechanisms
and GRU layers into the model enhances its spatial features as well as temporal features, significantly improving
its fault detection ability.

Future scope and limitations
Despite the promising results obtained from the proposed AGFC-Net, several avenues for further exploration
exist:

o Application to multiclass fault detection: Future work may involve the development of a multiclass
fault-classification model, which would allow the classification of various types of faults in the power system
beyond binary classification.

« Incorporation of additional features: The model can be extended by incorporating additional features such
as environmental conditions, equipment health data, or other electrical parameters that might improve the
accuracy of fault detection and classification.

o Real-time fault detection: Implementing the AGFC-Net in real-time fault detection systems can provide
practical benefits by enabling immediate responses to faults, thereby preventing damage to the power system
and reducing downtime.

« Optimization of model architecture: Further optimization of the model architecture, including experiment-
ing with different types and combinations of neural network layers, may lead to performance and efficiency
improvements, especially for large-scale systems.

« Transfer learning and domain adaptation: Exploring the applicability of transfer learning techniques and
domain adaptation could allow the model to be used in different power systems with unique configurations
and operating conditions, thus improving its generalization capabilities across varied environments.

However, there are several limitations associated with the AGFC-Net model that must be considered:

o Dependence on labeled data: The model’s performance is highly dependent on the availability of labeled
data, which might not always be readily available in real-world scenarios. Labeling large datasets can be
time-consuming and expensive, and without sufficient labeled data, the model’s ability to generalize may be
hindered.

« Limited generalization to unseen fault types: While the model performs well on the faults in the training
dataset, its generalization to unseen fault types or scenarios not present in the dataset remains a challenge.
Future work should focus on improving the model’s robustness to new and diverse fault patterns.

« Real-time processing challenges: Although the model is designed for faster processing times, real-time fault
detection in large-scale power systems with high-frequency data may still pose significant computational
challenges. Optimizing the model to handle high-speed data in real time is a crucial area for future improve-
ment.

o Scalability in large networks: The model’s scalability to handle very large power systems, with complex in-
terconnections and a large number of faults, remains an open issue. There is a need for methods that enable
efficient processing and fault detection in extensive networks with limited computational resources.

« Sensitivity to data quality: The AGFC-Net model’s performance can be significantly impacted by poor-quali-
ty data, such as noisy measurements or missing values. While preprocessing techniques help mitigate this, the
model’s reliability is still affected by the quality of the data it receives.

Data availability
No data was generated during the study.
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