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Lightweight bearing fault diagnosis
via decoupled distillation and low
rank adaptation

Ovanes Petrosian(®12, Pengyi Li®®%2"%, Yulong He®?, Jiarui Liu®?, Zhaoruikun Sun®?,
Guofeng Fu®! & Liping Meng®1

Rolling bearing fault detection has developed rapidly in the field of fault diagnosis technology, and it
occupies a very important position in this field. Deep learning-based bearing fault diagnosis models
have achieved significant success. At the same time, with the continuous improvement of new

signal processing technologies such as Fourier transform, wavelet transform and empirical mode
decomposition, the fault diagnosis technology of rolling bearings has also been greatly developed,
and it can be said that it has entered a new research stage. However, most of the existing methods
are limited to varying degrees in the industrial field. The main ones are fast feature extraction and
computational complexity. The key to this paper is to propose a lightweight bearing fault diagnosis
model DKDL-Net to solve these challenges. The model is trained on the CWRU data set by decoupling
knowledge distillation and low rank adaptive fine tuning. Specifically, we built and trained a teacher
model based on a 6-layer neural network with 69,626 trainable parameters, and on this basis, using
decoupling knowledge distillation (DKD) and Low-Rank adaptive (LoRA) fine-tuning, we trained the
student sag model DKDL-Net, which has only 6838 parameters. Experiments show that DKDL-Net
achieves 99.48% accuracy in computational complexity on the test set while maintaining model
performance, which is 0.58% higher than the state-of-the-art (SOTA) model, and our model has lower
parameters.

Keywords Bearing fault diagnosis, Convolutional neural network, Model compression, Low-Rank
Adaptation

Rolling bearings are common components in rotating machinery, designed to reduce friction during rotation
and thereby enhance the safety of the equipment. Studies in the industrial sector indicate that approximately
40%-70% of mechanical failures are caused by bearing faults'~*. However, traditional bearing fault detection
methods are time-consuming. In the current era of artificial intelligence, it is crucial to use deep learning
techniques for fault detection tasks. Training an efficient and accurate bearing fault detection model can not
only improve detection efficiency but also significantly reduce economic losses®.

Bearing fault diagnosis is typically based on acoustic signals and bearing vibration signals®. Bearing faults
cause abnormal vibrations and sounds, making it possible to detect faults by diagnosing these anomalies. In
practical detection tasks, sensors are usually installed on machine tools to capture the bearing’s sound signals.

There are various approaches to vibration fault detection based on sound signals and bearings, including
methods using deep belief networks (DBN)~?, support vector machine(SVM)°, convolutional neural network
(CNN)!-, deep autoencoders (DAE)!>"Y, generative adversarial networks (GAN)®¥2, and deep transfer
learning (DTL)?!-2*, What's common among these models is that they differ only in the way neural networks are
constructed and training strategies, while the data type remains the same. Additionally, they all require a large
amount of data.

Over the past 5 years, bearing fault detection tasks have commonly used models such as Convolutional
Neural Networks (CNN)!1-13, Recurrent Neural Networks (RNN)?>-?7, and Long Short-Term Memory Networks
(LSTM)?8-3!, Experiments have shown that lightweight models fail to achieve the desired results, with the number
of model parameters affecting the final outcome. For instance, LEFE-Net*2, WDCNN?*, and MCNN-LSTM?!
models can achieve an accuracy of over 98.50% on the CWRU?3*% dataset, but their trainable parameters exceed
50,000. In contrast, the CLFormer®® model has 4,980 parameters but an accuracy of less than 95%.
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Heavyweight models are usually able to achieve higher accuracy due to having more parameters, benefiting
from their stronger fitting ability. However, this also comes with a higher inference overhead. In contrast,
lightweight models, although slightly lacking in accuracy, significantly reduce inference costs and are suitable
for resource-constrained application scenarios. The key to whether a model can be applied in industry lies in its
lightweight nature, high accuracy, and robustness.

Models based on acoustic signals typically transform time-domain signals into frequency-domain signals
using techniques such as Short-Time Fourier Transform (STFT)?’, Empirical Mode Decomposition (EMD)3%,
and envelope spectrum analysis. Neural network models are then built to extract features, and finally, classification
is performed through fully connected layers to achieve bearing fault diagnosis. Based on this process, we have
constructed a lightweight bearing fault detection model.

In this paper, first, we trained a Teacher model with a large number of parameters, and then trained a
lightweight Student model using DKD*. This Student model has only one convolutional layer, one pooling
layer, and one fully connected layer. The Student model, guided by the Teacher model during training, has a
significantly lower number of parameters. However, we found that the accuracy of the Student model was 2%
lower than that of the Teacher model. To address this, we introduced a Low-Rank Adaptation (LoRA)*! to fine-
tune the Student model, which improved accuracy by 1.5% with a relatively short training time. Compared to
traditional knowledge distillation and fine-tuning methods, the combination of DKD and LoRA fine-tuning
ensures model performance while significantly reducing the number of training parameters.

We propose a model for industrial application in rolling bearing fault detection and contributions are
fourfold:

o We developed a lightweight rolling bearing fault detection model based on DKD, characterized by a sin-
gle-layer neural network, It is compressed by 90.20% compared to the teacher model (6-layer neural network).

o We improved the model’s performance after knowledge distillation by using a LoRA fine-tuning method,
addressing the performance degradation issue.

o Compared to other lightweight models, our approach demonstrates superior performance on the CWRU
dataset, with average accuracy, precision, recall, and F1-Score all higher than those of other models. Our F1-
Score reached 99.50%, and the trainable parameters of our model are only 6,838.

o Compared to the SOTA model our model improved the F1-Score by 0.58%.

Related work

Bearing fault detection. The fault detection of rolling bearings typically involves checking whether the three
components of the bearing (outer race, inner race, rolling elements) are faulty. The structure of the bearing is
visualized as shown in Fig. 1. There are 10 categories of bearing sounds??, where one category represents health
components, three categories represent damaged rolling elements, three categories represent damaged inner
races (IR), and three categories represent damaged outer races (OR). Once abnormal vibrations occur in the
bearing, it indicates a fault.

Convolutional neural network. There has been extensive work on bearing fault detection models based
on convolutional neural networks. The Adaptive Deep Convolutional Neural Network (ADCNN)* utilizes
the distribution of key information in discrete frequency bands to diagnose the health status of rotating
components. The 2D LeNet-5% is an improved bearing fault detection model based on LeNet, which performs
one-dimensional convolution and pooling operations directly on the raw vibration signals without any
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Fig. 1. Structure of rolling bearings.
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preprocessing. The lightweight multi-scale CNN*° introduces depthwise separable convolution in a multi-scale
CNN to reduce the model’s storage and computational costs. The hybrid deep neural network model integrated
with Principal Component Analysis (PCA)*® based model combines RNN and CNN, using bidirectional long
short-term memory (BiLSTM) to enhance the extraction of time-series data features, and finally employs an
Attention mechanism to improve the model’s accuracy. KDSCNN* is a CNN model based on KD and model
parameters are only 5890. BearingPGA-Net*® is a lightweight model trained with DKD and applied on an FPGA
module. MCNN-LSTM?>! is a model based on CNN and LSTM, which first uses CNN to extract features and
then processes classification according to the time series information from LSTM. FaultNet* and WDCNN?>? are
CNN models based on convolutional kernels of different scales.

While these models have achieved commendable performance, none of them offers a low-parameter model
that combines high efficiency and accuracy.

Model compression. Neural network compression involves various techniques, including model pruning,
parameter quantization, low-rank decomposition, knowledge distillation (KD), and lightweight model design®.
Model pruning®® can reduce the accuracy and lead to irregular structures. Parameter quantization® requires
extensive training and fine-tuning. Low-rank decomposition®? involves decomposing and training layer-by-
layer parameters, which can be challenging for highly complex models. KD>* is a method where a teacher model
guides the training of a student model. The teacher model is typically complex, while the student model can
have a simple structure, such as a single-layer network. This method achieves significant compression with
minimal accuracy loss. Lightweight model design is challenging to combine with other compression methods™.
If improperly combined, it can lead to lower performance and poor generalization.

Allin all, KD, on the other hand, can significantly reduce model parameters while maintaining high accuracy.
In fact, the algorithm mentioned in this article shows an accuracy drop of less than 2%.

DKD* is an algorithm that addresses the inefficiency problem of traditional knowledge distillation. It
enhances the knowledge distillation process by decomposing and separately optimizing different components
of the knowledge transfer from the teacher model to the student model. DKD divides traditional knowledge
distillation into two independent parts: Target Class Knowledge Distillation (TCKD) and Non-Target Class
Knowledge Distillation (NCKD), and defines separate loss functions to optimize the model. DKD is already a
mature algorithm and has been widely applied in various tasks such as large language models LLMs>>, LVM®,
and object detection®’. It is highly efficient for model compression.

Fine-tuning. LoRA was first proposed for fine-tuning LLMs*! for downstream tasks, such as fine-tuning
GPT for grammar correction®, fine-tuning Llama for fire safety training®’, and fine-tuning Stable Diffusion
to enhance image generation for specific tasks®’. LoRA achieves this by decomposing the weight matrices into
low-rank matrices. This approach significantly reduces the number of parameters that need to be fine-tuned,
decreases the storage requirements of the model, and lowers the computational complexity, while enabling fast
learning with less data®!. As a result, both inference and training become more efficient.

In CNNs, LoRA can be used to compress the model by applying low-rank decomposition to the convolutional
kernels®?, thereby reducing the number of parameters to be trained. This approach reduces the model’s storage
and computational costs. After fine-tuning a CNN model with LoRA, both inference speed and training time are
greatly improved. Using low-rank decomposition for object detection® enhances the model’s performance while
reducing its parameters. Compared to the original CNN model, a LoRA fine-tuned model can operate under
lower hardware resource conditions.

Our idea is to propose a model based on DKD training and LoRA fine-tuning. And model is not only fast in
reasoning but also possesses high accuracy.

Method

CNN and classification

A CNN consists of n (n € {0,1,2,...,n}) convolutional layers and m (m € {0, 1,2, ..., m}) pooling layers.
Convolutional layers use multiple filters to convolve over feature maps, extracting features. The extracted features
are then passed through activation functions for non-linear transformations, helping to mitigate issues like
vanishing gradients during training. Pooling layers are used to reduce the number of features, thus decreasing
computational complexity.

The output value a’, of the j — th unit of the convolutional layer ! is given by Eq. (1).

aé = f(bé + Z al”t x kfj)

2. ()
ZGJWJ.
The activation value aé- in the pooling layer [ is given by Eq. (2).
aé— = f(bé + B;-down(aé-_l, Ml)) 2)

where down(x) represents the pooling function. Common pooling functions include average pooling, max
pooling, min pooling, and stochastic pooling. b; denotes the bias, 3} represents the multiplier residual, and M"
is the size of the pooling window used in the I-th layer.

After the model extracts features through convolutional layers, it needs to classify the feature data. Generally,
classification tasks uses a cross-entropy (CE)®* loss as a objective function, the expression for CE is as in Eq. (3).
By optimizing the cross-entropy loss, the model’s classification accuracy is improved.
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where N denotes the number of categories, y, denotes true label, log(p,) denotes natural logarithm of the
predict probability of n-th label from model, z, is raw scores from model output of n-th label, p, predicted
probability for the n-th label.

Decoupled knowledge distillation (DKD)

Although there are various types of knowledge distillation, we use DKD for improvement our model. First, in
the classical KD, the logit, l;, computed for each class is converted to a probability p; by using the softmaz(x)
function as shown in Eq. (4).

exp (1;)
Pi= =N < 4
S exp () @
where N denotes the number of classes.
b= [pi,pe] € R (5)

Then, we use binary probabilities b = [p;, p—:] € R'*? to distinguish between predictions related and unrelated
to the target class, where p; denotes the target class and p—; denotes the non-target class, calculated as shown
Eq. (6).

N

) exp(l) » Zd:l,d;ﬁt exp(la)

t — yP—t = .
S exp(l;)

(6)
S exp(ly)

Meanwhile, we use p; = 2 to denote the probability between non-target categories (i.e., without considering
the target category t) calculated as Eq. (7).

P 1) - %

Zj:l,j?gi eXp(lj)

Classical KD uses KL-Divergence as the loss function, and further, we re-represent KD using the binary
probability b and the non-target class p, T and S stand for teacher and student, respectively. represented as Eq.

(8).

KD — KL(pT H p ) pt log < ) Z pz log <p7« ) (8)

i=1,i#t

Simplifying, we can rewrite Eq. (8) as Eq. (9) X by Eq. (4) and Eq. (7).

D T T
KD =p! log < ) +p%, Z by (log <Zzls> + log (p:))
»? i=1,it P Py
D

)
jan T T Pi
=p; log +plog + -t pi log | =%
pt PS5, im Tt P
Simplifying, KD can then be rewrite as Eq. (10).
KD = KL(b" || b%) + (1 — p/ )KL(3" || 5°) (10)

where KL(b || b°) denotes the similarity between teacher and student probab111t1es in the target class, which
we refer to as Target Class Knowledge Distillation (TCKD), and KL (5" || 5°) denotes the similarity between
teacher and student probabilities in the non-target class, which we refer to as Non-Target Class Knowledge
Distillation (NCKD), and thus we can rewrite KD Eq. (11).

KD = TCKD + (1 — p; )NCKD (11)

Observing the latest KD formulation, we find that on the one hand NCKD is coupled with (1 — pf), which
would suppress NCKD for well-predicted samples. On the other hand, the weights of NCKD and TCKD are
coupled in the classical KD framework, which does not allow to change the weights of each term in order to
balance the importance. Therefore DKD introduces two hyperparameters o and 3 as weights for TCKD and
NCKD, respectively. Thus the loss function of DKD can be written as Eq. (12).
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where 3 replaces (1 — p{ ) to prevent inhibiting the effectiveness of the NCKD, and secondly, o and 3 can be
allowed to be adjusted to achieve a balance of importance. By optimizing this decoupling loss, the knowledge
gained by the teacher model is more easily transferred to the student model, thus improving the performance of
the student network.

Low-rank adaptation (LoRA)

LoRA is a method for efficiently fine-tuning pre-trained models on specific tasks. This algorithm reduces the
fine-tuning parameters using a low-rank approach while enhancing the model’s performance on the given task.
Fine-tuning with fewer parameters can achieve over 90% of the performance of full fine-tuning. For a pre-trained
model with a weight parameter matrix Wo € R, AW € R*** represents the fine-tuning parameters for a
specific task. AW is a lower-dimensional parameter matrix that can be expressed as B x A, where B € R**"
and A € R™**, with r < k. Thus, the parameter count of AW is smaller than that of Wj. The LoRA algorithm
as show in the Eq. (13), with its key idea being to decompose the parameter matrix using a low-rank matrix
decomposition.

h=Wozx+ AWz = Wyx + BAx (13)

Our DKDL-Net model

The DKDL-Net model is based on the DKD approach, where a Teacher model guides the training of a Student
model. The model framework is illustrated in Fig. 2. The Teacher model is a large-scale model with a substantial
number of parameters, and its increased depth enhances accuracy in bearing fault detection. However, the
large parameter size of the Teacher model results in slow inference speed, making it unsuitable for efficient
industrial tasks. Therefore, we trained the Student model using the DKD method. This model is a single-layer
neural network, meaning it has fewer parameters and faster inference speed. However, since the Student model
is derived from significant parameter compression, its accuracy decreases. In simple experimental analyses of
bearing fault detection, the Student model’s accuracy is approximately 2% lower compared to the Teacher model.

Through extensive research, we found that we can further fine-tune the Student model using the LoRA
approach. The model framework is illustrated in Fig. 3. Typically, LoRA involves low-rank decomposition of the
model’s convolutional and fully connected layers. In this task, we cannot reduce the model’s parameters further,
as experiments have shown that this would decrease the model’s accuracy. Therefore, we integrated the LoRA
module into the single-layer network.

In the DKDL-Net network, we copied the parameters from the Student model. The parameters of the A
matrix in the LoORA module are initialized with data following a normal distribution N (0, o 2), while the B
matrix is initialized to 0. This approach allows us to enhance the model’s accuracy by adding only a small number
of parameters.
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Fig. 2. Architecture of the Model. (top) Teacher Model, (below) Student Model.
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Fig. 3. Architecture of the DKDL-Net Model.

Regarding the training of the model, we utilize CE Loss as the objective function for training the Teacher
model, defined mathematically as Eq. (3). For training the Student model, we employ a combination of TCKD
Loss, NCKD Loss, and CE Loss as the loss functions. It is essential to balance CE Loss and DKD Loss during the
training process, where DKD Loss is the sum of TCKD Loss, CE Loss and NCKD Loss, defined mathematically
as Eq. (14).

Y =(1- L + x* TCKD +pg* NCKD
(1—7) Lce ’Y(Oé B ) (14)

CE loss TCKD Loss NCKD Loss.

DKD Loss

where 7y is a learnable parameter to balance CE and DKD Loss.

Finally, incorporating the LoRA plug-and-play module into the Student model, we fine-tune it using the
CWRU dataset with CE Loss as the loss function, mathematically defined as Eq. (3). The pseudocode for the
DKDL-Net algorithm is presented in Algorithm 1.
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Algorithm 1. The training phase of DKDL-Net model.

Structural configuration of the model

The framework of the Teacher model is shown in Fig. 2 (top), and the relevant parameter configurations for the

model’s input, output, and convolutional kernel size are presented in Table 1.

The Student model is a single layer network and framework shown in Fig. 2 (below), and the relevant
parameter configurations for the model’s input, output, and convolutional kernel size are presented in Table 2.

The DKDL-Net model is a single layer network and framework shown in Fig. 3, adding LoRA module before
convolutional and fully connected layers, and the relevant parameter configurations for the models input,

output, and convolutional kernel size are presented in Table 3.

Name Kernel size/stride | Input size | Output size | Activation function | #Parameters
ConvlD_1 | (64,)/8 1x 1024 |16 x 128 ReLU 1072
Pooling 1 |2/2 16 X 128 | 16 X 64 0
ConvlD_2 | (3,)/1 16 X 64 32 X 64 ReLU 1632
Pooling 2 | 2/2 32 X 64 32 % 32 0
ConvlD_3 | (3,)/1 32 X 32 64 X 32 ReLU 6336
Pooling 3 |2/2 64 x32 64 X 16 0
ConvlD_4 | (3,)/1 64 X 16 64 X 16 ReLU 12480
Pooling 4 |2/2 64 x 16 |64 x 8 0
ConvlD_5 | (3,)/1 64 X 8 64 X 8 ReLU 12480
Pooling 5 |2/2 64 x8 |64x4 0
ConvlD_6 | (3,)/1 64 X 4 128 X 2 ReLU 24960
Pooling 6 |2/2 128 X 2 | 128 x 1 0
FC_1 128 64 ReLU 8256
FC_2 64 32 2080
FC_3 32 10 330
Total of trainable parameters 69626

Table 1. Teacher model parameters applied.
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Name Kernel size/stride | Input size | Output size | Activation function | #Parameters
ConvlD | (64,)/8 1 X 1024 |4 x 128 ReLU 260

Pooling |2/2 4 % 128 4 X 64 0

FC 256 10 2570

Total of trainable parameters 2830

Table 2. Student model parameters.

Name Kernel size/stride | Input Output | Activation function | #Parameters
ConvlD_LoRA 1 X 1024 | 4 x 128 816
ConvlD (64,)/8 1 X 1024 | 4 x 128 | ReLU 260

Pooling 2/2 4% 128 |4 %64 0

FC_LoRA 256 10 3192

FC 10 10 2570

Total of trainable parameters 6838

Table 3. DKDL-Net model.

Fig. 4. Data collection machine tools.

Experiments and results

Experimental configurations

Environment configuration. All experiments for this model were conducted on a Windows 11 system with an
Intel Core i7-9850H CPU at 2.60GHz and an NVIDIA GeForce GTX 1650 with Max-Q Design 4GB GPU. The
code was run in an environment with Python 3.10.13 and PyTorch 2.0.1+cull7.

During the training of DKDL-Net, we utilized the Adaptive Moment Estimation (Adam) optimizer with a
learning rate (LR) of 0.005 and a weight decay coefficient of 0.0001. We employed the cross-entropy loss function
evaluate the loss between true and predicted labels.

Baseline. We selected MCNN-LSTM, FaultNet, BearingPGA-Net, KDSCNN, and WDCNN models as our
baseline models. Among these, BearingPGA-Net and WDCNN are SOTA (state-of-the-art) models. However,
BearingPGA-Net is more of a lightweight model, whereas WDCNN is a relatively large-scale model. KDSCNN
is also a lightweight model and is comparable to our model.

Benchmark. Our benchmark is based on the CWRU dataset, curated by the Case Western Reserve University
Bearing Data Center. The machine to generate the CWRU dataset is shown in Fig. 4. This dataset includes ten
categories, comprising nine types of faulty bearings and one healthy bearing. Vibration data are collected at 12
kHz and 48 kHz. The fault types and labels of the CWRU dataset are shown in Table 4, waveforms as shown in
Fg. 5.

Evaluation metrics. We use Accuracy, Precision, Recall and F1-Score to evaluate the performance of our
model, which is calculated as in Egs. (15) (16) (17) (18).

TP+TN

A =
CURY = TP Y FP+ FN + TN

(15)
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Faulty Mode Fault size(mm) | Total dataset | class labels
Health - 280 0
Ball cracking (Minor) 0.18 280 1
Ball cracking (Moderate) | 0.36 280 2
Ball cracking (Severe) 0.53 280 3
OR cracking (Minor) 0.18 280 4
OR (Moderate) 0.36 280 5
OR (Severe) 0.53 280 6
IR (Minor) 0.18 280 7
IR (Moderate) 0.36 280 8
IR (Severe) 0.53 280 9

Table 4. The labels in the CWRU dataset and their corresponding fault types.

L TP
Precision = W (16)
TP
l= — 1
Reca TP+ FN (17)
Fl-Score — 2 x Precision x Recall (18)

Precision + Recall

where TP represents True Positive, TN represents True Negative, FP represents False Positive, FN represents
False Negative.

Bearing fault detection experimental results

We conducted experiments on the CWRU dataset, and as shown in Table 5, the ratio of test data and training
data is divided into 33.3% and 66.7%, the F1-Score of the DKDL-Net model is higher than that of the MCNN-
LSTM, FaultNet, BearingPGA-Net, KDSCNN, and WDCNN models. Additionally, compared to the state-of-
the-art (SOTA) model, our model achieved an improvement of 0.58%. Despite having only 6838 parameters,
our model has a higher accuracy than BearingPGA-Net by 0.58%, with only 4008 more parameters. Compared
to the KDSCNN model, our model has 948 more trainable parameters, yet it outperforms KDSCNN by 0.98%.
In summary, the DKDL-Net (our) model achieves higher accuracy while maintaining fewer parameters and
lower Flops.

As shown in Table 6, we evaluated the F1-Score, Precision, and Recall of the DKDL-Net model on the test
dataset of CWRU. The DKDL-Net model outperforms the BearingPGA-Net, FaultNet, and MCNN-LSTM
models in all three metrics. Compared to the best-performing BearingPGA-Net (SOTA) model, we achieved an
improvement of nearly 0.55% across all three metrics. In conclusion, our model is the best-performing model
on the CWRU dataset.

As shown in Table 7, under the same configuration, our student model trained using Decoupled Knowledge
Distillation (DKD) has 2,830 parameters. Compared to the teacher model, the student model’s trainable
parameters are reduced by approximately 95.93%, but its F1-Score, Precision, and Recall decrease by 2.07%,
1.92%, and 2.08%, respectively. This indicates that while the DKD model can compress model parameters, its
accuracy significantly decreases.

On the other hand, the DKDL-Net model, based on DKD compression and LoRA fine-tuning, has 6,838
trainable parameters. Compared to the teacher model, the DKDL-Net model’s trainable parameters are reduced
by approximately 90.20%, indicating that DKDL-Net can significantly reduce model complexity and resource
requirements. The F1-Score, Precision, and Recall decrease by only 0.09%, 0.12%, and 0.12%, respectively. This
demonstrates that the accuracy loss caused by the DKDL-Net model compared to the teacher model is negligible.
Therefore, the DKDL-Net model effectively compresses parameters while maintaining high accuracy.

In summary, our model achieves a compression ratio of 90.20% with a negligible decrease in accuracy
compared to the Teacher model, making it highly efficient in terms of compression while maintaining high
accuracy.

Finally, we computed the confusion matrices for the DKDL-Net model as shown in Fig. 6b, Student model
as shown in Fig. 6a, and Teacher model as shown in Fig. 6¢c on the CWRU dataset, with 2,500 test samples, 250
samples per class.

We plotted the ROC curves for both the DKDL-Net model and the student model show in Fig. 7. As shown in
Fig. 7b for the DKDL-Net model and Fig. 7a for the student model, it can be observed that the ROC curve for the
student model is more jagged, while the ROC curve for the DKDL-Net model is smoother. Additionally, the area
under the curve (AUC) for each class in the DKDL-Net model is generally larger than that of the student model.
This indicates that our algorithm outperforms the student model’s algorithm, demonstrating better performance.

We tested the DKDL-Net model on the CWRU bearing fault detection dataset. Under the same training
configuration as see Section Experimental Configurations, we tested 2500 samples, result as Shown in Table 8,
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Fig. 5. Bearing abnormal and normal waveform format.
and the DKDL-Net model required an average of 1757 us per sample. DKDL-Net model with teacher model
have 1x faster inference. This figure also demonstrates the high efficiency of our model.
Overall, the DKDL-Net model outperformed the Student model, and its performance was comparable to that
of the Teacher model. Therefore, our DKDL-Net model can maintain good results even under high compression.
Ablation experiment. We fixed the 8 and vy parameters and analyzed the influence of different alphas on the
model. The results are presented in Table 9.
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Confusion Matrix Confusion Matrix Confusion Matrix

Model F1-Score(%) | #Parameters | #FLOPs
MCNN-LSTM 98.46 73.48K -
FaultNet 98.50 627.05K -
WDCNN 98.39 66.79K 1.61M
KDSCNN 98.50 5.89K 70.66K
BearingPGA-Net 98.90 2.83K 78.34K
DKDL-Net (Ours) | 99.50 6.38K 70.65K

Table 5. Comparison of F1-Score, model size and computational cost among different bearing fault diagnosis
algorithms.

Model Precision(%) | Recall(%) | F1-score(%)
MCNN-LSTM 98.46 97.85 97.856
FaultNet 98.60 98.57 98.57
BearingPGA-Net | 98.98 98.92 98.90
DKDL-Net(our) | 99.48 99.48 99.50

Table 6. Comparison of bearing fault diagnosis precision, Recall and F1-Score with different algorithms.

Model Precision(%) | Recall(%) | F1-score(%) | #Parameters
Teacher 99.60 99.60 99.59 69626
Sudent 97.68 97.52 97.52 2830
DKDL-Net(our) | 99.48 99.48 99.50 6838

Table 7. Comparison of the parameters and assessment metrics of the teacher model, student model and
DKDL-Net model.

250 250

200 200 200

- 150 L 150 150

True

100

4 H 6 7 8 s
Predicted Predicted

o 1 2 3

(a) Student (b) DKDL-Net (c) Teacher

Fig. 6. Confusion matrix for student model and DKDL-Net model on CWRU dataset.

In terms of the results in Fig. 8, we fixed the alpha at 0.3 and analyzed the influence of beta and gamma on the
model. We analyzed that when beta is greater than gamma, the performance ability of the model will improve.
The experimental results show that the model is able to exhibit strong performance when 3 is larger than .

Discussion
In this article, we propose a CNN model named DKDL-Net, which is based on decoupled knowledge distillation
training and Low-Rank Adaptation fine-tuning. DKDL-Net is a single-layer neural network with only 6,838
parameters and an inference speed of 1,767 us. It achieved an F1-Score of 99.50% on the CRWU dataset,
representing a 0.60% improvement in F1-Score compared to the state-of-the-art (SOTA) models. Therefore,
our model is highly efficient in detection while maintaining high accuracy. Moreover, the model is extremely
lightweight, making it suitable for practical industrial applications.

(limatations and future work)While our model excels on the CWRU dataset, its generalizability to other
datasets (e.g., Paderborn or SEU) remains untested. Additionally, the 0.5% residual accuracy gap compared to
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Teacher 2500 3816
DKDL-Net (Our) | 2500 1757
Table 8. Inference time for the DKDL-Net model.
Accuracy(%) | 96.09 | 95.93 | 96.13 | 95.76 | 94.04
Table 9. Accuracy (%) under different values of «, where -y and 3 is fixed.
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the teacher model suggests room for improvement in distillation efficiency. Future work could explore hybrid
compression techniques (e.g., pruning + DKD) or adaptive LoRA ranks to further narrow this gap. Expanding
evaluations to heterogeneous data sources and investigating cross-domain transferability would also validate
broader applicability.

Data availability
The dataset CWRU? used in this article comes from a public dataset, which can be accessed online, and of
course by requesting corresponding authors.

Code availability

The source code supporting the findings of this study is available at https://github.com/lipengyi0829/DKDL-N
et and is currently under consideration for open-source licensing. Researchers are encouraged to contact the
corresponding author for usage guidance.
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