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Rolling bearing fault detection has developed rapidly in the field of fault diagnosis technology, and it 
occupies a very important position in this field. Deep learning-based bearing fault diagnosis models 
have achieved significant success. At the same time, with the continuous improvement of new 
signal processing technologies such as Fourier transform, wavelet transform and empirical mode 
decomposition, the fault diagnosis technology of rolling bearings has also been greatly developed, 
and it can be said that it has entered a new research stage. However, most of the existing methods 
are limited to varying degrees in the industrial field. The main ones are fast feature extraction and 
computational complexity. The key to this paper is to propose a lightweight bearing fault diagnosis 
model DKDL-Net to solve these challenges. The model is trained on the CWRU data set by decoupling 
knowledge distillation and low rank adaptive fine tuning. Specifically, we built and trained a teacher 
model based on a 6-layer neural network with 69,626 trainable parameters, and on this basis, using 
decoupling knowledge distillation (DKD) and Low-Rank adaptive (LoRA) fine-tuning, we trained the 
student sag model DKDL-Net, which has only 6838 parameters. Experiments show that DKDL-Net 
achieves 99.48% accuracy in computational complexity on the test set while maintaining model 
performance, which is 0.58% higher than the state-of-the-art (SOTA) model, and our model has lower 
parameters.

Keywords  Bearing fault diagnosis, Convolutional neural network, Model compression, Low-Rank 
Adaptation

Rolling bearings are common components in rotating machinery, designed to reduce friction during rotation 
and thereby enhance the safety of the equipment. Studies in the industrial sector indicate that approximately 
40%-70% of mechanical failures are caused by bearing faults1–4. However, traditional bearing fault detection 
methods are time-consuming. In the current era of artificial intelligence, it is crucial to use deep learning 
techniques for fault detection tasks. Training an efficient and accurate bearing fault detection model can not 
only improve detection efficiency but also significantly reduce economic losses5.

Bearing fault diagnosis is typically based on acoustic signals and bearing vibration signals6. Bearing faults 
cause abnormal vibrations and sounds, making it possible to detect faults by diagnosing these anomalies. In 
practical detection tasks, sensors are usually installed on machine tools to capture the bearing’s sound signals.

There are various approaches to vibration fault detection based on sound signals and bearings, including 
methods using deep belief networks (DBN)7–9, support vector machine(SVM)10, convolutional neural network 
(CNN)11–14, deep autoencoders (DAE)15–17, generative adversarial networks (GAN)18–20, and deep transfer 
learning (DTL)21–24. What’s common among these models is that they differ only in the way neural networks are 
constructed and training strategies, while the data type remains the same. Additionally, they all require a large 
amount of data.

Over the past 5 years, bearing fault detection tasks have commonly used models such as Convolutional 
Neural Networks (CNN)11–13, Recurrent Neural Networks (RNN)25–27, and Long Short-Term Memory Networks 
(LSTM)28–31. Experiments have shown that lightweight models fail to achieve the desired results, with the number 
of model parameters affecting the final outcome. For instance, LEFE-Net32, WDCNN33, and MCNN-LSTM31 
models can achieve an accuracy of over 98.50% on the CWRU34,35 dataset, but their trainable parameters exceed 
50,000. In contrast, the CLFormer36 model has 4,980 parameters but an accuracy of less than 95%.
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Heavyweight models are usually able to achieve higher accuracy due to having more parameters, benefiting 
from their stronger fitting ability. However, this also comes with a higher inference overhead. In contrast, 
lightweight models, although slightly lacking in accuracy, significantly reduce inference costs and are suitable 
for resource-constrained application scenarios. The key to whether a model can be applied in industry lies in its 
lightweight nature, high accuracy, and robustness.

Models based on acoustic signals typically transform time-domain signals into frequency-domain signals 
using techniques such as Short-Time Fourier Transform (STFT)37, Empirical Mode Decomposition (EMD)38,39, 
and envelope spectrum analysis. Neural network models are then built to extract features, and finally, classification 
is performed through fully connected layers to achieve bearing fault diagnosis. Based on this process, we have 
constructed a lightweight bearing fault detection model.

In this paper, first, we trained a Teacher model with a large number of parameters, and then trained a 
lightweight Student model using DKD40. This Student model has only one convolutional layer, one pooling 
layer, and one fully connected layer. The Student model, guided by the Teacher model during training, has a 
significantly lower number of parameters. However, we found that the accuracy of the Student model was 2% 
lower than that of the Teacher model. To address this, we introduced a Low-Rank Adaptation (LoRA)41 to fine-
tune the Student model, which improved accuracy by 1.5% with a relatively short training time. Compared to 
traditional knowledge distillation and fine-tuning methods, the combination of DKD and LoRA fine-tuning 
ensures model performance while significantly reducing the number of training parameters.

We propose a model for industrial application in rolling bearing fault detection and contributions are 
fourfold:

•	 We developed a lightweight rolling bearing fault detection model based on DKD, characterized by a sin-
gle-layer neural network, It is compressed by 90.20% compared to the teacher model (6-layer neural network).

•	 We improved the model’s performance after knowledge distillation by using a LoRA fine-tuning method, 
addressing the performance degradation issue.

•	 Compared to other lightweight models, our approach demonstrates superior performance on the CWRU 
dataset, with average accuracy, precision, recall, and F1-Score all higher than those of other models. Our F1-
Score reached 99.50%, and the trainable parameters of our model are only 6,838.

•	 Compared to the SOTA model our model improved the F1-Score by 0.58%.

Related work
Bearing fault detection. The fault detection of rolling bearings typically involves checking whether the three 
components of the bearing (outer race, inner race, rolling elements) are faulty. The structure of the bearing is 
visualized as shown in Fig. 1. There are 10 categories of bearing sounds42, where one category represents health 
components, three categories represent damaged rolling elements, three categories represent damaged inner 
races (IR), and three categories represent damaged outer races (OR). Once abnormal vibrations occur in the 
bearing, it indicates a fault.

Convolutional neural network. There has been extensive work on bearing fault detection models based 
on convolutional neural networks. The Adaptive Deep Convolutional Neural Network (ADCNN)43 utilizes 
the distribution of key information in discrete frequency bands to diagnose the health status of rotating 
components. The 2D LeNet-544 is an improved bearing fault detection model based on LeNet, which performs 
one-dimensional convolution and pooling operations directly on the raw vibration signals without any 

Fig. 1.  Structure of rolling bearings.
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preprocessing. The lightweight multi-scale CNN45 introduces depthwise separable convolution in a multi-scale 
CNN to reduce the model’s storage and computational costs. The hybrid deep neural network model integrated 
with Principal Component Analysis (PCA)46 based model combines RNN and CNN, using bidirectional long 
short-term memory (BiLSTM) to enhance the extraction of time-series data features, and finally employs an 
Attention mechanism to improve the model’s accuracy. KDSCNN47 is a CNN model based on KD and model 
parameters are only 5890. BearingPGA-Net48 is a lightweight model trained with DKD and applied on an FPGA 
module. MCNN-LSTM31 is a model based on CNN and LSTM, which first uses CNN to extract features and 
then processes classification according to the time series information from LSTM. FaultNet49 and WDCNN33 are 
CNN models based on convolutional kernels of different scales.

While these models have achieved commendable performance, none of them offers a low-parameter model 
that combines high efficiency and accuracy.

Model compression. Neural network compression involves various techniques, including model pruning, 
parameter quantization, low-rank decomposition, knowledge distillation (KD), and lightweight model design50. 
Model pruning51 can reduce the accuracy and lead to irregular structures. Parameter quantization51 requires 
extensive training and fine-tuning. Low-rank decomposition52 involves decomposing and training layer-by-
layer parameters, which can be challenging for highly complex models. KD53 is a method where a teacher model 
guides the training of a student model. The teacher model is typically complex, while the student model can 
have a simple structure, such as a single-layer network. This method achieves significant compression with 
minimal accuracy loss. Lightweight model design is challenging to combine with other compression methods54. 
If improperly combined, it can lead to lower performance and poor generalization.

All in all, KD, on the other hand, can significantly reduce model parameters while maintaining high accuracy. 
In fact, the algorithm mentioned in this article shows an accuracy drop of less than 2%.

DKD40 is an algorithm that addresses the inefficiency problem of traditional knowledge distillation. It 
enhances the knowledge distillation process by decomposing and separately optimizing different components 
of the knowledge transfer from the teacher model to the student model. DKD divides traditional knowledge 
distillation into two independent parts: Target Class Knowledge Distillation (TCKD) and Non-Target Class 
Knowledge Distillation (NCKD), and defines separate loss functions to optimize the model. DKD is already a 
mature algorithm and has been widely applied in various tasks such as large language models LLMs55, LVM56, 
and object detection57. It is highly efficient for model compression.

Fine-tuning. LoRA was first proposed for fine-tuning LLMs41 for downstream tasks, such as fine-tuning 
GPT for grammar correction58, fine-tuning Llama for fire safety training59, and fine-tuning Stable Diffusion 
to enhance image generation for specific tasks60. LoRA achieves this by decomposing the weight matrices into 
low-rank matrices. This approach significantly reduces the number of parameters that need to be fine-tuned, 
decreases the storage requirements of the model, and lowers the computational complexity, while enabling fast 
learning with less data61. As a result, both inference and training become more efficient.

In CNNs, LoRA can be used to compress the model by applying low-rank decomposition to the convolutional 
kernels62, thereby reducing the number of parameters to be trained. This approach reduces the model’s storage 
and computational costs. After fine-tuning a CNN model with LoRA, both inference speed and training time are 
greatly improved. Using low-rank decomposition for object detection63 enhances the model’s performance while 
reducing its parameters. Compared to the original CNN model, a LoRA fine-tuned model can operate under 
lower hardware resource conditions.

Our idea is to propose a model based on DKD training and LoRA fine-tuning. And model is not only fast in 
reasoning but also possesses high accuracy.

Method
CNN and classification
A CNN consists of n (n ∈ {0, 1, 2, . . . , n}) convolutional layers and m (m ∈ {0, 1, 2, . . . , m}) pooling layers. 
Convolutional layers use multiple filters to convolve over feature maps, extracting features. The extracted features 
are then passed through activation functions for non-linear transformations, helping to mitigate issues like 
vanishing gradients during training. Pooling layers are used to reduce the number of features, thus decreasing 
computational complexity.

The output value al
j  of the j − th unit of the convolutional layer l is given by Eq. (1).

	

al
j = f(bl

j +
∑

i∈Ml
j

al−1
i ∗ kl

ij)
� (1)

The activation value al
j  in the pooling layer l is given by Eq. (2).

	 al
j = f(bl

j + βl
jdown(al−1

j , M l))� (2)

where down(∗) represents the pooling function. Common pooling functions include average pooling, max 
pooling, min pooling, and stochastic pooling. bl

j  denotes the bias, βl
j  represents the multiplier residual, and M l 

is the size of the pooling window used in the l-th layer.
After the model extracts features through convolutional layers, it needs to classify the feature data. Generally, 

classification tasks uses a cross-entropy (CE)64 loss as a objective function, the expression for CE is as in Eq. (3). 
By optimizing the cross-entropy loss, the model’s classification accuracy is improved.
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LCE =

N∑
n=1

−ynlog(pn), pn = ezn

∑N

i=1 ezi

� (3)

where N denotes the number of categories, yn denotes true label, log(pn) denotes natural logarithm of the 
predict probability of n-th label from model, zn is raw scores from model output of n-th label, pn predicted 
probability for the n-th label.

Decoupled knowledge distillation (DKD)
Although there are various types of knowledge distillation, we use DKD for improvement our model. First, in 
the classical KD, the logit, li, computed for each class is converted to a probability pi by using the softmax(∗) 
function as shown in Eq. (4).

	
pi = exp (li)∑N

j=1 exp (lj) � (4)

where N denotes the number of classes.

	 b = [pt, p¬t] ∈ R1×2� (5)

Then, we use binary probabilities b = [pt, p¬t] ∈ R1×2 to distinguish between predictions related and unrelated 
to the target class, where pt denotes the target class and p¬t denotes the non-target class, calculated as shown 
Eq. (6).

	
pt = exp(lt)∑N

j=1 exp(lj)
, p−t =

∑N

d=1,d̸=t
exp(ld)∑N

j=1 exp(lj)
.� (6)

Meanwhile, we use p̃i = pi
pt

 to denote the probability between non-target categories (i.e., without considering 
the target category t) calculated as Eq. (7).

	
p̃i = exp(li)∑N

j=1,j ̸=i
exp(lj) � (7)

Classical KD uses KL-Divergence as the loss function, and further, we re-represent KD using the binary 
probability b and the non-target class p̃, T and S stand for teacher and student, respectively. represented as Eq. 
(8).

	
KD = KL(pT ∥ pS) = pT

t log
(

pT
t

pS
t

)
+

N∑
i=1,i̸=t

pT
i log

(
pT

i

pS
i

)
� (8)

Simplifying, we can rewrite Eq. (8) as Eq. (9) X by Eq. (4) and Eq. (7).
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Simplifying, KD can then be rewrite as Eq. (10).

	 KD = KL(bT ∥ bS) + (1 − pT
t )KL(p̃T ∥ p̃S)� (10)

where KL(bT ∥ bS) denotes the similarity between teacher and student probabilities in the target class, which 
we refer to as Target Class Knowledge Distillation (TCKD), and KL(p̃T ∥ p̃S) denotes the similarity between 
teacher and student probabilities in the non-target class, which we refer to as Non-Target Class Knowledge 
Distillation (NCKD), and thus we can rewrite KD Eq. (11).

	 KD = TCKD + (1 − pT
t )NCKD� (11)

Observing the latest KD formulation, we find that on the one hand NCKD is coupled with (1 − pT
t ), which 

would suppress NCKD for well-predicted samples. On the other hand, the weights of NCKD and TCKD are 
coupled in the classical KD framework, which does not allow to change the weights of each term in order to 
balance the importance. Therefore DKD introduces two hyperparameters α and β as weights for TCKD and 
NCKD, respectively. Thus the loss function of DKD can be written as Eq. (12).
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	 LDKD = α ∗ TCKD + β ∗ NCKD� (12)

where β replaces (1 − pT
t ) to prevent inhibiting the effectiveness of the NCKD, and secondly, α and β can be 

allowed to be adjusted to achieve a balance of importance. By optimizing this decoupling loss, the knowledge 
gained by the teacher model is more easily transferred to the student model, thus improving the performance of 
the student network.

Low-rank adaptation (LoRA)
LoRA is a method for efficiently fine-tuning pre-trained models on specific tasks. This algorithm reduces the 
fine-tuning parameters using a low-rank approach while enhancing the model’s performance on the given task. 
Fine-tuning with fewer parameters can achieve over 90% of the performance of full fine-tuning. For a pre-trained 
model with a weight parameter matrix W0 ∈ Rd×k , ∆W ∈ Rd×k  represents the fine-tuning parameters for a 
specific task. ∆W  is a lower-dimensional parameter matrix that can be expressed as B × A, where B ∈ Rd×r  
and A ∈ Rr×k , with r ≪ k. Thus, the parameter count of ∆W  is smaller than that of W0. The LoRA algorithm 
as show in the Eq. (13), with its key idea being to decompose the parameter matrix using a low-rank matrix 
decomposition.

	 h = W0x + ∆W x = W0x + BAx� (13)

Our DKDL-Net model
The DKDL-Net model is based on the DKD approach, where a Teacher model guides the training of a Student 
model. The model framework is illustrated in Fig. 2. The Teacher model is a large-scale model with a substantial 
number of parameters, and its increased depth enhances accuracy in bearing fault detection. However, the 
large parameter size of the Teacher model results in slow inference speed, making it unsuitable for efficient 
industrial tasks. Therefore, we trained the Student model using the DKD method. This model is a single-layer 
neural network, meaning it has fewer parameters and faster inference speed. However, since the Student model 
is derived from significant parameter compression, its accuracy decreases. In simple experimental analyses of 
bearing fault detection, the Student model’s accuracy is approximately 2% lower compared to the Teacher model.

Through extensive research, we found that we can further fine-tune the Student model using the LoRA 
approach. The model framework is illustrated in Fig. 3. Typically, LoRA involves low-rank decomposition of the 
model’s convolutional and fully connected layers. In this task, we cannot reduce the model’s parameters further, 
as experiments have shown that this would decrease the model’s accuracy. Therefore, we integrated the LoRA 
module into the single-layer network.

In the DKDL-Net network, we copied the parameters from the Student model. The parameters of the A 
matrix in the LoRA module are initialized with data following a normal distribution N(0, σ2), while the B 
matrix is initialized to 0. This approach allows us to enhance the model’s accuracy by adding only a small number 
of parameters.

Fig. 2.  Architecture of the Model. (top) Teacher Model, (below) Student Model.
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Regarding the training of the model, we utilize CE Loss as the objective function for training the Teacher 
model, defined mathematically as Eq. (3). For training the Student model, we employ a combination of TCKD 
Loss, NCKD Loss, and CE Loss as the loss functions. It is essential to balance CE Loss and DKD Loss during the 
training process, where DKD Loss is the sum of TCKD Loss, CE Loss and NCKD Loss, defined mathematically 
as Eq. (14).

	

L = (1 − γ) LCE︸︷︷︸
CE loss

+γ

(
α ∗ TCKD︸ ︷︷ ︸

TCKD Loss

+β ∗ NCKD︸ ︷︷ ︸
NCKD Loss

)

︸ ︷︷ ︸
DKD Loss

� (14)

where γ is a learnable parameter to balance CE and DKD Loss.
Finally, incorporating the LoRA plug-and-play module into the Student model, we fine-tune it using the 

CWRU dataset with CE Loss as the loss function, mathematically defined as Eq. (3). The pseudocode for the 
DKDL-Net algorithm is presented in Algorithm 1.

Fig. 3.  Architecture of the DKDL-Net Model.
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Algorithm 1.  The training phase of DKDL-Net model.

Structural configuration of the model
The framework of the Teacher model is shown in Fig. 2 (top), and the relevant parameter configurations for the 
model’s input, output, and convolutional kernel size are presented in Table 1.

The Student model is a single layer network and framework shown in Fig. 2 (below), and the relevant 
parameter configurations for the model’s input, output, and convolutional kernel size are presented in Table 2.

The DKDL-Net model is a single layer network and framework shown in Fig. 3, adding LoRA module before 
convolutional and fully connected layers, and the relevant parameter configurations for the model’s input, 
output, and convolutional kernel size are presented in Table 3.

Name Kernel size/stride Input size Output size Activation function #Parameters

Conv1D_1 (64, ) / 8 1 × 1024 16 × 128 ReLU 1072

Pooling_1 2 / 2 16 × 128 16 × 64 0

Conv1D_2 (3, ) / 1 16 × 64 32 × 64 ReLU 1632

Pooling_2 2 / 2 32 × 64 32 × 32 0

Conv1D_3 (3, ) / 1 32 × 32 64 × 32 ReLU 6336

Pooling_3 2 / 2 64 ×32 64 × 16 0

Conv1D_4 (3, ) / 1 64 × 16 64 × 16 ReLU 12480

Pooling_4 2 / 2 64 × 16 64 × 8 0

Conv1D_5 (3, ) / 1 64 × 8 64 × 8 ReLU 12480

Pooling_5 2 / 2 64 × 8 64 × 4 0

Conv1D_6 (3, ) / 1 64 × 4 128 × 2 ReLU 24960

Pooling_6 2 / 2 128 × 2 128 × 1 0

FC_1 128 64 ReLU 8256

FC_2 64 32 2080

FC_3 32 10 330

Total of trainable parameters 69626

Table 1.  Teacher model parameters applied.
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Experiments and results
Experimental configurations
Environment configuration. All experiments for this model were conducted on a Windows 11 system with an 
Intel Core i7-9850H CPU at 2.60GHz and an NVIDIA GeForce GTX 1650 with Max-Q Design 4GB GPU. The 
code was run in an environment with Python 3.10.13 and PyTorch 2.0.1+cu117.

During the training of DKDL-Net, we utilized the Adaptive Moment Estimation (Adam) optimizer with a 
learning rate (LR) of 0.005 and a weight decay coefficient of 0.0001. We employed the cross-entropy loss function 
evaluate the loss between true and predicted labels.

Baseline. We selected MCNN-LSTM, FaultNet, BearingPGA-Net, KDSCNN, and WDCNN models as our 
baseline models. Among these, BearingPGA-Net and WDCNN are SOTA (state-of-the-art) models. However, 
BearingPGA-Net is more of a lightweight model, whereas WDCNN is a relatively large-scale model. KDSCNN 
is also a lightweight model and is comparable to our model.

Benchmark. Our benchmark is based on the CWRU dataset, curated by the Case Western Reserve University 
Bearing Data Center. The machine to generate the CWRU dataset is shown in Fig. 4. This dataset includes ten 
categories, comprising nine types of faulty bearings and one healthy bearing. Vibration data are collected at 12 
kHz and 48 kHz. The fault types and labels of the CWRU dataset are shown in Table 4, waveforms as shown in 
Fg. 5.

Evaluation metrics. We use Accuracy, Precision, Recall and F1-Score to evaluate the performance of our 
model, which is calculated as in Eqs. (15) (16) (17) (18).

	
Accuracy = T P + T N

T P + F P + F N + T N
� (15)

Fig. 4.  Data collection machine tools.

 

Name Kernel size/stride Input Output Activation function #Parameters

Conv1D_LoRA 1 × 1024 4 × 128 816

Conv1D (64, ) / 8 1 × 1024 4 × 128 ReLU 260

Pooling 2 / 2 4 × 128 4 × 64 0

FC_LoRA 256 10 3192

FC 10 10 2570

Total of trainable parameters 6838

Table 3.  DKDL-Net model.

 

Name Kernel size/stride Input size Output size Activation function #Parameters

Conv1D (64, ) / 8 1 × 1024 4 × 128 ReLU 260

Pooling 2 / 2 4 × 128 4 × 64 0

FC 256 10 2570

Total of trainable parameters 2830

Table 2.  Student model parameters.
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Precision = T P

T P + F P
� (16)

	
Recall = T P

T P + F N
� (17)

	
F1-Score = 2 × Precision × Recall

Precision + Recall
� (18)

where TP represents True Positive, TN represents True Negative, FP represents False Positive, FN represents 
False Negative.

Bearing fault detection experimental results
We conducted experiments on the CWRU dataset, and as shown in Table 5, the ratio of test data and training 
data is divided into 33.3% and 66.7%, the F1-Score of the DKDL-Net model is higher than that of the MCNN-
LSTM, FaultNet, BearingPGA-Net, KDSCNN, and WDCNN models. Additionally, compared to the state-of-
the-art (SOTA) model, our model achieved an improvement of 0.58%. Despite having only 6838 parameters, 
our model has a higher accuracy than BearingPGA-Net by 0.58%, with only 4008 more parameters. Compared 
to the KDSCNN model, our model has 948 more trainable parameters, yet it outperforms KDSCNN by 0.98%. 
In summary, the DKDL-Net (our) model achieves higher accuracy while maintaining fewer parameters and 
lower Flops.

As shown in Table 6, we evaluated the F1-Score, Precision, and Recall of the DKDL-Net model on the test 
dataset of CWRU. The DKDL-Net model outperforms the BearingPGA-Net, FaultNet, and MCNN-LSTM 
models in all three metrics. Compared to the best-performing BearingPGA-Net (SOTA) model, we achieved an 
improvement of nearly 0.55% across all three metrics. In conclusion, our model is the best-performing model 
on the CWRU dataset.

As shown in Table 7, under the same configuration, our student model trained using Decoupled Knowledge 
Distillation (DKD) has 2,830 parameters. Compared to the teacher model, the student model’s trainable 
parameters are reduced by approximately 95.93%, but its F1-Score, Precision, and Recall decrease by 2.07%, 
1.92%, and 2.08%, respectively. This indicates that while the DKD model can compress model parameters, its 
accuracy significantly decreases.

On the other hand, the DKDL-Net model, based on DKD compression and LoRA fine-tuning, has 6,838 
trainable parameters. Compared to the teacher model, the DKDL-Net model’s trainable parameters are reduced 
by approximately 90.20%, indicating that DKDL-Net can significantly reduce model complexity and resource 
requirements. The F1-Score, Precision, and Recall decrease by only 0.09%, 0.12%, and 0.12%, respectively. This 
demonstrates that the accuracy loss caused by the DKDL-Net model compared to the teacher model is negligible. 
Therefore, the DKDL-Net model effectively compresses parameters while maintaining high accuracy.

In summary, our model achieves a compression ratio of 90.20% with a negligible decrease in accuracy 
compared to the Teacher model, making it highly efficient in terms of compression while maintaining high 
accuracy.

Finally, we computed the confusion matrices for the DKDL-Net model as shown in Fig. 6b, Student model 
as shown in Fig. 6a, and Teacher model as shown in Fig. 6c on the CWRU dataset, with 2,500 test samples, 250 
samples per class.

We plotted the ROC curves for both the DKDL-Net model and the student model show in Fig. 7. As shown in 
Fig. 7b for the DKDL-Net model and Fig. 7a for the student model, it can be observed that the ROC curve for the 
student model is more jagged, while the ROC curve for the DKDL-Net model is smoother. Additionally, the area 
under the curve (AUC) for each class in the DKDL-Net model is generally larger than that of the student model. 
This indicates that our algorithm outperforms the student model’s algorithm, demonstrating better performance.

We tested the DKDL-Net model on the CWRU bearing fault detection dataset. Under the same training 
configuration as see Section Experimental Configurations, we tested 2500 samples, result as Shown in Table 8, 

Faulty Mode Fault size(mm) Total dataset class labels

Health - 280 0

Ball cracking (Minor) 0.18 280 1

Ball cracking (Moderate) 0.36 280 2

Ball cracking (Severe) 0.53 280 3

OR cracking (Minor) 0.18 280 4

OR (Moderate) 0.36 280 5

OR (Severe) 0.53 280 6

IR (Minor) 0.18 280 7

IR (Moderate) 0.36 280 8

IR (Severe) 0.53 280 9

Table 4.  The labels in the CWRU dataset and their corresponding fault types.

 

Scientific Reports |        (2025) 15:36136 9| https://doi.org/10.1038/s41598-025-06734-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


and the DKDL-Net model required an average of 1757 µs per sample. DKDL-Net model with teacher model 
have 1x faster inference. This figure also demonstrates the high efficiency of our model.

Overall, the DKDL-Net model outperformed the Student model, and its performance was comparable to that 
of the Teacher model. Therefore, our DKDL-Net model can maintain good results even under high compression.

Ablation experiment. We fixed the β and γ parameters and analyzed the influence of different alphas on the 
model. The results are presented in Table 9.

Fig. 5.  Bearing abnormal and normal waveform format.
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In terms of the results in Fig. 8, we fixed the alpha at 0.3 and analyzed the influence of beta and gamma on the 
model. We analyzed that when beta is greater than gamma, the performance ability of the model will improve. 
The experimental results show that the model is able to exhibit strong performance when β is larger than γ.

Discussion
In this article, we propose a CNN model named DKDL-Net, which is based on decoupled knowledge distillation 
training and Low-Rank Adaptation fine-tuning. DKDL-Net is a single-layer neural network with only 6,838 
parameters and an inference speed of 1,767 µs. It achieved an F1-Score of 99.50% on the CRWU dataset, 
representing a 0.60% improvement in F1-Score compared to the state-of-the-art (SOTA) models. Therefore, 
our model is highly efficient in detection while maintaining high accuracy. Moreover, the model is extremely 
lightweight, making it suitable for practical industrial applications.

(limatations and future work)While our model excels on the CWRU dataset, its generalizability to other 
datasets (e.g., Paderborn or SEU) remains untested. Additionally, the 0.5% residual accuracy gap compared to 

Fig. 6.  Confusion matrix for student model and DKDL-Net model on CWRU dataset.

 

Model Precision(%) Recall(%) F1-score(%) #Parameters

Teacher 99.60 99.60 99.59 69626

Sudent 97.68 97.52 97.52 2830

DKDL-Net(our) 99.48 99.48 99.50 6838

Table 7.  Comparison of the parameters and assessment metrics of the teacher model, student model and 
DKDL-Net model.

 

Model Precision(%) Recall(%) F1-score(%)

MCNN-LSTM 98.46 97.85 97.856

FaultNet 98.60 98.57 98.57

BearingPGA-Net 98.98 98.92 98.90

DKDL-Net(our) 99.48 99.48 99.50

Table 6.  Comparison of bearing fault diagnosis precision, Recall and F1-Score with different algorithms.

 

Model F1-Score(%) #Parameters #FLOPs

MCNN-LSTM 98.46 73.48K –

FaultNet 98.50 627.05K –

WDCNN 98.39 66.79K 1.61M

KDSCNN 98.50 5.89K 70.66K

BearingPGA-Net 98.90 2.83K 78.34K

DKDL-Net (Ours) 99.50 6.38K 70.65K

Table 5.  Comparison of F1-Score, model size and computational cost among different bearing fault diagnosis 
algorithms.
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Fig. 8.  Performance comparison under different combinations of γ and β.

 

α 0.1 0.2 0.3 0.4 0.5

Accuracy(%) 96.09 95.93 96.13 95.76 94.04

Table 9.  Accuracy (%) under different values of α, where γ and β is fixed.

 

Model Num. of test samples Avg. inference time(µs)

Teacher 2500 3816

DKDL-Net (Our) 2500 1757

Table 8.  Inference time for the DKDL-Net model.

 

Fig. 7.  ROC curves for student and DKDL-Net models on the CWRU dataset.
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the teacher model suggests room for improvement in distillation efficiency. Future work could explore hybrid 
compression techniques (e.g., pruning + DKD) or adaptive LoRA ranks to further narrow this gap. Expanding 
evaluations to heterogeneous data sources and investigating cross-domain transferability would also validate 
broader applicability.

Data availability
The dataset CWRU35 used in this article comes from a public dataset, which can be accessed online, and of 
course by requesting corresponding authors.

Code availability
The source code supporting the findings of this study is available at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​l​i​p​e​n​g​y​i​0​8​2​9​/​D​K​D​L​-​N​
e​t​​​​ and is currently under consideration for open-source licensing. Researchers are encouraged to contact the 
corresponding author for usage guidance.
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