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RNA molecules are essential in regulating biological processes such as gene expression, cellular 
differentiation, and development. Accurately predicting RNA secondary structures and designing 
sequences that fold into specific configurations remain significant challenges in computational biology, 
with far-reaching implications for medicine, synthetic biology, and biotechnology. While machine 
learning methodologies have been proposed to enhance prediction capabilities, they require high-
quality training data. The lack of standardized benchmark datasets further hinders the development 
and evaluation of these tools. To address this, we created a comprehensive dataset of over 320 
thousand instances from experimentally validated sources to establish a new community-wide 
benchmark for RNA design and modeling algorithms. Our dataset comprises numerous challenging 
structures for which state-of-the-art RNA inverse folders provide results of varying accuracy. We 
demonstrated the potential of the dataset by testing it with several popular open-source RNA design 
algorithms. Furthermore, we illustrated how our dataset can be used to train machine learning models 
that consider both RNA sequence and structure, potentially advancing RNA design and prediction 
capabilities.
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RNA molecules play a crucial role in living organisms, regulating a variety of biological processes such as gene 
expression, cellular differentiation, and development1,2. These diverse functions rely on the capacity of single-
stranded RNA molecules to adopt a particular structure3. Initially, the RNA molecule folds into secondary 
structure through canonical Watson–Crick and wobble base pairing, which then guides the formation of the 
three-dimensional shape, known as the tertiary structure4. Therefore, accurately predicting RNA secondary 
structure and designing RNA sequences that fold into specific structures are major challenges in computational 
biology. These tasks hold significant implications for medicine, synthetic biology, and biotechnology5–8.

Since the 1970s, the prediction of RNA secondary structure has primarily been studied and approached 
through computational methods9–12. Most of these methods employ dynamic programming and thermodynamic 
calculations to identify the structure with minimum free energy (MFE), based on the principle that RNA 
molecules, like proteins, exist in energetically stable states13. Over the years, numerous software applications have 
been developed that incorporate these methods14–18. However, in the last decade, improvements in prediction 
accuracy and calculation speed have remained limited19. To address this issue, methodologies based on machine 
learning (ML), which have achieved significant success for the first time in protein structure prediction with 
AlphaFold20,21, have been proposed to improve the prediction of the secondary structure of RNA17,19. Unlike 
classical methods that rely heavily on thermodynamic mechanics and labor-intensive experimental data, ML 
approaches make fewer assumptions, making them better suited for detecting complex foldings, such as non-
canonical base pairing or previously unrecognized base pairing constraints22.

Generally, they can be classified into three categories: ML-based scoring schemes, ML-based preprocessing 
and postprocessing, and ML-based predictions22. All ML-based methods in these three categories train their 
models using supervised learning. Within this framework, there are numerous proposals, each differing in 
architectural design, input-output of the model, training data, and optimization algorithms, for example, SPOT-
RNA23, SPOT-RNA224, MXFold225, UFold26, Contextfold27 and CONTRAfold28. However, their prediction 
accuracy still leaves much room for improvement, mainly due to the ongoing challenge of collecting sufficient, 
representative, and high-quality training data, which limits the potential of ML methods22,29.
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A reliable solution to the folding of the RNA structure is essential to address the significant challenge of the 
inverse folding of RNA, which involves designing RNA sequences that fold into a desired secondary or tertiary 
structure to perform a specific function30,31. This problem can be defined as the inverse problem of RNA folding.

Recent advances in deep learning, along with the increasing availability of biomolecular structural data, 
have driven the development of algorithms specifically designed to tackle the RNA 3D inverse folding task32. 
However, most existing methods still learn only limited 3D structural features from experimentally determined 
or predicted 3D structure datasets32–34, and only a few recent studies have begun to address this problem 
directly32,35–37. Among these, RiboDiffusion is a deep generative diffusion model for RNA inverse folding 
that learns RNA sequence distribution conditioned on fixed 3D backbone structures, combining graph neural 
networks with a Transformer-based architecture to capture both geometric and sequence dependencies32. 
RIdiffusion, in turn, extends this approach by introducing a hyperbolic denoising diffusion generative model for 
3D RNA inverse folding, parameterized by hyperbolic equivariant graph neural networks (HEGNNs), enabling 
efficient modeling of hierarchical structural variations. This approach enhances representational efficiency and 
improves model performance, particularly in low-data settings37. Finally, gRNAde is a geometric deep learning 
framework for RNA 3D inverse folding, analogous to ProteinMPNN38 in the context of protein design. It is 
designed to handle single-state and multi-state fixed-backbone sequence design, enabling it to account for the 
conformational flexibility of RNA35,36.

While these models demonstrate promising results in capturing the geometric and topological complexities 
of RNA tertiary structures, they face significant limitations. One of the key challenges is the shortage of 
experimentally determined high-resolution RNA 3D structures, which severely limits the amount of training 
data available, especially compared to proteins, for which structural data are far more abundant29. Furthermore, 
the inherent structural flexibility of RNA and the non-unique mapping between sequence and structure further 
complicate accurate modelling. Unlike proteins, which typically fold into a relatively stable conformation, RNA 
molecules are highly dynamic and can adopt multiple distinct structural states depending on environmental 
conditions, ligand interactions, or cellular context37,39,40.

In contrast, secondary structures are supported by large databases, are easier to predict reliably, and often 
sufficient for capturing the key functional motifs of RNA30. Thus, inverse RNA folding at the secondary structure 
level remains a powerful strategy, especially for designing functional elements such as RNA switches41. These 
synthetic regulatory elements respond to molecular signals by undergoing conformational changes, enabling 
precise control over gene expression. Their programmability, efficiency, and functional versatility make 
2D-based inverse folding a practical and scalable solution in synthetic biology, particularly in applications such 
as therapeutics, diagnostics, and cellular engineering30,42,43. For these reasons, this work focuses in particular on 
2D inverse folding models.

Since testing each sequence to see if its minimum free-energy structure matches the target is impractical 
because the number of sequences grows exponentially with the size of the structure, current inverse RNA 
folding algorithms employ a variety of heuristic methods rather than exploring the entire solution space5,30. For 
example, tools such as INFO-RNA44, Modena45, RNAinverse46, RNAsfbinv47, and DSS-Opt48 use local search 
methods, while DesiRNA49 and MCTS-RNA50 employ Monte Carlo algorithms. Furthermore, m2dRNAs51 
uses multi-objective optimization, whereas RNARedPrint52 combines Boltzmann sampling with dynamic 
programming over tree decomposition to efficiently handle complex design targets. Others, such as RNAiFold53 
and MoiRNAiFold54, are based on constraint programming, with MoiRNAiFold inheriting the design constraints 
and philosophy of RNAiFold while introducing new modeling concepts to enhance its efficiency. Finally, the 
deep reinforcement learning-based algorithm Meta-LEARNA55,56 provides a pretrained model with optimized 
parameters, obtained through pretraining on a large corpus of biologically relevant sequences, enabling efficient 
generalization across diverse RNA design tasks. However, as with ML-based methods for RNA secondary 
structure prediction, the absence of standardized benchmark datasets presents a significant challenge for the 
development and evaluation of tools in this field.

Currently, the only data set available and recognized by the scientific community for this purpose is EteRNA100, 
a collection of structures assembled manually by experts57. This set includes 100 distinct secondary structure 
design challenges, with lengths ranging from 12 to 400 nucleotides and an average length of 127 nucleotides. 
It includes a variety of structures, highlighting the challenges in the design of RNA and incorporating different 
combinations of secondary structure elements.

Unfortunately, the lack of a single common standard for evaluation protocols for the Eterna100 dataset makes 
it difficult to compare and assess different RNA design algorithms consistently. To address this issue, a new 
RNA benchmark library called RnaBench has recently been proposed, specifically designed for the development 
of deep learning algorithms58. It includes benchmarks for the modeling of RNA structures, homology-aware 
curated datasets, standardized evaluation protocols, novel performance measures and a visualization module. 
However, it focuses exclusively on tasks related to the prediction of RNA secondary structure and the design of 
RNA.

Although the Eterna100 and RnaBench benchmarks cover a wide spectrum of design features and difficulties, 
it should be noted that all the structures they contain are less than 500 nucleotides long57,59. Since the advancement 
of sequencing technologies has revolutionized transcriptome research, it has led to an increase in the length 
and complexity of RNA60. This, in turn, increased the number of asymmetric and symmetric components, 
heightening the challenge of designing sequences for these molecules. To further assess the capability of different 
RNA design methods in the design of long secondary structures, users need to independently choose and 
prepare extended test sets.

Thus, to address the need for a new community-wide standard benchmark specifically designed for RNA 
design and RNA modeling algorithms, we made use of experience in our previous resource61 and created a 
very large, comprehensive and general-purpose dataset of over 320 thousand secondary structures with lengths 
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ranging from 5 to 3,538. Our focus was mainly on multi-branched loops, which are often challenging to predict 
accurately62,63. Consequently, this data set encompasses a diverse range of complex motifs, from internal loops to 
n-way junctions (loops with n outgoing helices, where n ≥ 3), all extracted from RNA structures available in the 
RNAsolo64 and Rfam60,65 databases. We also tested this new data set using several popular and open-source RNA 
design algorithms, including RNAinverse, INFO-RNA, DSS-Opt, RNAsfbinv, RNARedPrint, Meta-LEARNA, 
and DesiRNA.

Results
Dataset content
We have compiled a comprehensive dataset featuring 4,921 loop motifs from the RNAsolo database. Most 
notably, 82.4% of these motifs are internal loops, each averaging about 67 nucleotides in length (counting the 
motif itself and the connecting stems). Following closely are 3-way and 4-way junctions, making up 9.49% and 
6.38% of the dataset, with average lengths of 143 and 154 nucleotides respectively. The dataset also includes a 
single instances of loops with cardinalities as high as 8- and 10-way junctions and lengths extending to several 
thousand nucleotides. These extreme cases are likely outliers, possibly stemming from inherent uncertainties in 
the PDB structures and the annotating software that processes them. Detailed statistics can be found in Table 1.

The dataset based on all Rfam sequences boasts an impressive 320 thousand loop motif instances. Analyzing 
post-processed data from the RNAfold pipeline reveals that, much like the RNAsolo dataset, internal loop motifs 
dominate, accounting for 85.29% of the total instances. Additionally, 3-way and 4-way junctions make up 9.18% 
and 3.99% of instances respectively.

The average lengths of these prevalent motifs in Rfam are approximately 69 nucleotides for internal loops, 128 
nucleotides for 3-way junctions, and 155 nucleotides for 4-way junctions. Similar to RNAsolo, the dataset includes 
some outliers such as 9-, 10-, and 12-way junctions and sequences extending several thousand nucleotides. 
These extreme cases likely arise from data uncertainties, as some RNA families have short alignments and weak 
covariance signals, leading to significantly underfolded consensus 2D structures.

We further investigated the origins of the most extreme outliers in our data. The instances of 10-way 
junctions are derived from the RNAIII family (Rfam ID: RF00503). While the current consensus structure 
for this family features a 9-way junction with flexible regions, we found that applying these constraints to two 
specific sequences within a small alignment (consisting of 23 sequences) resulted in the 10-way junctions. It is 
important to note that this alignment has very weak statistical support, with only 4 out of 132 base pairs being 
statistically significant. This limited support reinforces our classification of this large junction as an outlier, likely 
arising from data limitations. Additionally, the dual biological role of RNAIII sequences—regulating processes 
and coding for a small protein in Staphylococcus aureus66—makes the formation of such a high-order junction 
less probable than that of multiple distinct stem-loops, which are typical of transcripts. This further justifies 
treating it as an outlier.

In contrast, all identified 12-way junctions trace back to Archaeal large subunit ribosomal RNA (LSU 
rRNA, Rfam ID: RF02540). This family has an extensive alignment of 3,046 sequences, with strong statistical 
support for many base pairs (452 out of 786). Its consensus secondary structure contains a central high-order 
junction, which leads to the formation of 12-way instances when applied to 91 sequences. Importantly, the 3D 
structure of Archaeal LSU rRNA has been experimentally determined (e.g., PDB ID: 6TH6 for T. kodakarensis 
70S ribosome67). Our analysis of this structure confirmed the presence of complex multi-junctions, with up to 
7-way junctions observed when excluding pseudoknotted stems. Including pseudoknotted stems—a debatable 
practice we avoided in our primary analysis – reveals even higher-order arrangements (e.g., 11- and 17-way 
junctions). Therefore, while the specific 12-way junction derived from the Rfam pipeline might still represent an 
outlier or artifact, it reflects genuine biological complexity involving high-order multi-junctions, likely formed 
by combinations of lower-order junctions (such as 7-way and 5-way). This investigation highlights the inclusion 
of structures in the dataset that push the boundaries of current modeling capabilities, stemming from data 
limitations and true biological complexity.

For a detailed breakdown, refer to Table 2, where all specifics about this comprehensive dataset are 
documented.

Type Count Percent

Length

Min Max Mean Std. dev.

Internal loop 4055 82.4 8 3049 66.5 103.34

3-way junction 467 9.49 24 571 142.7 116.83

4-way junction 314 6.38 49 1099 154.24 177.06

5-way junction 68 1.38 70 1625 349.88 317.72

6-way junction 9 0.18 248 632 385.78 134.05

7-way junction 6 0.12 379 2927 1225.67 1304.73

8-way junction 1 0.02 3117 3117 3117.0

10-way junction 1 0.02 3041 3041 3041.0

Total 4921

Table 1.  Statistics of loop motifs with connecting stems extracted from the RNAsolo database.
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The choice between using data from our dataset’s RNAsolo or Rfam components depends on the specific 
research objective. The RNAsolo dataset (Table 1), which is curated from non-redundant, experimentally 
determined 3D structures, offers high-confidence 2D structure annotations based on empirical evidence. 
Although RNAsolo is limited in size, it is particularly well-suited for situations that require the highest confidence 
in the ground truth structure, such as benchmarking structure prediction methods that depend on accuracy 
compared to experimentally validated structures.

On the other hand, the Rfam dataset (Table 2) is based on seed alignments and consensus secondary 
structures, providing a much larger scope and greater diversity across various RNA families. However, 
this extensive coverage has the disadvantage of being highly unbalanced, with varying levels of annotation 
confidence. Some families exhibit strong covariance signals and robust annotations. In contrast, others may 
not have enough support. Therefore, Rfam is better suited for large-scale analyses, broader family coverage, or 
training data-intensive models, provided that users know and account for the inherent imbalance and differing 
levels of annotation confidence among families.

Comparison with existing RNA design benchmarks: Eterna100 and RnaBench
Eterna100 stands out as a manually curated set of 100 synthetic RNA design challenges created by the Eterna 
online community57. These puzzles were specifically chosen to expose the limitations of existing RNA design 
methods by incorporating motifs that tend to be energetically unstable across sequence space, thus increasing 
the likelihood of competing suboptimal structures. As a result, Eterna100 has played a key role in identifying 
structural features that consistently lead to failure in both algorithmic and human-guided RNA design57.

The inverse RNA folding dataset within the RnaBench library, on the other hand, is a compilation of datasets 
proposed by various authors, primarily used to evaluate the performance of their own RNA inverse folding 
methods, and made available through their public repositories. It includes several test sets based on a limited 
number of selected Rfam entries denoted as: Rfam Taneda dataset45, Rfam Kleinkauf dataset68, Rfam LEARN 
dataset55, as well as a test set based on RNA-Strand (RNA-Strand Kleinkauf dataset)68 and the Eterna100 
benchmark57. It also includes a set of pseudoknot-containing samples taken from the Chen dataset69, which was 
constructed based on examples from ArchiveII70.

A comparative overview of these datasets, including coverage (in terms of number of samples) and sequence 
length diversity, is provided in Table 3. Furthermore, since Eterna100 is included in the RnaBench dataset, we 
performed a detailed comparison between the content of the RnaBench dataset and the dataset proposed in 
this study. The results of this comparison are presented in the Table 4. In particular, only 64 samples are shared 
between the two datasets, which clearly demonstrates that our dataset complements the existing resources.

It is also worth noting that, while RnaBench is based on secondary data sources, our dataset relies on primary 
data sources, offering a more direct and up-to-date representation of RNA structures. It offers a comprehensive 
representation of the RNAsolo and Rfam database and significantly broadens the range of structure lengths, 
covering both short and long ones, including thousands of motifs exceeding 500 nucleotides.

Benchmark Nr of samples Length 1–500 Length > 500

Eterna 100 100 0

RnaBench (Inverse RNA Folding Dataset) 68553 68553 0

Our dataset (loop motifs with connecting stems extracted from the RNAsolo database) 4921 4840 81

Our dataset (loop motifs with connecting stems extracted from the Rfam database) 320476 316832 3644

Table 3.  Statistics of benchmark datasets with sequence length distribution.

 

Type Count Percent

Length

Min Max Mean Std. dev.

Internal loop 273350 85.29 5 3078 68.7 80.82

3-way junction 29410 9.18 26 1194 128.04 111.07

4-way junction 12779 3.99 43 1004 154.65 126.09

5-way junction 3512 1.1 66 2040 356.07 280.92

6-way junction 802 0.25 101 1275 304.18 100.26

7-way junction 348 0.11 198 3457 670.26 764.68

8-way junction 174 0.05 185 3446 1385.71 1257.26

9-way junction 8 0.002 220 375 331.25 50.3

10-way junction 2 0.0006 279 337 308.0 41.01

12-way junction 91 0.03 2850 3538 2976.62 95.5

Total 320476

Table 2.  Statistics of loop motifs with connecting stems extracted from the Rfam database (with RNAfold 
post-processing).
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We recognize that traditional inverse folding algorithms often face significant computational challenges as 
the sequence length increases, which can limit their practical application. However, the field is advancing, with 
recent findings highlighting new approaches capable of handling longer sequences71. We believe it is essential 
for a benchmark dataset to be forward-looking. Therefore, including very long sequences is necessary to test 
current methods’ limits and create a relevant and challenging framework for future algorithms designed for 
such sequences. This approach ensures that the benchmark remains valuable as RNA design capabilities evolve.

In addition, our dataset addresses the need for more complex RNA structures, particularly those derived 
from high-resolution experimental data. It includes over 320,000 loop motifs extracted from Rfam and RNAsolo, 
encompassing internal loops, 3-way, 4-way, and higher-order junctions.

Recognizing glutamine riboswitch
To showcase the potential of our dataset in machine learning pipelines, we embarked on training a binary 
classification model to identify glutamine riboswitches (RFAM id: RF01739) based on their secondary structure. 
We selected glutamine riboswitches for this initial demonstration because of their unique structural junction, 
which holds considerable biological significance. This characteristic is subject to evolutionary pressure, leading 
to its conservation across aligned sequences. As a result, it serves as a suitable and straightforward example for 
a classification task based on junction features. These riboswitches are distinguished by a characteristic 3-way 
junction with an E-loop motif72–74, which we hypothesize can be differentiated from other RNAs featuring 3-way 
junctions74.

Our first task was data preparation. From the Rfam-derived dataset we report in this paper, we isolated 
entries containing 3-way junctions, representing each as a vector of four values: three integers denoting the 
counts of unpaired residues in the three strands of the multiloop and a decision variable (indicating whether 
it is a glutamine riboswitch or not) (see Fig. 1). This yielded 29,410 vectors, with 937 of them being glutamine 
riboswitches.

We proceeded to train three classifiers: k-Nearest Neighbours (k = 3), a Decision Tree, and Naive Bayes. 
These models were evaluated based on the F1-score macro average, particularly vital for such highly imbalanced 
dataset. Employing a stratified 5-fold cross-validation technique, we observed the performance of the models 
across different subsets.

The Decision Tree classifier outperformed the others, achieving the highest F1-score in each fold, with an 
impressive average F1-score of 0.998. The Naive Bayes classifier closely followed, reaching an average F1-score 
of 0.995. In contrast, the kNN classifier had the lowest performance in the last two folds, resulting in an average 
F1-score of 0.988. Detailed results are in Table 5.

We utilized a straightforward model and implemented basic classical machine learning methods to 
demonstrate that, thanks to the dataset presented in this manuscript, it is indeed possible to train a classifier to 
recognize an Rfam family based on its characteristic features. However, the simplicity of the model and classifiers 
used does not impose any limitations. We envision that others could investigate more sophisticated hypotheses 
and create advanced models with improved features by leveraging our robust dataset.

Although the binary classification example illustrates the dataset’s utility, employing only basic features, such 
as unpaired residue counts, and standard machine learning algorithms like KNN, decision trees, and Naive 
Bayes limits the exploration of the dataset’s potential for the advanced applications outlined in the title and 
introduction. A comprehensive investigation using more sophisticated machine learning workflows warrants 
a separate study and falls outside the scope of this article. Nevertheless, our discussion section addresses this 
potential further.

Evaluation and comparison of RNA design algorithms’ performance
The proposed datasets were used to evaluate and compare the performance of various RNA design tools, such 
as RNAinverse, INFO-RNA, DSS-Opt, RNAsfbinv, RNARedPrint, Meta-LEARNA, and DesiRNA. The first 
test was performed using a dataset derived from the RNAsolo database. For the second example, given the 
enormous size of the dataset derived from the Rfam database, we decided to demonstrate its capabilities using 
three specific families, each featuring distinct structural motifs that pose challenges for modeling: the glutamine 
riboswitch (RFAM id: RF01739), which features a characteristic three-way junction with an E-loop motif, the 

Compared datasets RFAM/PDB id Avg. structure length (std. dev.)

No. of 
shared 
samples

RnaBench vs Our Dataset (samples extracted 
from the Rfam database)

RF00001, RF00005 (2), RF00007, RF00014, RF00019, RF00020, RF00021, 
RF00026, RF00029, RF00037, RF00043, RF00047, RF00053, RF00056, RF00090, 
RF00103, RF00167, RF00231, RF00237, RF00322, RF00400, RF00404, RF00406, 
RF00413, RF00422, RF00424, RF00446, RF00451, RF00545, RF00553, RF00565, 
RF00568, RF00582, RF00617, RF00641, RF00657, RF00667, RF00679, RF00906, 
RF00951, RF01225, RF01234, RF01241, RF01418, RF01751, RF01782, RF01797, 
RF01844, RF02030, RF02097, RF02635, RF02689, RF02723, RF02736, RF02737, 
RF02741, RF02742, RF02749, RF02755

87.4
(72.3) 60

RnaBench vs Our Dataset (samples extracted 
from the RNAsolo database) 1JOX_1_A, 1R2P_9_A, 1U3K_7_A, 7UW1_1_B 51.75

(36.47) 4

Table 4.  A detailed comparison of the contents of the RnaBench dataset (Inverse RNA Folding Dataset) with 
our dataset. If the number of different samples for a given ID is greater than one, the number is provided in 
parentheses next to the ID.
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twister sister ribozyme (RFAM id: RF02681), and nuclear ribonuclease P (RFAM id: RF00009). The second 
family, the self-cleaving twister sister ribozyme, adopts either a three-way or four-way junctional fold, linked by 
internal and terminal loops. These loops, which contain conserved residues, closely resemble those found in the 
twister ribozyme75,76. The last family, characterized by the most complex secondary structure, includes nuclear 
ribonuclease P (RNase P), a ubiquitous endoribonuclease responsible for cleaving precursor tRNA transcripts 
to produce their mature 5′ termini. While the archaeal and eukaryotic holoenzymes contain significantly more 
protein components compared to their bacterial counterparts, the RNA core structure is conserved across RNase 
P RNAs from different species. This core consists of five critical regions with conserved nucleotides and several 

Fig. 1.  Example features for machine learning model—counts of unpaired residues in a multiloop. (A) 
Glutamine riboswitch from Planktothrix agardhii (a positive example in our training set). (B) Small nucleolar 
RNA TBR2 from Trypanosoma brucei (a negative example).
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helices (P1, P2, P3, P4, and P10/P11) occupying similar positions in the RNA structures. Despite this structural 
conservation, there is notable sequence variation, particularly among eukaryotic RNAs77,78.

Presenting detailed analyses of the selected Rfam families is particularly informative. The performance 
evaluation showed inconsistent results across different runs or tools for these cases. This variability highlights 
two critical points: first, the sensitivity of current inverse folding algorithms to the nuances of input data, which 
underscores the challenges posed by these complex structures, and second, the potential value of using well-
defined subsets derived from our comprehensive dataset for rigorously benchmarking, validating, or fine-tuning 
newly developed methods.

Benchmarking test case using a dataset of loop motifs derived from the RNAsolo database
Due to the varying accuracy levels of different RNA design tools across cases of different lengths, an analysis was 
performed on the common instances addressed by all tools (see Table 6 for more details). The performance of 
these tools was then compared using three metrics, RNAdistance, RNApdist and F1-score.

Since our set encompasses a diverse range of difficult-to-design multiloop motifs, we have separately evaluated 
the performance of the RNA design algorithms on the following subsets of our dataset: internal loops and other 
higher-cardinality junctions, from which we further distinguished two additional subsets: 3-way junctions and 
4-way junctions. The results are presented in Table 7 as well as Figs. 2, 3 and 4.

The analysis of results for F1-score, RNApdist, and normalized RNAdistance metrics across seven algorithms 
(RNAinverse, INFO-RNA, DSS-Opt, RNAsfbinv, RNARedPrint, DesiRNA, Meta-LEARNA) on the entire 
dataset and its subsets reveals distinct patterns. DesiRNA consistently produces sequences with structures closely 
aligned to the target, as reflected by the lowest median RNAdistance and RNApdist values, and the highest F1-
scores among those achieved by the other algorithms. This highlights its precision, while the narrower spread 
of the violin plot reflects reduced variability in the results. However, the longer upper whisker compared to 
RNAinverse and Meta-LEARNA, which has the shortest, suggests that while DesiRNA generally delivers strong 
performance, it occasionally produces predictions with lower accuracy.

Meta-LEARNA achieves good and stable performance across all evaluation metrics. It is consistently high in 
F1-score, with low RNApdist and RNAdistance values, meaning that the predicted structures are well-aligned 

RNA design algorithm No of solved cases Average computing time (s) Normalized RNAdistance RNApdist F1-score

Results for 4921 instances

 RNAinverse 4452 2.32 0.12 13.08 0.92

 RNAsfbinv 4161 7.74 0.23 13.09 0.65

 INFO-RNA 4163  1.44 0.20 14.19 0.76

 DSS-Opt 4913 3.69 0.13 26.09 0.89

 DesiRNA 4638 319.72 0.09 15.81 0.92

 RNARedPrint 4393 11.11 0.29 22.78 0.77

 Meta-LEARNA 2748 5.26 0.06 9.38 0.94

Results for 2575 instances successfully solved by each algorithm

 RNAinverse 2575 0.37 0.06 9.36 0.97

 RNAsfbinv 2575 5.47 0.10 10.34 0.85

 INFO-RNA 2575 0.06 0.13 9.14 0.84

 DSS-Opt 2575 2.16 0.05 8.84 0.96

 DesiRNA 2575 305.21 0.01 8.45 0.99

 Meta-LEARNA 2575 4.99 0.06 8.67 0.94

 RNARedPrint 2575 7.85 0.14 9.45 0.90

Table 6.  RNA design benchmark results for the whole RNAsolo dataset (best values in bold).

 

Fold kNN (k = 3) Decision tree Naive Bayes

1 0.997 0.999 0.997

2 0.994 0.996 0.992

3 0.996 0.996 0.993

4 0.979 1.0 0.996

5 0.975 0.999 0.997

Min 0.975 0.996 0.992

Max 0.997 1.0 0.997

Median 0.994 0.999 0.996

Mean 0.988 0.998 0.995

Table 5.  F1-scores in stratified 5-fold cross-validation in the problem of recognizing glutamine riboswitch.
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to the target. The distribution of its results is compact, with quite a narrow interquartile range and the shortest 
upper whisker, reflecting both high accuracy and low variability.

However, it is important to note that in the presented results, Meta-LEARNA produced outputs for only 
2748 out of 4921 samples, which is significantly fewer than the other evaluated algorithms. In this regard, Meta-
LEARNA performs the worst in terms of coverage. Since the metrics are reported only on the common instances 
addressed by all tools, this limitation is not reflected in the primary performance scores. Nonetheless, the impact 
of incomplete coverage becomes evident in the heatmap-based analysis of the one-sided Wilcoxon signed-rank 
test p-values, where differences in the number of valid predictions are taken into account.

RNAinverse and DSS-Opt exhibit a cluster of low RNAdistance values, which implies accurate RNA design 
predictions. Additionally, their interquartile range is narrow, though slightly wider than that of DesiRNA, 
reflecting consistent performance across the evaluated algorithms. The relatively compact distribution further 
suggests that most predictions are close to the median, with fewer extreme outliers.

INFO-RNA displays a wider distribution than DesiRNA, Meta-LEARNA and RNAinverse, indicating greater 
variability in its predictions. It shows moderate upper whiskers, reflecting occasional high values, but not as 
high as RNAsfbinv and RNARedPrint. Although its RNApdist values are very close to those of DSS-Opt, the 
higher RNAdistance values suggest that INFO-RNA is less consistent in accurately predicting RNA sequences 
compared to other algorithms. Furthermore, INFO-RNA performs worse in predicting 3-way junction motifs 
compared to DSS-Opt and RNAinverse.

RNAsfbinv and RNARedPrint display similar distributions and interquartile ranges, indicating comparable 
variability in their predictions. However, RNARedPrint has a lower median, which is comparable to that of other 
algorithms, except in cases involving 3-way junction motifs, where it performs poorly. Beyond 3-way junctions, 
RNARedPrint, INFO-RNA, and RNAsfbinv show similar behavior and exhibit slightly reduced performance, in 
contrast to the relatively robust results achieved by the remaining algorithms.

RNA design algorithm Average computing time (s) Normalized RNAdistance RNApdist F1-score

Results for 2248 instances of internal loop motifs successfully solved by each algorithm

 RNAinverse 0.24 0.06 7.73 0.97

 RNAsfbinv 4.17 0.10 8.68 0.85

 INFO-RNA 0.05 0.12 7.65 0.84

 RNARedPrint 7.69 0.13 7.75 0.91

 DSS-Opt 2.13 0.06 7.24 0.96

 DesiRNA 293.50 0.01 6.95 0.99

 Meta-LEARNA 4.86 0.07 7.13 0.94

8.13

Results for 327 instances of higher-cardinality junction motifs successfully solved by each algorithm

 RNAinverse 1.31 0.06 20.59 0.97

 RNAsfbinv 14.42 0.11 21.72 0.88

 INFO-RNA 0.16 0.14 19.43 0.85

 RNARedPrint 8.92 0.22 21.08 0.84

 DSS-Opt 2.33 0.03 19.82 0.98

 DesiRNA 385.78 0.02 18.75 0.99

 Meta-LEARNA 5.88 0.04 19.27 0.95

Results for 160 instances of 3-way junction motifs successfully solved by each algorithm

 RNAinverse 1.91 0.08 21.21 0.96

 RNAsfbinv 19.72 0.14 22.60 0.84

 INFO-RNA 0.17 0.20 20.23 0.78

 RNARedPrint 9.37 0.28 22.54 0.80

 DSS-Opt 2.91 0.04 19.33 0.97

 DesiRNA 384.37 0.02 18.12 0.98

 Meta-LEARNA 6.65 0.04 18.93 0.96

Results for 154 instances of 4-way junction motifs successfully solved by each algorithm

 RNAinverse 0.74 0.04 19.70 0.98

 RNAsfbinv 8.73 0.07 20.35 0.92

 INFO-RNA 0.13 0.09 18.14 0.91

 RNARedPrint 8.44 0.15 19.12 0.90

 DSS-Opt 1.76 0.02 19.76 0.99

 DesiRNA 386.64 0.01 18.81 0.99

 Meta-LEARNA 4.78 0.03 19.13 0.94

Table 7.  RNA design benchmark results for the RNAsolo dataset divided by motif type (best values in bold).
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Analysis of the heatmaps of the one-sided Wilcoxon signed-rank test p-values (Fig. 5) reveals a consistent 
pattern. Among the three metrics analyzed, DesiRNA, DSS-Opt, and RNAinverse emerged as the top performers 
in that order. Meanwhile, Meta-LEARNA displayed the weakest performance. The middle tier includes 
RNARedPrint, INFO-RNA, and RNAsfbinv, with their rankings varying depending on the specific metric 
used. While the F1-score provides a clear distinction among these methods, this clarity is not observed with 
the RNApdist and RNAdistance metrics. According to the RNApdist metric, RNARedPrint and INFO-RNA 
do not significantly outperform each other. Similarly, the RNAdistance metric shows no statistically significant 
difference in performance between RNAsfbinv and RNARedPrint.

For the dataset extracted from RNAsolo, DesiRNA stands out as the most reliable tool for RNA structure 
prediction, consistently achieving the lowest RNApdist and normalized RNAdistance values, along with the 
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Fig. 2.  RNA design tools’ performance on RNAsolo dataset using normalized RNAdistance for benchmarking. 
(A) The entire set. (B) The subset that contains internal loops. (C) The subset that contains 3-way junctions. 
(D) The subset that contains 4-way junctions. (E) The subset that contains other higher-cardinality junctions. 
The Meta-LEARNA algorithm is labeled as MetaLRNA in the figure for short.

 

Scientific Reports |        (2025) 15:21417 9| https://doi.org/10.1038/s41598-025-07041-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


highest F1-scores across all datasets. RNAinverse and DSS-Opt exhibit good effectiveness, whereas INFO-RNA, 
RNAsfbinv and RNARedPrint show moderate performance. Meta-LEARNA, on the other hand, displayed the 
weakest performance among the evaluated tools.

Benchmarking test case using a dataset of loop motifs derived from the Rfam database
Here, similar to the previous example, we divided the analyzed datasets derived from the Rfam database (Rfam 
IDs: RF01739, RF02681, and RF00009) into the following subsets: internal loops and other higher-cardinality 
junctions. From these, we further distinguished two additional subsets: 3-way junctions and 4-way junctions. 
We utilized these datasets to evaluate and compare the performance of several RNA design tools: RNAinverse, 
INFO-RNA, DSS-Opt, RNAsfbinv, RNARedPrint, Meta-LEARNA, and DesiRNA. The analysis was conducted 
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Fig. 3.  RNA design tools’ performance on RNAsolo dataset using RNApdist for benchmarking. (A) The entire 
set. (B) The subset that contains internal loops. (C) The subset that contains 3-way junctions. (D) The subset 
that contains 4-way junctions. (E) The subset that contains other higher-cardinality junctions. The Meta-
LEARNA algorithm is labeled as MetaLRNA in the figure for short.
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on instances common to all tools, with their performance assessed using three metrics: RNAdistance, RNApdist 
and F1-score.

Benchmarking test case using a loop motifs dataset derived from the Rfam database, illustrated by the example 
of the glutamine riboswitch (RFAM id: RF01739)

As the first example of a dataset derived from the Rfam database, we selected the RF01739 (glutamine 
riboswitch) family due to its inclusion of a significant and conserved 3-way junction72–74. It plays a central 
biological role, serving as the core structural element that undergoes ligand-induced rigidification upon 
L-glutamine binding, thereby mediating a conformational switch essential for metabolite sensing and gene 
regulation73,79. Furthermore, this riboswitch is unique in the following respects: most notably, ligand binding 

A B

C D

E

Fig. 4.  RNA design tools’ performance on RNAsolo dataset using F1-score for benchmarking. (A) The entire 
set. (B) The subset that contains internal loops. (C) The subset that contains 3-way junctions. (D) The subset 
that contains 4-way junctions. (E) The subset that contains other higher-cardinality junctions. The Meta-
LEARNA algorithm is labeled as MetaLRNA in the figure for short.
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stabilizes the aptamer in an open conformation, in contrast to the closed state typically favored in other 
riboswitch classes80. This alignment comprises over 1,700 sequences and encompasses more than 2,200 loops.

The results are shown in Table 8 and Figs. 6, 7 and 8. Upon analysis, it is clear that only two subsets are 
considered: those involving internal loops and 3-way junctions. This is due to the absence of higher-order 
branching junctions in the analyzed RNA family.

Among the tools evaluated, RNAinverse demonstrates high accuracy and reliability in RNA sequence 
prediction, consistently achieving low RNAdistance and RNApdist values, along with a high F1-score. It 
consistently generates sequences with structures close to the target for all subsets, with the exception of the one 
containing internal loops. DesiRNA maintains very good performance, with a low median but a larger number 
of outliers than RNAinverse and Meta-LEARNA. It is robust across all datasets but shows occasional outliers. 
Meta-LEARNA emerges as a competitive method, combining consistently low error rates with high F1-scores 
across all motifs. Together with DSS-Opt, it achieves the best RNAdistance and F1-score for internal loops 
and maintains strong performance on 3-way junction motifs. RNAsfbinv also performs well, particularly in 
terms of RNAdistance and F1-score values. INFO-RNA shows moderate performance with greater variability 
in predictions. It is generally reliable, but less consistent than DesiRNA, Meta-LEARNA and RNAinverse. 
RNARedPrint demonstrates very good performance across all motif categories. It achieves one of the highest 
F1-scores and the lowest RNApdist, along with low RNAdistance. On the other hand, DSS-Opt shows a similar 
distribution to Meta-LEARNA and DesiRNA, with an upper whisker comparable in width to DesiRNA. This 
indicates that DSS-Opt demonstrates consistent performance and reliability in predicting RNA structures for 
most instances within the evaluated dataset.

As we were particularly interested in the 3-way junction motif in this example, we took a closer look at the 
performance of RNA design algorithms for the subset containing these motifs. For predicting 3-way junction 

Fig. 5.  The heatmaps of one-sided Wilcoxon signed-rank tests for RNAsolo dataset. (A) RNApdist metric. (B) 
RNAdistance metric. (C) F1-score.

 

Scientific Reports |        (2025) 15:21417 12| https://doi.org/10.1038/s41598-025-07041-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


motifs, DesiRNA, DSS-Opt, and Meta-LEARNA exhibited very similar distributions, reflecting high accuracy 
and consistency. Among these, Meta-LEARNA and DSS-Opt achieved the best results for the normalized 
RNAdistance metric, while RNARedPrint outperformed the others in RNApdist. All algorithms, except INFO-
RNA, displayed relatively compact distributions with low median values. INFO-RNA, on the other hand, had 
a wide distribution and a noticeably higher median value, indicating more variability and less consistency in 
approximating the target structure.

The heatmaps illustrating the p-values from one-sided Wilcoxon signed-rank tests (Fig. 9) reveal distinct 
performance patterns across the distance metrics. When evaluating sequence similarity using RNApdist, a clear 
distinction arises among the methods. RNARedPrint, RNAinverse, and RNAsfbinv generally perform better 
than the other four methods: DSS-Opt, Meta-LEARNA, DesiRNA, and INFO-RNA. Among the top three 
methods, the differences in performance are less pronounced or not consistently significant. Similarly, INFO-
RNA and DesiRNA do not show significant differences in the middle tier.

Turning to structural comparison metrics, such as RNAdistance and F1-score, the performance landscape 
changes significantly, and both metrics yield similar conclusions. INFO-RNA consistently performs worse 
than all other methods, as indicated by p-values of 1.0 in its row and near-zero p-values in its column across 
both heat maps. In stark contrast to the RNApdist results, DSS-Opt and DesiRNA emerge as top performers 
in structural accuracy. They significantly outperform INFO-RNA, RNARedPrint, RNAinverse, and RNAsfbinv 
based on both RNAdistance and F1-score, as evidenced by numerous very small p-values in the rows for DSS-
Opt and DesiRNA against these methods. Meta-LEARNA also performs structurally well, significantly better 
than INFO-RNA, RNAinverse, and RNAsfbinv. However, it does not consistently show a significant advantage 
over RNARedPrint and is generally outperformed by DSS-Opt and DesiRNA.

This analysis highlights that for the glutamine riboswitch target, DesiRNA excels under the structural metrics, 
while RNARedPrint and RNAinverse dominate when evaluated with RNApdist.

Benchmarking test case using a loop motifs dataset derived from the Rfam database, illustrated by the example 
of the twister sister ribozyme (RFAM id: RF02681)

Another example of a dataset derived from the Rfam database is the RF02681 family (the twister sister 
ribozyme). This family is particularly intriguing due to the presence of the 4-way junction motif75,76, which offers 
valuable insights into the performance and capabilities of RNA design algorithms. It possesses well-defined and 
highly conserved secondary structure, which underlies its catalytic activity. Furthermore, the ribozyme’s cleavage 
activity is strongly dependent on specific secondary structure motifs, including stem–loop arrangements and the 
central 4-way junction, which are essential for correctly positioning catalytic residues. The junction forms a 
stabilizing network that organizes distant structural elements and supports the formation of an active catalytic 
core76,81,82. The results for this dataset are shown in Table 9 and Figs. 10, 11 and 12.

RNA design algorithm Average computing time (s) Normalized RNAdistance RNApdist F1-score

Results for 931 instances successfully solved by each algorithm

 RNAinverse 0.52 0.07 13.02 0.95

 RNAsfbinv 3.89 0.09 13.48 0.92

 INFO-RNA 0.27 0.28 15.06 0.73

 RNARedPrint 7.78 0.06 12.98 0.96

 DSS-Opt 1.05 0.02 16.75 0.99

 DesiRNA 411.56 0.03 15.57 0.97

 Meta-LEARNA 3.13 0.02 16.09 0.96

Results for 3 instances of internal loop motifs successfully solved by each algorithm

 RNAinverse 0.14 0.28 8.36 0.79

 RNAsfbinv 3.45 0.27 14.66 0.63

 INFO-RNA 0.03 0.39 6.97 0.78

 RNARedPrint 6.64 0.00 5.40 1.00

 DSS-Opt 0.88 0.00 7.41 1.00

 DesiRNA 379.02 0.00 7.64 1.00

 Meta-LEARNA 3.37 0.02 7.51 0.81

Results for 928 instances of 3-way junction motifs successfully solved by each algorithm

 RNAinverse 0.52 0.07 13.02 0.95

 RNAsfbinv 3.89 0.09 13.48 0.92

 INFO-RNA 0.27 0.28 15.06 0.73

 RNARedPrint 7.79 0.06 13.01 0.96

 DSS-Opt 1.05 0.02 16.78 0.99

 DesiRNA 411.67 0.03 15.60 0.97

 Meta-LEARNA 3.13 0.02 16.12 0.96

Table 8.  RNA design benchmark results for the Rfam dataset, illustrated by the example of the glutamine 
riboswitch (RFAM id: RF01739), divided by motif type (best values in bold).
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For this dataset, DesiRNA stands out among the evaluated tools, exhibiting the highest accuracy and 
reliability in RNA sequence prediction, with consistently low RNAdistance and RNApdist values and high F1-
scores. It reliably produces sequences with structures that closely match the target across all subsets. RNAinverse 
and Meta-LEARNA follows closely, also achieving low RNAdistance values, along with high F1-scores and 
showing reliable performance with minimal variability. DSS-Opt exhibits solid results, with moderate accuracy 
and consistency, performing slightly below DesiRNA and RNAinverse. INFO-RNA achieves the best values for 
the RNApdist metric, but its performance for normalized RNAdistance is only average, particularly for 3-way 
junctions. While generally reliable, it exhibits greater variability in predictions. RNAsfbinv and RNARedPrint 
achieve average performance, characterized by broader distributions and occasional inaccuracies. RNARedPrint, 
in particular, shows higher variability and elevated median values.

Focusing specifically on the 4-way junction motif, DesiRNA emerges as the best-performing tool, achieving 
the lowest normalized RNAdistance while demonstrating both accuracy and consistency. RNAinverse also 
performs well, with low median values, though it shows slightly greater variability compared to DesiRNA. 
DSS-Opt achieves moderate success, producing results similar to RNAinverse but with a broader distribution, 
indicating some inconsistencies. RNARedPrint produces results comparable to RNAinverse and INFO-RNA in 
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Fig. 6.  RNA design tools’ performance on Rfam dataset, illustrated by the example of the glutamine riboswitch 
(RFAM id: RF01739), using normalized RNAdistance for benchmarking. (A) The entire set. (B) The subset that 
contains internal loops. (C) The subset that contains 3-way junctions. The Meta-LEARNA algorithm is labeled 
as MetaLRNA in the figure for short.

 

Scientific Reports |        (2025) 15:21417 14| https://doi.org/10.1038/s41598-025-07041-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


terms of normalized RNAdistance while achieving the advantage of lower RNApdist values. However, its longer 
upper whisker suggests greater variability in its predictions, indicating occasional inconsistencies. RNAsfbinv 
performs worse, with broader distributions and with wider interquartile ranges, reflecting significant challenges 
in approximating the target structures. These findings highlight the challenges posed by higher-order junctions 
and underscore the need for further advances in RNA design tools.

An analysis of one-sided Wilcoxon signed-rank tests (Fig. 13) for the Twister Sister ribozyme design 
results shows distinct performance patterns across the distance metrics. When RNApdist is used as the quality 
measure, INFO-RNA, RNARedPrint, and Meta-LEARNA tend to outperform their competitors in head-to-
head comparisons. While DesiRNA convincingly beats DSS-Opt, RNAinverse, and RNAsfbinv, the three leading 
methods outperform it. DSS-Opt and RNAsfbinv are mutually not outperforming each other, placing them at 
the bottom of the rankings for this metric.

The ranking shifts when the secondary-structure edit distance (RNAdistance) is analyzed. DesiRNA 
dominates, achieving extremely low p-values against all six competitors and never losing a single matchup. 
Meta-LEARNA holds a strong second position. The middle tier is occupied by RNAinverse, DSS-Opt, and 
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Fig. 7.  RNA design tools’ performance on Rfam dataset, illustrated by the example of the glutamine riboswitch 
(RFAM id: RF01739), using RNApdist for benchmarking. (A) The entire set. (B) The subset that contains 
internal loops. (C) The subset that contains 3-way junctions. The Meta-LEARNA algorithm is labeled as 
MetaLRNA in the figure for short.
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INFO-RNA, which do not show significant differences between each other. RNAsfbinv and RNARedPrint take 
the last two positions, with the former showing better results but on the verge of statistical significance.

The F1 score, which combines sensitivity and precision of the predicted secondary structures, again shows that 
DesiRNA leads the chart with minimal p-values against all other algorithms. Meta-LEARNA and RNAinverse 
form the next tier, achieving significant wins over INFO-RNA, RNARedPrint, RNAsfbinv, and sometimes over 
DSS-Opt. RNAsfbinv consistently trails the field, failing to defeat any rival at the 5% significance level.

Benchmarking test case using a loop motifs dataset derived from the Rfam database, illustrated by the example 
of nuclear ribonuclease P (RNase P) (RFAM id: RF00009)

The final example of a dataset derived from the Rfam database that we selected is the RF00009 family (nuclear 
ribonuclease P). This family is distinguished by its highly complex secondary structure, featuring a variety of 
motifs such as internal loops, 3-way junctions, and higher-cardinality junctions77,78. Nuclear RNase P is a highly 
conserved and ubiquitous endoribonuclease found in all domains of life, bacteria, archaea, and eukarya, as 
well as in organelles such as mitochondria and chloroplasts. Its primary and best-characterized function is the 
processing of precursor tRNAs, specifically through cleavage of the 5’ leader sequence to produce mature tRNAs. 
Although bacterial RNase P RNA is catalytically active on its own, functioning as a ribozyme, the eukaryotic 
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Fig. 8.  RNA design tools’ performance on Rfam dataset, illustrated by the example of the glutamine riboswitch 
(RFAM id: RF01739), using F1-score for benchmarking. (A) The entire set. (B) The subset that contains 
internal loops. (C) The subset that contains 3-way junctions. The Meta-LEARNA algorithm is labeled as 
MetaLRNA in the figure for short.
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version operates as a large ribonucleoprotein complex where the RNA component is catalytically inactive 
in isolation but remains essential for holoenzyme function. Despite considerable evolutionary divergence, 
particularly in sequence among eukaryotes, all RNase P RNAs share a conserved catalytic core, including helices 
P1, P2, P3, P4, and P10/1177,78,83. This evolutionary conservation of secondary structure motifs, combined with 
the functional complexity of eukaryotic RNase P, highlights its relevance for evaluating the performance of 
secondary structure-based RNA design algorithms.

The results are provided in Table 10 and Figs. 14, 15 and 16. As observed, the results include only subsets 
containing internal loops and 4-way junctions, with no data available for 3-way junctions. This absence is due 
to RNAsfbinv’s inability to generate sequences for structures containing 3-way junction motifs. As mentioned 
previously, given the varying accuracy levels of different algorithms across sequences of different lengths and the 
significant number of outliers produced by some tools, the analysis was limited to instances successfully handled 
by all approaches to ensure comparability.

DesiRNA consistently demonstrates the best performance across all subsets when considering normalized 
RNAdistance and F1-score, achieving the lowest median values and a narrow distribution that reflects high 
consistency and reliability. However, when focusing on RNApdist, DesiRNA shows slightly higher median values 
compared to other algorithms, particularly for 4-way junctions. Its violin plots also reveal occasional outliers, as 
indicated by a slightly longer upper whisker. Nevertheless, it performs exceptionally well in producing sequences 
closely matching target structures and maintains competitive performance, especially in terms of overall stability 
and accuracy for complex motifs. DSS-Opt presents similar results, delivering strong performance with low 
median values and compact distributions, though slightly wider than those of DesiRNA, indicating consistent 
and reliable predictions.

When considering RNApdist as the evaluation metric, INFO-RNA, RNAsfbinv, RNAinverse and 
RNARedPrint emerge as the top performers. In particular, the median values of the RNApdist are similar across 

Fig. 9.  The heatmaps of one-sided Wilcoxon signed-rank tests for the glutamine riboswitch (RFAM id: 
RF01739) dataset. (A) RNApdist metric. (B) RNAdistance metric. (C) F1-score.
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all algorithms, except for 4-way junctions, where DesiRNA and DSS-Opt show slightly elevated values. The 
consistency of INFO-RNA and RNARedPrint in RNApdist reinforces its ability to capture the properties of the 
ensemble. However, they do not match the precision of DesiRNA and DSS-Opt in normalized RNA distance 
predictions.

Meta-LEARNA demonstrates strong overall performance across the evaluated datasets, achieving low median 
RNAdistance and RNApdist values along with consistently high F1-scores, placing it among the top-performing 
algorithms. Its predictions exhibit low variability, as seen in narrow interquartile ranges and minimal outliers 
across different motif types.

RNAinverse performs well, achieving low RNAdistance and RNApdist values with a tight interquartile range. 
Its narrow violin plot highlights its consistency and low variability in predictions. The low median values in all 
subsets emphasize its reliability and accuracy, although it falls slightly behind DesiRNA and DSS-Opt in overall 
performance.

RNAsfbinv demonstrates variable performance, characterized by broader violin plots and higher upper 
whiskers for RNAdistance, with predictions showing less consistency, as reflected in the wide spread of results.

RNA design algorithm Average computing time (s) Normalized RNAdistance RNApdist F1-score

Results for 245 instances successfully solved by each algorithm

 RNAinverse 0.42 0.10 18.79 0.95

 RNAsfbinv 7.22 0.20 20.37 0.77

 INFO-RNA 0.13 0.13 15.98 0.84

 RNARedPrint 9.12 0.11 16.30 0.83

 DSS-Opt 1.16 0.13 19.52 0.90

 DesiRNA 442.05 0.02 17.80 0.98

 Meta-LEARNA 3.77 0.05 16.88 0.93

Results for 137 instances of internal loop motifs successfully solved by each algorithm

 RNAinverse 0.59 0.10 21.04 0.94

 RNAsfbinv 9.73 0.19 22.11 0.76

 INFO-RNA 0.22 0.16 18.50 0.84

 RNARedPrint 9.16 0.28 19.29 0.78

 DSS-Opt 1.24 0.12 22.25 0.91

 DesiRNA 442.39 0.02 20.67 0.98

 Meta-LEARNA 3.91 0.05 19.50 0.93

Results for 135 instances of higher-cardinality junction motifs successfully solved by each algorithm

 RNAinverse 0.21 0.09 16.03 0.95

 RNAsfbinv 4.12 0.22 18.23 0.77

 INFO-RNA 0.03 0.11 12.89 0.85

 RNARedPrint 9.07 0.15 12.64 0.90

 DSS-Opt 1.05 0.14 16.17 0.89

 DesiRNA 441.63 0.01 14.28 0.99

 Meta-LEARNA 3.60 0.03 13.67 0.93

Results for 24 instances of 3-way junction motifs successfully solved by each algorithm

 RNAinverse 0.17 0.15 15.72 0.93

 RNAsfbinv 4.33 0.31 19.19 0.66

 INFO-RNA 0.03 0.21 13.05 0.67

 RNARedPrint 8.79 0.39 14.89 0.73

 DSS-Opt 1.03 0.15 16.17 0.89

 DesiRNA 427.37 0.01 14.27 0.97

 Meta-LEARNA 5.08 0.08 11.70 0.93

Results for 86 instances of 4-way junction motifs successfully solved by each algorithm

 RNAinverse 0.22 0.07 16.12 0.96

 RNAsfbinv 4.07 0.19 17.96 0.80

 INFO-RNA 0.03 0.08 12.85 0.90

 RNARedPrint 9.15 0.08 12.02 0.95

 DSS-Opt 1.06 0.14 16.17 0.89

 DesiRNA 445.61 0.01 14.29 0.99

 Meta-LEARNA 3.19 0.02 14.22 0.93

Table 9.  RNA design benchmark results for the Rfam dataset, illustrated by the example of the twister sister 
ribozyme (RFAM id: RF02681), divided by motif type (best values in bold).
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Based on one-sided Wilcoxon signed-rank test p-values (Fig. 17) for sequence similarity (measured using 
RNApdist) on the RF00009 benchmark, RNARedPrint significantly outperforms all other methods, yielding 
p-values well below conventional significance thresholds (often << 1e–30). This suggests that RNARedPrint 
generates sequences significantly closer to the ground truth than its competitors. DesiRNA also performs well, 
demonstrating significant improvements over the remaining methods (RNAinverse, RNAsfbinv, DSS-Opt, 
Meta-LEARNA, and INFO-RNA). Conversely, RNAinverse and RNAsfbinv perform poorly. DSS-Opt, Meta-
LEARNA, and INFO-RNA form a middle tier, with no statistically significant performance differences observed 
between DSS-Opt and Meta-LEARNA, nor between Meta-LEARNA and INFO-RNA.
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Fig. 10.  RNA design tools’ performance on Rfam dataset, illustrated by the example of the twister sister 
ribozyme (RFAM id: RF02681), using normalized RNAdistance for benchmarking. (A) The entire set. (B) The 
subset that contains internal loops. (C) The subset that contains 3-way junctions. (D) The subset that contains 
4-way junctions. (E) The subset that contains other higher-cardinality junctions. The Meta-LEARNA algorithm 
is labeled as MetaLRNA in the figure for short.
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Regarding structural accuracy, the RNAdistance and F1-score metrics results show both consistencies and 
differences. According to both metrics, DesiRNA performs best, while RNAsfbinv performs worst. Meta-
LEARNA and DSS-Opt rank second and third, with their specific positions varying depending on the metric. 
Similarly, the middle tier, comprising RNARedPrint, RNAinverse, and INFO-RNA, also shows varying ranks 
depending on the metric.

Evaluating RNA inverse folding methods reveals performance differences depending on the metric. 
RNARedPrint excels significantly in sequence similarity, producing sequences much closer to the ground truth 
than competitors, followed by DesiRNA. However, for structural accuracy (measured by RNAdistance and F1-
score), DesiRNA ranks best, while RNARedPrint falls into the middle tier. RNAsfbinv consistently performs 

Fig. 11.  RNA design tools’ performance on Rfam dataset, illustrated by the example of the twister sister 
ribozyme (RFAM id: RF02681), using RNApdist for benchmarking. (A) The entire set. (B) The subset that 
contains internal loops. (C) The subset that contains 3-way junctions. (D) The subset that contains 4-way 
junctions. (E) The subset that contains other higher-cardinality junctions. The Meta-LEARNA algorithm is 
labeled as MetaLRNA in the figure for short.
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poorly across both sequence similarity and structural accuracy metrics. Other methods like DSS-Opt, Meta-
LEARNA, and INFO-RNA occupy intermediate positions, with their relative rankings sometimes shifting 
between sequence similarity and structural accuracy assessments.

These findings underscore the variability in performance evaluation of RNA design methods depending on 
the distance metric used, with DesiRNA and RNARedPrint excelling under different criteria.
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Fig. 12.  RNA design tools’ performance on Rfam dataset, illustrated by the example of the twister sister 
ribozyme (RFAM id: RF02681), using F1-score for benchmarking. (A) The entire set. (B) The subset that 
contains internal loops. (C) The subset that contains 3-way junctions. (D) The subset that contains 4-way 
junctions. (E) The subset that contains other higher-cardinality junctions. The Meta-LEARNA algorithm is 
labeled as MetaLRNA in the figure for short.
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Discussion
In the rapidly evolving field of RNA bioinformatics, the growing application of machine learning has increased 
the demand for high-quality, comprehensive data resources. Our newly developed dataset of multiloop motifs in 
RNA structures addresses this critical need by merging information from experimentally solved 3D structures 
with the extensive sequence repository of Rfam, a well-known database of RNA families and their sequence 
alignments.

This resource contains over 320,000 entries of authentic RNA motifs, including internal loops, three-way 
junctions, four-way junctions, and higher cardinality junctions. Importantly, these motifs are derived from 
experimentally verified data rather than synthetic constructs, providing researchers with reliable reference 
materials. The dataset allows each motif to be described in isolation or within its structural context, offering 
flexibility for diverse analytical approaches.

We systematically evaluated several inverse folding algorithms using multiple comparison metrics to 
demonstrate the dataset’s utility. Our analyses revealed distinct patterns across different RNA families. DesiRNA 
exhibited exceptional performance, ranking among the top in all normalized RNAdistance and F1-score 
evaluations and performing strongly in most RNApdist tests. However, it showed moderate results for the 
glutamine riboswitch and was surpassed by INFO-RNA in RNApdist evaluations for the twister sister ribozyme. 
DSS-Opt often placed second in RNAdistance measurements while showing variable performance with 
RNApdist. Methods such as RNAinverse, Meta-LEARN, INFO-RNA and RNARedPrint generally maintained 
middle positions in our rankings, occasionally excelling in specific scenarios—RNARedPrint and RNAinverse 
led for the glutamine riboswitch using RNApdist, while INFO-RNA ranked first for the twister sister ribozyme 
with the same metric. Similarly, RNAsfbinv typically underperformed except for the glutamine riboswitch, 
which ranked second using RNApdist.

The most notable performance variation was observed for the nuclear RNase P family, where the evaluation of 
RNA design methods strongly depended on the chosen distance metric, resulting in shifts in algorithm rankings. 
These results highlight the importance of employing multiple evaluation metrics when assessing algorithm 
performance across diverse RNA families. Furthermore, the varying performance of different tools highlights 
that their effectiveness is context-dependent and significantly influenced by the specific characteristics of the 
target RNA family. This suggests that the suitability of a particular inverse folding method may vary based on 
the target, indicating that no single tool is universally optimal across all biological contexts. This emphasizes the 
data-sensitive nature of current inverse folding approaches.

Fig. 13.  The heatmaps of one-sided Wilcoxon signed-rank tests for the twister sister ribozyme (RFAM id: 
RF02681) dataset. (A) RNApdist metric. (B) RNAdistance metric. (C) F1-score.
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The observed variation in performance across different RNA families can be attributed to several factors. 
First, the imbalance in the Rfam Database plays a critical role, as the database is highly heterogeneous. Some 
families contain large seed alignments, resulting in strong covariance signals and high confidence in their 
consensus secondary structures, which likely enhances the performance of inverse folding tools. In contrast, 
families with fewer sequences provide less support, leading to greater uncertainty in the consensus structure and 
potentially affecting prediction accuracy.

Second, the complexity of RNA families significantly contributes to this variation. The structural and 
functional diversity of RNA families influences performance. For example, some non-coding RNAs have 
intricate tertiary structures essential for their functions, presenting complex challenges for sequence design. 
Other RNAs, such as those that serve dual regulatory and transcriptional roles, may encounter evolutionary 
constraints that limit their structural complexity.

Third, variation in sequence length and features is inherent to biological data. RNA families in Rfam vary 
widely in sequence length, ranging from short RNAs to multi-kilobase rRNAs, among other characteristics. 
While this diversity is beneficial for accurately representing biological reality, inverse folding methods will 
demonstrate varying degrees of success depending on the specific target.

Beyond algorithm benchmarking, we demonstrated how our dataset could be used to train machine-learning 
models for RNA family classification tasks. This application illustrates the dataset’s potential to support various 
computational approaches in RNA bioinformatics, particularly deep learning methods that require large volumes 
of high-quality training data.

These classification experiments explicitly support the “and beyond” aspect of our title. While our primary 
motivation was establishing a challenging benchmark for inverse folding, the dataset’s extensive breadth and 
depth make it a valuable resource for various other tasks. For instance, the comprehensive information on 
diverse loop and junction types (see Tables 1 and 2) makes it well-suited for developing methods to predict 
n-way junction families84,85 or for addressing other structure-related prediction challenges.

We anticipate that this comprehensive, experimentally backed resource will become a cornerstone for the 
broader research community, enabling scientists to refine RNA design algorithms and enhance machine learning 
pipelines. By providing this rich and diverse dataset, we aim to accelerate progress in RNA bioinformatics and 
facilitate groundbreaking innovations in this vital field of study.

Methods
Data sources
RNAsolo64 is a self-updating database for RNA 3D structures, curated from the Protein Data Bank (PDB). By 
stripping away non-RNA chains and organizing the remaining structures into equivalence classes, RNAsolo 

RNA design algorithm Average computing time (s) Normalized RNAdistance RNApdist F1-score

Results for 307 instances successfully solved by each algorithm

 RNAinverse 4.01 0.10 31.95 0.88

 RNAsfbinv 15.86 0.14 31.01 0.74

 INFO-RNA 3.52 0.22 28.90 0.74

 RNARedPrint 10.12 0.41 29.39 0.67

 DSS-Opt 1.30 0.00 43.48 0.96

 DesiRNA 431.39 0.00 43.36 1.00

 Meta-LEARNA 3.69 0.00 43.57 0.94

Results for 247 instances of internal loop motifs successfully solved by each algorithm

 RNAinverse 1.98 0.09 24.18 0.87

 RNAsfbinv 8.08 0.16 23.39 0.72

 INFO-RNA 1.97 0.21 22.25 0.73

 RNARedPrint 9.44 0.22 21.81 0.73

 DSS-Opt 1.02 0.00 34.17 0.95

 DesiRNA 418.78 0.00 34.15 1.00

 Meta-LEARNA 3.66 0.00 34.23 0.94

Results for 60 instances of 4-way junction motifs successfully solved by each algorithm

 RNAinverse 12.40 0.14 63.96 0.89

 RNAsfbinv 47.89 0.11 62.36 0.81

 INFO-RNA 9.91 0.25 56.29 0.76

 RNARedPrint 12.94 0.78 60.62 0.44

 DSS-Opt 2.45 0.02 81.83 0.99

 DesiRNA 483.30 0.00 81.27 1.00

 Meta-LEARNA 3.83 0.00 82.03 0.96

Table 10.  RNA design benchmark results for the Rfam dataset, illustrated by the example of nuclear 
ribonuclease P (RNase P) (RFAM id: RF00009), divided by motif type (best values in bold).
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simplifies bioinformatics research. It offers seamless downloads of various data subsets—whether clustered by 
resolution, source, or format. Updated every Thursday, RNAsolo guarantees to always have access to the most 
current data. As of June 20, 2024, it hosts 15,049 RNA structures, organized into 3,356 equivalence classes, each 
exemplified by a cluster representative. RNAsolo’s user-friendly interface allows to search, sort, and download 
RNA structures effortlessly.

Rfam65,86 is an indispensable database that houses a vast array of non-coding RNA (ncRNA) families, each 
carefully defined by a seed multiple sequence alignment, a consensus secondary structure, and a covariance 
model. These elements are critical for annotating ncRNAs within nucleotide datasets, a task seamlessly executed 
using Infernal software87. Rfam and Infernal play a vital role in genome annotation pipelines for external data 
providers.

Data preparation
Our dataset integrates data from Rfam 14.10 and RNAsolo 3.326. Rfam 14.10 provides consensus secondary 
(2D) structures for sequences within full alignments of each Rfam family, while RNAsolo 3.326 supplies non-
redundant tertiary (3D) structures, which we annotate for their canonical 2D representations.

Fig. 14.  RNA design tools’ performance on Rfam dataset, illustrated by the example of nuclear ribonuclease 
P (RNase P) (RFAM id: RF00009), using normalized RNAdistance for benchmarking. (A) The entire set. (B) 
The subset that contains internal loops. (C) The subset that contains 4-way junctions. The Meta-LEARNA 
algorithm is labeled as MetaLRNA in the figure for short.
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We utilized the seed alignments from Rfam 14.10 as the basis for data preparation. For each RNA family 
alignment file in STOCKHOLM format, we employed R-scape with the--Rfam and--cacofold parameters 
to incorporate all additional covarying pairs. Subsequently, we converted the structural data from Rfam and 
CaCoFold in STOCKHOLM format into the dot-bracket notation, ensuring the removal of pseudoknots to 
maintain compatibility with RNA design algorithms. This process yielded a secondary structure associated with 
each sequence in the seed alignment, which we stored in a separate file.

For the RNAsolo dataset, we employed the RNApdbee tool alongside seven integrated base pair analyzers: 
baRNAba, BPNET, FR3D, MAXIT, MC-Annotate, RNApolis Annotator, and RNAview. Notably, the widely used 
tool DSSR was not included in our list. Licensing considerations primarily drove our decision during the tool 
selection phase. The release of DSSR version 2.0 introduced licensing requirements that raised concerns about 
accessibility, including potential costs for academic research. Although the basic version is currently available 
free of charge for academic users, the previous uncertainty led us to prioritize tools with consistently free and 
permissive licenses to ensure the long-term reproducibility and accessibility of our methodology. Each input 
structure and analyzer setting produced a list of base pairs and an optimal dot-bracket notation. We categorized 
each input structure into “empty,” “gapped,” “multistrand,” or categories “1” through “7,” with the first three 
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Fig. 15.  RNA design tools’ performance on Rfam dataset, illustrated by the example of nuclear ribonuclease 
P (RNase P) (RFAM id: RF00009), using RNApdist for benchmarking. (A) The entire set. (B) The subset that 
contains internal loops. (C) The subset that contains 4-way junctions. The Meta-LEARNA algorithm is labeled 
as MetaLRNA in the figure for short.
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serving as filters to exclude sequences unsuitable for RNA design benchmarking due to the absence of base pairs, 
gaps in the 3D chain, or multiple chains. The remaining categories represent the level of agreement among base 
pair analyzers, where “7” indicates unanimous agreement and “3” indicates concordance among at most three 
analyzers.

We recognize that conflicts can arise among base-pair analyzers, particularly in classifying non-canonical 
interactions. To address this, we developed a unification protocol to systematically resolve these conflicts and 
effectively integrate information from all seven analyzers. Our protocol creates a consensus secondary structure 
by iteratively incorporating base pairs based on the level of agreement among the analyzers. We begin by 
including base pairs identified by all seven tools. Next, we add potential base pairs detected by six tools, those 
recognized by five, etc. Throughout this process, we ensure that each newly added base pair is compatible with 
the ones already included in the consensus structure and does not conflict with them. This hierarchical approach 
results in a final, well-formed, and conflict-free representation of the secondary structure, maximizing the use 
of consensus across various annotation tools and ensuring the accurate construction of the secondary structure 
core. Pseudoknots were removed, consistent with the Rfam data processing.

Fig. 16.  RNA design tools’ performance on Rfam dataset, illustrated by the example of nuclear ribonuclease 
P (RNase P) (RFAM id: RF00009), using F1-score for benchmarking. (A) The entire set. (B) The subset that 
contains internal loops. (C) The subset that contains 4-way junctions. The Meta-LEARNA algorithm is labeled 
as MetaLRNA in the figure for short.
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Our study primarily focuses on canonical base pairs, where we generally observe stronger agreement. 
Nevertheless, we implemented the unification procedure described above to address potential discrepancies. We 
found that minor differences, such as variations in how specific base pairs are identified, can affect the annotated 
lengths of helical stems. Fortunately, these variations typically do not influence the overall topology of the 
secondary structure or the types of junctions identified in the RNAsolo dataset, which is central to our research.

We did not perform a systematic evaluation to assess how using different subsets of annotation tools or adding 
others, such as DSSR, might impact the dataset’s quality within the context of our study. Instead, we relied on the 
curated structures provided by the RNAsolo dataset and our unification protocol. Given the strong agreement 
usually found for canonical pairs among various annotation tools, we expect that the final secondary structure 
assignments derived from RNAsolo will remain relatively robust, regardless of the specific combination of base 
pair annotators employed.

The decision to focus this benchmark on canonical secondary structures, specifically loop motifs like 
junctions, while excluding G-quadruplexes and pseudoknots for now, was made due to practical considerations 
related to data availability and compatibility with current computational methods. While G-quadruplexes are 
known to be prevalent in various genomes88, the availability of experimentally determined structural data 
needed for benchmarking is still relatively limited89,90. This scarcity makes constructing a comprehensive and 
reliable benchmark dataset for G-quadruplexes challenging.

The challenges regarding pseudoknots are twofold. First, many contemporary RNA inverse folding algorithms 
are primarily designed for pseudoknot-free secondary structures. This limitation would restrict the number of 
applicable methods in a benchmark that includes them. Second, one of our primary data sources, the Rfam 
database, mainly uses covariance models that generally do not capture pseudoknotted interactions. However, we 
acknowledge that efforts are underway within Rfam to incorporate these features more broadly.

Fig. 17.  The heatmaps of one-sided Wilcoxon signed-rank tests for the nuclear ribonuclease P (RNase P) 
(RFAM id: RF00009) dataset. (A) RNApdist metric. (B) RNAdistance metric. (C) F1-score.
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Given these limitations, we have concentrated our initial benchmark efforts on canonical, pseudoknot-
free secondary structures. This approach ensures broader applicability to existing methods and relies on more 
robustly curated structural data.

Subsequently, we deconstructed each 2D structure into fundamental components: loops, stems, and single 
strands. Using the motif-extractor script from the RNApolis-py library, we automated this process. The 
script converts each dot-bracket notation into BPSEQ format and categorizes structural fragments based on 
predefined rules, such as recognizing adjacent base pairs as stems (Fig. 18).

To develop effective RNA design targets, we concentrated on loops, which are challenging to predict 
accurately. However, loops isolated from their structural context, such as connecting stems, are energetically 
unstable and unlikely to be independently predicted by RNA design algorithms. Therefore, for each identified 
loop motif, we generated three dataset instances: (1) the isolated loop fragment, (2) the loop fragment extended 
with its connecting stems and (3) the entire 2D structure containing the loop.

The final step in our data preparation pipeline consolidates the results into a CSV file. Each row corresponds 
to a loop, with columns identifying the motif ’s source and the sequence or dot-bracket encoded structure of the 
three instances mentioned above. The pipeline schematic is shown in Fig. 19.

RNA design algorithms used for benchmarking and their evaluation
For the benchmarking experiments, we selected several open-source RNA design algorithms: RNAinverse, 
INFO-RNA, DSS-Opt, RNAsfbinv, RNARedPrint, Meta-LEARNA, and DesiRNA. All tools, except 
RNARedPrint, were executed using their default settings. By default, RNARedPrint uses a simple energy model 
and generates a uniform sample of sequences, as all feature weights (e.g., GC content and structural energies) 
are set to 1, effectively eliminating their influence. Therefore, we used the scripts provided by the authors, which 

Fig. 18.  Structure of the base of ribosomal P stalk (PDB id: 5D8H, chain A). (A) 3D representation with the 
3-way junction shown in blue and connecting stems shown in green. (B) 2D representation colored the same 
way.
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implement a multidimensional Boltzmann sampling strategy on top of RNARedPrint. In addition, we employed 
a complementary script to directly identify sequences with high probabilities for the target structures. This 
script computes the minimum free energy (MFE) and ensemble energy (EE) for each sequence, followed by the 
calculation of individual target probabilities (Pi) and their sum (Psum). The final candidate was selected as the 
sequence with the highest Psum and the lowest MFE52. The code necessary to reproduce the analysis, including 
the commands for running these RNA design tools, is available at https://github.com/jbadura/rna_design/. Each 
script is designed to be run within a Docker container, with all required files accessible via the provided link.

To determine the secondary structure of each sequence generated during testing, we used RNAfold15. This 
methodology was chosen because not all programs provide sequence and structure in their results, necessitating 
a consistent method for evaluating prediction accuracy.

To compare the structural differences between the sequences designed by the examined tools and the original 
sequences, we utilized the RNAdistance46, RNApdist15,46 and F1-score91 methods. RNAdistance measures the 
structural difference between two RNA secondary structures by calculating the minimum number of edit 
operations needed to transform one structure into another using tree edit distance. This metric, part of the 
ViennaRNA package15, indicates more significant structural similarity with lower values. In contrast, RNApdist, 
also part of the ViennaRNA package, assesses distances between thermodynamic RNA secondary structure 
ensembles by calculating base pairing probability matrices. These matrices are condensed into vectors of pairing 
probabilities, which are then compared using a standard alignment algorithm. Additionally, the F1-score is used 
to evaluate the agreement between the predicted secondary structure of a generated sequence and the target 
structure. A higher F1-score reflects a closer match between the two structures.

Furthermore, to account for variability in RNA lengths and mitigate any indirect effects of sequence length 
on RNAdistance outcomes, we standardized the RNAdistance values. We divided each RNAdistance value by 
the corresponding RNA sequence length, allowing for a less biased comparison across different RNA sequences. 
Using violin plots, we evaluated and displayed the RNAdistance and RNApdist metrics, which reflect the 
efficiency of the various tools tested.

Using a one-sided Wilcoxon signed-rank test, we conducted statistical analyses to identify RNA design 
algorithms that significantly outperformed others. A critical aspect of this analysis was handling instances in 
which algorithms did not complete, whether due to timeouts or runtime exceptions. To fairly account for these 
failures in the pairwise comparisons, we assigned the worst possible value for the given metric to these instances. 
This approach ensures that a failing algorithm is guaranteed to lose the comparison for that specific case. 
Specifically, we assigned positive infinity (+∞) to failures when evaluating RNApdist and RNAdistance and a 

Fig. 19.  Data preparation pipeline: from Rfam and RNAsolo to extracted loop motifs.
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value of 0 when assessing the F1-score. After completing these tests, we generated a heatmap of the p-values for 
each reported set of results and provided commentary on our findings.

All experiments were performed using a FormatServer THOR EHG21 system (Supermicro), equipped with 
two AMD EPYC 7543 32-core processors and 2 terabytes of RAM.

Guidelines for evaluating machine learning models using the dataset
Evaluating machine learning (ML) models, especially for tasks like inverse folding or classification utilizing our 
dataset, necessitates a rigorous and comprehensive workflow to ensure reproducibility and fair comparisons. 
Although inverse folding can be performed using non-ML methods, it is essential to establish clear guidelines 
for evaluating ML models. Our manuscript outlines appropriate metrics, such as RNApdist for sequence-
level comparisons and RNAdistance or F1-score for structure-level assessments (see Section Evaluation and 
Comparison of RNA Design Algorithms’ Performance). Additionally, we include distributional analysis and 
statistical testing (e.g., the Wilcoxon signed-rank test) to compare the performance of different methods.

A critical component of the ML evaluation workflow is the rigorous division of data into training and testing 
sets. We recommend the following best practices when using our dataset for ML applications:

•	 Train/Test Split Ratio: Employ standard ratios, such as 80% for training and 20% for testing, to provide suf-
ficient data for model learning while retaining an independent set for evaluation.

•	 Reproducible Shuffling: Always shuffle the dataset before splitting, but use a fixed random seed to ensure 
that the split is reproducible for subsequent experiments or comparisons by others.

•	 Stratified Splitting: Given the potential imbalance in the distribution of features (e.g., different junction 
orders or RNA family types, which are notably imbalanced in the Rfam-derived portion of our dataset), use 
stratified splitting. This ensures that the proportion of key features is maintained across training and testing 
sets, preventing biased evaluation.

•	 Group-Based Splitting: To assess true generalization capabilities and prevent data leakage, consider group-
based splitting, especially when dealing with related sequences. For instance, when using the Rfam portion 
of the dataset, ensure that all sequences belonging to the same Rfam family are assigned entirely to either the 
training or the testing set but not split across them. This step tests the model’s ability to generalize to unseen 
families or structural contexts.

•	 K-Fold Cross-Validation: For robust model training and hyperparameter tuning, apply k-fold cross-vali-
dation (e.g., 5-fold or 10-fold) exclusively on the training set. The final model performance should still be 
reported on the held-out test set.

Adhering to these guidelines will facilitate the development and reliable evaluation of ML-based models using 
the comprehensive datasets presented herein.

Future directions: advanced machine-learning workflows enabled by the dataset
The diversity and precise annotations of multi-loop motifs contained in our benchmark open numerous avenues 
for state-of-the-art ML development that extend well beyond the baseline examples presented in this manuscript. 
Below, we outline ten concrete, non-mutually-exclusive research directions that the community can immediately 
pursue. 

	 1.	 Junction-centric graph neural networks (GNNs) for classification and family assignment. Representing 
each junction as a heterogeneous graph whose nodes are residues and whose edges encode canonical as well 
as non-canonical interactions. Training equivariant GNNs to predict loop order, coaxial-stacking patterns, 
or Rfam family membership.

	 2.	 Self-supervised pre-training of structural embeddings. Applying contrastive or masked-node objectives 
to millions of unlabeled junction graphs to learn reusable embeddings that can be fine-tuned for down-
stream tasks such as ligand affinity prediction or mutational effect estimation.

	 3.	 Conditional generative models for sequence design. Developing diffusion or autoregressive models that 
generate RNA sequences conditioned on a fixed secondary-structure graph or on specific junction descrip-
tors (e.g., loop cardinality, unpaired-length vector), enabling rapid in silico exploration of novel riboswitch 
scaffolds.

	 4.	 Multi-task learning frameworks. Jointly predicting (i) secondary structure, (ii) minimum free-energy dif-
ference to alternatives, and (iii) loop/junction category from a single network, thereby exploiting inductive 
transfer between thermodynamic and topological signals.

	 5.	 Transfer learning from protein structure models. Adapting large SE(3)-equivariant networks originally 
trained on proteins to RNA by fine-tuning on our dataset using geometric contrastive loss; early experi-
ments suggest that backbone proximity statistics generalize surprisingly well across biopolymers.

	 6.	 Few-shot meta-learning for rare high-order junctions. Employing Model-Agnostic Meta-Learning 
(MAML) so that the network can quickly specialize to 7–12-way junctions, despite their scarcity, after see-
ing only a handful of examples.

	 7.	 Active-learning loops coupled to folding simulators. Using Bayesian uncertainty estimates from the clas-
sifier to query an external RNAfold engine for the most informative unlabeled motifs, iteratively enriching 
the training set where the model is least certain.

	 8.	 Reinforcement-learning (RL) sequence editors. Treating inverse folding as an RL environment where 
actions mutate nucleotides and rewards combine folding probability, ensemble diversity, and GC-content 
constraints; pretrained policies may then be fine-tuned on specific junction types.
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	 9.	 Structure-aware language models (”prompted RNA-LMs”). Injecting linearized dot–bracket strings or 
tree encodings as prefixes (”prompts”) into large RNA language models so that token generation is implic-
itly guided by target structural contexts.

	10.	 Hybrid physics–ML surrogates. Embedding differentiable nearest-neighbor or nearest-fragment energy 
terms inside neural architectures (e.g., via backprop-compatible McCaskill) to marry thermodynamic in-
terpretability with data-driven accuracy.

By providing an unprecedented number of well-annotated internal loops and multi-branch junctions, our 
dataset supplies the balanced positive examples, rare-motif edge cases, and evaluation protocols required to 
benchmark each of the above ideas systematically. We expect that the next generation of RNA-specific GNNs, 
diffusion designers, and hybrid physics–ML methods will quickly adopt it as a standard development substrate.

Data Availability
The datasets generated and/or analyzed during the current study are available in the Zenodo repository: ​h​t​t​p​s​:​
/​/​z​e​n​o​d​o​.​o​r​g​/​d​o​i​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​2​6​8​1​1​2​2​​​​ All codes used for analyses presented in this paper are available in 
the GitHub repository: https://github.com/jbadura/rna_design
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