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Data-driven approaches demonstrate significant potential in accurately diagnosing faults in wind 
turbines. To enhance diagnostic performance, we introduce a clustered federated learning framework 
(CFLF) for wind gear oil diagnosis. Initially, a stepwise multivariate regression (SMR) model is 
introduced and optimized after data processing, which integrates multiscale features and an AIC-
diagnosis feature. Subsequently, to tackle data heterogeneity among different indicators, a series of 
canonical correlation representations are extracted from the SMR models, and a combined model of 
CFLF method and SMR is proposed to assess the performance of gear oil. Actual data analysis of wind 
turbine gear oil showcase the superior performance of the proposed model over the single SMR model 
with higher prediction accuracy of 35.73%. This study provides a new technique for evaluating gear oil 
in the wind energy sector.
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Wind energy is a very desirable green choice among many new energy sources because it is a renewable and clean 
energy source with recyclability and high efficiency1–3. The main gear lubrication systems play a key role in the 
normal operation of wind turbines. However, the large-scale wind power poses a critical impact on the main gear 
lubrication systems, makes gear oil a key monitoring target for wind turbine system. Addressing this challenge 
requires a reliable analysis method for comprehensive analysis of gear oil and evaluation model, facilitating 
optimal maintenance time selection for wind turbines4. As a result, main gear oil analysis and modeling has 
become a focal point, particularly with the application of deep learning methods. A keyword search for ‘gear oil’ 
and ‘wind turbines’, there are 23,558 documents from 2014 to 01 to 2024-115, and the annual average number of 
documents issued is 2,142. As shown in Figs. 1 and 2023 reached a peak of 3,069 annual publications, and 2019 
has the fastest growth rate of 12.64%, suggesting rapid development and continued growth in this field. 23,558 
papers were retrieved, and the top 30 journals in terms of the number of publications are shown in Fig. 1, in 
which the journal with the most publications is Energies (795 articles); Journal of Physics: Conference Series 
ranks second, with 769 articles; Renewable Energy ranks third, with 511 articles.

Stepwise multivariate regression (SMR) analysis is one of the linear regression methods, which combines 
multivariate and stepwise modeling techniques. Limitations of linear models lie in poor fit for nonlinear 
relationships, sensitivity to outliers and insufficient handling of multicollinearity problems6–9. Deep learning, as 
a branch of machine learning, is widely applied in industry due to its remarkable feature learning capabilities and 
capacity for handling high-dimensional data10–13. To address data inhomogeneity characteristic and overcome 
data sparsity, Federated Learning (FL) has been introduced as a collaborative distributed machine learning 
approach in fault diagnosis14–18. A hybrid deep learning model and a convolutional neural network (CNN) 
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can also be utilized for spatial feature extraction to capture the temporal patterns19, and a hybrid approach 
combining deep learning and signal processing for bearing fault diagnosis was also explored under imbalanced 
samples and multiple operating conditions20. A robust hybrid model integrating Wavelet Coherence Analysis 
(WCA) with deep learning architectures VGG16 and ResNet50 was successfully implemented for accurate fault 
detection and classification in centrifugal pumps21. A multi-input CNN that simultaneously processes acoustic 
emission and vibration signals was employed for developing a model capable of detecting faults in a milling 
machine22.

To tackle the challenges in wind turbine fault diagnosis using federated learning, this paper compares a SMR 
model and clustered federated learning framework (CFLF) for gear oil diagnosis of wind turbines. On this basis, 
a combined model of SMR and CFLF was proposed, which leverages the multi-scale residual to extract spatial 
features for gear oil diagnosis, experimental datasets are subjected to these modeling approaches for comparing 
the diagnostic performance of wind gear oil.

Data description and process
Data description
Table 1 presents datasets of gear oil for a wind farm in south China. In addition to the general categories of data 
there are four main categories of data, i.e. chemical data, pollution data, metallic leaching elements and additive 
precipitating elements. The viscosity (40℃), acid value, moisture and PQ value are four critical variables for 
gear wear diagnosis, metallic leaching elements and additive precipitating elements are two types of supporting 
diagnostic indicators. Additionally, the dependent variables, Results, is designated as variable ‘Y’, which reflects 
the quality of the gear oil.

Data preprocessing
There are notable variations in gear oil variables during wind gear oil degradation. After handling outliers and 
aggregating all gear oil data of wind turbines, Fig. 2 demonstrates considerable heterogeneity in the distribution 
of these variables across different wind turbines. Data heterogeneity is commonly observed in comprehensive 
fault analysis tasks involving multiple turbines. Failing to account for this heterogeneity when aggregating 
indicator models can lead to decreased diagnostic performance and slower convergence of the global model. 
In order to remove differences in numerical values and the influence of units among different variables, we 
need to apply a normalization function to scale each variable in the input dataset. The normalized variable is 
transformed according to the following function expression:

Type Indicators Memo

General data Date, Wind.No., Oil_brand

2022.12 ~ 2024.6 datasets of gear oil originating from a wind farm

Chemical data Viscosity (40℃), acid value, moisture

Pollution data PQ

Metallic leaching elements Ag, Al, Ba, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Si, Sn, Ti, V

Additive precipitating elements P, Zn, B, Ca

Table 1.  Fundamental information of gear oil datasets.

 

Fig. 1.  Literature Information Chart with keyword of gear oil/wind turbines.
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Xnorm = X − min(X)

max(X) − min(X) � (1)

where min(X) and max(X) denote the minimum and maximum values of vector X. The normalization process 
maps the data uniformly onto the [0,1] interval for all variables, as shown in Fig. 3.

Methodology
SMR modeling
The R software (version 4.4.1) was used to build the SMR model23. Since the dependent variables (Y) were 
continuous in the study, a SMR model was used for analysis. In this multivariate model, a stepwise approach 
was used for higher accuracy24,25. Chi-square analysis was conducted to evaluate the relationship between the 
variables and the dependent variable in the estimated model. Finally, the model coefficients were reported, and 
the estimated model was expressed as a function26–29. The reference value was taken as P ≦ 0.05 to test the 
statistical significance. Table 2 indicates 11 stages of the SMR modeling process through continuous optimization 
of AIC value. In the first step of the modeling process, the dependent variable Y is linearly regressed on all the 
independent variables, and the AIC value of the model is obtained as −292.37. Based on the feedback from the 
model analysis, it can be seen that optimizing the independent variable Ni further reduces the AIC value to 
−294.37. This process of continuous optimization is repeated until the 11th step, where the AIC value reaches 
− 309.76 and no longer decreases. This indicates that the model obtained in the 11th step has the best goodness-
of-fit. Additionally, the Chi-square value of model is 23.44502 with a p-value far less than 0.0001. The optimal 
model function is shown in the following function expression:

Fig. 3.  Distribution scheme of gear oil variables after [0,1] normalization process.

 

Fig. 2.  Distribution scheme of gear oil variables across different wind turbines.
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	 Y = 1.326 − 0.276 Vis40 − 0.838 PQ + 0.604 Mn − 0.797 Si + 0.097Ca − 1.591 Zn� (2)

 where the PQ and Si indicators show the highest levels of significance in the model, with P-values of 2.25e−05 
and 3.14e−05 respectively.

The diagnosis scheme of the above SMR model includes four parts i.e. residuals ~ fitted values plot, 
standardized residuals ~ quantiles plot, root standardized residuals ~ fitted values plot and standardized residuals 
~ leverage plot. The residual ~ fitted plot shows that the dependent variable is linearly related to the independent 
variable, the residual values are not systematically related to the predicted (fitted) values; the Q-Q residuals plot 
shows that the assumption of normality is basically satisfied and the points on the plot fall on a straight line at 
a 45⁰ angle; in the scale-location plot, the points around the horizontal line should be randomly distributed, 
and this plot seems to satisfy that assumption, which indicates that the model is a good fit. As shown in Fig. 4, 
the residuals ~ leverage plot provides information about the individual observations, and from the graph it is 
possible to identify outliers, high leverage points and strong influence points. The most typical anomalies are 
records 8,12 and 69.

CFLF modeling
Gear oil performance diagnosis is a nonlinear, multivariate comprehensive process. Therefore, it is necessary to 
introduce nonlinear clustering-based federated learning algorithms for comprehensive analysis and evaluation. 
Following the development of local multiscale residual networks for each wind turbine, we proposed a 
representational canonical correlation clustering method to group these local indicators into distinct clusters30–36. 
Initially, NbClust package in R language was used to determine the optimal number of clusters. This package 
defines dozens of evaluation metrics and evaluates cluster numbers from 2 to 9. As the number of clusters 
increases, the size of each cluster becomes smaller and more similar, causing the Dindex values to steadily 
decrease. When the slope of this decline flatterns, it indicates that further increasing the number of clusters does 
not improve clustering effectiveness. This inflection point, or “elbow point” is considered the optimal number of 
clusters. In this study, the Dindex values dropped sharply from 1 to 7 clusters and then more gradually afterward, 
suggesting that 7 is the optimal number, as shown in Fig. 5a, b and c demonstrates that the number of supporting 
indicators is maximized when the number of clusters is 7. The results of the above clustering can be visualized 
through the fviz_cluster function in the FactoMineR package, as shown in Fig. 6. Dim1 and Dim2 in the graph 
represent the percentage in the gear oil data set can be explained by Principal Component 1 and Principal 
Component 2 respectively. Each dot represents a row in the data frame, and the distance between the dots 
reflects the similarity. Figure 6 shows the relative concentration of data points in clusters with cluster numbers 4, 
5 and 6. The optimized cluster analysis shows that record 8 is outlier, indicating that the gear oil is in a warning 
state and requires attention.

 By employing spectral clustering, the graph is partitioned to effectively divide the indicators into separate 
clusters. Subsequently, the clustered federated learning model carries out local training tasks, which performs 
cluster-internal model aggregation. After determining the number of clusters for optimal clustering, it is necessary 
to create a data frame of the clustering results. On this basis, neural network modeling is performed for each 
cluster of data groups to obtain the model combination as shown in Fig. 7. In R language, using the neuralnet 
package for neural network regression prediction is a relatively direct process. This package provides a simple 
method for building and training neural network models, suitable for regression problems. The neuralnet() 
function in the neuralnet package was used to create a neural network model, and the number of neurons for 
hidden layer is set to 5 and a threshold of 0.01. The seven network diagrams in Fig. 7 correspond to the neural 
network model diagrams of the seven clustered data groups, and the correspondences are illustrated on red color 
in the middle-right side of the figure. From the comparison of model deviation data in the lower right corner of 

Modeling step Parameters and statistical significance

 1 st step
Start: AIC=−292.37
Y ~ Vis40 + Acidval + Moisture + PQ + Cu + Fe + Mn + Mo + Na +
Ni + Pb + Sb + Si + Ca + P + Zn

2nd step
Step 2: AIC=−294.37
Y ~ Vis40 + Acidval + Moisture + PQ + Cu + Fe + Mn + Mo + Na +
Pb + Sb + Si + Ca + P + Zn

3rd step
Step 3: AIC=−296.37
Y ~ Vis40 + Acidval + Moisture + PQ + Fe + Mn + Mo + Na + Pb +
Sb + Si + Ca + P + Zn

… …

11th step

Step 11: AIC=−309.76
Y ~ Vis40 + PQ + Mn + Si + Ca + Zn
Chisquare = 23.44502, Df = 1, p = 1.2853e−06
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.326375 0.144801 9.160 6.60e−14 ***
Vis40 −0.275937 0.154620 −1.785 0.0783
PQ −0.838147 0.185524 −4.518 2.25e−05 ***
Mn 0.604340 0.347726 1.738 0.0863
Si −0.796624 0.179905 −4.428 3.14e−05 ***
Ca 0.097442 0.091887 1.060 0.2923
Zn −1.590522 0.605119 −2.628 0.0104 *

Table 2.  SMR modeling process of gear oil datasets.
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the figure, it can be seen that the deviation ranges from 0.000001 to 0.006, indicating that the accuracy of this 
CFLF modeling method is high.

Evaluation for the combined model of SMR & CFLF
The SMR model has advantages in predicting or explaining the quantitative effects between variables, but it 
also has shortcomings such as such as overfitting and weak non-linear modeling capabilities; CFLF belongs to 
unsupervised learning, which has the advantage of not requiring preset labels or target variables, and relying 

Fig. 5.  Determination of best cluster number by NbClust package, (a) Dindex value with clusters; (b) Second 
differences Dindex values with clusters; (c) Number of indicators supported with clusters.

 

Fig. 4.  Residual ~ leverage diagnosis scheme of the SMR model.

 

Scientific Reports |        (2025) 15:22841 5| https://doi.org/10.1038/s41598-025-06826-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


solely on similarity measures of feature variables (such as Euclidean distance). A disadvantage of CFLF is that 
it only outputs class labels or cluster assignments of samples. The combining model of SMR and CFLF can be 
proposed as SMR-CFLF composite model, which is based on the highly canonical correlation series obtained 
from SMR, afterwards CFLF modeling is subsequently carried out on this basis, which can take full advantage 
of both models to play a role in wind turbine gear oil metrics analysis. Gear oil performance dataset can be 
extracted through SMR modeling process, and canonical series include Vis40, PQ, Mn, Si, Ca and Zn.

By extracting 15% of the data volume for the prediction of the above SMR model, the obtained Y-values 
were analyzed for deviation from the actual Y-values, and the root mean squared error (RMSE) was 0.0708, 
demonstrating the relatively high accuracy of this model. The same validation data set was used for the 
prediction of the CFLF model and the root mean square error RMSE value obtained was 0.0729. However, based 
on the efficient quantitative analysis between variables and the precision of the Euclidean distance for feature 
variables, the combining SMR-CFLF model achieved an RMSE value of 0.0455 on the same validation data set 
predictive analysis, which fully demonstrated the advantages of combining SMR and CFLF. Figure 8 presents 
corresponding RMSE values among SMR, CFLF and combining SMR - CFLF model.

As shown in Fig. 8, for analysis of the wind turbine gear oil indicators data set, the CFLF model alone did 
not achieve a better RMSE value than the SMR model, instead, its deviation was − 2.97%. In contrast, the RMSE 
value of the combined SMR-CFLF model achieved a relatively significant improvement with a deviation ratio of 
35.73%. The RMSE results of the SMR-CFLF model were 35.73% better than those of the SMR model. At present, 
the combined model has achieved better results in the prototype test, which promoted research on gear wear 
evaluation; if it is later applied to the practice of wind turbine gear oil performance prediction on a large scale, 
it is hoped that the performance analysis of the wind turbine gear state and decision-making for maintenance 
will be greatly improved.

Conclusions
This study introduces a SMR modeling for gear oil diagnosis of wind turbines with a eleven-step optimization. 
By grouping oil indicators of a similar class into clusters, CFLF is introduced to address data heterogeneity issues 
and generate clustered models to assess gear oil performance, with the deviation ranges from 0.000001 to 0.006. 
A combined model of SMR and CFLF is proposed to assess the performance of gear oil. Actual data analysis of 
wind turbine gear oil showcase the superior performance of the proposed model over the single SMR model with 
higher prediction accuracy of 35.73%. The study provides significant promise in integrating SMR and CFLF into 
feature interaction learning for optimal diagnosis of wind gear oil.

Fig. 6.  Visualization of clustering results by fviz_cluster() function.
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Fig. 7.  Models of neural network learning after Clustering.
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Fig. 7.  (continued)
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Data availability
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