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To address the problem of large errors in 3D maps caused by mismatching due to white flares 
formed through specular reflections on smooth object surfaces during digital image acquisition, we 
propose applying the polarization principle to filter out the orthogonally polarized component of 
linearly polarized light in the reflected light, thereby reducing or eliminating the white flare area. 
The experimental results demonstrate that the system can effectively suppress the flare intensity on 
nonmetallic surfaces, which mitigates artifacts in 3D reconstruction.
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With the increasing adoption of intelligent unmanned workshops, cranes must possess 3D environmental 
perception capabilities1,2. To achieve autonomous obstacle avoidance, intelligent cranes commonly rely on 
sensors such as stereo cameras and multiline LiDAR to construct 3D digital maps3,4. Under illumination 
conditions, smooth surfaces obey the law of specular reflection, directionally reflecting incident light to form a 
virtual image of the light source. When the camera lens forms a specific angle with the reflective surface, these 
high-intensity reflected rays enter the optical system. Within the lens, the light undergoes multiple reflections 
and refractions at air-glass interfaces (such as Fresnel reflections between front and rear lens groups), ultimately 
reaching the sensor through non-imaging paths. Since the energy density of such reflected light far exceeds the 
average scene brightness, its superposition on normal imaging paths creates localized overexposed white glare 
spots (i.e., glare phenomenon) in digital images. The geometric shape of these spots is jointly determined by the 
number of aperture blades and lens curvature. However, the widespread presence of smooth object surfaces in 
workshops generates substantial specular reflections5. Under illumination, these reflections form high-intensity 
bright areas, resulting in numerous white flares on digital images, as illustrated in (Fig. 1). Such flares obscure the 
intrinsic color and texture details of objects, severely interfering with the stereo matching process during map 
reconstruction6 and degrading the accuracy of 3D maps. Consequently, the suppression of specular reflections 
on workshop surfaces has garnered significant attention from researchers worldwide7,8.

Light waves encompass information on intensity, frequency, phase, and polarization, with conventional 
applications predominantly utilizing intensity and frequency data9. Current 3D mapping methods based on 
digital images largely neglect the impact of specular reflections on 3D map accuracy10. For flare suppression, 
researchers predominantly employ machine learning methods to mitigate high-intensity regions caused by 
specular reflections. Polarization, however, constitutes a critical optical property: any natural object imparts 
polarization spectral characteristics to reflected or transmitted light, which are determined by its intrinsic 
properties11. Both specular and diffuse reflections exhibit linear polarization effects, yet their polarization 
signatures differ significantly. This inherent disparity enables polarization features to provide effective prior 
information for suppressing specular reflections12. 3D maps reconstructed from polarization-processed images 
exhibit enhanced accuracy and robustness against varying illumination conditions and surface roughness, as 
they inherently exclude specular interference.

The application of geometric constraints such as confidence maps and epipolar constraints has achieved 
promising results in optimizing digital images. Rong et al. proposed a multi-view 3D microscopic ranging system 
that mitigates optical contamination like multiple reflections by leveraging optimal candidate selection based on 
epipolar deviation, demonstrating robustness against multi-reflections when testing printed circuit boards with 
dense components13. Xiangyang et al. introduced a self-correction method to enhance 3D reconstruction in 
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multi-view photogrammetric systems. This approach repairs 3D surfaces damaged by depth discontinuities and 
can be extended to integrate range images from other depth-sensing devices14. Michael et al. described a method 
for detecting and mitigating optical contamination when using active stereo cameras. They statistically analyzed 
one-dimensional data transformed from digital images to identify contamination events15. Xiao et al. addressed 
spatial non-uniformity in cameras using flat-field correction, employing a 1.5-meter-diameter integrating 
sphere to provide uniform illumination, thereby resolving pixel-level variations, manufacturing irregularities, 
and optical contamination16. Bincai et al. developed a dual-media photogrammetric technique for shallow-water 
bathymetry using satellite-based stereo multispectral imaging. By utilizing the near-infrared band to eliminate 
solar glare, they obtained more accurate results than traditional multispectral inversion models in water depths 
of 5–20 m17.

Atkinson et al. employed diffuse polarization to estimate surface normal directions and obtained high-
precision images via linear polarizers coupled with digital cameras18. Cui et al. proposed a novel polarization 
imaging model capable of handling real-world objects with hybrid polarizations. By integrating per-pixel 
photometric information from polarizations with epipolar constraints from multiview images, their method 
enhances 3D reconstruction accuracy19. Hao et al. developed a multispectral polarization-based 3D reconstruction 
framework for highly reflective nonmetallic targets with smooth surfaces and limited textures. Leveraging the 
distinct polarization and spectral characteristics of stray and diffuse light across different wavelength bands, 
their preprocessing step effectively removes flares, substantially improving the final reconstruction precision20. 
Kadambi et al. introduced a framework that uses polarized normal constraints to refine depth maps. Their 
approach derives surface normals from the degree and orientation of specular polarization, demonstrating 
significant error reduction in 3D reconstruction under diverse lighting scenarios21. Smith et al. devised a method 
for direct surface height estimation from single polarization images by solving large-scale linear systems. By 
requiring only uncalibrated illumination, this approach enables well-posed depth estimation and delivers robust 
results for glossy objects under uncontrolled outdoor lighting22. Shakeri et al. exploited full polarization cues 
from polarization cameras to propagate sparse depth values along and perpendicular to iso-depth contours. 
Experimental validation confirms that their method significantly enhances depth map accuracy and data density 
in texture-poor regions23. Tan et al. presented a hybrid technique that combines polarization cameras with line-
structured light for weld seam localization and 3D reconstruction. By calibrating polarization-derived relative 
heights against the precise 3D coordinates of laser stripes, this method generates authentic point clouds while 
mitigating arc interference in laser-based imaging and overcoming polarization-based height ambiguity24.

Effective methods for high-quality 3D reconstruction by fusing polarization data with depth information 
have also been explored25. Tian et al. proposed a 3D reconstruction model that integrates polarization imaging 
with stereo vision, along with an efficient solution to the associated optimization problem. Experimental results 
demonstrate that their method generates 3D reconstructions with fine-grained texture details, underscoring 
the broad application prospects of polarization imaging in robotics and computer vision26. Liu et al. introduced 
a 3D reconstruction method that fuses the polarization shape and polarization state-based ranging, enabling 
simultaneous acquisition of polarization images and depth data from single-image sensor inputs. Their 
experimental validation further confirmed the method’s robustness in weak-texture scenarios27.

The integration of polarization information with deep learning techniques has also demonstrated remarkable 
accuracy improvements28–30. Ba et al. incorporated polarimetric shape priors into deep neural network 
architectures. Through experiments conducted across objects with varying textures, paint conditions, and 
illuminations, their method achieved the lowest test errors under all the evaluated scenarios31. For precise 
passive 3D facial reconstruction, Han et al. fused 3D polarimetric facial data with convolutional neural 
networks (CNNs). By obtaining coarse depth maps via a 3DMM-based CNN and refining polarization-induced 

Fig. 1.  White flares caused by specular reflections in the workshop.
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ambiguous surface normals, their approach delivered highly accurate 3D facial reconstructions32. By targeting 
outdoor scenes, Lei et al. proposed a framework that combines polarization imaging for scene-level normal 
estimation with multihead self-attention modules and view encoding. Experimental results validate that this 
framework resolves polarization ambiguities caused by complex materials and non-Lambertian reflectance33.

This paper analyzes the polarization states of surface-reflected light. By characterizing the distribution 
patterns of diffuse and specular reflections in parallel and perpendicular orientations, we propose a system that 
integrates linear polarizing filters to suppress specular noise. Polarization-processed images are then fed into a 
stereo matching algorithm to generate high-precision 3D digital maps. The workflow is illustrated in (Fig. 2).

This study extends our prior research. In previous work utilizing stereo cameras, we reported that the 
maximum error in reconstructed 3D maps originated from white flares caused by specular reflections in 
overhead crane environments. During stereo mapping, the irregular spatial distribution of flares between the 
left and right images induced mismatching errors34. To address this issue, we introduce a preprocessing step 
in which applying linear polarizing filters are applied to stereoimages. We systematically investigated how 
polarization angles, material properties of target objects, and illumination conditions affect flare suppression 
efficacy and their subsequent accuracy implications for 3D mapping.

Modeling polarization States of surface reflections
Light reflected from object surfaces consists of specularly reflected polarized light IS and diffuse reflected light 
ID

35. The diffuse component ID can be further divided into diffuse polarized light IDp and diffuse unpolarized 
light IDunpplar, as illustrated in (Fig. 3).

	(1)	 Specularly reflected polarized light IS: Specularly reflected polarized light is generated by the direct re-
flection of external light sources from smooth object surfaces. As described by the Fresnel reflection laws, 
when a light wave undergoes specular reflection, it transitions from natural light to polarized light, with its 
polarization direction perpendicular to the plane of incidence.

Fig. 3.  Schematic diagram of polarized light wave propagation on object surfaces.

 

Fig. 2.  Technical workflow.
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	(2)	 Diffuse polarized light IDp: Diffuse polarized light arises from external light sources that enter the interior 
of an object, undergo refraction through internal molecular/atomic structures, and subsequently reemerg-
ing at the surface. The refracted polarized light exhibits a polarization direction parallel to the plane of 
incidence.

	(3)	 Diffuse unpolarized light IDunpolar: Diffuse unpolarized light is generated by rough object surfaces reflect-
ing ambient illumination. Owing to the stochastic orientation of surface microfacets, this diffuse compo-
nent remains unpolarized, retaining the characteristics of natural light.

we present a polarization state characterization model that combines specular and diffuse reflections by 
analyzing the polarization transmission processes of specularly reflected light and diffusely reflected light during 
reflection, and employing the method of orthogonal polarization decomposition.

Linear polarization has a fixed direction of oscillation. Any wave with partial or no polarization can be 
described as a superposition of two waves with orthogonal polarization directions. Typically, one polarization 
direction is defined as the electric field E oscillating perpendicular to the plane of incidence (referred to as 
transverse electric polarization, or TE polarization), and the other as the electric field oscillating parallel to the 
plane of incidence (referred to as transverse magnetic polarization, or TM polarization).

For TE polarization, the electric field E is perpendicular to the plane of incidence defined by the material’s 
surface normal vector n and the wave vector k of the incident wave. The electric field lies within the material’s 
surface plane (i.e., the case of perpendicular incidence), while the magnetic field vector H ies within the plane 
of incidence, as illustrated in (Fig. 4). For TM polarization, the electric field E lies within the plane of incidence 
defined by the surface normal vector n and the wave vector k. Here, E has no component tangential to the 
material’s surface (i.e., the case of parallel incidence), and the magnetic field vector H lies tangential to the 
material’s surface.

The Fresnel equations for TE cases are shown in Eq. (1).

	

Eref = Ein
sin β cos α − sin α cos β

sin β cos α + sin α cos β
= −Ein

sin(α − β)
sin(α + β)

Etr = Ein
2 sin β cos α

sin(α + β)

� (1)

Where α is the incident angle, βis the refracted angle, Ein is the electric field strength of the incident light, Eref 
is the electric field strength of the reflected light, and Etr is the electric field strength of the refracted light.

The Fresnel equations for TM cases are shown in Eq. (2).

	

Eref = Ein · sin β cos β − sin α cos α

sin β cos β + sin α cos α
= −Ein · tan(α − β)

tan(α + β)

Etr = Ein · 2 sin β cos α

sin(α + β) · cos(α − β)

� (2)

The problem of glare elimination involves the transition of light from a material with lower density to one with 
higher density, i.e., n1 < n2. Taking the example of air (with refractive index n1 = 1)  entering a high-density 
material (assuming refractive index n2 = 2), the plotted curves of relative field strength E/E0versus incident 
angle α are shown in (Fig. 5), while the relative intensity (E/E0)2 versus incident angle α is illustrated in (Fig. 
6).

The analysis reveals that under TM polarization, when the incident angle α equals the Brewster angle αB, the 
relative field strength E/E0 drops precisely to zero. In this polarization state, no reflection occurs—all incident 
light is entirely transmitted. If the incoming light consists of randomly polarized waves, the TM-polarized 
component will not be reflected; consequently, any reflected light will be purely TE-polarized.

The specularly reflected polarized light from object surfaces is partially polarized and can be decomposed 
into the sum of light intensities in the TE polarizationand TM polarizationrelative to the plane of incidence.

Fig. 4.  TE polarization.
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	 IS = IS1 + IS2 = R1 (θ) PS + R2 (θ) PS� (3)

Here, IS1and IS2 denote the perpendicular and parallel light intensity components of the specularly reflected 
light, respectively; R1and R2 represent the perpendicular and parallel reflectivity coefficients; PS corresponds 
to the illumination intensity of the light source; and θ indicates the reflection angle.

The degree of polarization arising from the specular reflection process is defined as:

	
ψR =

∣∣∣IS1 − IS2

IS1 + IS2

∣∣∣ =
∣∣∣∣
R1 (θ) − R2 (θ)
R1 (θ) + R2 (θ)

∣∣∣∣� (4)

Similarly, diffuse polarized light can also undergo orthogonal polarization decomposition as follows:

	 IDp = IDp1 + IDp2 = ε1 (θ) PD + ε2 (θ) PD� (5)

Here, IDp1and IDp2 denote the perpendicular and parallel light intensity components of the diffuse polarized 
light, respectively; ε1and ε2 represent the perpendicular and parallel directional emissivities; and PD corresponds 
to the illumination intensity of the refracted light source.

According to Kirchhoff ’s law and the law of energy conservation, the sum of the reflectivity and emissivity 
equals unity for opaque surfaces:

	

{
ε1 (θ) = 1 − R1 (θ)
ε2 (θ) = 1 − R2 (θ)

� (6)

The degree of polarization for diffuse polarized light is defined as:

	
ψDp =

∣∣∣∣
IDp1 − IDp2

IDp1 + IDp2

∣∣∣∣ =
∣∣∣∣

R1 (θ) − R2 (θ)
2 − R1 (θ) − R2 (θ)

∣∣∣∣� (7)

For diffuse unpolarized light, since the light intensity is isotropic across all directions, it follows that:

Fig. 6.  Relative intensity (E/E0)2 vs. incident angle α curve.

 

Fig. 5.  Relative field strength E/E0 vs. incident angle α curve.
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IDunpolar1 = IDunpolar2 = 1

2IDunpolar� (8)

Here, IDunpolar1 and IDunpolar2 denote the perpendicular and parallel light intensity components of the diffuse 
unpolarized light, respectively.

The intensity of specularly reflected polarized light is predominantly distributed in the perpendicular direction 
relative to the plane of incidence, exhibiting strong polarization effects. Near the Brewster angle, the degree of 
polarization reaches unity36. In contrast, diffuse polarized light primarily aligns in the parallel direction, and its 
degree of polarization increases with the observation angle30. Specular reflections from object surfaces manifest 
as white flares in digital images. On the basis of the analysis of surface-reflected light components, these flares 
can be suppressed by blocking specularly reflected polarized light by polarizing filters.

A linear polarizing filter is an optical device capable of selectively transmitting or blocking light waves 
oscillating in specific orientations. Its operational principle exploits the polarization phenomenon–the restriction 
of light wave oscillations to a single plane. Through specialized materials and microstructures, linear polarizing 
filters modulate the polarization states of incident light, thereby filtering rays on basis of their oscillation 
directions37. As illustrated in (Fig. 7), these filters transmit only light aligned with their polarization axis.

Figure 8 illustrates the workflow of the proposed 3D mapping methodology. First, a disparity map is obtained 
from stereo images via a block-matching algorithm. The depth map is subsequently derived by applying the 
triangulation principle to the disparity map. Finally, the depth information from the depth map is reprojected 
into 3D space to generate the point cloud.

Figure 9 shows the schematic diagram of the binocular stereo matching principle. A sliding window traverses 
the right-view image while calculating the matching cost between pixels within the window and those in 
windows at every possible position along the corresponding row of the left-view image. For each position, a 
matching cost value is computed, which collectively forms a matching cost map. Within a predefined disparity 
range, the algorithm searches for the disparity value that minimizes the matching cost, which is then assigned as 
the final disparity for that window. The detailed workflow of the 3D mapping methodology and stereo matching 
algorithm, along with experimental validations, are described in our previously published work34.

Experiment
Research on polarization-based 3D mapping systems for reflective scenarios in overhead crane environments 
involves addressing 3D modeling challenges under harsh illumination conditions. Owing to the absence of 
suitable public datasets for validating this problem, we constructed an experimental testbed to evaluate the 
proposed methodology. Key variables affecting modeling accuracy, including the polarization angle, surface 
properties (e.g., material roughness), and illumination intensity, were systematically controlled, with the 
accuracy of the generated 3D digital maps serving as the primary evaluation metric. The experimental results 
were subjected to error quantification, followed by a comprehensive analysis of the factors influencing the 
reconstruction performance.

To validate the efficacy of the proposed methodology, an experimental testbed was constructed, as illustrated 
in (Fig. 10). The setup comprises a rotary lens stage, linear polarizing filters, stereo cameras, and a base 

Fig. 8.  Workflow of the 3D mapping methodology.

 

Fig. 7.  Schematic of the operational principle of a linear polarizing filter.
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platform. The rotary lens stage is mechanically coupled with linear polarizing filters, maintaining a fixed relative 
position while enabling rotational adjustments. An angular scale engraved on the stage surface provides precise 
polarization angle alignment. The linear polarizing filters are employed to selectively attenuate incident light 
on the basis of its polarization state. The stereo cameras capture polarization-filtered images and transmit the 
binocular data to a computational unit for 3D map reconstruction. The base platform secures all the components 
to prevent positional deviations that could introduce measurement errors.

The experimental workflow is depicted in (Fig. 11). Upon initiating the experiment, the polarization angle 
of the linear polarizing filters is set by rotating the rotary lens stage. After adjusting to a predefined angle, stereo 
images are captured and processed to generate corresponding 3D maps. This procedure is repeated until 3D 
maps reacquired across all preset polarization angles. To validate the flare suppression performance under 
varying surface conditions, the object material is systematically replaced, and the process is reiterated until 3D 
maps for all the tested surface materials are obtained. The illumination intensity of the ambient light source 
is subsequently modulated to assess the method’s robustness under different lighting conditions. Following 
the completion of data acquisition across all combinations of lighting intensities, surface materials, and 
polarization angles, comprehensive error analysis is performed on all the reconstructed 3D maps to quantify the 
reconstruction accuracy and identify influential factors.

The experimental equipment and corresponding performance parameters are detailed in (Table 1).
The experiment was conducted according to the following steps.

Experimental preparation
Power activation  The light source is powered on, and the stereo cameras are connected to the laptop via USB 
3.0 data cables.

Parameter initialization  Set the polarization angle of the linear polarizing filters and the illumination intensity 
of the light source to predefined values (e.g., 0°, 2000 lx).

Target placement  Position the test objesct within the 3D mapping coverage of the stereo cameras.

Fig. 10.  Specular reflection suppression experimental testbed.

 

Fig. 9.  Schematic diagram of binocular stereo matching.
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Experimental operation
Polarization angle adjustment  Rotate the adjustment ring on the rotary lens stage to align the polarization 
angle with the graduated scale.

Illumination calibration  Measure the ambient light intensity via a high-precision lux meter and fine-tune the 
adjustable light source to maintain the target illuminance.

Results analysis
Point cloud visualization  Open the reconstructed point cloud files (*.pcd) in the PCL Viewer (pcl_viewer) for 
qualitative inspection.

Quantitative error analysis  Compute the normalized error using the ground-truth distances and reconstructed 
depth values.

Experiments were conducted following the proposed procedure via the experimental testbed described in 
this study. With the horizontal direction as the reference axis, the linear polarizing filters in front of the camera 
lenses were rotated to 0, 30, 60, and 90°. Polarized images at these four angles were captured and labeled I0, I30, 
I60, and I90. The resulting left-camera images from the stereo setup are shown in (Figs. 12, 13, 14 and 15), where 
the original photos were cropped to retain only the experimental material regions relevant for glare suppression 
analysis.

Equipment Key parameters Manufacturer Notes

Rotary lens stage ZZX-4.0 Jiangcai
Supports and adjusts the polarization angle of linear polarizing filters.

Equipped with a graduated angular scale for manual continuous rotation (± 180°).

Linear polarizing filter Diameter: 100 mm (linear polarization) Yicheng
Provides polarized filtering of incident light for stereo cameras.

Suppresses specular reflections based on Fresnel reflection laws

Stereo camera
Resolution: 2560 × 720 pixels
Baseline: 65 mm
Focal length: 2.1 mm
Field of view (FOV): 100°

HBVCAM
Captures polarization-filtered binocular images.

Delivers raw data for disparity calculation

Laptop CPU: i5-7300HQ, RAM: 8GB Lenovo Thinkpad
Generates dense 3D point clouds from depth maps.

Implements triangulation-based reconstruction

Data cable Usb3.0, length: 1 m UGREEN
Transmits synchronized image data between sensors and laptop.

Bandwidth: 5 Gbps (ensures real-time processing).

High-precision lux meter Measurement range: 0–200,000 lx GREEN Quantifies ambient illumination intensity (0–200,000 lx)

Adjustable light source Luminous flux: 520 lm
color rendering index (CRI): Ra90 MIJIA Simulates variable-intensity ambient lighting

Mapping target
Mapping target:
surface materials: plastic, metal, wood, ceramic
edge length: 100 mm

Validates method effectiveness under contrasting surface properties:

Wood: low reflectivity, diffuse-dominated reflections.

Metal: high reflectivity, specular-dominated reflections

Table 1.  Experimental equipment specifications.

 

Fig. 11.  Experimental workflow.
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Fig. 14.  Metallic left-camera image.

 

Fig. 13.  Plastic left-camera image.

 

Fig. 12.  Ceramic left-camera image.
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Under an illumination intensity of 2000 lx, the reconstructed point clouds of the ceramic, plastic, metal, and 
wood surfaces are shown in (Fig. 16). To highlight the impact of glare-induced mismatches, texture-weak objects 
were selected as the mapping targets.

An analysis of the point cloud experimental results under 2000 lx illumination was performed, where the 
depth values (Z-direction) of the mapped objects were used as variables to derive the normalized errors for the 
test materials, as shown in (Fig. 17).

From the experimental results shown in (Figs.  12, 13, 14 and 15), it is evident that under identical 
illumination conditions, the proposed system effectively suppresses glare on nonmetallic surfaces such as 
ceramics and plastics. However, metallic surfaces exhibit microscopic irregularities and oxide layers that scatter 
incident light, introducing complexity to reflection behavior. These phenomena deviate from the assumption of 
Fresnel theory, resulting in discrepancies between theoretical predictions and practical outcomes. Consequently, 
accurate prediction and control of specular reflections on metallic surfaces remain challenging for the system. In 
contrast, wooden surfaces, owing to their high roughness, exhibit predominantly diffuse reflections in the visible 
spectrum, eliminating intense glare without requiring polarization filtering.

This study systematically evaluates the performance of the linear polarization filtering system for 3D 
mapping in reflective environments. The experimental variables include the polarization angles (0, 30, 60, 90°), 
surface materials (ceramic, plastic, metal, wood), and illumination intensities (1500–3000 lx). Quantitative error 
analysis of the point clouds was performed via pcl_viewer.

Impact of surface material properties
Nonmetallic materials (ceramic and plastic) exhibit significant glare suppression effects after polarization 
filtering, as shown in (Figs. 9 and 10). For instance, under 2000  lx illumination, the normalized error of the 
ceramic point cloud decreases from 15.5 to 0.7%. This improvement stems from the effective attenuation of 
specularly polarized light (perpendicular to the incidence plane) by linear polarizing filters, which aligns with 
the multispectral polarization-based glare suppression mechanism proposed by Hao et al.20.

In contrast, metallic surfaces suffer from multiple scattering due to microscopic oxide layers, leading to 
substantial deviations in specular polarization states that exceed the applicability of Fresnel theory. Moreover, 

Fig. 16.  Raw point clouds under 2000 lx illumination at different polarization angles.

 

Fig. 15.  Wood left-camera image.
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wooden surfaces, characterized by high roughness, diffuse over 95% of reflected light, enabling glare-free point 
cloud reconstruction without polarization processing.

Optimization of illumination intensity and polarization angle
The experimental results reveal a nonlinear coupling effect between the illumination intensity and the 
polarization angle. When the illumination intensity exceeds 2500 lx, specular reflections on ceramic and plastic 
surfaces exhibit varying degrees of saturation, diminishing the polarization filtering efficiency. Analysis via 
the geometrically constrained polarization-normal model (Atkinson et al.18) demonstrated that the optimal 
polarization angle depends on the material’s refractive index (n), with 60° achieving maximal glare suppression.

Error sources and robustness
The primary error sources include the following: (a) Insufficient disparity resolution: Due to the stereo camera’s 
baseline distance (65  mm), depth errors increase by 1.8× at distances > 2  m. (b) Polarizer angle calibration 
accuracy (± 2°): Induces transmittance fluctuations.(c) NonUniform illumination: Causes localized overexposure, 
particularly in high-reflectance regions.

Method limitations
The system exhibits limited efficacy in suppressing glare on highly reflective metallic surfaces, which is consistent 
with the inherent constraints of polarization imaging under strong specular reflections noted by Yang et al.5. 
Future enhancements could integrate multispectral polarization (Hao et al.20) or deep polarization neural 
networks (Ba et al.31) to improve the reconstruction accuracy.

Innovation points and conclusions this paper addresses the challenge of specular reflection interference 
degrading 3D mapping accuracy in reflective environments typical of overhead crane operations. A linear 
polarization filtering-based 3D mapping system is proposed to mitigate such interference, the key innovations 
are as follows:

Polarization filtering-based specular reflection suppression mechanism
By analyzing the polarization characteristics of surface-reflected light, we propose using a linear polarizing filter 
to selectively block specularly reflected polarized light (predominantly vertically polarized) while preserving 
diffusely reflected polarized light (primarily horizontally polarized). This approach effectively eliminates white 
glare artifacts in digital images. Through polarization-direction filtering, it significantly reduces interference 
from reflections in binocular stereo matching.

Illumination-polarization angle coupling optimization for multi-material surfaces
Experimental results demonstrate the dynamic correlation between polarization angles and material refractive 
indices, identifying 60° as the optimal polarization angle for non-metallic surfaces. By adjusting the nonlinear 
coupling effect between illumination intensity (e.g., 2000 lx) and polarization angles, we optimize 3D mapping 
accuracy. The system performs exceptionally well on ceramic and plastic surfaces (normalized error reduced 
from 15.5 to 0.7%), though further improvements are required for metallic surfaces due to Fresnel theory 
limitations.

Integrated binocular vision and polarization preprocessing for 3d mapping system architecture
We propose a novel system framework combining block-matching algorithms with polarization filtering, 
comprising: polarized image acquisition, noise reduction processing, depth map generation, and 3D point cloud 
reconstruction. Bench tests validate performance across various polarization angles, materials, and lighting 

Fig. 17.  Normalized point cloud errors under different polarization angles and material conditions.
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conditions, delivering an anti-glare 3D perception solution for industrial applications (e.g., bridge cranes) while 
enhancing mapping robustness in textureless regions.

Through theoretical analysis and experimental validation, the system effectively suppresses white flares 
caused by specular reflections on smooth surfaces, significantly enhancing the precision and robustness of 3D 
reconstruction. The key conclusions are summarized as follows:

Efficacy of polarization-driven glare suppression
By leveraging the polarization state disparity between specular and diffuse reflections, the linear polarizing 
filters effectively attenuate high-intensity glare in images by blocking vertically polarized specular light. The 
experimental results demonstrate that on nonmetallic surfaces (e.g., ceramic and plastic), the system achieves 
significant suppression of disparity mismatches induced by glare, with robustness across varying illumination 
intensities (1500–3000 lx) and polarization angles (0–90°). This mechanism provides a theoretical foundation 
for addressing glare issues on smooth industrial surfaces such as ceramics and plastics.

Performance evaluation of the 3D mapping system
By integrating polarization preprocessing with stereo vision and block-matching algorithms, the system reduces 
point cloud reconstruction errors by ≈ 76% compared with conventional methods on nonmetallic surfaces. 
For instance, the normalized error of ceramic point clouds decreases from 15.5 to 0.7%. However, metallic 
surfaces exhibit limited glare suppression due to microscopic oxide layers and complex scattering behaviors 
that invalidate Fresnel theory. Conversely, rough surfaces such as wood inherently lack glare owing to dominant 
diffuse reflections, validating the system’s material-dependent adaptability.

Industrial application value
The proposed system offers a viable 3D perception solution for digitalized industrial environments such as 
overhead crane operations. By mitigating glare-induced stereo matching errors, it enhances positioning accuracy 
and operational safety in reflective scenarios.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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