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Stability studies are vital in biologics development, guiding formulation, packaging, and shelf life 
determination. Traditionally, predicting long-term stability based on short-term data has been 
challenging due to the complex behavior of biologics. However, recently have been demonstrated 
that by using simple kinetics and the Arrhenius equation, it is possible to achieve accurate long-term 
stability predictions for various quality attributes, including protein aggregates. This study focuses 
on effective modeling of aggregate predictions for diverse protein modalities, such as IgG1, IgG2, 
Bispecific IgG, Fc fusion, scFv, bivalent nanobodies, and DARPins, using a first-order kinetic model. 
Notably, findings highlight the significance of temperature selection in stability studies, enabling the 
identification of dominant degradation processes. Additionally, simplicity of the first-order kinetic 
model enhances reliability by reducing the number of parameters and samples required. The model’s 
effectiveness was further validated across various protein formats, beyond IgG, emphasizing its broad 
applicability and reliability. Compared to linear extrapolation, the kinetic model provided more precise 
and accurate stability estimates, even with limited data points. These findings highlight the benefits of 
using kinetic modeling with optimal temperature selection to predict protein aggregate stability and 
other quality attributes, aiding biologics development and shelf-life determination.

Keywords  Biologics, Kinetic modeling, Stability predictions, Aggregation

Stability studies in biologics development are simple yet time-consuming. Their impact is significant, as stability 
data guides our formulation and process development, primary packaging selection, comparability, and shelf-
life setting, among other factors. To expedite development, the majority of decisions are based on stress or 
accelerated stability data. The only modelling done is linear regression, which is used to assess stability profiles 
and shelf-life at a given temperature. Extrapolations applying linear regression model are also accepted by health 
authorities and described in ICH Q1 guidelines to support the clinical development phase of drugs1. This simple 
approach is possible because, in most cases, changes in protein quality attributes such as purity, fragments, 
aggregates (dimers, trimers), and charge variants at storage conditions (2–8 °C) are relatively small. Therefore, 
experimental data follows a straight line.

It was or still is believed that long-term stability predictions for biologics based on short-term (stress, 
accelerated) stability data were not possible due to their complex behaviour2,3. In particular, predicting 
concentration-dependent modifications (such as aggregates observed through size exclusion chromatography) 
seemed impossible or required complex models that were impractical for routine use in development4–10. 
Another concern was the shift from well-known and characterized monoclonal antibodies to more sophisticated 
biologics, such as fusion proteins, bispecific mAbs, and trispecific mAbs. However, recently it was shown that 
long-term stability predictions for monoclonal antibodies in solution could be achieved using simple first-order 
kinetics combined with the Arrhenius equation8,11. They were able to predict long-term changes of various 
stability indicating attributes, including protein purity, fragments, aggregates, charge variants, and even potency, 
based on short-term stability data. This was possible when stability studies were designed in a way that only one 
degradation pathway, relevant at storage conditions, was present across all temperature conditions. Since then, 
other companies have published similar examples with similar conclusions12,13, leading to a joint effort among 
various companies to revise ICH Q1 guidelines14. At the time of this publication, the revision is in an advanced 
stage, introducing the general approach of Accelerated Predictive Stability (APS). APS follows the general 
principles of enhanced stability modelling and can be applied when there is limited real-time stability data at 
the recommended storage condition. APS involves the use of Arrhenius-based Advanced Kinetic Modelling 
(AKM)15–17 to predict the long-term stability of non-frozen drug substances or drug products based on results 
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from short-term accelerated stability studies. In addition to AKM modelling, APS utilizes intensive FMEA 
(Failure Mode and Effects Analysis) analysis to evaluate the risk of out-of-specification events related to critical 
quality attributes that could not be modelled using AKM. Appropriate risk mitigation actions are implemented 
as needed to minimize associated risks. APS thus holistically supports the proposal of assigning retest periods or 
shelf life for various biologics, including, but not limited to, monoclonal antibodies, fusion proteins, bispecific 
mAbs, trispecific mAbs, and therapeutic proteins, both in the clinical and commercial phases.

In this article, the focus will primarily be on AKM modelling of the critical long-term predictions of aggregates 
for different protein modalities. It will be demonstrated that this concentration-dependent quality attribute can 
be effectively modelled using a first-order kinetic model. This model characterizes the stability profiles of quality 
attributes through exponential functions, providing robustness and high precision in stability predictions. 
The use of a first-order kinetic model emphasizes the vital role of temperature selection in stability studies. 
By carefully choosing the appropriate temperature conditions, it becomes possible to identify the dominant 
degradation process and accurately describe it using a simple first-order kinetic model. This approach helps 
to prevent the activation of additional degradation mechanisms that are not relevant for storage conditions, 
allowing for the design of a study focused on a single mechanism. The simplicity of the kinetic model obtained 
from this approach reduces the number of parameters that need to be fitted and minimizes the number of 
samples that need to be measured. This enhances the robustness and reliability of predictions. Simple models 
help prevent overfitting, ensuring better generalizability. While they perform well on training data, they avoid 
poor performance on new data by reducing sensitivity to minor input changes, thereby improving accuracy 
and effectiveness. Furthermore, by utilizing proper temperature conditions, the majority of quality attributes 
in biologics, including aggregation, can be successfully modelled using a first-order kinetic framework. This 
highlights the crucial importance of temperature selection in studying the stability and degradation of biologics.

Material and methods
Materials
All proteins investigated in this work are part of Novartis development projects (Table 1). Their specific 
formulations represent Novartis’ and Molecular Partners’ intellectual property and cannot be disclosed. 
However, we stress that while indeed the formulation can affect protein stability, the modelling framework 
herein presented is formulation-independent. Proteins 1 (P1) and 2 (P2) are two different Immunoglobulins G1 
(IgG1) formulated at 50 at 80 mg/mL, respectively. Protein 3 (P3) is an IgG2 formulated at 150 mg/mL. Protein 
4 (P4) is a bispecific IgG formulated at 150 mg/mL. Protein 5 (P5) is a fragment crystallizable region (Fc)-fusion 
protein formulated at 50 mg/mL. Protein (P5 is a single-chain variable fragment (scFv) formulated at 120 mg/
mL. Protein 7 (P7) is a bivalent nanobody formulated at 150 mg/mL. Protein 8 (P8) is a designed ankyrin repeat 
protein (DARPin)—ensovibep, targeting SARS CoV2—as provided by Molecular Partners and formulated 
at 110  mg/mL. Formulation reagents were acquired at pharmaceutical grade, while analytical reagents were 
purchased at HPLC grade.

Quiescent storage stability
The fully formulated drug substances (DS) were filtrated through a 0.22 µm PES membrane filter (Millex GP—
Merck) and filled aseptically into glass vials. The protein concentrations were derived through absorbance at 
280 nm using a UV–Vis spectrometer (NanoDrop One—Thermo Fisher). The vials were incubated upright at 
5 °C (all proteins), 15 °C (P8), 25 °C (all proteins), 30 °C (P1/3/6/7/8), 33 °C (P2), 35 °C (P5/7), 40 °C (P2/4/5), 
45 °C (P5) or 50 °C (P5) for 12 (P2), 18 (P4/P6) or 36 (P1/3/5/7/8) months in a stability chamber. At pre-defined 
intervals (pull points), the samples were subjected to size exclusion chromatography (SEC) to determine the 
level of high-molecular species.

Protein # Format (complexity)
Protein conc. 
(mg/ml)

# of formulations 
per protein

Datapoints 
per model

Highest 
fitted T 
(°C)

Final model 
timepoint 
(months)

Validation 
timepoint 
(months)

Aggregation 
predictions 
correct

Ea (kcal/
mol)

1 IgG1 (simple) 50 1 10 30 6 36 Yes 18.6

2 IgG1 (simple) 80 1 8 40 3 12 No 76.8

3 IgG2 (simple) 150 2 10 35 6 36 Yes 13.3–14.5

4 Bispecific IgG (moderate) 150 1 7 40 3 18 Yes 19.9

5 Fc fusion (moderate) 50 1 13 40 3 36 Yes 22.3

6 ScFv (moderate) 120 2 6 30 3 18 Yes 62.3–63.1

7 Bivalent nanobody (complex) 150 1 9 35 3 36 Yes 37.5

8 DARPin (complex) 110 4 10 30 9 36 Yes 15.0–17.4

Table 1.  Model summaries for the tested proteins. Proteins are categorized according to the traditionally 
perceived format complexity. Final model timepoint denotes the total duration of collection of data used to fit 
the model, and the validation timepoint is the time of the last available long-term measurement, which was 
compared to the predicted value. The prediction is deemed correct if the measured value is within the 95% 
prediction confidence interval. Additional formulation specific model parameters are available in Table S1.
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Size exclusion chromatography
SEC was performed on an Agilent 1290 HPLC equipped with an Acquity UHPLC protein BEH SEC column 
450 Å (Waters), a 210 nm UV detector, quaternary pump, auto sampler, column thermostat and photo-diode 
detector with a micro flow cell. The protein solution was diluted to 1  mg/mL and 1.5 µL of diluted protein 
solution was injected in the instrument to perform a 12 min run at 40 °C (better separation of the fragments 
from the monomer) with a flow rate of 0.4 mL/min in a mobile phase consisting of 50 mM sodium phosphate 
and 400 mM sodium perchlorate to reduce secondary interactions of the analyte with the column at pH 6.0. 
The purity of the main peak, as well as the amount of high-molecular species (aggregates) were determined as a 
percentage of the total area obtained for the sample in each chromatogram. Prior to each measurement series, 
the column was conditioned by saturation with a bovine serum albumin/thyroglobulin/NaCl solution and by 
injection of a blank. System suitability was established after each column conditioning by evaluating molecular-
weight markers (pattern and peak resolution) and limit of quantification (relative standard deviation).

Results and discussion
Model optimization
The models underlying Arrhenius-based stability predictions have been previously described in several 
works8,11,12. While the most recent method was proven to accurately predict the shelf-life stability of 
biotherapeutics12, preliminary reports from regulatory agencies raised concerns about the complexity of the 
model and thus the high risk of overfitting. In order to address these concerns, we initiated this investigation 
by revising and optimizing the method (Fig. 1). The reaction rate dα

dt  can be calculated by a competitive kinetic 
model with two parallel reactions using Eq. (1):

Fig. 1.  Advanced kinetic modelling (AKM) and its optimization. (A) Schematic representation of AKM. The 
protein modalities included in this study (left) were analyzed during in stability studies monitoring several 
QAs (center) and AKM was employed to predict shelf life stability (right). (B) Model optimization. The 
comprehensive model (Eq. 1) is shown on the top-left and visually unpacked in its base components: low-
temperature pathway (cyan), high-temperature pathway (red), autocatalytic and concentration-dependent 
terms (dashed boxes). The comprehensive method can be compared with the optimized method presented in 
this work (Eq. 3). The biphasic aggregation behavior is exemplified on the right through an Arrhenius plot, 
where theoretical aggregation rate constants at various temperatures are linearly fitted in a low- (cyan) or high-
temperature (red) pathway.
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dα

dt
=v × A1 × exp

(
−Ea1

RT

)
× (1 − α1)n1 × αm1

1 × Cp1 + (1 − v) × A2

× exp
(

−Ea2
RT

)
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2 × Cp2
� (1)

where

	 α is the α1 + α2 = sum of fraction of degradation products 1 and 2

	 A is the pre − exponential factor

	
Ea is the activation energy

(
kcal

mol

)

	 n is the reaction order

	 m is the autocatalytic − type contribution

	 v is the ratio between first and second reactions

	
R is the universal gas constant

(
kcal

mol

)

	 T is the temperature (K)

	
C is the measured value of the initial concentration

(
mg

mL

)

	 p is the associated fitted number

While this model includes a comprehensive description of even the most complex degradation processes 
encountered by biotherapeutics, a total of twelve fitting parameters are necessary for its use18. The design can 
be greatly simplified by decoupling the effect of high- and low-temperature aggregation pathways. Protein 
temperature-dependent aggregation rates relevant for biotherapeutics can be generally divided into two 
competitive regimes: low-temperature and high-temperature8,19. In order to account for both regimes, Eq. (1) 
includes two duplicated terms that describe each pathway. However, the high-temperature pathway includes 
contribution from partial unfolding of the protein, which indicates that the protein is affected by a harsh 
temperature stress not representative of the intended storage conditions. Therefore, by introducing the assumption 
that only the low-temperature pathway is relevant for the shelf-life stability of modern biotherapeutics, the 
model can be simplified to:

	
dα

dt
= A × exp

(
− Ea

RT

)
× (1 − α)n × αm × Cp� (2)

Additionally, the contributions of the auto-catalytic term am and the concentration-dependent term Cp can be 
neglected. The degradation mechanisms of biologics in solution under relevant biopharmaceutical conditions 
are rarely observed to have a significant auto-catalytic contribution, where the degradation products participate 
in catalyzing the reaction13. Furthermore, the reaction order n can be neglected (i.e. set to a value of 1) in case 
of small changes, as detailed in the SI. As a rule, this is the case for relevant degradation of biopharmaceuticals, 
where high purity (e.g. > 95%) is required for administration. Therefore, the optimized model can be ultimately 
expressed as:

	
dα

dt
= A × exp

(
− Ea

RT

)
× (1 − α)� (3)

Notably, the original twelve parameters required to fit the model have been reduced to two. This severely reduces 
the risk of overfitting, as well as reduces the amount of data necessary to obtain a reliable fit. Examples showing 
that the prediction accuracy remains unaffected when training the reduced model (Eq. 3) on a smaller dataset, 
compared to the comprehensive model (Eq. 1) trained on a larger dataset, have been published by Huelsmeyer 
et al.12. As advanced kinetic modelling to determine shelf-life stability has been applied to incrementally shorter 
timeframes to enable acceleration to first in human clinical studies, limiting the reliance on extensive datasets 
is an optimization that brings considerable advantages. Finally, we would like to remark that a variant of Eq. (3) 
can be used to model charged variants, as described in the SI, although not applied herein as this study focus on 
the dimer-mediated aggregation pathway.

Applying the model to complex molecules
In order to validate the above optimization, Eq.  (3) was fitted to eight proteins of various formats as shown 
in Table 1. The formats include IgGs and IgG-like (bispecific Abs, Fc-fusion proteins, nanobodies), as well as 
completely non-IgG-like (DARPin) proteins. We used data collected at up to 9 months of all stability conditions 
between 5 °C and 40 °C (depending on the threshold temperature and data availability) to build a model, and 
validated the long-term prediction with a measurement after 18/36 months of storage at 5 °C. Validation was 
only performed at 5 °C, as that is the actual long-term storage temperature and model’s primary intended use. 
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One model was built independently for each formulation. Individual prediction/validation plots, together with 
the table of model parameters, are shown in Fig. S1. In this section, we focus on aggregation as the most complex 
degradation pathway—other available attributes (chemical variants, fragmentation) were also correctly fitted 
with the proposed model and are shown in Fig. S2. Figure 2 shows the comparison of predicted and measured 
aggregation values at the timepoint of validation. By using only ~ 10 datapoints to construct the models, the 
models yield correct predictions for 7 out of 8 proteins (validation measurement within the 95% prediction 
confidence interval).

The applicability of the described model is further shown in Fig.  3, where kinetic modeling is directly 
compared to linear regression model for the aggregation prediction in one of the DARPin formulations. After 
9 months, linear regression modeling still lacks sufficient data for precise predictions, resulting in wide prediction 
intervals. In contrast, kinetic modeling provides a reasonable stability estimate by using just 10 weeks stability 
data. Prediction is further improved by using 9 months and precisely predict the measured value at 36 months. 
Similarly, AKM outperforms the linear regression model in predicting the stability profiles of other proteins, 
beyond DARPin (Fig. S4). This observation aligns with recent publications indicating that kinetic modeling 
generally offers higher precision and accuracy than linear regression models for various quality attributes, 
including aggregation and others11,13.

Failed predictions
One notable discrepancy is observed in Fig. 2. A closer look into Protein 2 shows that this is not a statistical 
anomaly, rather a true failed prediction which cannot be avoided by using the described approach. The case is 
shown in more detail in Fig. 4. As shown in panel a, data from 25 °C, 33 °C, and 40 °C, are used to build the 
model. At 6 months at 5 °C (panel b), the aggregate content increases, but it can still be explained by the method 
variability. At 12 months, the measured aggregation rate conclusively proves to be different to the predicted one. 
A detailed investigation in an Arrhenius plot (panel c) shows that the aggregation rate at 5 °C is predicted to be 
orders of magnitude lower than the one measured at 6 months—however, since the measured increase is still 
within the measurement method variability (the dotted line), the true aggregation rate cannot be determined yet. 
Therefore, even at 6 months, it is impossible to say whether aggregation conforms to the model. At 12 months, 
the increase is well out of the method variability, and it becomes apparent that a different aggregation pathway 
takes place at 5 °C, and that the threshold temperature is somewhere between the lower two temperatures.

The reported activation energies for mAb and Fc fusion protein aggregation in literature8 are reported to be 
10–25 kcal/mol for the low-temperature (LT) aggregation pathway (relevant at 5 °C), and 50 − 150 kcal/mol for 
the high-temperature aggregation pathway (not relevant at 5 °C). The activation energies fitted to our data (Table 
1) are mostly in agreement with the reported values—indeed, the long-term data showed that the highest fitted 

Fig. 2.  Model performance on the tested proteins, with the color scheme corresponding to the traditionally 
perceived format complexity (red = complex). (a) Predicted versus true measured aggregate content values at 
the validation timepoint for all the tested proteins under all formulation conditions. The solid line denotes 
unity. If the error bars and the solid line intersect, the prediction is deemed correct. Predictions and error bars 
are schematically described in insert (b)—every point in (a) represents a value predicted by a corresponding 
model (one example shown), and the error bar corresponds to the 95% prediction confidence interval of 
the model. The example model in (b) was fitted to data collected up to 6 months (solid markers), the rest is 
validation (empty markers).
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Fig. 4.  Analysis of Protein 2 aggregation: (a) the constructed model, (b) the model prediction overlaid 
with long-term measurements, and (c) the Arrhenius plot showing a linear fit to the three accelerated 
conditions with 1- and 2-sigma intervals. The datapoint at 5 °C (rightmost) represents the long term stability 
measurements up to 6 months and is not used for the fit. The dashed line represents an aggregation rate 
corresponding to an increase equal to 2xSD (0.2%/6 months). Any datapoint at or below the dashed line 
cannot be reliably determined in this timeframe, as schematically shown by the embedded subplots.

 

Fig. 3.  Comparison of kinetic model (blue) against linear regression model (red). Prediction intervals (dashed 
lines) denote the range within which true values are likely to fall with 95% confidence level. Models were 
trained by 10 weeks (left) and 9 month (right) experimental stability data (closed circles). Data points used for 
model validation are shown as empty circles and were not used for model training. Data shown is for DARPin 
formulation stored at 5 °C. For kinetic model training, data points from 15, 20 25 and 30 °C conditions up to 
the respective time point were used (data points not shown for clarity reasons).
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Ea of 76.8 kcal/mol (Protein 2) does not correspond to the LT pathway, so a high activation energy (i.e. above the 
literature value of 50 kcal/mol) can be considered a red flag, potentially indicating that the threshold temperature 
has not been detected. As a comment, the activation energy fitted to Protein 6 (scFv) data is around 60 kcal/mol, 
but the long-term data conform to the model. Further data collection of activation energies for aggregation of 
different protein formats in liquid is needed to generalize the above criterion, and we see this as an important 
part of our future work.

Notably, cases like Protein 2 cannot be avoided even by using more complex models, since the method 
variability does not allow for the selection of a one-step or a two-step model; the threshold temperature cannot 
be detected in the model construction time-frame. Therefore, continuous validation with the long-term data is 
crucial in cases where the measured change at the lowest temperature is comparable to the method variability.

In general, with the described simplified kinetic model fitted to measurements collected in 3–9 months, we 
successfully predict aggregation over a 4–12 fold larger timeframe for 7 out of 8 tested proteins. These proteins 
belong to a variety of IgG-like, as well as completely non-IgG-like formats. In one of the eight proteins, notably 
an IgG1, the threshold temperature proved too low to be detected in the timeframe used to construct the model, 
and was only detected after the long-term data were available.

Table 1 also summarizes a practical observation for aggregation of biopharmaceutically relevant proteins. 
We show that in rare cases, kinetic modeling predictions are unsuitable due to method limitations, and that 
this is not a function of the traditionally perceived format complexity. To ensure the detection of failures before 
utilizing AKM modeling to determine shelf life, it is crucial to conduct model validation, especially in cases 
where the measured change at the lowest temperature is comparable to the method variability. This validation 
should encompass verifying Arrhenius behavior (Arrhenius plot) with a single slope (activation energy) in the 
range of fitted temperatures, evaluation of model parameters such as activation energy, and confirming the 
stability predictions by using prior data.

Conclusions
In this study, we demonstrated that long-term stability predictions for biologics, specifically protein aggregates, 
can be effectively modeled using a first-order kinetic model. This model provides robust and precise stability 
predictions by characterizing the stability profiles of quality attributes through exponential functions. The key 
findings and conclusions are as follows.

The selection of appropriate temperature conditions is crucial in stability studies. By carefully choosing the 
temperature, it is possible to identify the dominant degradation process and accurately describe it using a first-
order kinetic model. This approach prevents the activation of additional degradation mechanisms that are not 
relevant for storage conditions, allowing for a study focused on a single mechanism. The simplicity of the first-
order kinetic model reduces the number of parameters that need to be fitted and minimizes the number of 
samples that need to be measured. This enhances the robustness and reliability of predictions. The majority of 
quality attributes in biologics, including aggregation, can be successfully modeled using a first-order kinetic 
framework. This highlights the importance of temperature selection in studying the stability and degradation of 
biologics. The optimized model was validated using data collected from various protein formats, including IgGs, 
bispecific antibodies, Fc-fusion proteins, nanobodies, and DARPins. The model yielded correct predictions for 
7 out of 8 proteins, demonstrating its applicability and reliability. This highlights the importance of conducting 
thorough model validation before utilizing it for example to support shelf life claim. The kinetic model provided 
more accurate and reliable stability estimates compared to linear extrapolation, even with limited data points. 
This further emphasizes the advantages of using a kinetic modeling approach for stability predictions.

Overall, the findings of this study support the use of first-order kinetic modeling for long-term stability 
predictions of biologics, providing a robust and reliable framework for stability studies.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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