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This study proposes a stock price prediction model based on the Residual-enhanced Channel-Spatial 
Attention Network (R-CSAN), which integrates channel-spatial adaptive attention mechanisms with 
residual connections to effectively capture the multidimensional complex patterns in financial time 
series. The R-CSAN adopts an encoder-decoder architecture, where the encoder extracts feature 
correlations from historical data through multiple layers of channel-spatial attention modules, and the 
decoder incorporates a masking mechanism to prevent future information leakage and introduces a 
cross-attention mechanism to model inter-market correlations. Experiments conducted on four cross-
market stock datasets, including Amazon, Maotai, Ping An, and Vanke, demonstrate that R-CSAN 
significantly outperforms not only traditional baseline models such as ARIMA, LSTM, and CNN-
LSTM, but also recent Transformer-based approaches like Informer, Autoformer, and iTransformer 
on metrics including RMSE, MAE, MAPE, R2, and return on investment. The model reduces RMSE 
by 17.3–49.3% compared to traditional methods and 6.2–11.6% compared to Transformer variants, 
with the highest R2 reaching 93.17% and an increase in return on investment to 482.64%. Ablation 
experiments confirm the critical contributions of each component, with the temporal module removal 
causing an average increase of 38.6% in RMSE and channel-spatial attention removal resulting in a 
21.3% increase. Moreover, the model provides an interpretative analysis of features and temporal 
dimensions through attention weight visualization, offering insights into both indicator importance 
and critical time periods for prediction. In practical applications, R-CSAN’s outputs can be integrated 
into quantitative trading strategies including breakout trading, moving average crossover signals, and 
portfolio allocation optimization, providing a new paradigm for robust prediction in highly volatile 
markets.

Stock market prediction has long been a critical and challenging research topic in financial engineering and 
data science1. Accurate stock forecasting is of immense practical importance to investors, financial institutions, 
and regulators. However, stock prices are influenced by a multitude of dynamic, nonlinear factors such as 
macroeconomic indicators2, company fundamentals3, investor sentiment4, and geopolitical events5, making 
their behavior difficult to model with traditional statistical tools.

Classical forecasting approaches like ARIMA6 and GARCH7 assume linear stationarity, which severely 
limits their capacity to generalize in volatile markets. Traditional machine learning methods, such as SVM8 and 
Random Forests9, though capable of capturing nonlinearities, still require manual feature engineering and lack 
sequential modeling capabilities.

In response, recent research has turned to deep learning techniques for financial time series forecasting. 
Models like Long Short-Term Memory (LSTM)10 networks have demonstrated promising results in capturing 
temporal dependencies due to their specialized gating mechanisms that preserve long-term information while 
filtering irrelevant details. Convolutional Neural Networks (CNN)11 excel at extracting local spatial patterns and 
hierarchical features, making them effective for identifying technical patterns in financial data.

Among deep learning approaches, hybrid models have gained increasing attention for their ability to leverage 
complementary strengths of multiple neural architectures. CNN-LSTM12 combines CNN’s feature extraction 
capabilities with LSTM’s sequential modeling to better capture both spatial and temporal aspects of financial 
data. Graph Neural Networks (GNNs)13 model relationships between different stocks or market sectors, 
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capturing cross-asset dependencies. Attention-based approaches like Transformers14 have revolutionized time 
series modeling by dynamically focusing on relevant historical periods through self-attention mechanisms. 
Recent variants such as Informer15, Autoformer16, and iTransformer17 have been specifically designed for long-
sequence time series forecasting with enhanced efficiency.

Temporal fusion transformer (TFT)18 further advances this direction by integrating static covariates, attention 
mechanisms, and gating structures within a single framework. This architecture allows TFT to process both 
temporal features and static metadata, making it particularly suitable for complex financial data with diverse 
input sources. Similarly, LSTM-based ensembles with attention19 have shown improvements in stock prediction 
by focusing on the most relevant historical time steps.

However, despite these advances, existing methods still suffer from key limitations: they typically focus on 
either temporal dependencies or feature-wise interactions, but rarely model both simultaneously in a unified 
framework. CNN-LSTM models, while combining spatial and temporal aspects, often treat these dependencies 
in a pipelined rather than interactive manner, limiting their ability to capture complex interdependencies. 
Traditional attention mechanisms primarily focus on temporal relationships (identifying which past time points 
are most relevant) but may overlook the varying importance of different financial indicators. Even sophisticated 
Transformer-based models like Informer and Autoformer, while powerful for temporal modeling, may fail to 
capture the nuanced importance across heterogeneous financial indicators (e.g., technical indicators, volume, 
volatility) and their evolving relationships over time.

This limitation undermines model generalizability in complex financial environments where cross-indicator 
correlations are critical and constantly evolving. For instance, volume indicators may have higher predictive 
power during market rallies, while volatility metrics become more crucial during market corrections–a dynamic 
that requires simultaneous attention to both the feature dimension (which indicators matter) and the temporal 
dimension (when they matter).

To address these challenges, this paper proposes a novel Residual-Enhanced Channel-Spatial Attention 
Network (R-CSAN), which bridges the gap by jointly modeling temporal dynamics and cross-indicator 
relationships through a hybrid attention mechanism. The model introduces a dual-dimensional adaptive attention 
mechanism—channel attention for feature-level importance and spatial attention for time-step relevance—fused 
with residual connections20 and normalization layers21 to enhance learning stability. This approach enables the 
model to dynamically adjust its focus across both financial indicators and time periods simultaneously, capturing 
complex patterns that are inaccessible to traditional single-focus attention mechanisms.

The main contributions of this paper are summarized as follows:

•	 We propose R-CSAN, a hybrid attention architecture that simultaneously captures temporal and feature-wise 
interactions, addressing a major limitation of existing hybrid models and attention-based forecasting ap-
proaches.

•	 We design channel-spatial adaptive attention blocks that enhance interpretability and allow dynamic focus on 
key indicators and time points in stock movement prediction, with the capability to adapt to different market 
regimes.

•	 We integrate residual connections and normalization strategies to alleviate gradient vanishing and improve 
deep network training efficiency in volatile financial data, enabling the construction of deeper networks with 
enhanced learning capacity.

•	 We conduct extensive experiments on both U.S. and Chinese stock datasets, demonstrating the superiority 
and cross-market robustness of R-CSAN in terms of predictive accuracy and return compared to both tradi-
tional forecasting methods and state-of-the-art Transformer-based approaches.

The remainder of this paper is organized as follows: “Related work” reviews related work in traditional and 
deep learning-based financial forecasting, with particular focus on hybrid models and attention mechanisms. 
“Methods” details the architectural design of R-CSAN, including data preprocessing, overall architecture, 
channel-spatial attention modules, cross-attention mechanism, and training process. “Experiment” presents 
experimental results on multiple datasets, comparing R-CSAN with both traditional models and modern 
Transformer-based approaches. “Discussion” discusses the interpretability, generalization capabilities, and 
potential real-world applications in quantitative trading strategies. “Conclusion” concludes the paper with a 
summary of findings, limitations of the current approach, and directions for future research.

Related work
Traditional methods for financial time series prediction
Traditional financial time series prediction methods primarily include statistical models22 and classic machine 
learning algorithms. In terms of statistical models, AutoRegressive Integrated Moving Average (ARIMA) and 
Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models are widely used in financial data 
analysis. These models construct linear or nonlinear relationships based on historical data, attempting to predict 
future financial indicators through past observations. The ARIMA model, by integrating AutoRegression (AR)23, 
Integration (I)24, and Moving Average (MA) techniques25, can capture trends and seasonal variations within 
time series. However, these statistical models show significant limitations when dealing with high-dimensional, 
non-stationary, and complex financial data, particularly in rapidly changing market environments, where their 
predictive capability often fails to remain stable.

In the realm of machine learning, algorithms such as Support Vector Machines (SVM)26, Random Forests27, 
and Gradient Boosting Trees28 are extensively used for stock price prediction. These methods can handle 
nonlinear relationships and extract latent patterns from data through complex decision boundaries or ensemble 
learning techniques. Support Vector Machines classify and regress by constructing optimal hyperplanes; Random 
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Forests enhance prediction accuracy through the ensemble of multiple decision trees; Gradient Boosting Trees 
build powerful predictive models iteratively. Although these algorithms perform well in specific scenarios, they 
typically face two main challenges: firstly, they require extensive feature engineering, relying on domain experts’ 
prior knowledge; secondly, they struggle to autonomously capture the inherent long-term dependencies and 
complex spatiotemporal patterns present in financial time series data.

The limitations of traditional methods highlight the urgent need for more intelligent and flexible prediction 
techniques. With the rapid advancement of deep learning technologies, researchers have begun to explore more 
advanced methods to address the complexities of financial time series prediction. These new approaches can 
not only automatically learn features but also better capture the nonlinear relationships and time dependencies 
within the data.

Applications of deep learning in financial forecasting
In recent years, deep learning techniques have been extensively applied in financial forecasting, bringing 
revolutionary changes to traditional financial analysis methods29–31. Long Short-Term Memory networks 
(LSTMs)32, originally proposed by Hochreiter and Schmidhuber, have rapidly become mainstream for 
time series forecasting due to their unique gating mechanisms and exceptional ability to handle long-term 
dependencies. Fischer and Krauss33 demonstrated that LSTMs significantly outperform traditional methods 
in stock market prediction by addressing vanishing gradient problems through forget, input, and output gates. 
Subsequent studies by Nelson et al.34 and Baek and Kim10 further validated LSTM’s effectiveness in capturing 
and memorizing crucial information over extended financial time series, making them particularly prominent 
for processing complex data such as stock prices and trading volumes. The hybrid architecture combining 
Convolutional Neural Networks (CNNs) and LSTMs has further enhanced financial forecasting performance. 
LeCun et al.35 introduced CNNs for spatial feature extraction, which Sezer and Ozbayoglu36 successfully adapted 
for financial time series by treating price movements as image-like patterns. The CNN-LSTM model12 proposed 
by Lu et al. cleverly combines these strengths: CNNs excel in extracting local spatial features and capturing 
short-term patterns in financial indicators, while LSTMs model long-term temporal dependencies and overall 
trends. This complementary architecture has been further developed by Hoseinzade and Haratizadeh11, who 
demonstrated significant improvements in prediction accuracy and stability. However, these hybrid models 
typically process spatial and temporal information sequentially rather than jointly, limiting their ability to 
capture complex interdependencies. The introduction of attention mechanisms18,37 has opened new avenues for 
performance enhancement in deep learning models. Vaswani et al.37 proposed the Transformer architecture with 
self-attention mechanisms, which Qin et al.38 adapted for time series prediction through dual-stage attention 
mechanisms. Recent Transformer variants have shown particular promise: Zhou et al.15 developed Informer 
for efficient long-sequence forecasting, Wu et al.16 proposed Autoformer with decomposition-based attention, 
and Liu et al.17 introduced iTransformer for improved time series modeling. Li et al.39 and Chen et al.40 further 
demonstrated that attention mechanisms can dynamically allocate varying weights to different parts of input 
sequences, enabling models to focus on critical information. However, existing attention mechanisms often limit 
their focus to the temporal dimension, overlooking complex interrelationships among financial indicators, as 
noted in comprehensive surveys by Lim and Zohren41 and Torres et al.42. Recent comprehensive reviews have 
highlighted both the potential and limitations of deep learning in finance. Heaton et al.43 demonstrated deep 
learning’s effectiveness in portfolio management, while Ozbayoglu et al.44 provided extensive analysis of deep 
learning applications across various financial tasks. Gu et al.45 conducted large-scale empirical studies showing 
that machine learning methods can improve asset pricing, though they noted challenges in model interpretability 
and stability. Despite considerable potential, numerous challenges remain, particularly in designing architectures 
that simultaneously consider temporal evolution and indicator correlations–a critical issue identified by Zhang 
et al.31 as driving the development of financial artificial intelligence.

Application of attention mechanisms in time series analysis
Attention mechanisms initially achieved significant success in the field of natural language processing and 
quickly extended to multiple research domains, including time series analysis. In the context of financial time 
series forecasting, attention mechanisms provide a dynamic and flexible method for feature selection and weight 
distribution, allowing the model to adaptively focus on historical data points and features most relevant to the 
prediction targets. This selective attention mechanism greatly enhances the model’s ability to capture complex 
latent patterns in time series. However, existing attention mechanisms have significant limitations: most 
methods tend to focus on a single dimension, either concentrating on temporal progression or analyzing feature 
importance, with few capable of addressing both dimensions simultaneously. This unidimensional focus makes 
it challenging for models to fully comprehend the multidimensional complexity of financial data. Particularly in 
finance, stock prices are influenced by multiple factors from time series and various financial indicators, making 
traditional single-dimension attention mechanisms inadequate.

The Residual-enhanced Channel-Spatial Attention Network (R-CSAN) proposed in this paper is designed 
to bridge this critical gap. The model innovatively introduces a channel-spatial adaptive attention mechanism 
that simultaneously focuses on both time and feature dimensions. In the channel dimension, the model focuses 
on the intrinsic relationships between different financial indicators; in the spatial dimension, it captures key 
patterns within the time series. This multidimensional, multilevel attention mechanism enables the model to 
understand the complex dynamics of financial data more comprehensively and deeply. To further enhance the 
model’s learning capability, this paper introduces residual connections. Residual connections establish direct 
information transfer channels within deep networks, effectively mitigating the common problem of gradient 
vanishing in deep learning. This design allows the model to handle information flow within deep networks 
more efficiently, continuously learning and extracting more abstract and discriminative feature representations 
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while retaining original features. Through this innovative architectural design, R-CSAN not only breaks through 
the limitations of traditional attention mechanisms but also provides a more intelligent and flexible technical 
path for financial time series forecasting. The core value of the model lies in its ability to capture the complex 
patterns of financial data more comprehensively and deeply, offering investors and researchers more accurate 
and insightful predictive tools.

Methods
Data preprocessing
The raw encoder input Xen and decoder input Xde undergo a normalization process before being fed into the 
model, as outlined below:

To standardize the price-based features (such as Open, Close, High, Low, Volume), the Min-Max scaling 
technique is applied, which transforms the data into the [0, 1] range using the formula:

	

X(i)
norm =

X(i) − min
j

(X(j))

max
j

(X(j)) − min
j

(X(j))
, i = 1, . . . , N � (1)

Here, X(i) is the original value of feature i, and the denominator ensures that all features are rescaled to a 
common range, improving convergence in neural networks.

For technical indicators such as RSI, MACD, and Bollinger Bands, Z-score normalization is used to 
standardize features into a distribution with a mean of 0 and standard deviation of 1:

	
X(i)

norm = X(i) − µi

σi
, i = 1, . . . , N � (2)

where µi is the mean and σi is the standard deviation of feature i. This process helps maintain consistent input 
scales across features with varying ranges or units.

Additionally, forward filling is used to impute missing values in a time-consistent manner. Masking is applied 
to distinguish imputed values during training. Outliers and extreme price fluctuations are further managed via 
a robust scaling strategy using a moving window to mitigate their influence.

These preprocessing steps ensure numerical stability, reduce the risk of model overfitting, and enhance the 
overall training effectiveness for complex financial time series data.

Overall architecture
This study introduces the R-CSAN (Residual-Enhanced Channel-Spatial Attention Network) model, a deep 
learning framework with a hybrid attention mechanism, specifically designed for stock market prediction. This 
architecture integrates channel-spatial adaptive attention mechanisms with residual connections to effectively 
capture the temporal dependencies and cross-sectional relationships within financial time series data.

The model consists of two main branches, each handling different aspects of the input data: 

	1.	 Encoder branch: Processes the raw financial features through multiple layers of channel-spatial adaptive 
attention blocks. Each attention block includes residual connections that allow information to flow directly 
from shallow to deeper layers, effectively mitigating the vanishing gradient problem common in deep net-
works.

	2.	 Decoder branch: Handles the combination of token embeddings and initial state representations, using 
masked channel-spatial adaptive attention to prevent information leakage from future time steps. Similarly, 
each decoder block also includes residual connections, enhancing the learning of long-term dependencies.

Both branches are stacked N times and are combined with residual connections and normalization layers to 
facilitate gradient flow and stabilize the training process. The introduction of residual connections is one of the 
core innovations of the R-CSAN model, allowing raw information to flow directly to deeper layers, significantly 
enhancing the learning capacity of deep networks, especially for capturing long-term temporal dependencies.

Additionally, normalization layers within the model further stabilize the training process, enabling the 
model to effectively handle the high volatility common in financial data. The final output layer consists of a fully 
connected network, generating stock prediction targets, including price forecasts and trend classifications.

Figure 1 shows the overall architecture of the R-CSAN model. From the diagram, it is evident that the encoder 
and decoder branches of the model work together to capture complex patterns in financial time series data. 
The encoder focuses on processing historical features, while the decoder is responsible for merging historical 
information and generating future predictions. The interaction between the two branches through the cross-
attention mechanism further enhances the model’s ability to capture long-term dependencies.

The architectural design of the R-CSAN model makes it particularly suitable for handling the characteristics 
of financial time series data, including nonlinear relationships, long-term dependencies, and cross-market 
correlations. The application of residual connections allows the model to build deeper network structures 
without being affected by the gradient vanishing problem, thus enabling it to learn more complex patterns in 
financial data.
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Channel-spatial adaptive attention module
The Channel-Spatial Adaptive Attention Module is a core innovation of the R-CSAN model, designed to 
simultaneously capture feature-wise importance and temporal relevance in financial time series. This dual-
dimension attention mechanism consists of two sequential components that work in tandem: the Channel 
Attention Module followed by the Spatial Attention Module.

The Channel-Spatial attention flow follows a hierarchical pattern: 

	1.	 First, the input feature map F ∈ RC×H×W  is processed by the Channel Attention Module, which generates 
channel attention weights Mc ∈ RC×1×1 through a combination of different pooling operations and shared 
MLP layers.

	2.	 The channel-refined features F ′ = Mc ⊙ F  are then fed into the Spatial Attention Module, which creates a 
spatial attention map Ms ∈ R1×H×W  focusing on important temporal patterns.

	3.	 Finally, the module outputs the refined feature representation F ′′ = Ms ⊙ F ′, which emphasizes both im-
portant financial indicators and critical time points.

This integrated approach differs from conventional attention mechanisms that typically address either feature 
dimensions or temporal aspects independently. By cascading channel and spatial attentions, our module creates 
a comprehensive feature refinement process that enhances the network’s ability to focus on the most informative 
aspects of financial data across both dimensions. The module is further strengthened by residual connections, 
allowing the original information to flow alongside the attended features, which is crucial for preserving primary 
financial patterns while highlighting significant signals.

Channel attention module
In the R-CSAN model, the channel attention module is a key component of the residual-enhanced channel-
spatial adaptive attention mechanism. This module is specifically designed to capture the complex relationships 
between various financial indicators, such as price, volume, and technical indicators, which is crucial in financial 
time series prediction due to the rich predictive information contained in the interactions between different 
indicators.

The computation process of the channel attention module is as follows: 

	1.	 Multi-feature extraction: The module first extracts information from input features through three different 
pooling operations-max pooling, median pooling, and average pooling. Each type of pooling captures differ-
ent aspects of feature statistics:

Fig. 1.  The overall architecture of the R-CSAN model (modified).
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•	 Max pooling focuses on the most significant values, aiding in the capture of exceptional market fluctua-
tions.

•	 Median pooling offers robustness against outliers, reducing the impact of market noise.
•	 Average pooling calculates the overall trend, reflecting the general market state.

	2.	 Shared MLP processing: The pooling results are processed through a shared Multi-Layer Perceptron (MLP) 
for nonlinear transformation, enhancing feature expressiveness. This reduces parameter count and facilitates 
interaction between different pooling results.

	3.	 Application of channel-level attention: Channel attention weights are generated and applied to the original 
features to emphasize financial factors critical for the prediction task.

The mathematical expression for channel attention is given by:

	 Mc =σ (MLP (AvgPool(F )) + MLP (MaxPool(F )) + MLP (MedianPool(F ))) � (3)

	 F ′ =Mc ⊙ F � (4)

where σ is the sigmoid activation function, normalizing the attention weights to between 0 and 1, and ⊙ 
represents element-wise multiplication. This design allows the model to dynamically adjust the emphasis on 
different financial indicators based on their relevance to the predictive task, thereby enhancing or suppressing 
specific features adaptively.

The output F ′ from the channel attention is used to refine the subsequent processing stages, strengthening the 
network’s ability to focus on crucial features for prediction. This process ensures that the attention mechanism 
does not ignore subtle but potentially critical patterns in the financial time series, enhancing the model’s 
predictive accuracy by focusing on the most relevant features.

Spatial attention module
In the R-CSAN architecture, the spatial attention module is a vital complement to the channel attention module, 
specifically designed to capture temporal dimension patterns within financial time series data. While channel 
attention focuses on the relationships between different financial indicators, spatial attention concentrates on 
key moments and important patterns in the time series, which is particularly important for predicting market 
turning points and trend changes.

The computation process of the spatial attention module is as follows: 

	1.	 Multi-scale convolution processing: The module applies a 5 × 5 convolution kernel to the feature maps, 
enabling the capture of a wider temporal context. This larger convolution kernel facilitates attention across 
several trading days, aiding in the identification of medium-term market trends.

	2.	 Multi-depth convolution implementation: By executing convolution operations at multiple depths, the mod-
ule effectively captures various time-scale patterns. This capability allows the R-CSAN to manage short-term 
fluctuations, medium-term trends, and long-term cycles, significantly boosting the model’s comprehension 
of complex market structures.

	3.	 Temporal dimension attention application: Spatial attention weights are generated from average and max 
pooling results and applied to the feature maps, emphasizing the most significant periods within the time 
series. This focus helps the model prioritize days with pivotal signals, like market reversals, periods of high 
volatility, or major economic events.

The spatial attention is mathematically represented as follows:

	 Ms =σ
(
Conv5×5

(
[AvgPool(F ′); MaxPool(F ′)]

))
� (5)

	 F ′′ =Ms ⊙ F ′ � (6)

where σ denotes the sigmoid activation function, compressing the attention values between 0 and 1, Conv5×5 
indicates a 5x5 convolution operation, brackets [] denote feature concatenation, and ⊙ represents element-
wise multiplication. This computation crafts a temporal attention mask that highlights the most predictive time 
points.

The output from the spatial attention module, F ′′, is an enhanced feature representation, formulated by 
processing the channel attention module’s output, F ′. This layered design ensures that the model initially 
concentrates on significant financial indicators before identifying crucial temporal patterns. It exemplifies a 
progressive attention strategy that evolves from “features” to “time.”

Figure 2 illustrates the complete Channel-Spatial Adaptive Attention Mechanism structure. The left side 
shows the Channel Attention Module, which employs three parallel pooling operations (max, average, and 
median pooling) followed by shared MLP layers to generate channel attention weights. The right side depicts 
the Spatial Attention Module, which utilizes convolutional operations on pooled feature maps to create a spatial 
attention mask. The figure demonstrates how these two components are sequentially connected, with channel 
attention output serving as the input to spatial attention, forming an integrated dual-dimension attention 
mechanism. This structure enables the model to first highlight important financial indicators and then focus 
on critical temporal patterns within those indicators, creating a progressive refinement process essential for 
capturing complex financial time series dynamics.
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Cross-attention mechanism
In the R-CSAN model, the cross-attention mechanism is a crucial component that overcomes the limitations of 
the channel-spatial adaptive attention, allowing the model to establish complex networks of relationships between 
different market sectors, stocks, or macroeconomic factors. This mechanism is essential for a comprehensive 
understanding of systemic risks and interdependencies in financial markets, especially in how specific stocks are 
influenced by overall market trends, industry dynamics, or economic indicators.

The cross-attention mechanism is implemented based on the Transformer architecture’s classical query-key-
value (Q, K, V) paradigm. In R-CSAN, this mechanism operates as follows: 

	1.	 Relationship modeling: The module uses one feature sequence (e.g., a stock’s features) as the query (Q), and 
another feature sequence (e.g., industry indexes or related stocks) as the key (K) and value (V), establishing 
cross-sequence dependencies by calculating their correlations.

	2.	 Multi-head design: Cross-attention employs a multi-head design, allowing the model to simultaneously learn 
relationships from different representational subspaces and capture richer patterns of interdependencies.

	3.	 Scale normalization: Attention scores are normalized by dividing by the square root of the dimension of the 
key vectors, ensuring stability of gradients during back-propagation.

The computation formula for cross-attention is:

	
Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V � (7)

Where Q is the query matrix, representing the currently needed enhanced features. K  is the key matrix, used 
to compute correlations with the query. V  is the value matrix, providing the actual information content. 

√
dk  is 

the dimension of the key vectors, used for scale normalization. softmax function converts attention scores into 
a probability distribution.

In the implementation within R-CSAN, the cross-attention sits between the encoder and decoder branches, 
acting as an information bridge. The encoder’s processed historical financial features serve as keys and values, 
while the decoder’s output serves as the query, allowing the model to selectively focus on the historical 
information most relevant to the current prediction task.

This design makes the R-CSAN model particularly suitable for dealing with the “contagion effects”46 and 
“spillover effects”47 frequently seen in financial markets, such as how fluctuations in one sector or region can 
impact others. For example, the model can learn how energy price fluctuations affect airline stocks, or how the 
performance of tech giants can drive the entire technology sector.

By incorporating cross-attention, R-CSAN not only captures patterns within a single time series but also 
understands complex interactions between different financial entities, thus considering a broader market 
environment when predicting individual stock trends, offering more comprehensive and accurate forecasts.

Implementation details of cross-attention
For the specific implementation in stock price forecasting, we utilize market-level and sector-level indices as 
complementary information sources for the Cross-Attention mechanism. The structured data processing and 
alignment work as follows: 

	1.	 Data sources and dimensionality:

Fig. 2.  Detailed structure of the channel-spatial adaptive attention mechanism.
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•	 Primary stock sequence: For each target stock (e.g., Amazon), we utilize its processed feature representa-
tion from the encoder branch as the query (Q).

•	 Market index data: For U.S. stocks, we incorporate S&P 500 and NASDAQ indices. For Chinese stocks, 
we use CSI 300 and industry-specific indices. Each index contributes 5 features (Open, High, Low, Close, 
Volume).

•	 Sector peer stocks: For each target stock, we select 3-5 peer companies from the same industry sector. For 
example, for Amazon, we include Microsoft, Google, Apple, and Facebook.

	2.	 Temporal alignment: All complementary data (indices and peer stocks) are aligned with the primary stock 
using the same trading dates. Non-trading days are handled using forward-fill imputation to ensure consist-
ent sequence lengths.

	3.	 Feature transformation: Before serving as keys and values in the cross-attention mechanism, the comple-
mentary data undergoes the same preprocessing steps as the primary stock data.

The implementation of the cross-attention mechanism can be formalized as follows:

Algorithm 1.  Cross-attention mechanism for financial data.

This implementation enables the model to effectively incorporate broader market context and related 
stock information when predicting the target stock’s price movements. The keys and values derived from 
market indices and peer stocks provide contextual information about wider market trends and sector-specific 
movements, allowing the model to better understand how the target stock’s price movements correlate with 
broader financial patterns.
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The multi-head implementation further enhances this capability by allowing the model to attend to different 
aspects of the complementary data simultaneously, capturing various relationships between the target stock and 
market conditions.

Residual connections and normalization
One of the core innovations of the R-CSAN model is the organic integration of residual connections and 
layer normalization techniques into the channel-spatial attention network, forming a “Residual-Enhanced” 
architecture. This design is particularly effective in processing financial time series data, especially given the 
high volatility and complex nonlinear relationships in financial markets.

In the R-CSAN architecture, each attention submodule (including channel attention, spatial attention, and 
cross-attention modules) is equipped with residual connections and layer normalization components. This 
design offers the following three key advantages: 

	1.	 Effective mitigation of the vanishing gradient problem: In deep neural networks, gradients can decay rapidly 
as network depth increases, making it difficult for shallow layers to update. Residual connections provide a 
shortcut for gradients, allowing information and gradients to flow directly across multiple layers, significant-
ly alleviating the vanishing gradient problem. This is particularly important for financial forecasting, where 
capturing long-term dependencies often requires deeper network structures.

	2.	 Support for deeper network structures: With residual connections, R-CSAN can stack more attention layers 
without significantly increasing training difficulty. This enhances the model’s expressive power, enabling it to 
learn more complex patterns in financial data, especially those involving multiple time scales.

	3.	 Stabilization of the financial data learning process: Financial time series often exhibit high volatility and 
non-stationary characteristics. Layer normalization, by standardizing the output of each layer, helps control 
the variability of feature distributions and reduces internal covariate shift, making the learning process more 
stable. This is particularly valuable in dealing with extreme financial scenarios like market crashes and sud-
den events.

The residual connections in R-CSAN can be represented as:

	 Xi+1 = LayerNorm(Xi + F (Xi))� (8)

Where Xi is the input feature of layer i. F (X) is the layer’s nonlinear transformation function (which could be 
channel attention, spatial attention, or cross-attention). LayerNorm is the layer normalization operation, which 
standardizes the feature distribution for each sample.

This mechanism ensures that the original input information can be preserved and directly transmitted 
to the next layer, while the current layer’s transformation acts as an enhancement or correction. If a layer’s 
transformation does not benefit prediction, the optimization process can push the transformation’s weights 
towards zero, making the residual path the main information channel.

Moreover, R-CSAN’s residual connections are adaptive, able to adjust the information flow based on different 
market conditions. In stable markets, the model may rely more on historical patterns, with residual connections 
ensuring the effective transmission of this information; in volatile market conditions, the attention modules may 
generate stronger transformations, which merge with the original information through residual connections to 
form an adaptive response to market changes.

This “Residual-Enhanced” design makes R-CSAN a powerful predictive framework capable of deeply mining 
potential patterns in financial data while robustly handling market fluctuations.

Temporal module
The Temporal Module in R-CSAN is designed to explicitly model time-dependent patterns in financial sequences. 
This module implements a bidirectional LSTM (BiLSTM) architecture, which processes the input sequence in 
both forward and backward directions to capture comprehensive temporal dependencies.

The structure of the Temporal Module is as follows: 

	1.	 Input sequence processing: Feature maps processed by the Channel-Spatial Attention mechanism are fed 
into the Temporal Module, preserving both the enhanced feature representation and temporal ordering.

	2.	 Bidirectional LSTM architecture: The module employs a two-layer BiLSTM with hidden dimension of 256 
units, facilitating the capture of both short-term fluctuations and long-term trends in financial time series: 

	
−→
h t =LSTMforward(xt,

−→
h t−1) � (9)

	
←−
h t =LSTMbackward(xt,

←−
h t+1) � (10)

	 ht =[
−→
h t,

←−
h t] � (11)

	 where 
−→
h t and 

←−
h t represent the forward and backward hidden states at time step t, respectively.

	3.	 Temporal integration: The bidirectional outputs are concatenated and processed through a projection layer 
to maintain dimensionality consistency with the overall network architecture.
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The Temporal Module plays a crucial role in the overall performance of R-CSAN, as confirmed by our ablation 
experiments where its removal led to an average RMSE increase of 38.6%. This significant performance 
degradation underscores the module’s effectiveness in capturing complex temporal dynamics in financial 
markets that cannot be fully addressed by attention mechanisms alone.

By integrating this module with the Channel-Spatial Attention mechanism, R-CSAN achieves a comprehensive 
modeling approach that captures both feature-wise importance and temporal progression simultaneously, which 
is essential for accurate stock price forecasting.

Training process
The R-CSAN model employs an end-to-end training approach, optimizing network parameters through the 
backpropagation algorithm. Given the specificity of stock market prediction tasks, the training process integrates 
various optimization techniques to ensure model stability, generalizability, and predictive accuracy.

The R-CSAN uses a composite loss function to simultaneously optimize price prediction (a regression task) 
and trend prediction (a classification task), with the formula:

	 L = α × MSE(ypred, ytrue) + (1 − α) × CrossEntropy(cpred, ctrue)� (12)

Where α is a balance parameter that adjusts the relative importance of the two loss components. This multi-
objective learning strategy enables the model to concurrently focus on the precise values of prices and the 
direction of market trends, providing a more comprehensive set of predictive insights. Practice shows that this 
composite loss significantly enhances the practicality of the model, especially in supporting trading decisions.

For optimizer selection, R-CSAN utilizes the Adam optimizer48with learning rate scheduling to update 
parameters. The Adam optimizer, which combines the advantages of momentum methods and adaptive learning 
rates, is particularly suited for handling the sparse gradients and non-stationary features commonly found in 
financial time series. The learning rate scheduling strategy includes a warm-up phase, step-wise decay, and an 
early stopping mechanism based on validation loss, which helps the model find optimal solutions in complex 
parameter spaces while avoiding overfitting.

Considering the inherent noise and limited nature of financial data, R-CSAN implements multiple 
regularization strategies. Dropout technology49 is applied after the attention layers and fully connected layers, 
randomly deactivating a certain percentage of neurons to prevent the model from overly depending on specific 
features and enhancing its robustness against market noise. L2 regularization adds a penalty for the L2 norm 
of the parameters to the loss function, limiting weight growth and favoring simpler explanations, thereby 
enhancing generalization. The combination of these regularization techniques enables the model to perform 
well on test sets and in real applications, even in the face of unseen market conditions. To further stabilize the 
training process and accelerate convergence, batch normalization is applied after each major component. Batch 
normalization reduces internal covariate shift, making the training of deep networks more stable, especially 
when dealing with highly volatile financial data. Combined with gradient clipping and mini-batch training 
techniques, R-CSAN can effectively handle exceptional samples (such as market crash days) and optimization 
difficulties encountered during training.

This comprehensive training methodology allows the R-CSAN model to fully exploit the potential of its 
“Residual-Enhanced” channel-spatial attention architecture, effectively learning complex patterns in financial 
time series while maintaining adaptability to market changes and robustness to noise. Experiments show that 
this carefully designed training process is one of the key factors maintaining high predictive performance of the 
R-CSAN model under various market conditions.

Experiment
Datasets
This study employs the historical trading data of four different stocks to evaluate the performance of the 
proposed R-CSAN model, including one American stock (Amazon) and three Chinese stocks (Moutai, Ping An, 
and Vanke). The specific details of these datasets are as follows: 

	1.	 Amazon dataset: Contains 6155 records covering the historical trading data of Amazon stock from May 15, 
1997 to October 27, 2021. Each record includes seven basic features: date, opening price, highest price, lowest 
price, closing price, adjusted closing price, and trading volume. This dataset spans a long historical period, 
enabling a comprehensive reflection of the trends of American tech stocks across multiple economic cycles.

	2.	 Moutai dataset: Contains 1723 records documenting the historical trading data of Guizhou Moutai stock 
from September 2, 2015 to September 30, 2022. This dataset includes 8 features; in addition to the basic price 
and trading volume information, it also includes the Open Interest (OpenInt) feature. As the leading stock in 
the Chinese baijiu market, Moutai exhibits high volatility and serves as an industry representative.

	3.	 Ping an dataset: Contains 1723 records covering the historical trading data of Ping An from September 2, 
2015 to September 30, 2022, also including 8 features. As a representative stock in the financial and insur-
ance sector, Ping An’s price trends are significantly influenced by macroeconomic conditions and industry 
policies.

	4.	 Vanke dataset: Contains 1588 records documenting the historical trading data of Vanke stock from Septem-
ber 2, 2015 to September 30, 2022, including the same 8 features as the other Chinese stocks. As a leading 
enterprise in the real estate industry, Vanke’s stock price movements reflect the overall condition of the Chi-
nese real estate market.
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These four datasets encompass representative stocks from different countries and industries, including 
technology, baijiu, financial insurance, and real estate. They provide a solid basis for comprehensively evaluating 
the model’s predictive capabilities under different market environments and time periods. The data collection 
period covers both normal market conditions and special periods such as financial crises and the COVID-19 
pandemic, which is beneficial for testing the model’s performance under extreme market conditions.

Experimental setup
Data splitting and preprocessing
In this experiment, a rigorous time-series splitting strategy is adopted, whereby all datasets are divided in 
chronological order into training (70%), validation (10%), and testing (20%) sets. This division ensures that no 
“future data leakage” occurs during the model training process and conforms to the predictive requirements 
of real-world applications. For the Amazon dataset, approximately 4308 records are used for training, 616 for 
validation, and 1231 for testing; for the Chinese stock datasets, approximately 1206 records are used for training, 
173 for validation, and 344 for testing.

Data preprocessing follows the normalization process described in “Data preprocessing”, specifically 
including:

•	 Applying min-max normalization to price-related features to map the values to the [0, 1] range.
•	 Applying Z-score standardization to technical indicators, converting them to a distribution with a mean of 0 

and a standard deviation of 1.
•	 Using a forward-fill strategy to handle missing values and employing masking techniques to mark the filled 

positions.
•	 Utilizing moving-window robust scaling to handle outliers and extreme market fluctuations.

Evaluation metrics
To comprehensively evaluate the performance of the model, this study employs multiple complementary 
evaluation metrics:

•	 Root mean square error (RMSE): 

	

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2� (13)

 where yi represents the actual value and ŷi the predicted value. RMSE is more sensitive to large errors, making 
it suitable for assessing the model’s ability to predict abnormal market fluctuations.

•	 Mean absolute error (MAE): 

	
MAE = 1

n

n∑
i=1

|yi − ŷi|� (14)

 which provides the average absolute magnitude of prediction errors. It is relatively insensitive to outliers and 
reflects the overall stability of the model.

•	 Mean absolute percentage error (MAPE): 

	
MAPE = 100%

n

n∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣� (15)

 expressing the error as a percentage, which facilitates comparisons across stocks with different price ranges.

•	 Coefficient of determination (R2): 

	
R2 = 1 −

∑n

i=1(yi − ŷi)2
∑n

i=1(yi − ȳ)2 � (16)

 where ȳ is the mean of the actual values. The closer R2 is to 1, the stronger the model’s explanatory power.

•	 Return on investment (ROI): 

	
ROI = Final Assets − Initial Assets

Initial Assets
× 100%� (17)
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 which directly reflects the practical economic value of the model’s predictions.

Baseline model comparison
To validate the effectiveness of the R-CSAN model, five representative baseline models are selected for 
comparison: 

	1.	 ARIMA50: The AutoRegressive Integrated Moving Average model represents traditional statistical models. 
In this experiment, the optimal (p, d, q) parameter combination is determined through grid search, where p 
and q range from 0 to 5 and d ranges from 0 to 2.

	2.	 LSTM51: The Long Short-Term Memory network serves as a basic deep learning time series model. The ex-
periment employs a 2-layer LSTM architecture with a hidden dimension of 128, using the Adam optimizer 
with a learning rate of 0.001 and a batch size of 64.

	3.	 CNN-LSTM12: This hybrid architecture combines Convolutional Neural Networks with LSTM. The convo-
lutional layer uses three convolutional kernels of size (3, 1) to extract local features, and the LSTM layer is 
configured identically to that of the basic LSTM model.

	4.	 Random forest52: An ensemble learning method that trains 500 decision trees with a maximum depth of 10 
and a feature sampling ratio of 0.7, using Mean Squared Error as the splitting criterion.

	5.	 LLM-augmented linear transformer-CNN53: A complex model representing the latest research advance-
ments. It integrates a linear Transformer augmented by a large language model with a CNN architecture, 
with 8 attention heads, a feed-forward network dimension of 512, and employs a Cosine learning rate sched-
uler.

	6.	 Informer15: A sparse self-attention based Transformer37 designed for long-sequence time series forecasting. 
It utilizes ProbSparse attention to enhance efficiency and adopts an encoder–decoder structure for multistep 
prediction.

	7.	 Autoformer16: A decomposition-based Transformer that models seasonal-trend components separately via a 
progressive decomposition architecture, achieving high performance in time series with trend shifts.

	8.	 iTransformer17: A lightweight and efficient Transformer variant that exploits inter-series and intra-series 
dependencies with dual-resolution temporal processing. We adopt the official PyTorch implementation and 
follow the standard multistep forecasting setup.

All experiments were conducted under the same hardware environment (NVIDIA Tesla V100 GPU, 32GB 
RAM) and software environment (Python 3.8, PyTorch 1.10) to ensure fairness in performance comparisons. 
Each model was optimized using the same cross-validation strategy for hyperparameter tuning and employed an 
identical early stopping strategy (halting if validation performance did not improve for 10 consecutive epochs) 
to prevent overfitting.

Visualization analysis of prediction results
In order to visually evaluate the predictive performance of the model, this study conducted a visualization 
analysis of the prediction results of the R-CSAN model on four different stock datasets. Figure  3 shows the 
prediction fitting performance of the model on the Amazon, Moutai, Ping An, and Vanke stock datasets. By 
comparing the trends of the model’s predicted values (green line) with the actual stock prices (blue line), the 
prediction accuracy and robustness of the model are thoroughly validated.

The visualization results reveal the following key observations: 

	1.	 Prediction accuracy: In all four datasets, the model’s prediction curve closely aligns with the actual price 
trends, indicating that the R-CSAN model can effectively capture the complex patterns of stock price fluc-
tuations. This high consistency demonstrates the outstanding performance of the channel-spatial adaptive 
attention mechanism proposed in this paper for financial time series forecasting.

	2.	 Market adaptability: Under different market environments and industry characteristics, the model exhibits 
remarkable predictive capabilities. For instance, for the highly volatile Moutai stock and the relatively stable 
Amazon stock, the model accurately tracks the trend of price changes, highlighting its cross-market general-
ization ability.

	3.	 Volatility capture: The model is sensitive to both the micro fluctuations and the overall trend of stock prices. 
This performance is especially evident in the Vanke and Ping An datasets, where the model not only accu-
rately captures the general trend but also precisely reproduces the subtle features of local price fluctuations.

It can be observed from Fig.  3 that, although there are differences in the amplitude and frequency of price 
fluctuations among the datasets, the R-CSAN model consistently maintains a high level of prediction consistency. 
This stability further validates the effectiveness of the hybrid attention mechanism and residual enhancement 
architecture proposed in this paper. Particularly in highly volatile stock datasets such as Moutai, the model still 
maintains relatively accurate predictions, which fully demonstrates its potential in handling complex financial 
time series.

The visualization results not only intuitively display the model’s predictive performance but also provide 
strong evidence for its application in real-world financial forecasting scenarios. By precisely capturing the 
price fluctuation patterns of stocks in different markets and industries, the R-CSAN model offers a promising 
technological pathway for investment decision support systems.
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Comparison of experimental results
Table 1 presents the performance comparison of different models on four stock datasets. It is evident that the 
proposed R-CSAN model outperforms all baseline models across every evaluation metric. In terms of predictive 
accuracy, R-CSAN consistently achieves the lowest RMSE, MAE, and MAPE values while attaining the highest 
R2 scores, indicating smaller deviations from actual stock prices and stronger explanatory power for price 
variance. On the Amazon dataset, the RMSE of R-CSAN is 18.73, which is 47.2% lower than ARIMA (35.48), 
27.2% lower than LSTM (25.74), and 1.6% lower than LLM-Aug LT-CNN (19.03). Compared to Transformer-
based models, R-CSAN also outperforms Informer (20.84), Autoformer (21.27), and iTransformer (19.92). On 
the Maotai dataset, which is more volatile, R-CSAN still achieves an RMSE of 32.16, 52.2% lower than ARIMA 
(67.32) and 7.1% lower than iTransformer (33.28). For Pingan, R-CSAN achieves an RMSE of 21.58 and R2 of 
91.62%, outperforming all other models including iTransformer (22.68), and on the Wanke dataset, R-CSAN 
delivers the strongest results, with an RMSE of 15.32, R2 of 93.17%, and return of 482.64%.

Although some Transformer-based baselines (e.g., iTransformer and Informer) exhibit competitive 
performance in specific scenarios, R-CSAN consistently maintains a clear advantage in both accuracy and 
investment returns across all datasets. These results validate the effectiveness of integrating residual connections 
with spatial-channel attention mechanisms to capture both temporal dynamics and feature interactions in 
financial time series. Furthermore, the strong cross-market generalization observed in both U.S. and Chinese 
stock data demonstrates the practical value of R-CSAN in real-world financial forecasting.

Figure 4 presents a comprehensive visual comparison of the R-CSAN model and eight baseline models across 
five key evaluation metrics: RMSE, MAE, MAPE, R2, and Return (%). The figure highlights performance across 
four representative stock datasets: Amazon, Maotai, Pingan, and Wanke.

The R-CSAN model consistently outperforms all baselines, achieving the lowest RMSE and MAE values, and 
the highest R2 and return values. In particular, R-CSAN demonstrates substantial advantages over Transformer-
based baselines (marked in red), including Informer, Autoformer, and iTransformer. Although iTransformer 
shows competitive performance in some datasets (e.g., Wanke), R-CSAN maintains superiority across all 
scenarios, confirming the robustness of its spatial-channel attention design.

From an inter-model comparison perspective, the predictive performance of R-CSAN is significantly better 
than that of the traditional statistical model ARIMA, reducing RMSE by approximately 49.3% on average. 
Compared to the basic deep learning model LSTM, R-CSAN lowers RMSE by an average of 30.6%. Against the 

Fig. 3.  Prediction fitting performance of the R-CSAN model on different stock datasets.
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hybrid architecture CNN-LSTM, it reduces RMSE by an average of 17.3%. Relative to Random Forest, it achieves 
an average RMSE reduction of 37.3%.

Compared with the state-of-the-art Transformer-based models, R-CSAN surpasses Informer (average RMSE 
gap of 9.8%), Autoformer (average gap of 11.6%), and iTransformer (average gap of 6.2%) across all datasets. 
These comparisons highlight the superiority of the residual-enhanced spatial-channel attention mechanism over 
pure temporal attention architectures in modeling complex financial time series.

These results validate that the design principle of combining the channel-spatial adaptive attention 
mechanism with residual connections can more effectively capture both temporal dependencies and cross-
sectional relationships in financial data.

Experimental results also indicate that R-CSAN performs well on both U.S. and Chinese market stocks, 
demonstrating excellent cross-market generalization capability. The prediction results for different industries 
reflect the impact of sector characteristics on prediction difficulty—for example, the relatively high RMSE for 
Maotai (32.16) may be attributed to its high volatility, while Wanke achieves the lowest RMSE (15.32), possibly 
due to the more stable and cyclical nature of the real estate industry.

In terms of investment application, R-CSAN delivers significantly higher returns than all baseline models 
across all datasets, reaching a maximum of 482.64%. This suggests not only strong academic performance but 
also considerable potential for practical investment decision support.

In summary, the comparison experiments validate the effectiveness of the R-CSAN model not only 
against conventional and hybrid baselines but also against recently proposed Transformer-based forecasting 

Model Dataset RMSE MAE MAPE (%) R2( %) Return (%)

Our improved model Amazon 18.73 12.47 0.98 92.35 463.25

ARIMA Amazon 35.48 35.41 2.70 67.94 211.36

LSTM Amazon 25.74 19.68 1.48 79.83 397.84

CNN-LSTM Amazon 21.05 16.25 1.21 84.76 412.57

Random Forest Amazon 27.36 21.15 1.59 77.52 378.92

LLM-Aug LT-CNN Amazon 19.03 14.81 1.06 89.73 438.63

Informer Amazon 20.84 13.96 1.11 89.32 439.47

Autoformer Amazon 21.27 14.20 1.17 88.51 426.73

iTransformer Amazon 19.92 13.62 1.08 90.47 448.31

Our improved model Maotai 32.16 24.86 1.12 90.83 378.59

ARIMA Maotai 67.32 58.93 2.87 65.27 185.42

LSTM Maotai 48.75 41.52 1.95 78.64 304.68

CNN-LSTM Maotai 42.83 32.46 1.43 82.59 328.71

Random Forest Maotai 51.24 43.87 2.03 76.31 295.43

LLM-Aug LT-CNN Maotai 36.47 27.53 1.25 87.65 356.92

Informer Maotai 34.89 26.45 1.20 88.24 362.79

Autoformer Maotai 35.74 27.08 1.22 87.41 351.64

iTransformer Maotai 33.28 25.01 1.16 89.17 371.85

Our improved model Pingan 21.58 16.73 1.04 91.62 425.38

ARIMA Pingan 42.65 39.82 2.63 68.52 205.73

LSTM Pingan 31.48 26.37 1.57 77.85 352.46

CNN-LSTM Pingan 25.91 19.84 1.19 83.94 387.25

Random Forest Pingan 33.57 28.62 1.74 75.26 341.89

LLM-Aug LT-CNN Pingan 23.76 18.65 1.13 88.47 402.17

Informer Pingan 24.92 18.41 1.10 88.96 408.42

Autoformer Pingan 25.35 18.76 1.14 87.83 397.89

iTransformer Pingan 22.68 17.04 1.06 90.23 417.56

Our improved model Wanke 15.32 10.89 0.92 93.17 482.64

ARIMA Wanke 29.76 28.53 2.42 71.38 227.85

LSTM Wanke 21.85 17.29 1.36 81.97 412.36

CNN-LSTM Wanke 18.47 13.78 1.09 86.82 435.28

Random Forest Wanke 23.54 19.45 1.48 79.64 398.73

LLM-Aug LT-CNN Wanke 16.85 12.36 0.98 90.59 456.41

Informer Wanke 17.64 12.92 0.99 91.27 460.14

Autoformer Wanke 18.02 13.17 1.01 90.68 449.71

iTransformer Wanke 16.39 11.68 0.95 91.92 471.26

Table 1.  Performance comparison of different models on four stock datasets.

 

Scientific Reports |        (2025) 15:21800 14| https://doi.org/10.1038/s41598-025-06885-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


architectures. This confirms the model’s competitiveness and provides an interpretable and high-performing 
solution for real-world stock prediction tasks.

Ablation experiment
In order to thoroughly verify the effectiveness of each component in the R-CSAN model, we designed a 
systematic ablation experiment. By selectively removing key modules from the model, we aim to quantitatively 
evaluate the contribution of each component to the overall performance of the model. As shown in Table 2 and 
Fig. 5, the experimental results reveal the importance of each module in the model architecture.

	1.	 First, on all datasets, removing any key component led to a significant decrease in model performance. 
Among them, removing the temporal module had the most pronounced impact on the model’s predictive 
ability. For example, on the Amazon dataset, the RMSE rose sharply from 18.73 to 25.17; on the Moutai da-
taset, the RMSE increased from 32.16 to 46.58, an upsurge of 44.9%. This result highlights the crucial role of 
capturing temporal dependencies in financial time series prediction.

	2.	 Attention mechanism and data augmentation module removal also caused a noticeable decline in perfor-
mance metrics. After removing the attention mechanism, the average RMSE of the four datasets increased 
by 21.3%, while removing data augmentation increased RMSE by an average of 16.7%. This finding indicates 
that the channel-spatial adaptive attention mechanism and data augmentation techniques play critical roles 
in extracting effective features and reducing model overfitting.

	3.	 Changes in the R2 metric and return on investment further support the above analysis. The full model 
achieves R2 values above 90% on all four datasets, whereas removing key modules leads to a significant 
drop, with the lowest R2 falling to 75.68%. The return on investment follows a similar trend, decreasing 
from a maximum of 482.64% with the Full Model to 387.63% in the basic structure model.

Model configuration Amazon Maotai Pingan Wanke

RMSE R2( %) Return (%) RMSE R2( %) Return (%) RMSE R2( %) Return (%) RMSE R2( %) Return (%)

Full model 18.73 92.35 463.25 32.16 90.83 378.59 21.58 91.62 425.38 15.32 93.17 482.64

w/o Attention 21.46 87.91 425.67 38.72 84.65 342.18 26.37 86.24 389.75 18.95 88.43 443.92

w/o Feature fusion 22.84 85.63 411.82 41.35 82.39 329.64 28.46 83.75 374.63 20.17 86.29 428.57

w/o Temporal module 25.17 82.47 387.54 46.58 79.42 305.87 32.89 78.93 348.26 22.64 83.65 405.32

w/o Data augmentation 20.35 88.92 436.71 36.84 85.76 356.42 24.73 87.58 402.89 17.48 89.76 458.45

Basic structure only 26.89 80.35 368.29 49.73 76.84 292.53 35.42 75.68 332.47 24.36 81.29 387.63

Table 2.  Performance comparison of R-CSAN model components in ablation experiments.

 

Fig. 4.  Performance comparison of the R-CSAN model and baseline models on different evaluation metrics.
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Figure 5 visually presents these performance changes. Whether for RMSE or R2 metrics, the difference between 
the ablation models and the Full Model is striking. This visual presentation not only reinforces the quantitative 
analysis but also offers readers a more intuitive understanding. It is worth noting that the degree of impact varies 
slightly across different datasets, potentially due to inherent differences in stock types, market environments, and 
volatility characteristics. For instance, the Moutai dataset, representing a highly volatile stock, shows a relatively 
more pronounced decline in performance.

The results of the ablation experiment provide empirical support for the architectural design of the 
R-CSAN model. The channel-spatial adaptive attention mechanism, feature fusion, temporal module, and data 
augmentation strategy collectively form the key mechanisms by which the model captures the complex patterns 
in financial time series. This multi-level, multi-dimensional feature extraction and learning paradigm enables 
the model to maintain outstanding predictive performance across different market environments.

Discussion
Model performance analysis
The deep learning model based on the hybrid attention mechanism proposed in this study demonstrates 
remarkable performance advantages in the task of stock forecasting, which can be explained from multiple 
perspectives: 

	1.	 The channel-spatial adaptive attention mechanism is the core driving force behind the model’s performance 
improvement. This innovative design can simultaneously focus on the intrinsic relationships among financial 
indicators and the key patterns within the time series. Stock prices are influenced by complex, multidimen-
sional factors, exhibiting not only temporal dependencies but also interactions among different indicators. 
Traditional models often struggle to capture these multi-layered associations at the same time, while the 
dual-attention mechanism proposed in this paper precisely fills this gap.

	2.	 The cross-attention mechanism further enhances the model’s ability to understand systemic market risks. 
By establishing connections among different market sectors, individual stocks, and even macroeconomic 
factors, the model can more comprehensively analyze how overall market trends affect the performance of 
individual stocks. Capturing these cross-dimensional correlations is crucial for accurate stock price predic-
tion.

	3.	 The introduction of residual connections and normalization layers fundamentally improves the learning 
mechanism of deep networks. These techniques effectively mitigate the common vanishing gradient problem 
in deep learning, enabling the model to better learn the long-term dependencies in financial time series. 
Ablation experiments clearly demonstrate the significant contribution of these components to the model’s 
performance: once removed, the model’s predictive ability declines markedly.

Overall, by ingeniously integrating channel-spatial attention, cross-attention, and residual connections, the 
model proposed in this paper achieves a more comprehensive and in-depth understanding of financial time 
series, providing a more intelligent and efficient approach for stock price forecasting.

Fig. 5.  Performance trend after removing various components of the R-CSAN model.
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Generalization ability across different markets
The experiments in this study span two distinct financial markets, the United States and China, covering four 
representative stocks: Amazon, Moutai, Ping An, and Vanke. The results provide strong evidence for the model’s 
cross-market adaptability and demonstrate its outstanding generalization capabilities.

Stability under different market environments is a key indicator for evaluating the performance of machine 
learning models. Although there are significant differences between the U.S. and Chinese stock markets in terms 
of market mechanisms, investor behavior, and economic conditions, our proposed R-CSAN model, through 
its flexible hybrid attention mechanism, can adaptively capture the unique characteristics of each market. This 
adaptability stems from the model’s ability to dynamically adjust its focus on different financial indicators and 
temporal patterns, rather than relying on predetermined fixed rules. Notably, the model’s performance exhibits 
subtle yet profound variations across different markets. In the relatively stable U.S. tech stock market (Amazon), 
the model shows highly accurate predictive capabilities; in the more volatile Chinese market (e.g., Moutai), 
the prediction accuracy is slightly lower. This difference does not indicate a limitation of the model but rather 
reflects its sensitivity to market complexity. Even in highly volatile markets, the R-CSAN model still significantly 
outperforms traditional forecasting methods, fully demonstrating its unique advantages in handling complex 
financial time series.

This cross-market stability suggests that the hybrid attention architecture we propose has potential 
universality. It can handle stocks from different countries and industries while adapting to varying levels of 
market volatility, offering a promising technological pathway for financial forecasting research.

Model interpretability
Deep learning models have long been regarded as “black box’ due to their complex internal decision-making 
mechanisms, which are often difficult to comprehend. The R-CSAN model proposed in this paper offers a 
unique solution to this dilemma through its innovative hybrid attention mechanism, achieving a significant 
breakthrough in model interpretability.

The channel attention mechanism reveals the key feature weights in financial forecasting. By analyzing the 
attention weights of various financial indicators, we can precisely identify which indicators have the greatest 
influence on stock price prediction. For instance, in certain market conditions, trading volume may reflect 
stock trends more effectively than the opening price; in other scenarios, technical indicators such as the Relative 
Strength Index (RSI) or moving averages may play a more critical role. This fine-grained feature importance 
analysis provides investors with deep insights that extend beyond a single predictive output.

The spatial attention mechanism, on the other hand, focuses on the critical time points within the time 
series. By visualizing spatial attention weights, we can pinpoint the moments where stock price changes are most 
pronounced or represent turning points. These key moments often coincide with major market events, quarterly 
earnings releases, or adjustments in macroeconomic policies. Understanding these pivotal time points not only 
helps elucidate the model’s predictive logic but also assists investors in better grasping market trends.

More importantly, this interpretability approach bridges the gap between “prediction” and “understanding.” 
While traditional forecasting models merely provide numerical outputs, our model offers context and rationale 
for each prediction. Investors are no longer forced to blindly trust a “black box” algorithm; instead, they can gain 
insight into the model’s reasoning process, thereby significantly enhancing its credibility and practical utility.

Looking ahead, there is considerable scope for further research on model interpretability. We envision 
enhancing model transparency through the following approaches: 

	1.	 Attention weight visualization: Developing interactive charts that intuitively display the importance of differ-
ent features and time points.

	2.	 Natural language explanation generation: Utilizing large language models to convert complex mathematical 
weights into human-readable explanations.

	3.	 Scenario-based explanations: Providing personalized predictive interpretations and risk warnings tailored to 
different market environments.

This study not only advances the interpretability of stock forecasting models from a technical perspective but 
also contributes significantly to the reliability of financial artificial intelligence. By opening the “black box” of 
deep learning models, we transform the technology from being remote and inaccessible into an intelligent tool 
that investors can truly use and understand.

Real-world application scenarios
In practical financial applications, the outputs of the R-CSAN model can be directly integrated into quantitative 
trading strategies to support investment decision-making. Specifically, the model’s trend prediction and price 
forecasting capabilities provide a foundation for rule-based strategy formulation. For example, the predicted 
price breakout levels can be used to trigger “breakout trading” strategies, where a long (buy) position is initiated 
once the predicted price exceeds a recent resistance level. Conversely, if the model indicates a downward trend 
below the support level, a short (sell) position can be considered.

Moreover, the predicted price trajectory can be combined with moving average signals to construct “moving 
average crossover” strategies. For instance, when the predicted price consistently surpasses a dynamically 
calculated moving average (e.g., 10-day MA), it indicates a bullish signal that can guide position accumulation. 
In contrast, a drop below the moving average may serve as a signal to reduce or exit positions.

Additionally, for institutional investors, the model’s multi-day forecast outputs can be used to adjust portfolio 
allocations over time. For example, in a multi-asset portfolio, the model can identify stocks with upward 

Scientific Reports |        (2025) 15:21800 17| https://doi.org/10.1038/s41598-025-06885-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


momentum and high return-to-risk ratios, thereby guiding capital reallocation towards these favorable assets 
while reducing exposure to declining assets.

These applications demonstrate the model’s potential not only as a predictive tool but also as an intelligent 
decision-support system. By integrating R-CSAN into real-world trading environments, investors can enhance 
return performance while managing risk with greater precision and transparency.

Conclusion
This study proposes a Residual-Enhanced Channel-Spatial Attention Network (R-CSAN) for stock price 
forecasting, which integrates channel-spatial adaptive attention mechanisms with residual connections to 
efficiently model complex, multidimensional patterns in financial time series. This dual-dimensional attention 
approach–focusing on both financial indicators through channel attention and temporal patterns through spatial 
attention–addresses a critical limitation of existing models that typically handle either temporal dependencies or 
feature interactions separately, rarely combining them in a unified framework. Experiments on four cross-market 
stock datasets (Amazon, Maotai, Ping An, and Vanke) demonstrate that R-CSAN significantly outperforms 
both traditional models (ARIMA, LSTM, CNN-LSTM) and recent Transformer-based approaches (Informer, 
Autoformer, iTransformer). The model reduces RMSE by 17.3–49.3% compared to traditional methods and 
6.2–11.6% compared to Transformer variants, while achieving the highest R2 of 93.17% and ROI of 482.64%. 
This confirms R-CSAN’s superior capability in capturing nonlinear relationships, long-term dependencies, and 
market correlations. Ablation experiments verify the critical contributions of each component, with the temporal 
module removal causing a 38.6% average RMSE increase and channel-spatial attention removal resulting in a 
21.3% increase. The model achieves interpretability through attention weight visualization, offering insights into 
both feature importance and critical time periods for prediction.

In practical applications, R-CSAN’s outputs can be integrated into trading strategies including breakout 
trading, moving average crossover signals, and portfolio allocation optimization. For institutional investors, 
the model’s multi-day forecasts can guide capital reallocation toward assets with favorable risk-return profiles. 
Despite these strengths, R-CSAN has limitations: (1) it is not optimized for high-frequency trading requiring 
millisecond-level latency; (2) its sensitivity to unexpected macroeconomic shocks or black swan events remains 
limited; and (3) as a supervised learning approach, it requires substantial historical data for training. Future 
research should explore: (1) incorporating Graph Neural Networks to model explicit stock relationships and 
sector dependencies; (2) integrating sentiment analysis from financial news to enhance responsiveness to 
exogenous events; and (3) developing reinforcement learning frameworks to create adaptive trading systems 
based on R-CSAN’s predictions.

Data availability
The Amazon stock dataset used in this study was obtained from Yahoo Finance (https://finance.yahoo.com/), 
covering the period from May 15, 1997 to October 27, 2021. The datasets for Guizhou Moutai, Ping An Insur-
ance, and China Vanke were collected from Eastmoney (https://www.eastmoney.com/), covering the period 
from September 2, 2015 to September 30, 2022. The implementation code for data preprocessing and model 
training is available upon reasonable request. Requests should be directed to the corresponding author, Cui Wei 
(email: 15131058968@163.com). The datasets are also available in the supplementary materials.
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