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Accurate segmentation of the liver parenchyma, portal veins, hepatic veins, and lesions from MRI is 
important for hepatic disease monitoring and treatment. Multi-phase contrast enhanced imaging is 
superior in distinguishing hepatic structures compared to single-phase approaches, but automated 
approaches for detailed segmentation of hepatic structures are lacking. This study evaluates deep 
learning architectures for segmenting liver structures from multi-phase Gd-EOB-DTPA-enhanced 
T1-weighted VIBE MRI scans. We utilized 458 T1-weighted VIBE scans of pathological livers, with 
78 manually labeled for liver parenchyma, hepatic and portal veins, aorta, lesions, and ascites. An 
additional dataset of 47 labeled subjects was used for cross-scanner evaluation. Three models were 
evaluated using nested cross-validation: the conventional nnU-Net, the ResEnc nnU-Net, and the 
Swin UNETR. The late arterial phase was identified as the optimal fixed phase for co-registration. Both 
nnU-Net variants outperformed Swin UNETR across most tasks. The conventional nnU-Net achieved 
the highest segmentation performance for liver parenchyma (DSC: 0.97; 95% CI 0.97, 0.98), portal 
vein (DSC: 0.83; 95% CI 0.80, 0.87), and hepatic vein (DSC: 0.78; 95% CI 0.77, 0.80). Lesion and ascites 
segmentation proved challenging for all models, with the conventional nnU-Net performing best. This 
study demonstrates the effectiveness of deep learning, particularly nnU-Net variants, for detailed liver 
structure segmentation from multi-phase MRI. The developed models and preprocessing pipeline offer 
potential for improved liver disease assessment and surgical planning in clinical practice.

Liver volumetry, relying on anatomically accurate structural segmentations, plays an increasingly important role 
in the assessment of liver disease. Applications include delineating liver segments of interest in planned partial 
liver resection, measuring volumes of liver tissue in procedures that aim to induce segment hypertrophy, or 
monitoring tumor progress1. The planning of procedures in interventional oncology, like microwave ablation 
or selective internal radiation therapy, is increasingly benefiting from the segmentation of anatomical structures 
like tumors and vessels as well. Furthermore, applications of artificial intelligence in medical imaging regularly 
rely on segmented structural images, e.g., in radiomics, where quantitative biomarkers are extracted from 
imaging, for example, to identify microvascular invasion in hepatocellular carcinoma2.

Most applications in research and clinical practice employ a manual approach to the segmentation of volumes 
of interest. In a recent review focusing on precision medicine in hepatocellular carcinoma, Wei et al. reported 
that 82.1% of published studies were based on manual segmentations3. Manual approaches are time-intensive 
and susceptible to inter-rater variability. Furthermore, automatic segmentation of the liver was proven preferable 
to the manual placement of regions of interest, e.g., for the assessment of steatosis and iron quantification in 
chronic liver disease4. Hence, the development of automated approaches has received considerable attention in 
recent years and consequently resulted in the use of deep learning methods.

The most frequently used architectures today are based on U-shaped convolutional neural networks. These 
were introduced by Ronneberger et al. in 2015 and rely on an encoder-decoder design5. One of the most widely 
used adoptions to date is the nnU-Net, a self-configuring framework optimized for medical image segmentation6. 
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More recently, transformer-based architectures that rely on a self-attention mechanism have been gaining 
popularity, whereby the SwinUNETR particularly stands out7. Moreover, models based on the newly introduced 
Mamba architecture that incorporates a structured state space sequence model were just released8. Most 
applications employ automated segmentation of the liver and adjacent structures based on CT data. Advantages 
are the wide availability, the good contrast of abdominal structures, and the standardized Hounsfield scale.

Segmentation based on MRI has been less widely employed but is of equal importance, especially since it 
doesn’t use any harmful radiation. Studies primarily focus on whole organ or tumor segmentation. However, 
much more detailed segmentations would be possible based on the wealth of information about tissue properties 
obtained with dynamically contrast enhanced MRI. Several studies have successfully evaluated liver function 
using Gd-EOB-DTPA (Primovist®, Bayer Healthcare, Berlin, Germany) -enhanced T1-volumetric interpolated 
breath-hold examination (VIBE) MRI sequences. However, measurements were performed with manually 
placed ROIs, either in liver parenchyma areas, explicitly excluding lesions and vascular structures, or in vascular 
structures excluding liver parenchyma, as well as in the abdominal aorta9–14. This is problematic, since other 
studies demonstrate that the liver function is not always homogeneously distributed in the liver15–17 and global 
assessments via blood or breath tests fail to capture localized variations. On top of that, only a few studies address 
the segmentation of liver vasculature using deep learning techniques, at all18–20.

However, neither code nor trained models are available, substantially limiting the possible benefits of the 
proposed works.

To address the limitations of manual segmentations for pre-operative planning and non-automated ROI 
placements for liver function assessment, we aimed to develop a model capable of providing automated and 
detailed anatomical segmentations of the liver and associated structures. Additionally, we sought to make the 
trained models and the entire preprocessing pipeline publicly available to maximize their utility and aid other 
research in this area. We opted for the nnU-Net, as it has been extensively tested and has proven effective in 
medical segmentation tasks. This was reaffirmed in recent comparisons with more complex and advanced 
architectures21. We also tested a more recent Vision Transformer architecture, where the Swin UNETR22 
was trained completely end-to-end for a fair comparison. We leveraged multi-phase MRI to improve vessel 
segmentations and investigated the optimal preprocessing pipeline for multi-phase organ segmentation on 
abdominal T1-VIBE MRI data. Furthermore, we evaluated the performance relative to distinct liver functions 
and provide a cross-scanner validation. Our automated approach replaces labor-intensive manual delineations 
or ROI placements with precise segmentations, supporting general surgical planning and providing detailed 
anatomical information that could aid future advancements in localized liver function assessment, ultimately 
improving post-operative survival estimation.

Data
This retrospective, Health Insurance Portability and Accountability Act-compliant, single-center study was 
approved by the Ethics Committee at the University of Regensburg (IRB approval number: 23-3489-104). 
Written informed consent was waived due to the study’s retrospective nature, the use of de-identified data, and 
the minimal risk to patients, as no additional imaging or testing was performed. All procedures involving patient 
data adhered to the institutional and national research committees’ ethical standards and the principles outlined 
in the Declaration of Helsinki and its amendments.

This study comprises three distinct datasets, with their formation and interrelationships schematically 
illustrated in Supplementary Figure A1.

The patients from all datasets underwent Gd-EOB-DTPA-enhanced T1-weighted volumetric interpolated 
breath-hold examination (VIBE) MRI sequences with fat suppression during the native, arterial (AP), late arterial 
(LAP), portal venous (PVP), and hepatobiliary phases (HBP). The measured voxel size was 1.71 × 1.25 × 4.5 
mm3 and those were reconstructed to a voxel size of 1.25 × 1.25 × 3.0 mm3. All images were obtained during 
a 14-second breath-hold, both before Gd-EOB-DTPA administration (native phase) and during the dynamic 
phases. Patients received an intravenous bolus injection of the contrast agent (0.025 mmol/kg body weight) at a 
flow rate of 1 mL/sec, followed by a 20 mL of 0.9% sodium chloride bolus for contrast-enhanced MRI.

Dataset A comprises a total of 458 unlabeled T1-weighted VIBE MRI acquisitions from patients with liver 
diseases. The inclusion criteria were: subjects aged over 18, no allergies to Gd-EOB-DTPA, availability of current 
liver function tests (blood or breath tests), images of passable quality, and no contraindications for MRI. This 
large set served as a comprehensive basis for optimizing our preprocessing pipeline, especially regarding the 
co-registration.

Dataset B is derived from A and serves as a labeled subset primarily used for training and evaluating 
segmentation performance. It consists of 78 labeled MRIs from patients with liver diseases. Initially, this dataset 
consisted of 59 patients with good image quality and typical lesion behavior. The additional inclusion criteria 
were a good image quality and current liver function evaluation via a 13C-Methacetin breath test (MBT), also 
called LiMAx test, prior or after a maximum of 5 days.

For core evaluation of the segmentation performance, a 4-fold split was applied to those 59 subjects. The 
schematic representation in supplementary Figure A1 illustrates how subsets within B were formed for training-
validation splits during segmentation performance evaluation. In each dataset, one subset served as a test set 
while the remaining three subsets were used for training and validation. For example, in the first dataset, subsets 
1–3 were used for training-validation (B1train/val) while subset 4 served as the test set (B1test); this process was 
repeated until all subsets had been used as test sets. To enhance training robustness and model generalizability, 
19 additional MRI acquisitions with substantial artifacts and atypical lesion contrast behavior were incorporated 
into all training-validation sets across the four folds. This helps to make it harder for the network to learn and 
to simulate real-world variability in clinical imaging. Therefore, three of the folds have 14 images in the test set 
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and 64 images for training and validation, whereas the remaining fold has 17 subjects for evaluation and 61 for 
training and validation.

The images of both aforementioned datasets were acquired on a Siemens Magnetom Skyra 3 Tesla (T) MRI 
scanner, which is primarily used for those liver specific sequences in our clinic.

Dataset C served as a Cross-scanner validation dataset and contained 47 labeled T1-VIBE acquisitions from 
different MRI scanner types with 1.5T (Siemens Magnetom Sola, Siemens Magnetom Avanto Fit), explicitly 
excluding the 3T Siemens Magnetom Skyra used for Datasets A and B. The inclusion of different scanner types 
was intentional to introduce variability in scanner technology, simulating real-world conditions encountered 
in external institutions. This approach allowed for a broader evaluation of model generalizability across diverse 
hardware configurations. While these images were collected within the same clinical setting, differences in 
signal-to-noise ratios, contrast dynamics, and artifact profiles between scanners provided a realistic test for the 
robustness of the segmentation models. The inclusion criteria for C were: subjects aged over 18 years, no allergies 
to Gd-EOB-DTPA, and no contraindications to MRI. To reflect real-world imaging scenarios, this dataset 
contains both high-quality images and images of poor quality with artifacts. This diversity enables evaluation 
not only on optimal samples but also on challenging cases, further testing the robustness of the segmentation 
models.

Methods
MRI data preprocessing
The images of all five phases (native, arterial (AP), late arterial (LAP), portal venous (PVP), and hepatobiliary 
phases (HBP), acquired during Gd-EOB-DTPA-enhanced T1-VIBE sequences as per clinical protocols) for each 
patient were pre-processed with following pipeline in a Python v.3.10 environment: 

	1.	 Conversion from DICOM to NIFTI file format using dcm2niix v1.0.2021100623

	2.	 Bias correction using the N4ITK algorithm24

	3.	 Image-wise z-score normalization with numpy v.1.26.425

	4.	 Co-registration of all phases to the late arterial phase with the nipype interface (v.1.8.6) and ANTs registra-
tion (v.2.4.4) using three transformations in the order of rigid, affine and symmetric diffeomorphic registra-
tion (SyN)26,27

In abdominal imaging with breath-hold techniques, specific challenges arise. Not all patients can exhale 
uniformly across all acquisitions. Unlike brain MRIs, where anatomical structures in different phases may 
vary in orientation while their shape is maintained, abdominal imaging experiences significant alterations due 
to diaphragm movement during exhalation, affecting organ positioning relative to each other and leading to 
deformation. An example of this is illustrated in Fig. 1, showing the same sagittal and axial sections from both 
arterial and portal venous phases of the T1-VIBE sequence. The images reveal notable differences in organ 
positioning between phases, complicating accurate co-registration of fine vascular structures like hepatic veins 
due to varying exhalation levels among patients. Those characteristics made the co-registration a challenging 
task. Therefore, we evaluated which phase is suited best as the fixed image for this step. Co-registration quality 
was measured by metrics such as the Mean Squared Error, Mutual Information, Structural Similarity Index, and 
the Normalized Cross Correlation, as well as by visual inspection.

The data from datasets B and C was labeled by one radiologist with more than 12 years of experience in 
liver diagnosis. This included the manual segmentation of the liver parenchyma, hepatic veins, portal veins, 
lesions, abdominal aorta, thoracic aorta and ascites in the preprocessed MRIs with the software ImFusion Labels 
v.0.21.528. Subsequently, the labeled data was resliced into an isotropic voxel spacing of 1.2mm3, resulting in an 
image size of [160x333x333] voxels.

While it may seem unconventional, our approach aimed to segment the plain liver parenchyma, deliberately 
excluding any kind of lesions or vascular structures. This design choice was intended to have a more 
comprehensive and automated method than the region-of-interest (ROI) placement methodology described 
in the studies referenced in the Introduction. Unlike traditional liver segmentation studies that focus primarily 
on hepatocellular carcinoma (HCC), we adopted a broader perspective, sub-classifying lesions into categories 
such as HCC, cholangiocarcinoma (CCC), focal nodular hyperplasia (FNH), adenoma, cysts, ablation defects, 
metastases, hemangiomas, biliomas, and regenerative nodules. However, because of the small dataset size, most 
of the lesions only occured one to three times and thus it was not always possible to include one case of each 
lesion type in the training-, validation- and test partitions. Combined with the small volumetric size of the 
majority of them compared to the other areas of interest, many were misclassified during test runs and thus they 
were combined into the class lesions.

nnU-Net framework
The nnU-Net is a self-configuring deep learning framework for image segmentation that takes care of network 
configuration and also applies preprocessing steps to the MRI data, if required. As the dataset has already been 
preprocessed to have isotropic voxel spacings and images were z-score normalized, the framework didn’t apply 
any of those steps.

At the beginning of this study, the baseline architecture of the 3D fullres configuration in the nn-UNet 
framework was a plain 3D U-Net, as introduced in 2016 as an extension of the original U-Net from Ronneberger 
in 20155,6,29.

In 2024, the baseline configuration changed to a 3D U-Net with residual blocks30 in the encoder stage and 
can occupy more VRAM. Therefore, the input patches can be larger21. In our study this led to a VRAM allocation 
of 8.5 GB for the standard nnU-Net and 28 GB for the ResEnc nnU-Net.
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We completely trained and evaluated both configurations in a nested cross-validation (see Figure A1).
Unlike in the original U-Net, the ReLU activation function31 was replaced by leaky ReLU functions32 and 

instance normalization33 was used. Additionally, instead of max-pooling, strided convolutions were deployed.
For our datasets, the input patches for the 2024 baseline configuration were of size [112x256x256], whereas 

the initial baseline configuration was configured to have the dimensions of [80x192x160] for the extraced patches 
that are fed into the CNN. Both configurations were trained with a batch size of 2 and started with 32 filters in 
the first encoder stage. Those doubled for the next three stages, up to 256 filters. This was followed by two more 
encoding stages, both with a filter count of 320. As typical for all U-Net architectures, the amount of those was 
symmetrical in the corresponding encoder-decoder stages.

For the nnU-Net, an epoch is defined as a total of 250 batches and the amount of epochs is fixed to 1000.
The data from each of the four aforementioned folds in the data section, available to the training phase, was 

split into five different subsets that were used for training and validation by the nn-UNet6,21. The ability to train 
on five different folds on a training/validation dataset is implemented into the framework. In each fold, one of 
the subsets was used for validation, the other four were used for training. Performing this nested cross-validation 
(see Figure A1) resulted in 20 CNNs, each trained on a different training/validation dataset.

This was performed once for both baseline models, hence resulting in 40 end-to-end trained networks from 
the nnU-Net framework that will be publicly available after publication and can also be used for ensembled 
predictions.

The framework always chooses the 1000th epoch for inference by default, since the validation was only 
performed on a subset of 50 batches and therefore the validation loss generally is not representative to pick the 
model based on it.

Swin UNETR
For this study, Swin UNETR was used as a well researched hybrid transformer model with a standardized 
and easy to use implementation within the MONAI framework34. The model was configured to use five input 
channels for the different modalities and an input image size of [128x128x128] voxels. The initial feature size 
of 48 doubled in each of the four stages in the encoding path. To ensure a fair comparison with the nnU-Net 
variants and the memory limitation of 40 GB VRAM, the model was trained with a batch size of 2 for a total of 
1300 epochs. Furthermore, training and evaluation was performed with the exact same nested cross-validation.

Fig. 1.  Arterial and portal venous phases from the T1-VIBE sequence for one subject before co-registration. 
The arterial phase is shown in the (left) images, and the portal venous phase in the (right). The (top row) 
displays the sagittal view. The (bottom row) shows the axial orientation of the same MRI. Images in the same 
row depict the exact same section. Due to variations in the breathing cycle, the abdominal organs do not 
remain in a fixed position. Brown reference lines aid visualization. Vertical lines in the top images indicate 
the moving abdominal border: the right line marks the border in the arterial phase, while the left line marks 
the border in the portal venous phase, where less air was exhaled. Horizontal lines in these images illustrate 
the movement of the heart (top line) and vessels (bottom lines) between phases due to breathing. Yellow 
arrows in the axial images point to identical spatial positions where the hepatic veins are visible in the portal 
venous phase. The horizontal lines indicate the borders of the liver and spleen during the arterial phase and 
demonstrate how they shift due to breathing.
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In contrast to the nnU-Net framework, the validation was performed on all batches of the validation dataset 
and therefore the model with the lowest validation loss was used for inference on the test data. There, a sliding 
window method with batch size of 4 is employed for efficiency.

The data augmentation strategies for all architectures were kept as consistent as possible to ensure a fair 
comparison between the architectures. However, the specific implementation details may have varied slightly 
due to the differences in their respective frameworks.

The architecture was trained and evaluated in the exact same nested cross-validation as described for the 
nnU-Net variants, hence, 20 end-to-end trained networks of this architecture will be publicly available after 
publication.

Evaluation metrics
To assess the performance of the co-registration and the segmentation methods, a variety of metrics was used. 
Those will be shortly introduced here.

Co-registration: Mutual Information (MI) measures the statistical dependency between two images, making 
it suitable for multi-modal image registration. The values are not capped and depend on the specific method that 
is used for the calculations, therefore those are not comparable to other published values. However, it is suitable 
for this paper, as all values were calculated with the same method on the same dataset35. Normalized Cross-
Correlation (NCC) quantifies the linear correlation between image intensities, where a value of one indicates 
perfect correlation. The normalization makes it suitable for comparing multi-modal image co-registration, where 
absolute intensity values may vary significantly36. Structural Similarity Index (SSIM) assesses image similarity 
based on luminance, contrast, and structure, even when the absolute intensity values differ between modalities. 
The values range from 0 to 1, with 1 indicating perfect similarity37. Mean Absolute Error (MAE) measures the 
average absolute differences between corresponding pixel intensities. Even though it is very sensitive to large 
differences in intensity values and doesn’t account for any structural or perceptual differences in the images, 
it was still used as it is easy to understand and offers a more comprehensive evaluation of the co-registration 
performance in combination with the other metrics. Smaller values indicate better similarity38.

Segmentation: The Dice Similarity Coefficient (DSC) measures the overlap between predictions and ground 
truth segmentations, where true positives are double-weighed39,40. The closely related Intersection over Union 
(IoU) measures the overlap ratio between predicted and ground truth segmentations41. The DSC tends to 
produce higher values than IoU for the same segmentation result, due to its double-weighing of true positives in 
its calculation, making it more forgiving of errors in segmentation compared to the IoU. Positive Predictive Value 
(PPV) and True Positive Rate (TPR) assess precision and sensitivity, respectively. Lesion-wise- True Poisitive Rate 
(LTPR) and False Positive Rate (LFPR) evaluate the detection performance at the lesion level and is extremely 
valuable when dealing with small lesions, as those affect the metric as much as big lesions, which is not the case 
for the other metrics. Volume Difference (VD) quantifies the relative difference between the predicted and true 
segmented volumes.

Results
Co-registration
The co-registration of MRI volumes from different phases of the T1-VIBE sequence was conducted on dataset A 
to ensure precise alignment for further analysis. This process was assessed through visual inspection and various 
quantitative metrics: Mutual Information (MI), Normalized Cross Correlation (NCC), Mean Absolute Error 
(MAE), and Structural Similarity Index (SSIM), with detailed explanations provided in the previous subsection. 
The results are summarized in Table 1.

Using the late arterial and portal venous phases as reference images showed superior performance across all 
metrics. The late arterial phase recorded the highest MI (1.03) and NCC (0.95), the lowest MAE (804), and a high 
SSIM (0.87). The portal venous phase also performed well, achieving an MI of 1.02, NCC of 0.95, MAE of 822, 
and SSIM of 0.87, indicating that the late arterial phase is optimal for co-registration. In contrast, co-registration 
with the native phase yielded lower results: MI of 0.90, NCC of 0.91, MAE of 1370, and SSIM of 0.83, suggesting 
it has less shared information and greater intensity differences due to varying contrast. Visual inspections 
corroborated these findings, confirming that the late arterial phase provided the best alignment. Consequently, 
the dataset where all phases were co-registered to the late arterial phase was selected for subsequent analyses.

Fixed image Mutual information ↑ Normalized cross correlation ↑ Mean absolute error ↓ Structural similarity index ↑
Native 0.90 [0.90, 0.91] 0.91 [0.91, 0.92] 1370 [1305, 1435] 0.83 [0.82, 0.83]

Arterial 0.92 [0.91, 0.93] 0.91 [0.91, 0.91] 1096 [1034, 1158] 0.87 [0.86, 0.87]

Late arterial 1.03 [1.02, 1.05] 0.95 [0.95, 0.95] 804 [749, 860] 0.87 [0.87, 0.88]

Portalvenous 1.02 [1.01, 1.04] 0.95 [0.94, 0.95] 822 [767, 878] 0.87 [0.87, 0.87]

HBP 0.92 [0.91, 0.93] 0.92 [0.92, 0.93] 1095 [1028, 1162] 0.87 [0.87, 0.88]

Table 1.  This Table illustrates the co-registration performance on the 458 MRIs for different phases from the 
T1-VIBE sequence as the fixed image. All MRI Volumes for each patient were co-registered to the given phase 
as the fixed image. Best and second best results are bold and italic, respectively. Numbers in brackets denote 
the 95%-confidence intervals for each metric.

 

Scientific Reports |        (2025) 15:25740 5| https://doi.org/10.1038/s41598-025-07084-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Segmentation
In this section, we present the segmentation performance of three deep learning architectures on data goups 
A and B, comprising seven labels. The models evaluated are the conventional nnU-Net, the ResEnc nnU-Net, 
and the Swin UNETR. The assessment was conducted with ensembled predictions to enhance robustness. The 
averaged results for the four test-sets (Figure A1) are displayed in Table 2.

Liver Parenchyma Segmentation Both nnU-Net variants demonstrated the best performance for liver 
parenchyma segmentation in this comparison, achieving high scores in DSC, IOU, and TPR. The conventional 
nnU-Net slightly outperformed its ResEnc counterpart in PPV and VD, indicating marginally superior precision 
and volume accuracy. While Swin UNETR produced competitive results, it lagged behind both nnU-Net variants 
across all metrics.

Vessel Segmentation For portal vein and hepatic vein segmentation, the conventional nnU-Net achieved the 
best performance across most metrics. The ResEnc nnU-Net showed comparable results but fell slightly behind 
in TPR for hepatic veins. Swin UNETR’s performance was notably lower, particularly in DSC, IOU, and TPR.

Lesions and Ascites Lesion segmentation proved challenging for all models, with the conventional nnU-Net 
achieving the highest DSC and IOU scores, as well as the lowest LFPR. The ResEnc variant followed closely, 
while Swin UNETR had the lowest scores across most metrics.

Similar observations were made for ascites segmentation. The conventional nnU-Net outperformed other 
models in DSC and IOU, closely followed by the ResEnc nnU-Net. Swin UNETR showed significantly lower 
performance. However, it’s worth noting that the values for this label should be interpreted cautiously. Visual 
inspection of the nnU-Net’s segmentations for this label revealed a notably high level of precision (see Fig. 2), 
which may not be fully captured by the numerical values alone. This discrepancy between quantitative measures 
and qualitative assessment underscores the complexity of evaluating segmentation performance.

Aorta Segmentation Both nnU-Net variants performed similarly well on abdominal and thoracic aorta 
segmentation, with the conventional nnU-Net slightly ahead in TPR. Swin UNETR, while competitive, was 
slightly behind in most metrics.

Visual Analysis A visual analysis of segmentation results for a patient with liver cirrhosis and ascites revealed 
that both nnU-Net variants correctly identified the vena cava inferior as non-liver tissue, whereas Swin UNETR 
misclassified it as liver (see Fig.  2). In ascites segmentation, the conventional nnU-Net provided the most 
comprehensive segmentation, followed by the ResEnc nnU-Net. Swin UNETR captured some areas missed by 
the other models but missed larger portions overall.

For another patient with impaired liver function (see Fig.  3), the nnU-Net models demonstrated more 
precise liver parenchyma border segmentation compared to Swin UNETR. All models struggled with correct 

nnU-Net6 DSC IOU PPV TPR LFPR LTPR VD

Liver parenchyma 0.97 [0.97, 0.98] 0.95 [0.94, 0.96] 0.97 [0.96, 0.98] 0.98 [0.98, 0.99] – – 0.03 [0.02, 0.04]

Portal vein 0.83 [0.80, 0.87] 0.73 [0.69, 0.76] 0.86 [0.82, 0.89] 0.82 [0.78, 0.86] – –  0.12 [0.08, 0.16]

Hepatic veins 0.78 [0.77, 0.80] 0.65 [0.63, 0.68] 0.83 [0.80, 0.85] 0.77 [0.74, 0.80] – – 0.18 [0.14, 0.22]

Lesions 0.56 [0.48, 0.64] 0.44 [0.36, 0.51] 0.78 [0.71, 0.86] 0.52 [0.44, 0.61] 0.10[0.04, 0.17] 0.65 [0.57, 0.74] 0.66 [0.38, 0.93]

Ascites 0.44 [0.16, 0.71] 0.32 [0.09, 0.55] 0.74 [0.42, 1.10] 0.36 [0.09, 0.63] – – 0.69 [0.25, 1.12]

Abdominal aorta 0.96 [0.96, 0.97] 0.93 [0.92, 0.94] 0.96 [0.96, 0.97] 0.97 [0.96, 0.98] – – 0.04 [0.03, 0.05]

Thoracic aorta 0.93 [0.91, 0.95] 0.87 [0.84, 0.90] 0.92 [0.89, 0.95] 0.94 [0.93, 0.96] – – 0.10 [0.07, 0.14]

ResEnc nnU-Net21

Liver parenchyma 0.97 [0.97, 0.98] 0.95 [0.94, 0.96] 0.96 [0.95, 0.97] 0.98 [0.98, 0.99] – – 0.03 [0.02, 0.05]

Portal vein 0.83 [0.79, 0.86] 0.72 [0.68, 0.76] 0.86 [0.82, 0.89] 0.81 [0.77, 0.85] – – 0.13 [0.09, 0.17]

Hepatic veins 0.78 [0.76, 0.80] 0.64 [0.62, 0.67] 0.83 [0.80, 0.85] 0.75 [0.72, 0.78] – – 0.18 [0.15, 0.21]

Lesions 0.51 [0.43, 0.60] 0.40 [0.32, 0.48] 0.77 [0.69, 0.85] 0.47 [0.38, 0.56] 0.19[0.10, 0.27] 0.63 [0.54, 0.72] 0.73 [0.47, 0.98]

Ascites 0.41 [0.18, 0.64] 0.28 [0.11, 0.46] 0.77 [0.43, 1.11] 0.31 [0.09, 0.55] – – 0.67 [0.42, 0.91]

Abdominal aorta 0.96 [0.96, 0.97] 0.93 [0.92, 0.94] 0.96 [0.96, 0.97] 0.96 [0.96, 0.97] – – 0.04 [0.03, 0.05]

Thoracic aorta 0.93 [0.91, 0.95] 0.87 [0.84, 0.90] 0.92 [0.89, 0.94] 0.95 [0.93, 0.96] – – 0.12 [0.07, 0.16]

Swin UNETR22

Liver parenchyma 0.96 [0.95, 0.97] 0.92 [0.90, 0.94] 0.94 [0.92, 09.6] 0.98 [0.97, 0.98] – – 0.09 [0.05, 0.13]

Portal vein 0.74 [0.70, 0.78] 0.60 [0.56, 0.64] 0.82 [0.78, 0.86] 0.69 [0.64, 0.74] – – 0.35 [0.26, 0.43]

Hepatic veins 0.65 [0.61, 0.70] 0.51 [0.46, 0.55] 0.78 [0.74, 0.81] 0.61 [0.56, 0.66] – – 0.48 [0.38, 0.59]

Lesions 0.47 [0.40, 0.55] 0.35 [0.28, 0.41] 0.65 [0.56, 0.74] 0.44 [0.37, 0.52] 0.55 [0.46, 0.63] 0.63[0.54, 0.73] 1.47 [0.69, 2.25]

Ascites 0.28 [0.08, 0.49] 0.19 [0.04, 0.34] 0.45 [0.15, 0.74] 0.22 [0.05, 0.39] – – 3.99 [-2.76, 10.8]

Abdominal aorta 0.94 [0.94, 0.95] 0.89 [0.88, 0.91] 0.95 [0.94, 0.96] 0.94 [0.93, 0.96] – – 0.11 [0.08, 0.14]

Thoracic aorta 0.87 [0.83, 0.90] 0.78 [0.74, 0.83] 0.89 [0.86, 0.93] 0.86 [0.82, 0.91] – – 0.30 [0.21, 0.39]

Table 2.  Segmentation performance of both nnU-Net configurations and the Swin UNETR for all seven 
labels with 5-fold cross validation and ensembled predictions. Best and second best results are bold and italic, 
respectively. The 95%-confidence intervals are denoted in brackets.

 

Scientific Reports |        (2025) 15:25740 6| https://doi.org/10.1038/s41598-025-07084-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


and precise segmentation of hepatic and portal veins in certain areas, where the ResEnc nnU-Net and the Swin 
UNETR even misclassified some portions of the portal vein as hepatic vein.

Training duration The training of the 20 networks per architecture took about 11, 32.5 and 10 days, for the 
standard nnU-Net, Residual Encoder nnU-Net and the Swin UNETR, respectively.

Fig. 3.  All images show the same axial section of a patient with liver disease for the portalvenous phase. First 
row is the given image with no annotations. Labels in the other images are blue (liver), orange (portal vein), 
red (hepatic vein) and yellow (abdominal aorta). The bottom row from left to right depicts the ground-truth 
annotations, standard nnU-Net’s, ResEnc nnU-Net’s and SWIN UNETR’s segmentations. Arrows and ellipses 
highlight major differences between the segmentations from the models and the ground-truth annotations. 
The pink rectangular boxes show hepatic and portal veins in the ground-truth annotations that all of the 
architectures missed.

 

Fig. 2.  All images show the same axial section of a patient with liver cirrhosis and ascites for the late arterial 
phase. First row is the given image with no annotations. Labels in the other sections are blue (liver), orange 
(portal vein), red (hepatic vein), mauve (ascites), green (lesion), and yellow (abdominal aorta). The bottom 
row from left to right depicts the ground-truth annotations, standard nnU-Net’s, ResEnc nnU-Net’s and SWIN 
UNETR’s segmentations. Arrows, ellipses and rectangular boxes highlight major differences between the 
segmentations from the models and the ground-truth annotations.
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Liver function-based segmentation analysis
In this subsection, the results presented in Table 2 are analyzed with respect to their different LiMAx scores. 
Specifically, the official LiMAx thresholds defined by Stockmann et al.42 were applied to categorize liver function 
into three groups: significant hepatic injury (LiMAx < 140; n = 13), limited hepatic impairment (140 ≤ LiMAx < 
314; n = 29), and normal liver function (LiMAx ≥ 315; n = 17). The comparison of segmentation performance, 
based on Dice scores, is summarized in Table 3. Additional details and a more comprehensive evaluation are 
provided in Supplementary Tables A1, A2, and A3.

Normal liver function All three architectures achieved high segmentation accuracy for liver parenchyma, 
abdominal aorta, and thoracic aorta, with DSC values consistently above 0.91. The standard nnU-Net slightly 
outperformed the other models in most cases, achieving a DSC of 0.98 for liver parenchyma and 0.96 for 
abdominal aorta. Portal vein segmentation also showed robust performance across models, with the standard 
nnU-Net achieving the highest DSC of 0.87. However, segmentation of lesions presented challenges, with lower 
DSC values ranging from 0.44 (ResEnc nnU-Net) to 0.56 (standard nnU-Net).

Limited hepatic impairment Segmentation accuracy remained high for larger anatomical structures such 
as liver parenchyma (DSC≈0.97 across models) and abdominal aorta (DSC=0.96). However, performance 
decreased slightly for smaller structures like portal vein and hepatic veins, particularly for the Swin UNETR 
model (DSC=0.76 and 0.69, respectively). Lesion segmentation showed moderate accuracy across models, with 
the standard nnU-Net achieving the highest DSC of 0.56. Ascites detection was notably inconsistent, with DSC 
values ranging from 0.17 (Swin UNETR) to 0.35 (standard nnU-Net), reflecting the difficulty of segmenting this 
structure in T1-weighted images.

Significant hepatic impairment Segmentation performance declined further for smaller or more complex 
structures such as the portal vein and hepatic veins. The standard nnU-Net demonstrated relatively better 
robustness, achieving DSC values of 0.73 and 0.72, respectively, compared to Swin UNETR (0.63 and 0.46). 
Liver parenchyma segmentation remained strong across all models, with DSCs exceeding 0.95, highlighting 
the reliability of these architectures for larger structures even under severe impairment conditions. Lesion 
segmentation exhibited variability, with Swin UNETR achieving the lowest DSC (0.42) compared to 0.57 for 
the standard nnU-Net. Ascites detection showed improved performance in cases of significant hepatic injury, 
with DSC values exceeding 0.54. This improvement can be attributed to the fact that ascites is typically more 
pronounced in patients with worse liver function and tends to form a larger anatomical structure in such cases.

The standard nnU-Net consistently outperformed ResEnc nnU-Net and Swin UNETR across most 
anatomical structures and liver function categories. While ResEnc nnU-Net achieved comparable results in 
many cases, it struggled slightly with lesion segmentation and smaller structures such as hepatic veins. Swin 

standard nnU-Net6 ResEnc nnU-Net21 Swin UNETR22

Normal liver function DSC

Liver parenchyma 0.98 [0.98, 0.98] 0.98 [0.97, 0.98] 0.97 [0.97, 0.98]

Portal vein 0.87 [0.84, 0.89] 0.86 [0.84, 0.89] 0.77 [0.73, 0.81]

Hepatic veins 0.81 [0.79, 0.84] 0.81 [0.79, 0.84] 0.75 [0.70, 0.79]

Lesions 0.56 [0.41, 0.72] 0.44 [0.26, 0.63] 0.47 [0.31, 0.63]

Ascites – – –

Abdominal aorta 0.96 [0.95, 0.97] 0.96 [0.95, 0.97] 0.94 [0.92, 0.96]

Thoracic aorta 0.91 [0.87, 0.95] 0.91 [0.87, 0.96] 0.85 [0.78, 0.92]

Limited hepatic impairment

Liver parenchyma 0.97 [0.96, 0.98] 0.97 [0.96, 0.98] 0.95 [0.94, 0.97]

Portal vein 0.86 [0.85, 0.87] 0.85 [0.84, 0.87] 0.76 [0.72, 0.81]

Hepatic veins 0.80 [0.78, 0.82] 0.79 [0.76, 0.81] 0.69 [0.64, 0.73]

Lesions 0.56 [0.44, 0.69] 0.54 [0.41, 0.68] 0.49 [0.39, 0.60]

Ascites 0.35 [0.00, 0.81] 0.31 [0.00, 0.77] 0.17 [0.00, 0.44]

Abdominal aorta 0.96 [0.96, 0.97] 0.96 [0.96, 0.97] 0.95 [0.94, 0.96]

Thoracic aorta 0.93 [0.89, 0.96] 0.92 [0.89, 0.95] 0.87 [0.81, 0.94]

Significant hepatic impairment

Liver parenchyma 0.97 [0.96, 0.98] 0.96 [0.95, 0.98] 0.95 [0.93, 0.97]

Portal vein 0.73 [0.56, 0.89] 0.71 [0.54, 0.88] 0.63 [0.46, 0.81]

Hepatic veins 0.72 [0.67, 0.76] 0.72 [0.68, 0.77] 0.46 [0.31, 0.60]

Lesions 0.57 [0.37, 0.77] 0.53 [0.33, 0.74] 0.42 [0.22, 0.62]

Ascites 0.68 [0.42, 0.89] 0.54 [0.35, 0.73] 0.57 [0.29, 0.84]

Abdominal aorta 0.97 [0.96, 0.98] 0.97 [0.96, 0.97] 0.95 [0.93, 0.96]

Thoracic aorta 0.95 [0.94, 0.96] 0.95 [0.94, 0.96] 0.88 [0.82, 0.94]

Table 3.  Segmentation performance evaluated for different liver functions, based on the Dice Similarity 
Coefficient. The results are demonstrated for the standard nnU-Net6, the ResEnc nnU-Net21 and the Swin 
UNETR22. Best results are written in bold.
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UNETR demonstrated lower accuracy overall, particularly for complex or small anatomical regions like the 
portal vein and lesions. Supplementary Tables A1, A2, and A3 provide additional insights into the strengths and 
weaknesses of each architecture across different liver function categories.

The findings emphasize that all three architectures perform well for major anatomical structures under 
normal liver function conditions. However, their performance diminishes in varying degrees under impaired 
liver function scenarios - especially for finer structures like the portal vein or hepatic veins, which become 
harder to delineate due to reduced visibility in imaging data. Among the evaluated models, the standard nnU-
Net remains the most reliable choice overall, consistently achieving higher Dice scores across all categories and 
anatomical structures.

Cross-scanner validation
The cross-scanner validation performed on dataset C (n=47) demonstrated the generalizability of our models 
across different MRI scanner architectures while revealing scanner-dependent performance variations. This 
dataset, acquired on 1.5T Siemens Magnetom Sola and Avanto Fit scanners, presented distinct challenges 
compared to the primary Skyra 3T data, including differences in signal-to-noise ratio, contrast dynamics, and 
artifact profiles. The conventional nnU-Net showed remarkable resilience to these variations, maintaining 
superior performance across most segmentation tasks in this comparison. The results are summarized in Table 4.

For liver parenchyma segmentation, all architectures maintained high Dice scores (nnU-Net: 0.97 [0.94, 
0.99], ResEnc: 0.97 [0.95, 0.99], Swin UNETR: 0.92 [0.87, 0.97]), though a slight performance degradation 
became apparent in the transformer-based model.

The conventional nnU-Net demonstrated strong performance in vascular structure segmentation, achieving 
DSC values of 0.85 [0.81, 0.89] for portal vein and 0.83 [0.78, 0.88] for hepatic veins. The ResEnc nnU-Net 
exhibited reduced vascular precision (portal vein DSC: 0.76 [0.70, 0.81] vs. 0.83 [0.79, 0.86] internal), while Swin 
UNETR showed significant performance drops (hepatic vein DSC: 0.51 [0.44, 0.58] vs. 0.65 [0.61, 0.70] internal), 
indicating transformer architectures’ sensitivity to scanner-specific features.

Lesion segmentation performance varied notably across the three models. The conventional nnU-Net 
achieved the highest DSC (0.55 [0.43, 0.67]) and demonstrated strong precision (PPV: 0.93 [0.88, 0.98]). The 
lesion-wise true positive rate (LTPR) of 0.94 [0.87, 1.01] suggests that nearly all lesions were detected despite 
scanner differences, although the volume difference (VD) was higher than in the internal dataset. In contrast, 
the Swin UNETR showed lower performance (DSC: 0.25 [0.14, 0.36]) accompanied by a higher lesion-wise false 
positive rate (LFPR: 0.76 [0.67, 0.85]), indicating an increased rate of spurious detections.

Ascites segmentation proved challenging for all models when applied to the external validation dataset, with 
negligible DSC values. This may be attributed to the different contrast and intensity characteristics of ascitic fluid 

nnU-Net6 DSC IOU PPV TPR LFPR LTPR VD

Liver parenchyma 0.97 [0.94, 0.99] 0.94 [0.91, 0.97] 0.98 [0.96, 1.00] 0.96 [0.94, 0.99] – – 0.10 [0.02, 0.19]

Portal vein 0.85 [0.81, 0.89] 0.76 [0.71, 0.81] 0.94 [0.92, 0.96] 0.80 [0.74, 0.85] – – 0.32 [0.23, 0.42]

Hepatic veins 0.83 [0.78, 0.88] 0.74 [0.68, 0.80] 0.93 [0.91, 0.95] 0.78 [0.72, 0.85] – - 0.34 [0.23, 0.45]

Lesions 0.55 [0.43, 0.67] 0.45 [0.32, 0.57] 0.93 [0.88, 0.98] 0.48 [0.34, 0.61] 0.06 [0.00, 0.12] 0.94 [0.87, 1.00] 0.90 [0.67, 1.12]

Ascites 0.00 [0.00, 0.01] 0.00 [0.00, 0.01] 0.42 [0.00, 1.00] 0.00 [0.00, 0.00] – – 1.73 [0.00, 5.98]

Abdominal aorta 0.98 [0.98, 0.99] 0.98 [0.98, 0.98] 0.98 [0.98, 0.99] 0.98 [0.97, 0.99] – – 0.01 [0.01, 0.02]

Thoracic aorta 0.97 [0.96, 0.99] 0.95 [0.94, 0.98] 0.99 [0.99, 0.99] 0.97 [0.96, 0.99] – – 0.03 [0.02, 0.04]

ResEnc nnU-Net21

Liver parenchyma 0.97 [0.95, 0.99] 0.94 [0.92, 0.97] 0.97 [0.95, 0.99] 0.97 [0.96, 0.99] - - 0.09 [-0.00, 0.18]

Portal vein 0.76 [0.70, 0.81] 0.64 [0.58, 0.70] 0.92 [0.88, 0.96] 0.69 [0.63, 0.75] - - 0.61 [0.33, 0.89]

Hepatic veins 0.76 [0.71, 0.82] 0.64 [0.58, 0.70] 0.90 [0.87, 0.93] 0.69 [0.63, 0.75] - - 0.46 [0.35, 0.57]

Lesions 0.37 [0.24, 0.50] 0.27 [0.15, 0.40] 0.87 [0.74, 1.00] 0.28 [0.15, 0.41] 0.12 [-0.01, 0.25] 0.82 [0.67, 0.96] 1.23 [1.02, 1.45]

Ascites 0.02 [0.00, 0.21] 0.01 [0.00, 0.11] 0.47 [0.00, 1.00] 0.01 [0.00, 0.12] – – 1.70 [0.00, 5.80]

Abdominal aorta 0.97 [0.96, 0.97] 0.94 [0.93, 0.95] 0.98 [0.98, 0.99] 0.95 [0.95, 0.96] – – 0.07 [0.06, 0.08]

Thoracic aorta 0.96 [0.94, 0.97] 0.92 [0.90, 0.94] 0.99 [0.99, 1.00] 0.93 [0.91, 0.95] – – 0.12 [0.08, 0.15]

Swin UNETR22

Liver parenchyma 0.92 [0.87, 0.97] 0.88 [0.82, 0.93] 0.92 [0.88, 0.96] 0.93 [0.88, 0.98] – – 0.17 [0.04, 0.30]

Portal vein 0.61 [0.55, 0.67] 0.47 [0.41, 0.52] 0.71 [0.65, 0.77] 0.58 [0.52, 0.65] – – 0.70 [0.33, 1.07]

Hepatic veins 0.51 [0.44, 0.58] 0.37 [0.31, 0.43] 0.67 [0.60, 0.74] 0.47 [0.39, 0.54] – – 0.76 [0.59, 0.94]

Lesions 0.25 [0.14, 0.36] 0.18 [0.10, 0.27] 0.36 [0.23, 0.50] 0.28 [0.16, 0.40] 0.76 [0.67, 0.85] 0.77 [0.62, 0.92] 188 [0.00, 322]

Ascites 0.00 [0.00, 0.01] 0.00 [0.00, 0.00] 0.27 [0.00, 1.00] 0.00 [0.00, 0.00] – – 1.36 [0.00, 5.98]

Abdominal aorta 0.91 [0.89, 0.92] 0.83 [0.81, 0.86] 0.91 [0.89, 0.92] 0.92 [0.89, 0.94] – – 0.17 [0.11, 0.22]

Thoracic aorta 0.84 [0.79, 0.90] 0.77 [0.70, 0.83] 0.88 [0.85, 0.92] 0.85 [0.78, 0.92] – – 0.32 [0.19, 0.45]

Table 4.  Segmentation performance on the external validation set for all three architectures with ensembled 
predictions. Best results are bold and the 95%-confidence intervals are denoted in brackets.

 

Scientific Reports |        (2025) 15:25740 9| https://doi.org/10.1038/s41598-025-07084-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


in 1.5T versus 3T scanners, as well as potential differences in sequence parameters that affect fluid visibility and 
shows where model generalization limits lie.

The aortic segmentation remained robust across scanner types, with the conventional nnU-Net achieving 
the best performance for both abdominal (DSC: 0.98 [0.98, 0.99]) and thoracic aorta (DSC: 0.97 [0.96, 0.99]), 
outperforming both ResEnc nnU-Net and Swin UNETR.

These findings highlight the importance of model selection when deploying across heterogeneous scanner 
environments in clinical settings. The conventional nnU-Net architecture demonstrated superior generalizability 
in this comparison, maintaining consistent performance levels comparable to those observed in the internal 
validation, for most structures.

Discussion
We present fully end-to-end trained models for the automated segmentation of the liver and adjacent structures 
and make them available to the public. By employing a multi-phase approach, our model shows competitive 
performance even for complex structures such as hepatic vasculature, while contending with the additional 
challenges posed by co-registration. The whole pipeline can serve as a foundation for further research on liver 
diseases and their therapy.

We chose the nnU-Net architecture for a multitude of reasons. Its advantages include the fully automated self-
configuring workflow, its adaptiveness that optimizes the architecture to any given image input, and its proven 
robustness and efficacy in medical segmentation tasks. For example, it is the core of the TotalSegmentator, a 
widely used tool for multi-label whole-body CT segmentation and just recently added functionality for MRI 
as well43,44. Furthermore, the framework is well-maintained and allows for easy sharing and integration of our 
trained models. The developed models, particularly the nnU-Net variants, demonstrate significant potential 
for integration into clinical workflows by automating segmentation tasks to aid preoperative planning, MRI-
based liver function assessment, and treatment monitoring. With this, diagnostic precision can be enhanced and 
the workload for radiologists reduced. The high generalizability of the nnU-Net across scanner types further 
underscores its suitability for multi-center deployment, paving the way for standardized and efficient liver 
imaging analysis.

Furthermore, the claims of superior performance of novel architectures don’t seem to hold up, as a recent 
comprehensive benchmark shows. Isensee et al. reported that the nnU-Net performs competitively, even 
compared to the latest models like the SwinUNETRV2 and U-Mamba, which are based on the transformer and 
mamba architectures, respectively7,8,21. Our findings support those statements and highlight the importance 
of model selection when deploying across heterogeneous scanner environments in clinical settings. The 
conventional nnU-Net architecture demonstrated superior generalizability, maintaining consistent performance 
levels comparable to those observed in the internal validation, for most structures. This robustness makes it 
particularly suitable for multi-center applications or implementations across varied hardware configurations. In 
contrast, the Swin UNETR, despite its theoretical advantages in modeling long-range dependencies, appeared 
more susceptible to variations in image acquisition parameters and scanner characteristics, suggesting that 
transformer-based architectures may require more scanner-specific fine-tuning or domain adaptation strategies 
to achieve optimal performance in diverse clinical environments.

In an objective comparison using some of the most popular medical segmentation datasets, CNN-based 
U-Nets performed best. MedNeXt ranked first, closely followed by the baseline nnU-Net21,45. However, 
considering the significantly lower computing time required by the nnU-Net, the slight difference in reported 
performance is negligible. The authors argue that the trend towards novel architectures is in part based on 
the lack of rigorous validation, leading to bias and unsubstantiated claims of superiority. Our study addresses 
this issue and even goes one step further. Unlike studies that rely on a fixed test set, which can introduce bias 
due to lack of representativeness, our nested cross-validation ensures that every data point is used for testing 
exactly once. In addition to nested cross-validation, we performed cross-scanner validation to further ensure 
generalizability across diverse imaging conditions.

A stratified analysis based on LiMAx scores revealed that while liver parenchyma segmentation is robust 
across all liver function levels, accuracy for vascular segmentation declines with worsening hepatic impairment. 
Additionally, cross-scanner validation on 1.5T MRI data confirmed the clinical transferability of our approach, 
despite some scanner-dependent differences. This dual validation framework underscores the robustness and 
unbiased nature of our evaluation of the model performance.

Building on this technical foundation, it is important to contextualize these findings within the broader 
landscape of liver segmentation research. Nowadays, liver segmentation is mainly limited to segmenting the 
whole organ and its tumors. Moreover, models based on CT images are overrepresented. This trend can be 
attributed to the broad availability of public image datasets as part of segmentation challenges46. Among the most 
popular challenges is the Liver Tumor Segmentation Benchmark (LiTS), which encompasses 201 abdominal CT 
scans, the majority of which contain liver lesions47. It is part of the Medical Segmentation Decathlon that tests 
how well methods can generalize to previously unseen tasks and is widely used for benchmarking48. While the 
Medical Segmentation Decathlon includes a hepatic vessel segmentation task, it relies solely on CT images. This 
leaves MRI, particularly multi-phase MRI, significantly underrepresented in liver segmentation datasets. This 
gap is noteworthy, given that MRI offers a safer alternative to CT by avoiding harmful radiation exposure. MRI 
plays a crucial role in detecting, differentially diagnosing, and monitoring various liver diseases, and has shown 
promising results in assessing liver function9–12,14,49. However, those approaches require manual placement of 
regions of interest (ROIs) into several desired tissues, a limitation that our pipeline with its trained models aims 
to overcome.

Other approaches exclusively perform hepatic vessel segmentation19,20,50. Hence, work more similar to ours 
that reports multi-label performance on larger (e.g., liver parenchyma) as well as more complex structures (e.g., 
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hepatic vessels) is rare. A paper that is somehow comparable to our approach employs a 3D residual U-Net that 
was trained on contrast-enhanced T1-weighted MRI in the hepatobiliary phase from 120 patients18. The authors 
report DSCs for the liver parenchyma (0.92 ± standard deviation of 0.03), tumor mass (0.77 ± 0.21), hepatic vein 
(0.70 ± 0.05), portal vein (0.61 ± 0.03) and bile duct (0.58 ± 0.15). However, this study only used a single phase 
from the T1-VIBE sequence. In contrast, our approach, despite some co-registration challenges, achieved higher 
DSCs for the hepatic and portal veins. This underscores the importance of incorporating multiple contrast 
phases to enhance segmentation performance. We leverage the individual strengths of each contrast phase in 
the visualization of different hepatic structures. The better performance in tumor segmentation, as reported by 
Oh et al., may be due to the differences in the patient collectives. The authors only included preoperative MRI 
of patients with hepatocellular carcinoma with a median size of 2.5 cm in the validation set. In contrast, we 
included a much more diverse selection of hepatic lesions (benign and malignant), many of which were post-
interventional ablation defects. We further include segmentations of the thoracic and abdominal aorta that can 
help in applications where the relative enhancement compared to the contrast agent bolus plays a role.

Limitations
First, the need for co-registration in multi-phasic MRI was not always optimal. The approach, which is adapted 
from neuroimaging, is complicated in our use case by the greater (relative) mobility (e.g., due to breathing) and 
elastic deformability of depicted structures. However, visual verification of the results and good performance 
metrics support our approach. Future studies could benefit from co-registration algorithms developed specifically 
for abdominal imaging that better account for respiratory motion and organ deformities.

Second, the relatively small dataset posed challenges for training deep learning models. Although the 
sophisticated data augmentation process within the nnU-Net framework – adapted to the Swin UNETR in this 
study – helped mitigate this issue, dataset limitations still impacted performance. Specifically, the small number 
of cases with ascites and different lesion types likely contributed to suboptimal segmentation results for these 
regions.

Visual inspection in dataset B revealed instances where the model’s segmentations for ascites deviated from 
the established ground truth but were considered clinically plausible by expert radiologists. These observations, 
despite lower calculated metrics, reflect the inherent challenges of using single-rater annotations as ground 
truth in tasks where inter-rater variability is significant. Such variability underscores that there is often no 
single “perfect” delineation, particularly in complex cases. These findings highlight the need for further studies 
incorporating multi-rater consensus annotations to better capture variability and ensure robust evaluation of 
model performance. Including T2-weighted sequences, where ascites appears hyperintense, could have been 
highly beneficial to improve agreement in these areas of interest, as well. Unfortunately, this was not feasible due 
to significant differences in spacing and field of view between T2- and T1-weighted acquisitions in our datasets.

Future studies should aim to standardize acquisition protocols to enable the integration of additional imaging 
modalities that could enhance segmentation accuracy.

Similarly, the segmentation of lesions was also affected by the dataset constraints. Performance could 
potentially be improved by either increasing the overall dataset size or narrowing the diversity of lesions to be 
segmented for specific applications. This would allow models to focus on fewer lesion types, improving their 
accuracy and generalization within these subgroups.

Conclusion
Our study demonstrates that the traditional convolutional architecture of nnU-Net remains highly effective for 
medical image segmentation. Transformer-based models like Swin UNETR, while promising, often fall short of 
the performance achieved by CNN-based models, especially with datasets comprising multiple labels and in our 
case, if there are cross-scanner variabilities introduced.

Building on existing research, we reaffirm nnU-Net as one of the top-performing models across diverse 
segmentation tasks. We have developed and made publicly available (after publication) a complete pipeline with 
fully trained models for multi-label segmentation of the liver and adjacent structures in T1-VIBE MRIs. This 
provided data offers flexibility, allowing users to either implement the entire pipeline or integrate trained models 
into existing custom workflows.

This work not only advances the field of liver segmentation but also lays a robust foundation for developing 
more sophisticated models capable of anatomical segmentation, predicting liver lesion histopathology, and 
assessing liver function, with transformative potential for clinical practice and hepatology research.

Data availability
The datasets generated and analyzed during the current study are not publicly available due to the fact that they 
contain protected health information but are available from the corresponding author on reasonable request. 
The full code implementation, including instructions for deployment and all trained models, will be publicly 
available at https://github.com/FlorianRaab95 after publication.
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