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Ultrafast electron diffraction (UED) experiments can extract insights into material behavior at 
ultrafast timescales but are limited by the manual analysis required to process several gigabytes of 
diffraction pattern data. The lack of real-time data prevents in situ tuning of experimental parameters 
toward desirable material dynamics or avoid sample damage. We demonstrate that machine learning 
methods based on Convolutional Neural Networks trained on synthetic and experimental diffraction 
patterns can perform real-time analysis of diffraction data to resolve dynamical processes in a 
representative material, MoTe2, and identify signs of material damage. By building on CNN’s ability 
to learn compressed representations of diffraction patterns that map to distinct material dynamics, 
we construct Convolutional Variational Autoencoder models to track structural phase transformation 
in a model material system through the time trajectory of UED images in the low-dimensional latent 
space. Such models enable real-time steering of experimental parameters towards conditions that 
realize phase transformations or other desirable outcomes by mapping experimental conditions to 
distinct regions of the latent space. These examples show the ability of machine learning to design self-
correcting diffraction experiments to optimize the use of large-scale user facilities.
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Ultrafast electron diffraction (UED) is an important technique for the characterization of sub-picosecond 
material dynamics with spatial resolutions approaching atomic length scales, particularly with mega-electron-
volt electron sources at large scale user facilities. UED experiments, often lasting several hours, can record tens 
of thousands of distinct diffraction patterns amounting to several hundred gigabytes in raw image data that 
must be manually analyzed to infer material dynamics1. The LINAC Coherent Light Source (LCLS), for instance, 
has a repetition rate of 120 Hz with typical hit rates ranging from 1% to 30%2,3, depending on the performed 
experiment, adding up to several million distinct diffraction patterns in a single run. The next generation of light 
sources promises to increase data generation rate by orders of magnitude. This represents a significant problem 
for data analysis. Currently, hand-made algorithms are developed to search for particular features within the data 
with the goal to filter out a certain type of events (e.g. structural phase transformations)4, but such approaches 
are very time-consuming and do not generalize well to datasets from other materials5.

Data analysis through these hand-crafted algorithms is often performed over the course of several weeks 
after the experiments to identify interesting material phenomena or properties6. This type of post-experimental 
data analysis precludes in situ tuning of experimental conditions like wavelength and intensity of the optical 
excitation, electron beam intensity, which are instead chosen in an ad hoc manner based on the physical 
intuition of the researcher. Such an empirical choice of experimental conditions is not guaranteed to result in the 
observation of desired material dynamics. It is also likely that the chosen experimental conditions can result in 
damage to the material samples and thus not lead to the collection of useful data.

Machine learning (ML) is a promising solution to rapidly classify or predict molecular and crystal structure 
based on the observed diffraction pattern7–22. ML methods have been used to solve existing challenges related 
to diffraction and reciprocal space mapping23–28. ML algorithms have also been used for experimental design of 
scattering studies at user facilities, but such studies have been narrowly limited to optimization of beam and image 
quality29–31 and not focused on image classification. Diffraction patterns are known to be excellent feature vectors 
for classifying material structure9, and CNNs have proven to be interpretable ML tools to classify and analyze 
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such diffraction patterns11. The success of neural networks in the regime of image processing, classification, 
object detection and segmentation provides a scalable method to tackle the challenge of classification of large 
UED datasets.

While the application of ML approaches to the analysis of x-ray and electron diffraction patterns is well-
established, there exist significant qualitative differences between conventional electron diffraction and ultrafast 
pump-probe electron diffraction. Therefore, existing ML pipelines require modifications before they can be 
effectively applied for analysis of UED data. The primary challenge in conventional electron or x-ray diffraction 
is to identify the crystal structure and chemical composition of a material from the diffraction pattern. ML 
algorithms developed for this purpose are required only to distinguish between qualitatively different diffraction 
patterns and classify them according to their respective point groups32–34. On the other hand, the primary motive 
for UED experiments is to identify and distinguish between dynamic processes in materials, including defect 
formation, phonon excitation, and phase transformation, which only subtly affect the measured diffraction 
pattern of the material. Therefore, ML models for analyzing UED data must be suitable for analyzing small or 
subtle changes in the UED diffraction data. Further, diffraction patterns from conventional sources are obtained 
over relatively large time-scales of a few milliseconds, at high electron currents35. This results in excellent signal-
to-noise ratios, with well-defined diffraction peak positions and widths. UED experiments collect diffraction 
patterns using femto-second electron pulses that result in significant shot noise, particularly for low-flux 
electron sources and analysis of diffuse scattering36. Therefore, ML models for analysis of UED data must be 
robust against source and detector noise.

Here, we show that neural networks can be used to classify large quantities of diffraction data if they are 
previously trained on a qualitatively similar labeled synthetic dataset. Specifically, we describe a scheme that 
translates real-time changes in the measured reciprocal-space diffraction patterns to changes in the molecular 
configuration of a prototypical two-dimensional material, MoTe2, to identify desirable dynamical changes 
like structural phase transformations or understand material damage in real-time during experiments. We 
further describe how generative models, combined with convolutional neural networks, can identify the impact 
of different experimental parameters on the observed diffraction patterns and predict which experimental 
conditions are most likely to drive the material to explore interesting part of the phase space that result in 
previously unknown dynamics or properties.

Results
Convolutional neural networks (CNN) for classifying features in reciprocal space images
MoTe2 is a prototypical transition metal dichalcogenide whose electronic properties and phase transformations 
are promising for future low-dimensional opto-electronic device applications. MoTe2 has two stable polytypes - 
2H and 1T’, which show hexagonal and monoclinic crystal respectively37–39. Reversible transformation between 
these two phases has been demonstrated through various external stimuli, such as thermal excitation, electronic 
gating and chemical doping, all of which can cause collective atomic displacements necessary to convert the 2H 
structure to the 1T’ structure40–43. Due to its strong structural response to optical excitation, Ultrafast electron 
diffraction experiments are an ideal probe to investigate light-driven structural changes in MoTe2.

However, optical excitation induced by the UED pump probe can also result in other structural changes 
beyond phase transformation. Moderate excitation can induce thermal heating resulting in random atomic 
displacements, or the activation of specific phonon modes, which results in correlated motion of atoms. More 
intense excitation can induce thermally-driven vacancy formation and anisotropic heating, which can lead 
to lattice expansion and other lattice distortions. The strongest excitations lead to Te sublimation, material 
degradation and changes in material composition. It is difficult to identify a priori, the exact optical excitation 
parameters that result in selective excitation of those phonon modes responsible for the 2H-1T’ phase 
transformations and those responsible for material degradation.

We demonstrate convolutional neural networks that can distinguish between the different deformations in 
MoTe2 induced by optical excitation, based on differences in their diffraction pattern Fig. 1. shows the layout 
of the convolutional neural network used to classify observed diffraction patterns. The CNN consists of 3 CNN 
blocks, each consisting of a pair of WideResNet layers44 (each containing a pair of convolutional layers and a 
dropout layer) and a max-pooling layer, followed by a fully-connected network that classifies the input diffraction 
pattern into one of seven classes, each corresponding to a different type of structural distortion expected in the 
UED experiment.

Fig. 1.  CNN architecture: (a) schematic of a single WideResNet layer containing convolution and dropout 
elements. (b) CNN architecture composed of three blocks, each containing two WideResNet layers and a 
max-pool layer for representation learning, followed by a single fully-connected layer for classification of noisy 
diffraction patterns based on structural changes in the material.
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We train the CNN model, CNNSyn, using synthetic data for CNN training. Specifically, we simulate diffraction 
patterns from monolayer MoTe2 crystal with 7 types of structural distortions, as illustrated in Fig. 2 and in 
the Methods section. The first set of images, Class 0, is generated from pristine defect-free and distortion-free 
MoTe2 2H crystal with random thermal atomic displacements. Class 1 is generated from 2H MoTe2 structures 
that contain various concentrations of Mo and Te vacancies. The next set of images, Class 2, is created from 2H 
MoTe2 structures that contain various degrees of isotropic and anisotropic lattice deformation. The fourth set 
of images, Class 3, is formed from 2H MoTe2 structures that contain collective displacement due to various 
phonon modes. The next set of images, Class 4, is created from 1T’ MoTe2 structures that contain various 
concentrations of Mo and Te vacancies. The sixth set of images, Class 5, is generated from 1T’ MoTe2 structures 
that contain various degrees of isotropic and anisotropic lattice deformation. The final set of images (Class 6) is 
produced from 1T’ MoTe2 structures that contain collective deformation due to various phonon modes.

Due to the lack of high-quality, well-annotated experimental diffraction patterns for supervised learning, 
synthetic data is widely used as a potential method to generate scalable datasets in electron microscopy 
settings45–48, because physics-based simulations and data generation and labeling, can generate bias-free and 
reproducible data across all possible experimental condition in a high-throughput manner at substantially lower 
cost.  Furthermore, UED analysis relies on relatively subtle changes in diffraction patterns to identify material 
dynamics. Therefore, we provide this inductive bias to the diffraction data by subtracting the diffraction pattern 
of a pristine, defect-free, un-deformed 2H in its vibrational ground state from the input image. Specifically, 
this subtraction is used to generate a 2-channel image - positive deviations (i.e. increase in intensity) from the 
diffraction pattern of the pristine, defect-free, un-deformed 2H in its vibrational ground state are stored in the 
red channel, while negative deviations (i.e. decrease in intensity) are stored in the blue channel. This unique 
data modification greatly increases the variance in the input data and improves the sensitivity of the CNNSyn 
model to small variations in the diffraction pattern. Example training data from different class both before and 
after subtraction, is shown in Fig. 2. It can be clearly seen that the signatures of each class of lattice distortion 
is encoded in the distribution of red and blue values over the different regions of the diffraction image. The 
CNN was trained to minimize the cross-entropy loss for this multi-class classification problem using standard 
techniques (see Methods section).

The confusion matrix in Fig. 3 summarizes the performance of CNNSyn in classifying structural distortions 
in MoTe2. CNNSyn demonstrates high accuracy and reliability by correctly identifying the majority of instances 
across the dissimilar classes. The lowest class accuracy for the CNN was recorded for Class 2, where 967 out 
of 996 instances were classified correctly, reflecting an accuracy 97%. The primary misclassifications suggest 
some feature overlap between Classes 0 and 2. The confusion matrix also includes an additional Class 6, which 
contains diffraction images that do not belong to any of the other five classes. The purpose of this class was to 
assess the model’s ability to recognize and classify images that exhibit structural distortions that don’t belong to 
any of the predefined categories. These results highlight the CNN’s Overall high accuracy - greater than 98%- 
and effectiveness in classifying different structural distortions in MoTe2. Such a high accuracy on synthetic data 
is known to correspond to approximately 94% accuracy in experimental test data, as seen in other deep learning 
approaches to crystallography49.

Transfer learning for experimental UED data
ML models for conventional x-ray and electron diffraction benefit from existing large and curated datasets of 
diffraction patterns from known materials and crystal structures. In contrast, the public availability of ultrafast 
electron diffraction datasets is very limited, since UED experiments can only be performed at a limited number 
of facilities with MeV electron beams. Therefore, in order to develop a general scheme for the design and analysis 
of UED data, we propose a two-stage approach that uses easily-generated synthetic data to develop a CNN-based 
classification model, which is subsequently updated to use experimental UED data through transfer learning.

To demonstrate the feasibility of transfer learning, we update the CNNSyn model developed in the previous 
section using 77 experimental images. Transfer learning is performed by retraining the model against the 
experimental UED images at a significantly reduced learning rate (0.001 vs 0.01 for training with synthetic 
data). All model parameters, including weights and biases for the representation layer (WideResNet blocks) 

Fig. 2.  Training data samples: (a) raw UED image samples of 2H and 1T MoTe2 crystals, (b) UED images 
after subtraction of reference image of MoTe2 2H crystal. Red (blue) regions indicate positive (negative) 
deviations from the reference 2H UED image.
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and the classification layer (FNN layer) are tuned during the retraining process. Figure 4 shows representative 
input images from the synthetic and experimental UED dataset and the performance of the CNNSyn model 
and the transfer-learned CNNExp model on the experimental test dataset. To demonstrate the performance 
of the retrained model, we plot the predicted classification of a previously reported UED dataset of pump-
probe experiments on MoTe2 monolayers. Manual analysis of the MoTe2 UED patterns demonstrated the 
excitation of phonon modes (predominantly the M-point and K-point phonon modes4) due to optical excitation. 
CNNSyn predicts unphysical changes in structure classification over short timescales of 10 ps. The transfer-
learned CNNExp model performs significantly better on this experimental dataset, preventing the unphysical 
classification changes on short timescales, as well as predicting the emergence of phonon modes after optical 
excitation, consistent with experimental observations. This result demonstrates that the two-stage scheme 
proposed in this section, including transfer learning, is a feasible approach to employ for real-time classification 
of experimental UED patterns.

Experimental design using generative C-VAE and self-supervised learning
Experimental design for ultrafast electron diffraction involves the identification of experimental conditions (e.g. 
beam power, repetition rate etc.) that can result in desirable changes to the sample’s diffraction pattern (e.g. 
phase transformations and excitations of specific vibrational modes). In order to steer experimental conditions 
towards promising regions of the phase-space, we develop a generative Convolutional Variational Autoencoder 
(C-VAE) model (Fig. 5) to identify a collapsed low-dimensional representation of different diffraction patterns 
within the model’s latent space, with similar diffraction patterns being clustered together within the low-
dimensional latent space.

In the case of MoTe2, an example of a promising experimental condition is one responsible for transforming 
2H MoTe2 to 1T’ MoTe2. To identify such promising conditions, we first compute the latent space distribution 
of diffraction patterns from both 2H MoTe2 and 1T’ MoTe2, Figure 6. Additionally, we compute the latent 
space distribution of a set of images that are pixel-by-pixel interpolations of diffraction patterns from a desirable 
dynamical process, e.g. 2H MoTe2 and 1T’ MoTe2. The latent space distribution of these interpolated images 

Fig. 4.  Transfer learning: (a) time-trajectory of experimental UED images. (b) CNNSyn, trained only on 
synthetic data, has poor performance in classifying experimental data, but transfer-learned CNNExp model 
demonstrates no unphysical classifications and indicates the presence of phonons after optical excitation.

 

Fig. 3.  Confusion matrix illustrating the classification performance of the CNN, highlighting both accuracy 
and misclassifications.
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represents the expected trajectory of diffraction patterns of MoTe2 samples undergoing phase transformation 
from the 2H to 1T’ crystal structures. On the other hand, unexpected or undesirable structural changes, such as 
lattice melting or degradation will lead to molecular configurations and diffraction patterns that are significantly 
different from those of either 2H or 1T’ MoTe2. Therefore, these diffraction patterns from defective structures 
(and the experimental conditions leading to them) will be represented in the latent space as clusters distinct from 
those of the images representing the 2H, 1T or interpolated diffraction patterns.

By exploiting the well-structured nature of the latent space in C-VAE, which ensures that similar diffraction 
patterns are clustered together, such models can identify, in real-time, a promising experimental condition by 
computing the n-dimensional Euclidean distance between a given diffraction pattern and a line connecting the 
2H and 1T’ patterns in the VAE’s latent space. Distance measures in the latent space of generative models have 
previously been used as a metric for the similarity of input images or molecular structures in materials chemistry 
and other engineering applications50–52. By identifying experimental conditions that result in diffraction patterns 
close to the 2H and 1T’ patterns in the latent space, we can drive experiments towards conditions that induce the 
structural phase transformation.

The encoder (decoder) of the C-VAE is a sequence of three convolutional (deconvolutional) layers followed 
by batchnorm and activation (ReLU) layers. The encoder performs a dimensionality reduction of the input 
diffraction pattern to a four-dimensional latent space. During C-VAE training, the Adam optimizer was used to 
update model parameters. The C-VAE model is trained to reduce the total loss, which is a sum of two components 
– Mean Squared Error, and Kullback-Leiber Divergence. The Mean Squared Error (MSE) loss quantifies the 
difference between input and reconstructed diffraction pattern image53. The Kullback-Leibler divergence loss 
(KL) which contribute in regularizing and shaping the latent space into a Gaussian probability distribution54.

Figure 7 shows the t-SNE projection of the latent space representation of different diffraction patterns from 
five MoTe2 crystals, 2H MoTe2, 1T’ MoTe2, pixel-by-pixel interpolation of diffraction patterns between 2H 
and 1T’ MoTe2, crystals undergoing a phase transformation, and defective or molten MoTe2. The region 
enclosed by the distribution of 2H, 1T’, and interpolated MoTe2 diffraction patterns defines the region of 
expected diffraction patterns due to the phase transformation. Synthetic diffraction patterns of MoTe2 crystals 
undergoing the 2H-1T’ phase transformation lies within the expected region. In contrast, the diffraction patterns 
corresponding to the defective or molten MoTe2 fall outside the defined region, indicating that experimental 
conditions that result in such diffraction patterns are not optimal in inducing a 2H-1T’ phase transformation.

Discussion
In conclusion, we have developed two machine learning methods, based on convolutional neural networks 
to provide real-time analysis of UED images and assist in real-time design of UED experimental parameters. 
CNNSyn, trained on synthetic data, and CNNExp, trained by transfer learning, are both shown to be effective 

Fig. 6.  Types of MoTe2 diffraction patterns: (a) Representative crystal structures of 2H, 1T’ and defective 
MoTe2 and MoTe2 undergoing phase transformation. (b) Diffraction patterns of different MoTe2 
configurations that cluster in different regions of the C-VAE latent space.

 

Fig. 5.  Schematic of variational auto-encoder depicting the distribution of 2H and 1T diffraction patterns in 
the latent space.
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tool to classify UED images and identify defect formation, lattice distortions and phase transformations in a 
model material system, MoTe2. Convolutional VAEs (C-VAEs) can perform dimensionality reduction and 
clustering of different crystal structures. Euclidean distance metrics in the latent space of the C-VAE provide a 
metric to identify changes in experimental parameters required to induce desired structural changes or phase 
transformations.

Methods
Synthetic data generation for CNNSyn and VAE training
Simulated electron diffraction patterns are generated by calculating the static structure factor on a uniform 
261 × 261 reciprocal grid centered on the origin using the standard formula given below.

	
I(q) =

N∑
j=1

N∑
k=1

fjfke−iq·(Rj −Rk)� (1)

where the intensity I at reciprocal point q depends on positions, Ri, and atomic form factors, fi, of Mo and Te 
atoms in the crystal structure. Diffraction patterns are generated for seven classes of the crystals – 2H and 1T’ 
crystal with defects, lattice distortion, and phonons, as well as pristine defect-free 2H crystal as a reference. For 
UED simulations, defective crystals are constructed by creating vacancies at up to 20% of lattice sites. Distorted 
lattices are constructed by applying a random strain tensor, with normal and shear components up to 10%. 
Crystal structures with phonon modes are generated by displacing the atoms from the perfect crystal structure 
along a random phonon eigenmode generated using the phonopy package55. Thermal displacement of atoms is 
included in the generation of all synthetic data. Each diffraction pattern in training and test data includes up 
to 50% noise to replicate the noise level of experimental UED data. The training dataset is augmented by 2-fold 
rotation of each diffraction image56.

Unlike other ML models for diffraction pattern classification, ML models for UED must emphasize 
identification and classification of subtle changes in diffraction patterns. Therefore, synthetic data for the 
CNNSyn model is generated as a 2-channel RGB image, where the red and blue channels capture the positive 
and negative deviations from the diffraction pattern of a pristine defect-free 2H crystal respectively. In all, a large 
dataset comprising 70,000 synthetic diffraction images was generated, with raw diffraction images used for VAE 
training and subtracted, 2-channel diffraction images used for CNNSyn training.

CNN models for classifying UED diffraction patterns
The CNN contains 3 WideResNet blocks, made up of convolutional and pooling blocks connected by rectified 
linear unit (ReLU) activation functions. Dropout layers were included in each WideResNet block to prevent 
overfitting. Network weights are updated using the Adam optimizer. Training was conducted over a maximum 40 
epochs, with early stopping based on target validation accuracy of 85% and patience of 2 epochs. Hyperparameter 
tuning was performed by varying the learning rate and batch size across twelve runs.

VAE models for experiment design
The VAE architecture comprises an encoder and decoder network, trained to encode input images into a lower-
dimensional latent space and subsequently decode them back to their original dimensions. The original dataset 
images were resized to 256 × 256 pixels and transformed into tensors. The batch sizes were 64 and 20 for training 
and testing, respectively. 3-channel input images pass through four convolutional layers and ReLU activations 
in the encoder. The resulting feature map is flattened and passed through two fully connected layers to produce 
the mean and log-variance of the latent space distribution. The decoder takes the latent vectors as input through 

Fig. 7.  Experimental design using the VAE latent space: Distribution of 2H, 1T’ and interpolated diffraction 
patterns defines the trajectory of MoTe2 crystals undergoing a phase transformation. Diffraction patterns from 
defective or molten MoTe2 structures fall outside the region describing the phase transformation.
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a fully-connected layer to upscale the latent vectors to match the flattened feature map size, followed by four 
transposed convolutional layers to reconstruct the image. ReLU activations were utilized in all layers except 
the final layer, which used a sigmoid activation to produce outputs between 0 and 1., reflecting the intensity of 
each pixel in the 256 × 256 image. We trained the VAE model using the Adam optimizer with a learning rate of 
1.5 × 10−4 over 100 epochs.

Data availability
All code for CNN and C-VAE models is available at https://github.com/MATSAIL-TAMU/ML-UED. Synthetic 
data and labels for CNN training is available from the corresponding author, Aravind Krishnamoorthy, on re-
quest.
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