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Construction of a macrophage-
related prognostic signature and
assessment of immune checkpoint
inhibitor efficacy of HCC
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Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death, with limited treatment
options and high recurrence rates. Prognostic biomarkers and predictors of immune checkpoint
inhibitor (ICl) response are urgently needed. This study aimed to develop a macrophage-related gene
signature to predict patient outcomes and ICl efficacy, with a focus on the functional role of PLAUR.
Single-cell RNA sequencing of paired HCC and normal liver tissues was used to identify macrophage
subtypes. A prognostic gene signature was constructed based on macrophage-related genes and
validated using the TCGA-LIHC cohort. TIDE analysis was performed to assess ICl response prediction.
PLAUR-related cell communication was evaluated using CellChat. Functional assays were conducted
to assess the effect of PLAUR knockdown on macrophage polarization, tumor cell behavior, and PI3K/
AKT/mTOR pathway activity. Tissue microarray immunofluorescence validated PLAUR expression in
situ. An eight-gene macrophage-related signature showed strong prognostic and predictive value.
High-risk patients had poorer survival and reduced ICl responsiveness. PLAUR was overexpressed

in tumor-associated macrophages and correlated with enhanced cell communication in tumors.
Knockdown of PLAUR inhibited M2 polarization, reduced tumor cell proliferation and migration, and
suppressed PI3K/AKT/mTOR signaling. In vivo, PLAUR silencing significantly reduced tumor growth
in aTHP-1/SKHep1 co-injection model. We identified a novel macrophage-related gene signature
with clinical utility in HCC. PLAUR promotes immunosuppressive polarization and tumor progression
via the PI3BK/AKT/mTOR pathway, representing a potential therapeutic target and biomarker for
immunotherapy response.

Keywords Hepatocellular carcinoma, Tumor-associated macrophages, Single-cell sequencing, Immune
checkpoint inhibitors, Prognostic signature, PLAUR

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and constitutes a major global
health problem, representing the fourth leading cause of cancer-related deaths worldwide!. Despite advances
in the diagnosis and treatment of HCC, the prognosis remains poor, with a high rate of recurrence and limited
therapeutic options for advanced-stage disease>’. The complexity of HCC is further compounded by its
etiological diversity, which includes viral hepatitis, alcohol consumption, nonalcoholic fatty liver disease, and
exposure to aflatoxins*®.

The cellular and molecular heterogeneity of HCC is a significant barrier to effective treatment. Tumor-
associated macrophages (TAMs), as a key component of the tumor microenvironment, have been shown to play
a substantial role in cancer progression and therapeutic resistance by fostering a pro-tumorigenic environment
through their interactions with cancer cells and other stromal cells®”. TAMs can be re-educated by the tumor
microenvironment to adopt an immunosuppressive phenotype, which in turn supports cancer growth,
metastasis, and evasion from immune surveillance®°.

Intheera of precision medicine, the utilization of single-cell sequencing has provided unprecedented resolution
in deciphering the cellular composition and gene expression profiles within the tumor microenvironment of
HCC, offering novel insights into the intercellular crosstalk and potential therapeutic targets'®. Such high-
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resolution profiling of individual cells can lead to the identification of key regulators within complex cellular
networks!'!.

Immune checkpoint inhibitors (ICIs) targeting PD1/PDL1 have revolutionized the treatment landscape for
several malignancies. However, the response rate in HCC remains modest, highlighting the need for predictive
biomarkers to identify patients most likely to benefit from ICIs'2. Furthermore, the complexity of the tumor-
immune interface underscores the necessity of understanding the microenvironmental factors that influence the
efficacy of immunotherapy!?.

Given the therapeutic significance of macrophages in HCC and the potential for modulating the PD1/PDL1
axis, our study aimed to construct a macrophage-related prognostic signature that could serve as a predictor
for both patient outcomes and responses to ICIs. The characterization of cell-to-cell communication networks,
especially those involving macrophages, is crucial for understanding their contribution to tumor immunity
and designing more effective immunotherapeutic interventions. Additionally, by confirming our findings using
tissue microarray immunofluorescence, we seek to bridge the gap between in silico discoveries and their clinical
relevance.

Therefore, this study aimed to construct a comprehensive single-cell atlas of hepatocellular carcinoma and
adjacent normal liver tissues, identify macrophage-related prognostic genes associated with immunotherapy
response, and functionally validate key regulators such as PLAUR. Our goal is to improve patient stratification
and provide potential therapeutic targets for immunomodulatory treatment in HCC.

Methods

Single-cell analysis

Single-cell sequencing data of paired hepatocellular carcinoma tissue and normal liver tissue were obtained
from the GEO database (https://www.ncbi.nlm.nih.gov/geo; ID: GSE149614), including data from 10 liver
cancer tissues and 10 normal liver tissues'*. The retrieved expression matrix was used to create a Seurat object,
which was then matched with the acquired metadata. The data uploader has provided complete cell annotation
information and has cleaned and filtered the data, so there is no need for cell annotation or further data cleaning
and filtering.

The subset function was used to extract a subset Seurat object from the Seurat object. The NormalizeData
function was used to normalize the subset Seurat object. The FindVariableFeatures function was used to calculate
highly variable genes. The RunUMAP function was applied to perform dimensionality reduction on the subset
Seurat object, with a resolution of 0.4. The CellMarker database (http://xteam.xbio.top/CellMarker/ ) was used
for manual annotation of cells'®. Cells with similar expression patterns were classified into the same subgroup
by calculating the average gene expression of each cell and using Spearman’s correlation analysis. The R package
‘Seurat’ was used to perform the above analysis'S.

Survival analysis

We conducted an analysis using the LIHC data from the TCGA database (https://portal.gdc.cancer.gov/ ).
After data cleaning and filtering, we obtained an expression matrix composed of 355 liver cancer patients and
their corresponding clinical data. Patients were divided into groups with high and low expression based on
the median value of gene expression. The R package ‘survival’ was used to perform the survival analysis'”. The
Kaplan-Meier (KM) analysis was utilized to determine survival differences, and a P-value of less than 0.05 was
considered statistically significant.

Construction of a prognosis-related signature

We used macrophage-related genes screened by single-cell sequencing to construct a prognosis-related signature.
The LTHC expression matrix was used to explore the correlation between macrophage-related genes and PDCD1
as well as CD274. An absolute value of the correlation coefficient greater than 0.3 was considered to indicate
a correlation between two genes. PDCDI1 and CD274 are the gene names for PD1 and PDLI, respectively.
Therefore, the final selection of genes used to construct the prognosis-related signature was associated with
macrophages and immune checkpoint inhibitors (ICIs). The R package ‘survival’ was utilized for univariate
Cox analysis and multivariate Cox analysis. KM analysis was employed to determine survival differences, with
a P-value less than 0.05 considered statistically significant. After univariate and multivariate Cox analyses, the
selected genes comprised the prognosis-related signature. The following formula was used to calculate the risk
score:

risk score = Z i'exp (RN Ai) * coef (RN Ai)

The expression level of each RNA was denoted as exp (RNAi), and the multivariate Cox regression coeflicient
for each RNA was denoted as coef (RNAi). The R package ‘survivalROC’ was used to assess the accuracy of
prognosis -related signature'®. The R package ‘ggplot2’ was used for data visualization.

ICI efficacy assessment

The Tumor Immune Dysfunction and Exclusion (TIDE) database (http://tide.dfci.harvard.edu/login/ ) was used
to evaluate the therapeutic effect of ICIs'. All patients were divided into high-risk and low-risk groups based on
the median of their risk scores. Subsequently, the expression matrix was uploaded to the TIDE database to obtain
respond data for ICI treatments. Patients with a higher TIDE value were less likely to respond to ICI therapy. The
R package ggplot2 was used for data visualization.
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Cell communication analysis

Based on the expression level of PLAUR, we classified all macrophages into PLAUR-positive macrophages
and PLAUR-negative macrophages. A Seurat object was used to construct a CellChat object. After loading
the human receptor-ligand pair database into the CellChat object, an intercellular interaction network was
established based on the existing receptor-ligand pair information. The R package CellChat was used to carry out
cell communication analysis, and the analysis was carried out according to the standard protocol document?.

Immunohistochemical staining of tissue

Tissue samples were fixed in formalin, embedded in paraffin, and sectioned consecutively at a thickness of 4 um.
The sections were deparaffinized with xylene and rehydrated through a graded ethanol series to distilled water.
Antigen retrieval was performed in sodium citrate buffer. To block endogenous peroxidase activity, sections
were treated with 3% hydrogen peroxide, followed by blocking with 5% bovine serum albumin (BSA) to reduce
nonspecific antibody binding. The sections were then incubated overnight at 4°C with specific primaryantibodies,
including anti-PLAUR (Abcam, Cat# ab221680) and anti-CD163 (Abcam, Cat# ab156769). On the following
day, the sections were sequentially incubated with secondary antibodies and an avidin-biotin complex (ABC).
Immunoreactivity was visualized using a diaminobenzidine (DAB) substrate, and nuclei were counterstained
with hematoxylin. After dehydration and clearing, the sections were mounted and evaluated under a microscope.
Two experienced pathologists independently reviewed and scored the slides in a blinded manner. The tissue
microarray (TMA) used in this study was purchased from Superchip Biotech Co., Ltd. (Qingdao, China) and
consisted of 40 pairs of tumor tissues and matched adjacent non-tumorous control samples.

Tissue microarray Immunofluorescence

Immunofluorescence staining was performed on tissue microarrays according to the standardized protocol
provided by the manufacturer. Tissue sections were incubated with primary antibodies, followed by secondary
antibodies goat anti-mouse IgG conjugated with Alexa Fluor 488 (Abcam, ab150113) and goat anti-rabbit IgG
conjugated with Alexa Fluor 594 (Abcam, ab150080). After secondary antibody incubation, cell nuclei were
counterstained with DAPI. The stained tissue microarrays were subsequently imaged using a confocal laser
scanning microscope (ZEISS LSM 980).

Western blot analysis

Total protein was extracted from tissue samples using RIPA lysis buffer supplemented with protease inhibitors.
Protein concentration was measured using the BCA assay. Equal amounts of protein were separated by SDS-
PAGE and transferred onto PVDF membranes. After blocking with 5% non-fat milk for 1 h at room temperature,
membranes were incubated overnight at 4 °C with primary antibodies: anti-PLAUR (Abcam, ab221680), anti-
B-Actin (Proteintech, 20536-1-AP), anti-PI3K (Proteintech, 20584-1-AP), anti-AKT (Proteintech, 10176-2-
AP), anti-Phospho-AKT (Ser473) (Proteintech, 66444-1-Ig), and anti-mTOR (Proteintech, 66888-1-Ig). The
following day, membranes were incubated with HRP-conjugated secondary antibodies: Goat Anti-Rabbit IgG
(H+L) (Proteintech, SA00001-2) and Goat Anti-Mouse IgG (H+L) (Proteintech, SA00001-1). Signals were
detected using enhanced chemiluminescence (ECL) and visualized with a gel imaging system. Band intensity
was quantified using Image] software to assess protein expression levels.

RNA extraction and quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from tissue samples using TRIzol reagent (Invitrogen) according to the manufacturer’s
instructions. The extraction involved phase separation with chloroform, precipitation with isopropanol, and
washing with 75% ethanol. RNA concentration and purity were assessed using a NanoDrop spectrophotometer.
Complementary DNA (cDNA) was synthesized from the extracted RNA using a reverse transcription kit
(Servicebio, China). Quantitative real-time PCR was performed using a SYBR Green qPCR kit (Servicebio,
China) on a real-time PCR system with gene-specific primers. Relative gene expression was calculated using the
2A—-AACt method, normalized to the internal control gene ACTB. All reactions were conducted in triplicate.
Results are presented as mean + standard deviation (SD), and differences between groups were analyzed using a
two-tailed t-test. A p-value of <0.05 was considered statistically significant. The primer sequences used were as
Supplementary Table 1.

THP-1 macrophage differentiation and polarization

The human monocytic cell line THP-1 was purchased from Servicebio (Wuhan, China) and maintained in
RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at 37 °C
in a humidified incubator with 5% CO,. To induce macrophage differentiation, THP-1 cells were seeded at a
density of 1x10° cells/mL and treated with 100 ng/mL phorbol 12-myristate 13-acetate (PMA) for 24 h. After
treatment, cells were washed with PBS and cultured in PMA-free complete medium for an additional 24 h to
allow for full differentiation into resting macrophages. Polarization was achieved by stimulating differentiated
macrophages with 20 ng/mL interleukin-4 (IL-4) and 20 ng/mL interleukin-13 (IL-13) for M2 polarization. Flow
cytometry was used to assess the proportion of M1 and M2 polarized cells. Cells were stained with PE-conjugated
anti-MHC Class II antibody (Abcam, ab25430) for M1 markers, and FITC-conjugated anti-Mannose Receptor
antibody (Abcam, ab270647) for M2 markers, following the manufacturer’s protocols. Data were acquired using
a flow cytometer and analyzed with Flow]Jo software. Quantitative real-time PCR (qRT-PCR) was performed to
evaluate the expression levels of polarization-related genes, including CD163, IL-10, TNF-a, and IL-12.
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In vivo xenograft model with THP-1/SKHep1 co-injection

To investigate the effects of macrophage-tumor cell interactions on tumor growth in vivo, a subcutaneous
xenograft model was established using a co-injection of human hepatocellular carcinoma SKHepl cells and
differentiated THP-1 cells. THP-1 cells were pretreated with 100 ng/mL phorbol 12-myristate 13-acetate (PMA)
for 24 h to induce macrophage-like differentiation, followed by a 24-hour rest period in PMA-free medium
prior to collection. SKHep! and differentiated THP-1 cells were mixed at a 1:1 ratio (5x 10° cells each) in 100
uL of serum-free RPMI-1640 medium and injected subcutaneously into the right flank of 4-6-week-old male
BALB/c nude mice (Vital River Laboratory Animal Technology Co., Ltd., Beijing, China). At the end of the 4th
week, mice were euthanized, and tumors were excised, weighed, and subjected to subsequent histological and
molecular analyses. All animal procedures were approved by the Ethics Committee of Fuyang People’s Hospital
and were conducted in accordance with institutional and national guidelines for the care and use of laboratory
animals.

Results

Hepatocellular carcinoma single-cell atlas

A total of 49,558 cells were categorized into 6 different cell types, namely T or NK cells, myeloid cells, endothelial
cells, hepatocytes, fibroblasts, and B cells (Fig. 1A). After UMAP dimensionality reduction, it can be observed
that the distribution of hepatocytes was rather scattered. This may be due to significant biological differences
between tumor-derived hepatocytes, that is, liver cancer cells, and normal hepatocytes. All cells were derived
from either tumor tissues or normal liver tissues (Fig. 1B). Cells originating from tumor tissues and those from
normal tissues exhibited considerable heterogeneity, and the distribution of cells did not converge together.
Tumor and normal liver tissues from 10 liver cancer patients were used for single-cell sequencing (Fig. 1C and D).
The individual differences amongst humans may also contribute to the observed heterogeneity. Representative
marker genes of each cell type were displayed in Fig. 1E.

Single-cell panorama of macrophages

A total of 9,528 myeloid cells were divided into 10 subclusters (Fig. 2A). Leukocytes derived from bone marrow
can generally be categorized at the single-cell level into macrophages, dendritic cells (DCs), monocytes, and
mast cells. Based on the marker genes of the 10 subclusters, the myeloid cells were annotated as three main
cell types, namely, macrophages, DCs, and monocytes (Fig. 2B). The marker genes for macrophages, DCs, and
monocytes were shown in Fig. 2C. Due to the limitations of single-cell sequencing technology, it’s challenging
to completely differentiate myeloid cells. Therefore, the distinctiveness of the marker genes for these three types
of cells was not very high. Myeloid cells from tumor tissues exhibit considerable heterogeneity compared to
those from normal tissues (Fig. 2D), suggesting that the impact of the tumor microenvironment on immune
cells may be a critical factor affecting tumor therapy efficacy. A total of 2,128 macrophages were divided into five
subclusters (Fig. 2E). Almost all macrophages originated from tumor tissue (Fig. 2F). Based on the similarity
of expressed genes, all macrophages could be divided into three subtypes with different expression patterns
(Fig. 2G and H). These three subtypes of macrophages, with different expression patterns, have distinct marker
genes that were specific to macrophages and were closely related to the function of macrophages. The MAC1
subtype of macrophages has a total of 316 marker genes, the MAC2 subtype of macrophages has 268 marker
genes, and the MAC3 subtype has 286 marker genes. In total, 870 macrophage-related genes were obtained for
subsequent analysis.

Constructing a prognostic signature related to macrophages and ICls

Figure 3A showed the strategy for screening the signature. A total of 870 macrophage-related genes were used for
correlation analysis with PDCD1 and CD274, from which 160 ICI-related genes were screened. Univariate Cox
analysis and multivariate Cox analysis were used to test the prognostic value of the 160 genes. Eventually, 8 genes
with prognostic value related to macrophages and ICI were selected as the signature. ATP1B3, CAPZB, CTSC,
DNAJB4, PHLDA2, PLAUR, PPT1, and TUBA1C all have good prognostic values (Fig. 3B-I).

Effect assessment of the prognostic signature

Patients in the high-risk group had a higher expression of prognosis-related genes compared to those in the
low-risk group (Fig. 4A). This indicated that prognosis-related genes played a key role in the progression of the
tumor. Furthermore, with an increase in the risk score, the mortality rate of patients also increased (Fig. 4B and
C), suggesting that the prognostic signature had good predictive performance. The survival rate of patients in the
high-risk group was significantly lower than that of the patients in the low-risk group (Fig. 4D), which further
demonstrates the good predictive effect of the prognostic signature. Compared to other clinical evaluation
indicators, the prognostic signature has a higher AUC (Fig. 4E). The univariate Cox analysis showed that clinical
staging, TNM, and the prognostic signature were independent risk factors (Fig. 4F). However, the multivariate
Cox analysis indicated that only the prognostic signature was an independent risk factor (Fig. 4G). In summary,
the prognostic signature had a great ability to predict the prognosis of patients. In addition, we employed the
liver cancer dataset GSE14520 from the GEO database, which comprises 242 hepatocellular carcinoma patients
in an external validation cohort. The risk model maintained strong prognostic performance upon external
validation, underscoring its potential clinical applicability(Fig. 5A-D).

Assessment of ICl treatment efficacy based on prognostic signature

Patients who responded to ICI treatment were primarily comprised of those with a low risk, while the non-
responders chiefly consisted of high-risk individuals (Fig. 5E). This indicated that high-risk patients had a harder
time benefiting from ICI therapy, whereas it was easier for low-risk patients to derive benefit. High-risk patients
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Fig. 1. Single-cell panorama of hepatocellular carcinoma. (A) the distribution of all cells, with points of
different colors representing different cell types. (B) the distribution of all cells, with points of different colors
representing different tissue origins. (C) the distribution of all cells, with points of different colors representing
different sample origins. (D) the distribution of all cells, with points of different colors representing different
sample and tissue origins. (E) the expression of marker genes for different cell types, where blue points indicate
low expression levels, red points indicate high expression levels, and the size of the point represents the
percentage of cells expressing the gene out of all cells.
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Fig. 2. Single-cell panoramic view of macrophages. (A) Dots of different colors represent cell clusters. (B)
Dots of different colors represent different cell types. (C) Expression levels of the cell’s marker genes, with
red indicating high expression and grey indicating low expression. (D) Dots of different colors represent
different tissue origins. (E) Dots of different colors indicate clusters of macrophages. (F) Dots of different
colors represent different tissue origins. (G) Heat map showing the correlation among different clusters
of macrophages, with red indicating a high correlation coeflicient and blue indicating a low correlation
coefficient. (H) Dots of different colors represent subtypes of macrophages.
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Fig. 3. Survival analysis. (A) The process of filtering for macrophage and ICI-related prognostic signatures. (B)
Survival curve for ATP1B3. (C) Survival curve for CAPZB. (D) Survival curve for CTSC. (E) Survival curve
for DNAJB4. (F) Survival curve for PHLDAZ2. (G) Survival curve for PLAUR. (H) Survival curve for PPT1. (I)
Survival curve for TUBA1C.

had significantly higher TIDE scores than those in the low-risk group (Fig. 5F), suggesting that high-risk patients
were less likely to generate an effective response to ICI drugs. The exclusion scores of high-risk patients were
notably higher than those of low-risk patients (Fig. 5G), implying that immune escape of tumor cells was more
likely to occur in the high-risk group. Patients in the high-risk group also had substantially higher microsatellite
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Fig. 4. Assessment of the predictive effect of the prognostic signature. (A) Heatmap shows the expression
differences of eight prognosis-related genes between patients in the high-risk group and those in the low-
risk group. Red indicates high expression levels, and green indicates low expression levels. (B) Scatter plot
shows that the mortality rate of patients increases with higher risk. (C) Risk curve displays the distribution
characteristics of the risk scores. (D) Survival curve for the risk scores calculated by the prognostic signature.
(E) The ROC curve of the risk score and clinical relevant features. (F) Forest plot shows the results of the
univariate Cox analysis. (G) forest plot shows the results of the multivariate Cox analysis.
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Fig. 5. Assessment of the ICI treatment effect based on the prognostic signature. (A) scatter plot shows that
the mortality rate of patients increases with higher risk in GSE14520. (B) risk curve displays the distribution
characteristics of the risk scores in GSE14520. (C) survival curve for the risk scores calculated by the
prognostic signature in GSE14520. (D) The ROC curve of the risk score and clinical relevant features in
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instability scores (MSI) compared to the low-risk group (Fig. 5H), indicating that high-risk patients had a heavier
mutation burden. Therefore, identifying high-risk patients through the prognostic signature and developing
relevant targeted drugs to decrease the risk for these patients and enhancing the efficacy of ICI treatment were
key to improving the cure rate of liver cancer.

Expression pattern of prognostic signature

Macrophages derived from tumor tissue are known as tumor-associated macrophages (TAMs). CAPZB,
PHLDA?2, PLAUR, and TUBAIC all showed increased expression levels in TAMs, while the other four genes
were upregulated in macrophages derived from normal tissue (Fig. 6A). However, PLAUR and PPT1 were
mainly overexpressed in myeloid cells (Fig. 6B-D). This suggests that PLAUR and PPT1 may played a key
role in the function of myeloid cells. At the holistic level, ATP1B3, PHLDA2, and TUBA1C showed increased
expression in tumor tissues (Fig. 6E-G), with no significant statistical differences in the expression of the other
five genes(Fig. 6H-L). This indicates that these three genes may play an important role in the progression of
cancer.

Cell communication analysis and clinical sample validation

PLAUR and PPT1 were both expressed in myeloid cells, but PLAUR was mainly overexpressed in TAMs.
Therefore, PLAUR may played a more important role. All macrophages were classified based on the expression
level of PLAUR into PLAUR-positive macrophages and PLAUR-negative macrophages, and their communication
strength with other cells was calculated. Cells originating from tumor tissue exhibited a stronger communication
strength than those from normal tissue (Fig. 7A). This suggests that the microenvironmental activity in the
tumor-derived tissues was more dynamic. The communication strength between PLAUR-positive macrophages
in tumor tissue and other cells was stronger than that between PLAUR-positive macrophages in normal tissue
and other cells (Fig. 7B). Similarly, PLAUR-positive macrophages in tumor tissue have more communication
pathways (Supplementary Fig. 1A). This implies that PLAUR can increase the frequency of cell interactions in
macrophages. PLAUR-positive macrophages can secrete ligands such as TNF and MDK that act on tumor cells,
thereby enhancing the proliferation and migration capabilities of the tumor cells?*?2. They can also secrete MIF
that acts on T cells or NK cells, modulating the tumor immune microenvironment (Supplementary Fig. 1B)>3-%5,
This demonstrated the significant role of PLAUR in macrophages. Immunohistochemical staining using
microarray chips confirmed the high expression of PLUAR in HCC tumor tissues (Fig. 7C and D). Finally, we
used immunofluorescence to confirm the expression levels of PLAUR, finding that PLAUR was overexpressed in
the macrophages of tumor tissues (Fig. 7E).

PLAUR regulates macrophage polarization and promotes tumor progression through the
PI3K/AKT/mTOR signaling pathway

To investigate the role of PLAUR in macrophage function and tumor progression, we first constructed
PLAUR-knockdown THP-1 cells via lentiviral transduction. RT-qPCR and Western blot confirmed effective
downregulation of PLAUR at both mRNA and protein levels (Fig. 8A-B). Following macrophage differentiation,
flow cytometry analysis showed that PLAUR silencing resulted in a decrease in M2-type macrophages (CD206")
and an increase in M1-type macrophages (MHC class IT*) (Fig. 8C). After co-culturing macrophages with SKHep1
cells, CCK-8 assay revealed that PLAUR knockdown significantly inhibited the proliferative capacity of SKHep1
cells (Fig. 8D). This was further validated at the molecular level: RT-qPCR analysis showed downregulation of
M2 markers (IL-10, Argl) and upregulation of M1 markers (TNF-q, IL-12) in the PLAUR-knockdown group
(Fig. 8E).

To assess the impact of macrophage PLAUR expression on tumor cell behavior, we conducted a co-culture
experiment in which polarized THP-1 macrophages were cultured with SKHep1 cells. Notably, SKHep1 cells
co-cultured with PLAUR-knockdown THP-1 cells exhibited significantly reduced migratory ability compared
with the control group (Fig. 8F). Mechanistically, Western blot analysis revealed that PLAUR knockdown
suppressed the activation of the PI3K/AKT/mTOR signaling pathway, as indicated by decreased expression
levels of PI3K, phospho-AKT, and mTOR (Fig. 8G), suggesting that PLAUR may exert its function via this
axis. To further validate the in vivo relevance of PLAUR, a subcutaneous xenograft model was established
by co-injecting SKHep1 cells with THP-1 macrophages. Mice injected with PLAUR-knockdown THP-1 cells
developed significantly smaller tumors compared to the control group (Fig. 8H). Tumor growth curves and final
tumor weights further confirmed the inhibitory effect of PLAUR silencing on tumor progression (Fig. 81, K).
Collectively, these findings indicate that PLAUR promotes M2 polarization of macrophages, enhances tumor cell
migration, and facilitates tumor growth through activation of the PI3K/AKT/mTOR signaling pathway.

Discussion

The comprehensive analysis presented in the results section offers novel insights into the cellular and molecular
mechanisms underlying HCC, and the constructed prognosis-related signature provides a valuable tool for
predicting patient outcomes and guiding treatment strategies, particularly for ICI therapies. Here, we discuss the
potential implications of our findings within the broader context of HCC research and treatment.

The Single-cell Analysis of HCC tissues revealed distinct cellular landscapes between tumor-derived and
normal hepatocytes, highlighting the significant heterogeneity inherent to HCC. This observation is aligned
with current understandings of tumor biology, where intratumoral heterogeneity poses a major challenge for
effective cancer treatment due to its role in therapeutic resistance and cancer progression®*?’. Interestingly, our
study uncovered subtypes of macrophages with different expression profiles within the HCC microenvironment,
which could be indicative of the diverse functions and polarization states of tumor-associated macrophages
(TAMs). The existence of these subtypes reinforces the concept that the tumor microenvironment influences
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blue dots indicating low expression levels. (D) Expression distribution of PPT1 across all cells. (E) Box plot for
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(J) Box plot for PLAUR. (K) Box plot for PPT1. (L) Box plot for TUBA1C. * means P<0.05.

Scientific Reports |

(2025) 15:25065

| https://doi.org/10.1038/s41598-025-06937-3

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A B
934 Number of interactions-Normal Number of interactions-Tumor
2 Fibroi?st Fibroblast
.3 750 = J Endothelial ;
3 PR * /L
£ L o \ i
gsoo B roma Hepa X AN Hepaiong i
4 ¥ 8
E . Tumor " ‘f § /‘¥ B 'Y Q
2 < /// L ] » Vg
ézso % Bl ’J/ ,\_~‘-’,a( ‘/
*. PLAUR-MAGC X PLAUR-MAC
W~ MINK " TTINK
0
Normal Tumor PLAUR+MAC PLAUR+MAC
C
N y
T N1
N ™
e
N2 -
N
T &3
N f :
N3 .
T
CD163 : DAPI
E
D 200 N1
*
150
e
8 100
@ Tl
b =
50 4
L e R
Normal Tumor
N2
T2

Fig. 7. Analysis of cell communication and immunohistochemistry validation. (A) The intensity of cell
communication in tumor tissue is higher than that in normal tissue. (B) The intensity of communication
between cells in tumor tissue and in normal tissue. (C) Immunohistochemical (THC) analysis of PLAUR
expression in a tissue microarray containing normal (N) and tumor (T) samples from HCC patients. (D)
H-Score quantification of PLUAR expression demonstrates significant upregulation in tumor tissues compared
to normal tissues. (E) representative immunofluorescence images of PLAUR expression in macrophages in
tumor and normal tissues.

Scientific Reports|  (2025) 15:25065 | https://doi.org/10.1038/s41598-025-06937-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A 5 B D 20
< -+ NC
% NC Sh1 Sh2 id = Shi
4 > 1.0
: 8
3 05
= Pluar - —
i 0.0 T T T
€77 Ne sht sh2 ! ? s
Days
Shl Sh2 30-
C jo 2 O P a2
&1 M1 484 %40 M1 642

8.18% w4 9.49%

2
o
=
©
-
g 20
™
(3\ 10° .‘C‘
= g
S 5 104
2 0' ©
P Toe 2
816 o 1774 o
0 E
w! 1’ w0 w0t m‘w"
NC Sh1 Sh2
CD206-FITC
E IL-10 TNF-a
é 20 3 25
% %20
g1s 0 H
H £1s
510 §
5 é 1.0
3 3
& 0.0 & 0.0
NC sh1 sh2 NC Shi sh2 = NC Sh1 sh2 NC Sh1 sh2
F 2000
+ 1500
£
2 1000
§
© s00
NC sh1 sh2
G -
NC Shl Sh2 oeNC oe -
E
B-Actin —-—--—| 5300-
NC £
2 200
o
>
PLAUR | — — -‘ g 100
Shi 5
0
PI3K|-....--| NC Sh1 sh2
J e

P-AKT |

: C
£
=

= :
5
2

NC Sh1 sh2

Fig. 8. Functional analysis of PLAUR knockdown in THP-1 cells and its impact on tumor progression. (A)
PLAUR mRNA expression in THP-1 cells after lentiviral knockdown, detected by qRT-PCR. (B) PLAUR
protein expression detected by Western blot. (C) Proportions of M1 and M2 macrophages detected by

flow cytometry following polarization. (D) SKHepl1 cells proliferation curve after co-culture with PLAUR-
knockdown macrophages. THP-1 cell proliferation curve after PLAUR knockdown. (E) Expression of
macrophage polarization markers (TNF-a, IL-12, IL-10, CD163) detected by qRT-PCR. (F) Migration ability of
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immune cell phenotype and function, a consideration that is critical when evaluating immunotherapeutic
approaches?®%,

The prognostic signature, derived from macrophage-related genes and their relationship with ICIs such as
PDCD1 and CD274, holds significant promise for the stratification of patients into risk categories and improving
the selection of candidates for ICI therapy. In clinical practice, predicting which patients are likely to benefit
from ICIs remains a challenge, and our signature potentially addresses this gap®. It is interesting to note that the
identified macrophage-related genes showed prognostic value, suggesting that TAM:s play a crucial role in HCC
progression and patient outcomes, corroborating with other studies associating TAMs with poor prognosis in
various cancers®2,

However, our study also indicated that patients classified as high-risk according to our signature exhibited
reduced responsiveness to ICIs, as reflected by higher TIDE scores. This could point to an increased likelihood
of immune evasion in these patients, which is an ongoing challenge in immuno-oncology. The correlations
between the risk score, MSI levels, and exclusion scores suggest that a high-risk status is associated with a higher
mutation burden and potential immune escape mechanisms>?.

ICell-cell communication analysis further highlighted the role of PLAUR-positive macrophages in
facilitating intercellular signaling within the tumor microenvironment, potentially promoting tumor progression
by enhancing tumor cell proliferation and migration. The overexpression of PLAUR in TAMs was validated
through immunofluorescence staining on tissue microarrays, supporting its relevance as both a biomarker and
a functional contributor to HCC pathology>4-3¢.

In addition to the regulatory role of PLAUR in macrophage polarization, our functional experiments
demonstrated that PLAUR knockdown significantly inhibited the proliferation and migration of SKHepl
hepatocellular carcinoma cells. This suggests that PLAUR may not only modulate the immune microenvironment
via macrophage polarization but also directly contribute to tumor progression by enhancing tumor cell
aggressiveness. Mechanistically, Western blot analysis revealed that silencing PLAUR led to the suppression of
the PI3K/AKT/mTOR signaling pathway. This pathway is a central regulator of cell growth, survival, metabolism,
and immune function and is frequently dysregulated in various cancers, including HCC. Its activation has
been associated with increased tumor cell proliferation, resistance to apoptosis, and immune evasion. In
macrophages, PI3K/AKT/mTOR signaling also promotes M2 polarization and immunosuppressive activity,
further contributing to tumor-supportive functions®”*®. Therefore, PLAUR may exert its pro-tumorigenic
effects, at least in part, through the activation of this pathway. Targeting PLAUR or downstream effectors in this
signaling cascade could provide a dual therapeutic advantage by simultaneously impairing tumor cell viability
and reprogramming tumor-associated macrophages toward an anti-tumor phenotype.

From a clinical perspective, the signature holds practical value for risk stratification and treatment decision-
making in HCC. High-risk patients may benefit from combination or alternative therapies, while low-risk
individuals could be prioritized for ICI-based regimens. As the included genes are detectable via QqRT-PCR or
targeted sequencing, the signature is technically feasible for routine use. Further validation and standardization
may enable its integration into clinical workflows for personalized HCC management.

Compared with existing prognostic models for HCC—which are often based on clinical staging systems
or bulk transcriptomic profiles—our model incorporates immune context through single-cell transcriptomic
data and focuses specifically on macrophage-related gene expression®>*?. This approach captures intratumoral
immune heterogeneity and provides insights into the tumor-immune interface. While some gene-based models
offer prognostic value, few have demonstrated predictive capacity for immunotherapy response*!. By integrating
ICI-related gene markers and validating response predictions through TIDE analysis, our model bridges this
gap, offering both prognostic and therapeutic guidance. These advantages position our signature as a promising
tool for precision oncology in HCC.

Despite these promising results, several limitations should be noted. The prognostic signature requires
validation in larger, independent cohorts. The functional roles of other identified genes also warrant further
mechanistic exploration. Additionally, while our communication analysis suggests key roles for PLAUR-positive
TAMs, in vivo evidence is needed to fully confirm these interactions and their downstream effects. Nevertheless,
our study provides a comprehensive framework for understanding the HCC immune microenvironment and
presents a clinically actionable macrophage-related signature with translational potential.

Data availability

Publicly available datasets were analyzed in this study. This data can be found here: GSE149614 (https://www.n
cbi.nlm.nih.gov/geo/query/acc.cgi? acc=GSE149614) and GSE14520 (https://www.ncbi.nlm.nih.gov/geo/query
/acc.cgi).
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