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Blood pressure (BP) serves as a fundamental indicator of cardiovascular health, measuring the force 
exerted by circulating blood against arterial walls during each heartbeat. This paper introduces an 
advanced deep learning framework for precise, non-invasive BP estimation via photoplethysmography 
(PPG) signals, addressing critical limitations in traditional, cuff-based BP measurement methods. 
Traditional methods, while reliable, are limited by their inability to provide continuous data, posing 
challenges for proactive health management. In contrast, PPG-based BP estimation facilitates 
continuous monitoring, crucial for wearable health technologies and real-time applications. Our 
proposed model leverages a hybrid architecture of convolutional neural networks (CNNs), bidirectional 
long short-term memory (BiLSTM) layers, and an attention mechanism, enabling refined spatial 
and temporal feature extraction to enhance BP estimation accuracy. This approach is validated on 
an extensive dataset of 2064 patients from the MIMIC-II database, marking a significant increase 
in sample size over prior studies and thereby strengthening model robustness and generalizability. 
Through meticulous preprocessing steps, the model achieved an impressive mean absolute error 
(MAE) of 1.88 for systolic blood pressure (SBP) and 1.34 for diastolic blood pressure (DBP) across 5-fold 
cross-validation. These findings underscore the potential of integrating PPG and deep learning as a 
viable, scalable solution for wearable BP monitoring, providing a foundation for further advancement 
in accessible, non-invasive cardiovascular health monitoring technologies.
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Despite remarkable advancements in modern medicine, cardiovascular disease (CVD) continues to be one of 
the leading causes of death worldwide, especially among the elderly1,2. This persistent health challenge not only 
affects millions but also leaves a profound mark on the body’s vital systems2. Among its most significant impacts 
is the alteration of arterial blood pressure (ABP) waveforms3,4, which serve as mirrors to the heart’s performance 
and the overall health of the cardiovascular system.

These waveforms are intricately connected to several crucial physiological parameters such as systolic blood 
pressure (SBP) and diastolic blood pressure (DBP), making them invaluable in the diagnosis and management 
of heart-related conditions5. SBP and DBP5,6, which reflect the pressure in the arteries during and between 
heartbeats, respectively, provide vital insights into an individual’s cardiovascular health6. By analyzing these 
indicators, healthcare professionals can assess the functioning of the heart and blood vessels, detect potential 
risks, and make informed decisions about treatment strategies.

Current non-invasive methods for measuring blood pressure (BP), such as cuff-based techniques using 
mercury or electronic sphygmomanometers7,8, provide accurate readings but are restricted to discrete 
measurement periods9. These methods require manual operation, preventing continuous monitoring, which is 
crucial for identifying fluctuations and trends in BP over time. Additionally, many patients remain unaware of 
elevated BP levels unless they measure it actively, potentially delaying diagnosis and treatment10. Furthermore, 

1Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, School of Intelligent 
Systems Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran. 
2Department of Electrical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA. email: 
bahram@ut.ac.ir

OPEN

Scientific Reports |        (2025) 15:22229 1| https://doi.org/10.1038/s41598-025-07087-2

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-07087-2&domain=pdf&date_stamp=2025-6-22


the repeated inflation of cuffs during measurements can cause discomfort, limiting their practicality for frequent 
or long-term use10.

To address these limitations, advancements in sensor technology have introduced photoplethysmography 
(PPG) as a promising alternative for non-invasive BP measurement11,12. PPG operates by using low-intensity 
infrared light, which penetrates the skin to detect changes in blood volume. As the heart pumps blood, the 
volume of blood in the microvascular tissue fluctuates, leading to corresponding changes in the intensity of 
light absorbed by the tisse13. By capturing these variations, PPG provides valuable insights into cardiovascular 
dynamics that are proportional to BP changes13–15.

PPG facilitates continuous and comfortable BP monitoring, making it ideally suited for wearable devices 
and long-term use13. Moreover, when combined with advanced signal processing techniques and deep learning 
models, PPG can enhance the accuracy of non-invasive BP estimation, further expanding its potential in modern 
healthcare such as the works that have been done in16–19.

Another promising approach in non-invasive BP estimation is pulse wave velocity (PWV), which represents 
the speed at which BP waves propagate through blood vessels and is closely associated with both blood volume 
and BP values20. PWV can be determined by calculating the pulse transmission time between two fixed 
measurement points. In this context, features such as pulse transit time (PTT)21 and pulse arrival time (PAT)11 
can also be extracted and utilized to improve BP estimation accuracy22–25.

However, the accurate measurement of these parameters often requires combining PPG signals with other 
physiological signals, such as electrocardiogram (ECG) data or additional PPG signals captured from different 
body locations26. This multi-signal requirement introduces complexity and limits the practicality and scope 
of non-invasive BP monitoring in everyday applications, particularly for wearable devices or continuous 
monitoring systems.

Recent research, however, has demonstrated the potential for estimating BP using single-channel PPG signals 
alone27-30. Since both ABP and PPG signals originate from the same heart excitation, it is reasonable to expect a 
correlation between them in both the time and frequency domains31. Specifically, Martínez et al.31 support this 
stance by demonstrating a strong, statistically significant similarity between ABP and PPG waveforms. Their 
analysis reveals high correlation coefficients (often above 0.9) when comparing the morphologies of both signals 
in time and frequency domains. Because PPG is non-invasive, more comfortable, and still captures the essential 
hemodynamic information found in invasive ABP signals, Martínez and colleagues conclude that single-channel 
PPG can feasibly serve as a less intrusive alternative to traditional ABP monitoring for continuous blood pressure 
estimation.

This shift toward using single-channel PPG signals opens the door for simplified, more practical solutions for 
BP monitoring, reducing the dependency on complex multi-sensor setups while maintaining reliable accuracy.

Existing BP estimation methods based on PPG signals can generally be classified into two main approaches. 
The first approach involves extracting relevant features from the PPG signals and mapping these features to 
BP values using regression algorithms or neural networks32-36. The second approach utilizes deep learning 
techniques to map raw PPG signals directly to BP values in an end-to-end manner. In the latter case, the PPG 
signals are typically preprocessed—denoised and normalized—to simplify the mapping process and improve 
accuracy16,26,37,38.

For the feature extraction-based methods, both the original PPG signals and their derivative signals (such 
as the first and second derivatives) are sometimes considered. Early work by Duan et al.35 explored the use of 
PPG signals for BP estimation by evaluating 57 potential features. From these, they proposed three distinct 
feature sets, each containing 11 features specifically for estimating SBP, DBP, and mean arterial pressure (MAP). 
Building on this, Xie et al.32 refined these feature sets and ultimately recommended eight key features that could 
reliably estimate BP values using traditional machine learning algorithms.

In addition, Lin et al.39 found that derivative signals, such as the velocity photoplethysmogram (VPG) and 
the acceleration photoplethysmogram (APG), provided stronger correlations with BP values compared to the 
original PPG signals alone. By incorporating these derivative features, they were able to achieve more accurate BP 
estimations using multiple regression algorithms compared to PWV based methods under similar conditions. 
This indicates that both VPG and APG signals contain valuable information relevant to BP estimation. 
Moreover, Wang et al.40 utilized time-domain and frequency-domain features from the PPG, VPG, and APG 
signals to classify five common BP-related conditions. They applied convolutional neural networks (CNNs) and 
long short-term memory (LSTM) networks, demonstrating that feature extraction from all three signals could 
improve classification accuracy.

While feature extraction methods using PPG, VPG, and APG signals have shown promising results, they 
still require carefully designed and selected features to achieve optimal BP estimation accuracy. This feature 
engineering process can be labor-intensive and may limit the scalability of these methods.

In contrast, end-to-end BP estimation methods aim to bypass manual feature extraction by using preprocessed 
PPG signals as direct inputs to neural networks. Through deep learning, the relationship between PPG signals 
and BP values can be automatically learned by training the models with large datasets. For example, Baek et 
al.26 used both time-domain and frequency-domain representations of PPG and ECG signals as input to a CNN 
architecture, successfully estimating SBP and DBP values.

Wang et al.37 developed a model combining CNN and recurrent neural networks (RNNs) to estimate BP 
values from individual PPG beats. Although this approach eliminated the need for manual feature selection, 
it required the segmentation of PPG signals into smaller parts, such as heartbeats, to feed into the model. 
Additionally, Panwar et al.16 proposed an end-to-end model called PP-Net, which estimates both BP and heart 
rate from PPG signals using a combination of CNN and LSTM networks.

Ibtehaz et al.17 introduced a two-stage deep learning model named PPG2ABP. This model employs a 
cascaded approach to first approximate and then refine the BP values derived from PPG signals. They reported 
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that their method achieved high accuracy in estimating SBP and DBP, surpassing many existing techniques by 
eliminating the need for handcrafted features or additional signals like ECG. Cheng et al.18 further demonstrated 
that their deep learning approach could achieve even more accurate predictions of SBP and DBP from PPG 
signals, contributing to the advancement of non-invasive BP estimation methods.

Tang et al.19 proposed a W-Net architecture that effectively estimates ABP from PPG signals, bypassing the 
need for manual feature extraction. This deep learning model comprises two concatenated U-Net structures, 
designed to capture both local and global features. Their results demonstrated high pearson correlation values 
and low root mean square errors (RMSEs) between the estimated and reference ABP values, indicating the 
model’s ability to provide highly accurate BP estimations.

Overall, while feature extraction-based methods rely on careful selection and design of input features, end-
to-end deep learning approaches automatically learn the mapping from raw PPG signals to BP values, offering 
greater flexibility and potential scalability. However, the effectiveness of both approaches depends on the quality 
of the input data and the complexity of the models employed.

In this study, we focused on enhancing BP estimation accuracy from PPG signals by implementing advanced 
preprocessing steps and experimenting with several model architectures and hyperparameters. After extensive 
evaluation, we developed a model architecture comprising three CNN layers, two bidirectional long short-term 
memory (BiLSTM) layers, and an attention layer.

Compared to prior research efforts, our proposed approach offers several distinct advantages that enhance 
both the accuracy and practicality of non-invasive BP estimation:

•	 Larger sample size: Utilizing data from 2064 patients—substantially more than prior studies16-19,26,37—im-
proves the model’s generalizability and robustness.

•	 Reduced system complexity and enhanced usability in wearable devices: By relying solely on PPG signals, 
this study eliminates the need for multiple signal sources such as ECG26, simplifying the system design and 
improving its feasibility for wearable devices and continuous monitoring systems.

•	 Advanced architecture: Integrating CNN, BiLSTM, and attention layers—an architecture combination not 
previously explored in similar research—enables the effective capture of complex features and temporal pat-
terns within PPG signals, enhancing the model’s ability to track BP fluctuations.

•	 Improved accuracy: Superior performance in 5-fold cross-validation demonstrates the model’s high reliabil-
ity and accuracy in BP estimation.

These advancements highlight the efficiency and precision of our proposed method for BP estimation from PPG 
signals, representing a significant contribution to the field of non-invasive BP monitoring.

The structure of this article is as follows: Sect. 2 provides a thorough and detailed overview of the methodology 
used in this study, outlining each step of the approach in depth. Sec. 3 then presents the experimental results, 
analyzing the performance of the proposed model and highlighting key findings. Finally, Sect. 4 concludes the 
article by summarizing the main insights, discussing the implications of the results, and suggesting potential 
directions for future research.

Materials and methods
This section provides an overview of the steps used for BP estimation using PPG signals, including the data used, 
the signal preprocessing stages, the extraction of systolic and diastolic points from ABP signals, and the training 
and evaluation of the deep networks employed. Figure 1 illustrates the steps of our method. After the signal 
preprocessing process, we extracted the systolic and diastolic points present in the segmented ABP signals to 
use their averages as the target for the networks. Finally, the networks were trained and evaluated using a 5-fold 
cross-validation approach, which enhances the robustness and generalizability of our networks. In this method, 
the dataset was divided into five equal parts. During each iteration, one distinct part was used for testing, while 
the remaining four parts were used for training. This process was repeated five times, ensuring that each part 
was used exactly once for testing. The final results were then averaged to provide a comprehensive evaluation. 
Importantly, for each iteration, the model was trained from scratch to ensure that the training process was 
unbiased and independent of the previous iterations.

Detailed database description
In this study, we utilize a subset of the multiparameter intelligent monitoring in intensive care II (MIMIC-
II) dataset41,42, which is publicly available through the University of California Irvine (UCI) machine learning 
repository43. This dataset, compiled by Kachuee et al.22,44, contains physiological recordings of patients in the 
intensive care unit (ICU). It includes synchronously recorded PPG, ABP, and ECG signals from a total of 12,000 
patients.

All signals within the dataset are sampled at a frequency of 125 Hz with 8-bit digital precision, providing a 
high-resolution dataset for model training and evaluation42. The focus of our study, however, is on the PPG and 
ABP signals, which are used to estimate BP.

The dataset has been pre-processed according to the methodology of Kachuee et al.44, making it more 
accessible for further analysis and ensuring that the signals are in a suitable format for training deep learning 
models. This pre-processing step includes noise reduction and the removal of irrelevant or unreliable signal 
segments, making the dataset well-suited for non-invasive BP estimation tasks.

Signal preprocessing techniques
In this study, several preprocessing techniques were applied to ensure the quality and consistency of the signals 
used for BP estimation. The goal of these techniques is to remove noise, irrelevant data, and signals that do not 
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meet the required standards, ensuring that only high-quality data is used for training the deep learning models. 
Figure 2 illustrates the steps involved in the preprocessing pipeline, which transforms the raw PPG and ABP 
signals into high-quality data suitable for model training.

Detrending
In the detrending step of preprocessing, the goal is to remove baseline trends and slow changes from the PPG 
signal45 that could interfere with the extraction of key physiological features. A linear regression model is applied 
to the PPG signal to fit a baseline trend line. This trend line is then subtracted from the original signal, leaving 
behind the detrended signal. The resulting signal is free from low-frequency noise and is better suited for further 
processing steps. Figure  3 illustrates the original and detrended PPG signals over the course of one second, 
showcasing how the detrending process removes baseline shifts while preserving the key physiological features.

Removing records with ABP > 200 mmhg
All records where the maximum ABP exceeds 200 mmHg were removed from the dataset. This step prevents the 
inclusion of extreme or outlier data points that could negatively influence the model’s training.

Removing records with duration < 8 min
Referring to the previous work16, we removed all records where the duration was less than 8 min. This ensures 
that the dataset includes only segments of signals long enough to capture meaningful physiological patterns. As 
a result, the number of subjects decreased from 12,000 to 2064, allowing for more consistent and reliable data 
for model training and evaluation.

Fig. 2.  The flow chart of the signal preprocessing pipeline for BP estimation.

 

Fig. 1.  The workflow for BP estimation from PPG and ABP signals, including preprocessing, extraction of 
systolic and diastolic points, and training deep learning models.
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Segmentation
After applying the initial filters, data segmentation is performed using an 8.192-second window with 75% 
overlap, following the approach of38. This windowing technique has been proven effective in capturing 
information related to heart cycles46-49, ensuring that the deep learning models can extract relevant features for 
BP estimation. The overlapping windows provide a more continuous analysis of the signals, further enhancing 
the model’s ability to capture variations in physiological patterns. Figures 4 presents a sample of simultaneous 
PPG and ABP signals extracted from the database over an 8.192-second interval.

Systolic and diastolic peak detection
We decided to modify our target for training and evaluating the deep networks by extracting the systolic and 
diastolic points from the ABP signals in each 8.192-second window, rather than using the entire ABP signal as the 
target. The mean of the systolic points over the 8.192-second interval was used as the target for the corresponding 
8.192-second PPG input, and similarly, the mean of the diastolic points was defined as another target for the 
same PPG input. Thus, our targets consist of single values for systolic and diastolic pressure. Figure 5 shows an 
example of an ABP signal over 8.192 s with the extracted systolic and diastolic points highlighted.

Train and test split
For evaluating our deep networks, we employ a 5-fold cross-validation approach50. This technique involves 
partitioning the entire dataset into five equal subsets. Prior to splitting, we applied shuffling to the dataset to 
ensure that the samples are randomly distributed among the folds. This step helps prevent any potential bias 
arising from the original ordering of the data, especially in large datasets, and leads to a more reliable evaluation. 
In each of the five iterations, a different subset is designated as the test set, while the remaining four subsets are 
combined to form the training set. This process is repeated five times, with each of the subsets used exactly once 
as the test set. This method provides a thorough assessment of the model’s performance. Figure 6 provides an 
overview to visualize this process.

Fig. 4.  Simultaneous visualization of a PPG signal (blue, left y-axis) and an ABP signal (red, right y-axis) over 
an 8.192-second interval.

 

Fig. 3.  The original and detrended PPG signals for one second from a sample in the dataset.
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Deep learning model
In this study, we present a sophisticated architecture that combines CNNs, BiLSTM networks, and an attention 
mechanism for BP estimation using PPG signals. This approach leverages the unique strengths of CNNs for 
feature extraction, BiLSTM for sequential data processing, and attention mechanism for focusing on the most 
relevant temporal segments of the input signal. The combination of these techniques has been inspired by their 
successful application in various deep learning tasks, such as speech recognition, natural language processing, 
and medical signal analysis.

CNN layer for feature extraction
The process begins with a CNN, designed to extract fundamental features from the PPG signals. CNNs are 
particularly effective in capturing local patterns in time-series data due to their ability to apply convolutional 
filters across the signal. Each filter learns to detect specific characteristics of the signal, allowing the model to 
automatically detect patterns relevant to BP estimation. In our CNN layers, we employed the ReLU activation 
function (Rectified Linear Unit) after each convolution operation. ReLU introduces non-linearity into the 
model, mitigates the vanishing gradient problem, and accelerates the convergence during training. Although we 
experimented with other activation functions such as sigmoid and tanh, ReLU yielded superior performance in 
terms of training stability and model accuracy.

The CNN layer produces a series of feature maps representing the most pertinent aspects of the input PPG 
signals51–53. Mathematically, for an input signal x, a 1D convolution operation can be expressed as:

	
f(x) = σ

(
k∑

i=1

wi.xt−i+1 + b

)
� (1)

Fig. 6.  Illustration of the 5-fold cross-validation process, depicting the division of data into train and test sets 
across five iterations.

 

Fig. 5.  An ABP signal (8.192 s) showing extracted systolic (red) and diastolic (green) points, which define 
target values for deep learning models using PPG input.
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Where wi are the learned weights of the filter, k is the filter size, b is the bias term, and σ is a non-linear activation 
function such as ReLU. The result is a feature map that highlights patterns essential for the next stages of the 
network.

BiLSTM layer for Temporal dependency capture
After feature extraction, the processed data is fed into a BiLSTM network. BiLSTM networks are particularly 
well-suited for capturing long-term dependencies in sequential data and mitigating the vanishing gradient 
problem that often affects traditional RNNs. Unlike unidirectional LSTM networks, BiLSTM models consist of 
two LSTM layers running in parallel: one processes the input sequence in the forward direction, and the other 
in the backward direction. This dual processing enables the model to simultaneously incorporate both past and 
future context at each time step, making it especially effective for time-series tasks like BP estimation54,55.

In this study, two BiLSTM layers are employed. The output of the first BiLSTM layer, with dimensionality 
doubled due to its bidirectional nature, serves as the input to the second BiLSTM layer. This hierarchical structure 
allows for deeper temporal feature representation and enhances the model’s ability to learn complex sequential 
dependencies.

Detailed illustrations of the BiLSTM architecture and the internal operations of each LSTM cell—including 
the input, forget, and output gates—are provided in the Supplementary Material. These details help clarify how 
information is selectively retained or discarded over time through gating mechanisms within the LSTM units. 
The BiLSTM mechanism ultimately ensures that both past and future temporal information are effectively 
utilized to improve the accuracy of BP estimation.

Attention mechanism for focused prediction
The output of the BiLSTM layer is passed to an attention mechanism56,57, which assigns weights to different time 
steps of the input sequence, enabling the model to focus on the most critical segments of the PPG signal. This 
is particularly important in medical signals like PPG, where certain portions of the signal may contain more 
relevant information for BP estimation.

The attention mechanism computes a score et for each time step t by comparing the BiLSTM hidden states 
htwith a context vector v (learned during training):

	 et = tanh (Wa.ht + ba)� (2)

The attention weights αt are obtained by applying the softmax function to the scores:

	
αt = exp(et)∑

t′ exp(et′ ) � (3)

The final context vectorc is then computed as a weighted sum of the BiLSTM hidden states:

	
c =

∑
t

αtht� (4)

This context vector is used to produce the final BP estimation, focusing on the most relevant parts of the input 
signal.

Experimental architectures
In addition to the final architecture consisting of three CNN layers, two BiLSTM layers, and one attention layer, 
which yielded promising results, we experimented with different network configurations, and their results are 
reported in the following sections. These configurations include:

	1.	 A single CNN layer combined with one BiLSTM layer and an attention layer.
	2.	 Two CNN layers combined with one BiLSTM layer and an attention layer.
	3.	 Two CNN layers combined with two BiLSTM layers and an attention layer.

This integrative approach, consisting of three CNN layers, two BiLSTM layers, and one attention layer, provides 
a robust framework for improving BP estimation accuracy from PPG signals by effectively extracting spatial and 
temporal features, while dynamically focusing on the most informative parts of the signal. All deep learning 
models were implemented in PyTorch, and their training and evaluation were conducted on an NVIDIA 
GeForce RTX 3090.

Figure 7 summarizes the overall structure of this deep learning model, illustrating how the CNN layers, 
BiLSTM layers, and the attention mechanism are combined for accurate SBP and DBP estimation.

Evaluation criteria for model performance
To assess the effectiveness and accuracy of our model in estimating BP, we employed two regression metrics: 
Mean Squared Error (MSE), and Mean Absolute Error (MAE)58. Each metric provides unique insights into the 
model’s performance and error characteristics, allowing us to evaluate how well the model generalizes to new 
data and how precisely it predicts SBP and DBP values.

MSE quantifies the average squared differences between the model’s predicted values and the actual observed 
values. Squaring the errors penalizes larger errors more heavily than smaller ones, making MSE highly sensitive 
to outliers. This is useful when we want to emphasize larger deviations from the target value, which can be crucial 
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in clinical settings where significant mispredictions of BP could have serious consequences. Mathematically, 
MSE for SBP and DBP is defined as follows:

	
MSESBP = 1

n

n∑
i=1

(SBPact (i) − SBPper (i))2� (5)

	
MSEDBP = 1

n

n∑
i=1

(DBPact (i) − DBPper (i))2� (6)

Where n is the number of samples, SBPact (i)and DBPact (i) represent the actual values of SBP and DBP for 
the i -th sample, and SBPper (i) and DBPper (i) are the predicted values of SBP and DBP for the i -th sample. 
A lower MSE indicates better model performance, as it signifies smaller average squared errors.

Unlike MSE, MAE measures the average absolute difference between predicted and actual values without 
squaring the error term. This means each error contributes to the total proportionately, making MAE less 
sensitive to outliers than MSE. MAE thus provides a more balanced view of overall model accuracy. The formula 
for MAE is:

	
MAESBP = 1

n

n∑
i=1

|SBPact (i) − SBPper (i)|� (7)

	
MAEDBP = 1

n

n∑
i=1

|DBPact (i) − DBPper (i)|� (8)

 
In applications like BP estimation, MAE provides insight into the average prediction error, offering a 

straightforward measure of accuracy that reflects typical deviations between the predicted and actual BP values.
By analyzing MSE and MAE collectively, we gain a comprehensive understanding of the model’s predictive 

power. Low values in all two metrics suggest the model is both accurate (small average error) and consistent 
(low variance in errors). These metrics collectively help in assessing the model’s generalizability, reliability, and 
overall effectiveness in clinical BP estimation, where accurate predictions are crucial for patient monitoring and 
intervention.

Results and discussion
This section presents a detailed evaluation of the performance of the deep learning models used in this study. All 
essential preprocessing steps and data preparation stages for the models were meticulously executed. The models 
were trained and evaluated using 5-fold cross-validation, with 20% of the data reserved for testing and 80% for 
training, of which 10% was further allocated for validation. Table 1 summarizes the average results across the 5 
folds for the tested architectures, reported separately for SBP and DBP.

As shown in Table  1, the best results for SBP and DBP estimation were achieved using an architecture 
comprising three CNN layers, two BiLSTM layers, and one attention layer. The fold-specific results for SBP and 
DBP in this architecture are reported in Tables 2 and 3.

To evaluate the performance of the proposed network in each of the five cross-validation folds, graphical 
plots were used. Figure 8 illustrates the changes in the loss function and MAE over different training epochs for 
the training and validation data (with 10% of the training data set aside for validation) in the best fold. These 
plots show how the loss function and MAE decrease as training progresses, approaching a steady value in the 
best fold. Through these graphs, we can assess the model’s effectiveness in avoiding overfitting, as well as its 
ability to accurately learn PPG signal features and predict SBP and DBP. In the figures, the plot on the left shows 

Fig. 7.  Architectural diagram illustrating the deep learning model for BP estimation.
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changes in the loss function, while the plot on the right displays changes in MAE over training epochs. This 
graphical analysis serves as an important tool for evaluating the quality of training and model performance.

Figure 9 presents the scatter plot of actual versus predicted BP values for the validation dataset. The left plot 
corresponds to SBP for the best fold, Fold 1, and the right plot corresponds to DBP for the best fold, Fold 3. 
As observed, most points are closely aligned with the ideal prediction line (y = x), indicating the model’s high 
accuracy in BP estimation.

Figure 10 presents the test results of the proposed network for predicting SBP and DBP in each of the five 
cross-validation folds. These results are illustrated for two key model evaluation metrics: the loss function and 
MAE. In each figure, the plot on the left shows the distribution of loss function values for each of the five folds, 
clearly highlighting the fluctuations and performance variations of the network across folds. The plot on the 
right displays the distribution of MAE values for the same folds, providing insights into the overall accuracy of 
the model in BP prediction.

Figure 11 displays the Bland-Altman plots18 for the best fold. This plot is a crucial tool for assessing the 
agreement between the actual and predicted BP values. In this diagram, the horizontal axis represents the mean 
of the actual and predicted values, while the vertical axis indicates the difference between these values.

The Bland-Altman plot allows researchers to examine the distribution of differences against the mean values 
and identify data points that exhibit significant discrepancies. The blue lines represent the limits of agreement 
(1.96 ± standard deviation of the mean differences), and the red line indicates the mean difference. This plot 
demonstrates how closely the model’s predictions in the best fold align with the actual values and whether the 
differences are uniformly distributed.

We tested various hyperparameters using 5-fold cross-validation to achieve better results. The optimal 
hyperparameters of the network, which yielded favorable outcomes for SBP and DBP, are presented in Table 4.

Comparing similar studies in this field is often challenging due to variations in databases, methodologies, 
and evaluation standards. Some studies have achieved high accuracy using small, selected subsets of data, while 
others have worked with large-scale datasets, often yielding relatively lower accuracy. Given the limited number 
of similar studies, we have endeavored to conduct a fair and well-reasoned comparison.

Looking at Table 5, it can be seen that Baek et al.26 conducted a study on end-to-end BP prediction using fully 
convolutional networks based on deep learning. Their method bypasses traditional PWV feature extraction, 
instead utilizing raw ECG and PPG signals directly. This approach allows for calibration-free predictions while 
achieving high accuracy, with an MAE of 9.30 for SBP and 5.12 for DBP using combined ECG and PPG signals, 
and 10.86 for SBP and 5.95 for DBP with only PPG.

Fold MAE MSE

Fold 1 1.34 4.42

Fold 2 1.34 4.26

Fold 3 1.26 3.97

Fold 4 1.47 5.33

Fold 5 1.28 3.98

Average ± STD 1.34 ± 0.07 4.39 ± 0.49

Table 3.  The 5-fold cross-validation results of the proposed network for DBP.

 

Fold MAE MSE

Fold 1 1.67 7.00

Fold 2 2.40 12.85

Fold 3 1.75 7.76

Fold 4 1.85 8.21

Fold 5 1.69 7.26

Average ± STD 1.88 ± 0.27 8.62 ± 2.15

Table 2.  The 5-fold cross-validation results of the proposed network for SBP.

 

Architecture MSE (SBP) MSE (DBP) MAE (SBP) MAE (DBP)

1 CNN + 1 BiLSTM + Attention 13.94 10.66 2.70 2.15

2 CNN + 1 BiLSTM + Attention 12.44 6.76 2.22 1.64

2 CNN + 2 BiLSTM + Attention 9.20 4.50 2 1.40

3 CNN + 2 BiLSTM + Attention 8.62 4.39 1.88 1.34

Table 1.  Average results of 5-fold cross-validation for SBP and DBP models.
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Wang et al.37 used CNN and RNN networks in their study to predict BP based on PPG signals. In this study, 
data from 90 patients were used from the MIMIC database. The study demonstrated that combining CNN and 
RNN could improve the accuracy of BP prediction. They achieved a MAE of 3.95 for SBP and 2.14 for DBP. This 
study showed that RNN networks have the ability to model complex time sequences in PPG signals; however, 
there is still a need to increase the number of participants to enhance generalizability and further improve BP 
estimation accuracy.

Panwar et al.16 used CNN and LSTM for BP prediction. The data in this study were extracted from the MIMIC 
II database and included information on 1557 patients. They showed that using LSTM can improve model 
performance in predicting accurate BP values. Using this method, an MAE of 3.97 for SBP and 2.30 for DBP was 

Fig. 9.  Scatter plot of actual versus predicted values for the validation dataset. The left plot corresponds to SBP, 
and the right plot corresponds to DBP.

 

Fig. 8.  The plot of the loss function changes (left) and MAE (right) over training epochs for the best cross-
validation fold in (a) SBP and (b) DBP estimation.
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achieved. These results indicated that LSTM, due to its ability to model long-term temporal dependencies, can 
be more accurate in estimating BP compared to traditional methods.

Ibtehaz et al.17 explored the accuracy of BP prediction using U-Net and MultiResUNet architectures. This 
study was conducted on the MIMIC II database and included data from 942 patients. They demonstrated that 
U-Net and MultiResUNet architectures could improve the accuracy of BP prediction. However, the results 
showed an MAE of 5.73 for SBP and 3.45 for DBP, highlighting challenges in using these methods for precise BP 
estimation, particularly when input data are noisy or nonlinear.

Cheng et al.18 used the ABP-Net model, incorporating PPG, VPG, and APG signals, to predict BP. Data for 
this study were obtained from the MIMIC II database and included information on 1627 patients. They achieved 
an MAE of 3.27 for SBP and 1.90 for DBP. The use of multiple signals combined in the ABP-Net model led to 
improved prediction accuracy compared to previous models. This study indicated that using multiple signals 
simultaneously could enhance the accuracy of BP prediction.

Tang et al.19 conducted two separate studies to investigate the impact of using PPG, VPG, and APG signals 
on BP prediction. Their studies were limited to 500 participants. In the first study, they used the W-Net model 
for BP prediction using PPG, VPG, and APG signals, achieving an MAE of 2.62 for SBP and 1.56 for DBP. In the 
second study, they only used the PPG signal for BP prediction, resulting in an MAE of 2.60 for SBP and 1.45 for 
DBP. These results indicated that additional signals could provide acceptable prediction accuracy, but using a 
single signal could offer better accuracy.

The results obtained from the proposed model highlight its high accuracy and superior performance relative 
to existing methods for non-invasive BP estimation. As illustrated in Table 5, our model—featuring a hybrid 
architecture combining CNN layers, BiLSTM layers, and an attention mechanism—outperformed previous 
approaches. This architectural combination allows for effective extraction of spatial and temporal features 
from the PPG signals, with the attention layer focusing on the most relevant signal segments for BP estimation. 
Consequently, the proposed model demonstrates a notable improvement in predicting both SBP and DBP.

Fig. 10.  Bar charts of the loss function (left) and MAE (right) on the test set for each of the five cross-
validation folds:(a) SBP estimation, (b) DBP estimation.
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Conclusion
In this study, we developed an advanced deep learning model for non-invasive BP estimation using PPG 
signals, providing a significant step toward continuous, wearable BP monitoring solutions. Our approach, 
which integrates CNN, BiLSTM, and an attention mechanism, effectively captures the spatial and temporal 
dependencies within PPG signals, yielding high accuracy and robustness across a large dataset of 2064 patients 

Hyperparameter Range Explored Selected Value(s)

Learning rate [0.0001, 0.001, 0.01, 0.1] 0.001

Optimizer Adam, SGD Adam

Patience [30, 50, 60] 30

Number of epochs [300, 500, 700] 500

Batch size [64, 128] 64

Filters [32, 64, 128] [32, 64, 128]

Kernel size [3, 5] 3

Kernel strides [1, 2] 1

Pool method Max, Average Max

Pool size [2, 3] 2

Pool strides [1, 2, 4] 1

LSTM units [64, 128, 256] 128

Dropout ratio [0.1, 0.2, 0.3, 0.4] 0.2

Table 4.  Hyperparameter tuning and selection for model optimization.

 

Fig. 11.  The Bland-Altman plots for the best-performing fold in the cross-validation process: (a) SBP 
estimation, (b) DBP estimation.
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from the MIMIC-II database. The model achieved MAEs of 1.88 for SBP and 1.34 for DBP, surpassing the 
accuracy of prior PPG-based BP estimation studies.

Compared to traditional BP measurement methods, such as cuff-based techniques, our PPG-based approach 
enables continuous monitoring without discomfort, offering a feasible solution for wearable health technologies 
and real-time applications. The proposed architecture demonstrates the efficacy of hybrid deep learning models 
in extracting meaningful cardiovascular information solely from PPG signals, thereby eliminating the need for 
multi-signal setups (e.g., ECG or VPG), which adds to the practicality and simplicity of the system.

Our study also highlights the benefits of using a larger dataset than previous works, enhancing the model’s 
generalizability and reliability. The results underscore the potential of deep learning in non-invasive BP 
estimation, providing an accurate, scalable, and patient-friendly alternative to conventional methods. This 
approach could play a transformative role in future healthcare, enabling timely BP monitoring and management 
through wearable devices and contributing significantly to cardiovascular health management.

To further advance this research, future efforts should focus on expanding the dataset to include more 
diverse populations, which would improve the model’s adaptability across different demographic groups and 
clinical settings. Additionally, implementing and testing this model in real-time on wearable devices, such as 
smartwatches or fitness trackers, would validate its performance under dynamic, everyday conditions. Such 
implementations would help optimize the model for power efficiency and on-device processing, paving the way 
for scalable, low-cost solutions in continuous BP monitoring. These advancements could empower individuals 
and healthcare providers with real-time insights, aiding in proactive management of hypertension and other 
cardiovascular conditions.

Data availability
The data supporting the findings of this study are based on the publicly available database by Kachuee et al. The 
data used in this manuscript can be downloaded from this link ​h​t​t​p​s​:​/​/​a​r​c​h​i​v​e​.​i​c​s​.​u​c​i​.​e​d​u​/​d​a​t​a​s​e​t​/​3​4​0​/​c​u​f​f​+​l​e​s​s​+​
b​l​o​o​d​+​p​r​e​s​s​u​r​e​+​e​s​t​i​m​a​t​i​o​n (accessed on 20 December 2024). This dataset was used under its open access terms, 
and all analyses were conducted in accordance with the original authors’ data usage policies and guidelines.
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