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Efficient resource forecasting in multi-component application scenarios necessitates comprehensive 
consideration of inter-component dependencies and resource interaction characteristics. Existing 
methods primarily rely on single-step predictions, adopt univariate models, and ignore inter-
component dependencies, making them less effective in addressing complex dynamics in multi-
component applications. To address these challenges, this study introduces MMTransformer, a 
multivariate time series forecasting model designed for multi-component applications. The model 
offers several innovations: (1) a segmented embedding strategy to effectively capture sequence 
features; (2) a multi-stage attention mechanism to model intricate inter-variable dependencies; and (3) 
a multi-scale encoder-decoder structure to adapt to dynamic variations in local and global information. 
To evaluate the model’s performance, we constructed workload datasets for courseware production 
and digital human video creation systems using real-world application scenarios, with three key 
performance metrics established by monitoring core resource states. Experimental results indicate 
that MMTransformer achieves average reductions of 42.15% in MSE and 35.37% in MAE compared to 
traditional time series models such as LSTM, GRU, and RNN. Compared to state-of-the-art time series 
models like Fedformer, Autoformer, and Informer, MSE and MAE are reduced by an average of 27.14% 
and 25.55%, respectively. The findings confirm that MMTransformer significantly enhances resource 
prediction accuracy in multi-component applications.

Keywords  Multi-component application, Multivariate time-series resource forecasting, MMTransformer, 
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Cloud computing has emerged as a key component of modern IT infrastructure, with its market size expanding 
rapidly. Statistics show that the global cloud computing market reached $602.31 billion in 2023 and is projected 
to grow at a compound annual growth rate of 21.2% by 20301. Leveraging high elasticity and flexibility, cloud 
computing systems can dynamically adapt resource allocation to real-time workload changes. However, to 
guarantee top-tier Quality of Service (QoS) and prevent Service Level Agreement (SLA) violations, cloud 
providers tend to overprovision resources to manage demand uncertainties. Although this practice mitigates 
service interruption risks, overprovisioning wastes resources and inflates costs, while under provisioning can 
degrade service performance and cause customer attrition2. Consequently, accurate resource allocation tailored 
to real-time application demands has become a pressing challenge for cloud service providers.

Resource management strategies can be broadly classified into passive and active approaches. Passive 
methods rely on monitoring system metrics, such as CPU usage and queue length, and trigger resource scaling 
when thresholds are breached3. While simple to implement, these methods suffer from delayed response times, 
often resulting in performance degradation4. In contrast, active methods predict future resource needs, allowing 
for preemptive resource allocation or release. This helps improve utilization, reduce latency, lower costs, and 
prevent SLA breaches5. Nevertheless, current active methods encounter significant limitations in handling 
complex application scenarios:

	(1)	 Excessive reliance on single-step predictions Most existing cloud resource prediction methods emphasize sin-
gle-step predictions6–9. Single-step prediction involves forecasting only the next time step at each iteration, 
leading to error accumulation, particularly in long-term forecasting scenarios where accuracy diminishes 
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significantly as the prediction horizon increases. Additionally, in scenarios demanding rapid responses, 
single-step prediction struggles to offer decision-makers enough lead time to adapt to changes. In contrast, 
multi-step prediction forecasts multiple future time windows at once. This reduces response time and al-
lows the model to capture long-term dependencies, improving prediction accuracy.

	(2)	 Limitations of univariate time series models Most cloud resource prediction methods rely on univariate 
time-series models10–16. These models generally focus on a single resource consumption metric, such as 
CPU utilization, using its historical data for forecasting. However, in practical applications, there are often 
strong correlations between different resource variables (e.g., CPU and GPU). Multivariate models leverage 
these relationships to deliver more accurate predictions. For example, a linear increase in CPU load coupled 
with a significant rise in GPU load might suggest a shift of computational tasks to the GPU. These interac-
tions underscore the critical role of multivariate time series prediction. Furthermore, univariate models fall 
short of meeting practical production and operational needs.

	(3)	 Lack of consideration for inter-component dependencies Most existing methods target resource consumption 
prediction for single components17–27. In real-world scenarios, multiple application components frequent-
ly share resources and demonstrate cross-time-scale dependencies. For instance, shared resource usage 
among components can lead to interdependent utilization rates. Moreover, the operation of one component 
might depend on the completion of a prior component’s execution. Integrating inter-component dependen-
cies into model design would substantially improve prediction accuracy.

To address these challenges, we introduce a multivariate time series resource prediction model specifically 
designed for multi-component applications. This study is the first to tackle this problem. Our approach 
develops an innovative framework that captures long-term dependencies in time series and models the complex 
interactions between variables in multi-component systems. The key contributions of this study are summarized 
as follows: (1) This study is the first to address the multivariate time series forecasting problem considering 
resource dependencies among components. High-quality datasets were constructed using two real-world 
application scenarios to validate the proposed model. These scenarios were selected for their complexity and 
real-world applicability, providing a robust basis for model validation; (2) A novel Transformer-based framework 
is proposed, which incorporates Segment-based Embedding (SBE) and Multi-Stage Attention (MSA). This 
framework efficiently addresses long-sequence modeling challenges and accurately captures the interactions 
among variables in multi-component scenarios, thereby greatly improving the prediction performance for 
multivariate time series tasks; and (3) Comprehensive experiments were conducted using the collected datasets 
to validate the proposed model. This includes analyzing how past and future time window sizes affect prediction 
accuracy. Comparisons of four traditional models and three state-of-the-art time series prediction models 
demonstrate the proposed model’s superiority in multi-component resource prediction scenarios.

The remainder of the paper is structured as follows: “Related work” section reviews related work on time 
series prediction models. “Methodology” section elaborates on the methodology. “Numerical experiments” 
section details the experiments and analysis. Finally, “Conclusion” section concludes with the key findings and 
discusses potential future research directions.

Related work
Numerous methods have been proposed by researchers to address the resource prediction problem in cloud 
computing28–30. However, current studies still face challenges in modeling multi-component interactions, 
in capturing multivariate dependencies, and in generalizing complex scenarios. To systematically review 
advancements in this field, this paper categorizes and summarizes existing research from the following 
perspectives.

Resource prediction in cloud computing
Cloud resource prediction is a fundamental aspect of resource management, focusing on optimizing resource 
allocation and efficiency amid uncertain and dynamic resource demands. Chen et al.13 suggested that resource 
provisioning schemes based on demand prediction are instrumental in maintaining service level objectives 
in cloud systems. To tackle the challenge of resource overprovisioning, they introduced a resource-efficient 
predictive provisioning system tailored to manage resource surges. Wang et al.18 categorized task arrivals as 
either periodic or non-periodic and highlighted the nonlinear relationship between requested, allocated, and 
utilized cloud resources, irrespective of arrival patterns. They emphasized that mapping these relationships 
using historical and current data is critical for effective cloud resource prediction. Kumaraswamy19 introduced 
a virtual machine workload prediction method that identifies whether applications are CPU-intensive or 
memory-intensive by analyzing workload patterns from multiple data centers over various time intervals within 
a week, enabling resource configuration accordingly. Xu et al.20 developed a predictive mechanism to forecast 
the periodic resource demands of virtual networks, acknowledging that most virtual networks are long-term and 
demonstrate periodic resource usage patterns. Iqbal et al.21 proposed a hybrid approach combining a reactive 
model for under-provisioning and a predictive model for over-provisioning, utilizing polynomial regression to 
forecast the number of Web and database server instances based on observed workloads. Hisham22 focused on 
predicting resource demands for CPU, memory, and disk utilization from a cloud consumer perspective. They 
introduced a swarm intelligence-based prediction approach (SIBPA) that accounts for the long-term dynamics 
of consumer requests and seasonal or trend patterns in time series data.

Deep learning-based methods for cloud computing resource prediction
The rapid advancement of deep learning has opened new possibilities for cloud resource prediction. Deep neural 
network models enable researchers to automatically extract resource usage patterns in complex scenarios while 
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uncovering latent time dependencies and nonlinear relationships. Janardhanan14 employed LSTM to predict 
CPU utilization in data center machines and compared its performance with ARIMA, demonstrating that LSTM 
achieved superior accuracy and outperformed ARIMA significantly. Given the inconsistencies and nonlinearities 
in cloud computing workloads, Mahfoud et al.15 proposed an efficient deep learning model leveraging Diffusion 
Convolutional Recurrent Neural Networks (DCRNN). Yadav et al.23 introduced an LSTM-based mechanism for 
automated scaling, which forecasts server traffic and estimates corresponding resource requirements. Tassawar 
Ali et al.24 developed a cluster-based differential evolution neural network model to optimize feature weights 
in deep neural networks for predicting future cloud data center workloads. The model incorporates a novel 
mutation strategy to balance exploration and exploitation. Bi et al.25 aimed to enhance prediction accuracy by 
preprocessing data through three distinct methods and by integrating BiLSTM with GridLSTM for training and 
testing time series datasets.

Methods for multivariate time series prediction
Multivariate time series prediction methods have gained significant attention in resource management, with a 
core focus on capturing dynamic temporal changes and complex variable interactions. Gupta et al.16 developed 
diverse multivariate frameworks to enhance predictions of future resource metrics in cloud environments, 
analyzed techniques for identifying and predicting sets of resource metrics associated with target resource 
indicators. Their proposed framework for multivariate feature selection and prediction was validated using 
CPU utilization predictions in Google cluster traces. Ullah et al.26 introduced a multivariate time series-
based framework for workload prediction in multi-attribute resource allocation, utilizing a BiLSTM model to 
forecast resource provisioning and utilization. Jin et al.27 proposed an Enhanced Long-Term Cloud Workload 
Forecasting (E-LCWF) framework designed for efficient resource management in dynamic and heterogeneous 
environments. The E-LCWF framework processes individual resource workloads as multivariate time series 
and enhances performance through anomaly detection and mitigation. Zhang et al.31 introduced Crossformer, 
a Transformer-based model for multivariate time series prediction, capable of capturing temporal dependencies 
while effectively modeling cross-dimensional relationships between variables. Wan et al.32 developed a novel 
framework termed the Feature-Temporal Block to extract both temporal and feature-level information. Each 
block comprises two components: a feature module employing a gating mechanism to interpret competitive 
feature interactions, and a temporal module utilizing learnable filters for frequency-domain processing. This 
innovative structure allows FTMLP to integrate feature and sequence dimensions with both time and frequency-
domain information. He et al.33 proposed a Knowledge-Enhanced LSTM (KeLSTM) as the encoder-decoder 
architecture of T-net, accounting for negative noise from non-predictive variables and temporal differences in 
prediction importance.

Methodology
Multivariate and multi-component time-series resource prediction tasks encounter dual challenges: high-
dimensional complexity and long-term sequence dependencies. To address these issues, this study introduces 
MMTransformer, a Transformer-based framework that systematically resolves these challenges by integrating 
segment-based embedding, multi-stage attention mechanisms, and a multi-scale encoder-decoder strategy.

The framework is designed to balance the capture of global temporal patterns with detailed modeling of local 
features while uncovering inter-variable collaborations. As illustrated in Fig. 1, the modular design comprises 
three key components: SBE for enhanced temporal feature segmentation, MSA for iterative extraction of 
relational information, and Multi-Scale Encoder–Decoder (MED) for integrating multi-scale contexts to boost 
overall prediction accuracy.

Problem description
Consider an application system comprising C  components, each with V  associated variables, where all variables 
have observed values over a given time window T. The system’s historical time-series data is denoted by the 
matrix XC ∈ RT ×V  where XC  represents the time-series observations of  V  variables for the c-th component. 
The complete historical time-series data of the system can be expressed as:

	 X = [X1, X2, . . . , XC ] ∈ RT ×C×V � (1)

where T denotes the length of the time window. The aim is to predict the future resource utilization of each 
component based on these historical data. Specifically, the model aims to learn the relationship between the 
input sequence X  and the output sequence Y , enabling it to predict multivariate combinations at future time 
points. The predicted results are defined as:

	 Y = [Y1, Y2, . . . , YC ] ∈ RH×C×V � (2)

where H denotes the number of future time steps for prediction.
To effectively capture interactions among multiple components and dependencies between variables, the 

proposed model extracts global temporal features from historical data and improves its capability to analyze 
dependency structures across components and variables. Specifically, when multiple components share 
resources and exhibit dependencies, the model must emphasize the coupling relationships in their temporal 
resource utilization. To address this, the proposed framework integrates multi-component, multivariate, and 
temporal dependencies to improve prediction accuracy and robustness.
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Segment-based embedding
To effectively capture the temporal dependencies between components and variables in time-series data, we 
propose an SBE framework. This framework segments the time-series data along the temporal axis and maps 
the raw data into a high-dimensional feature space to extract the temporal characteristics of each segment. This 
design improves the accuracy of multivariate time-series predictions by facilitating the modeling of interactions 
among complex components and variables.

SBE’s core innovation lies in its temporal decomposition strategy and the associated linear mapping 
mechanism. By applying linear transformations and feature reconstruction to each segment of the time-series 
data, this approach preserves critical information from the original dataset and generates feature sets optimized 
for subsequent deep learning tasks.

Specifically, for an input sequence of shape (T, C, V ), SBE divides the time dimension into fixed-length 
segments as predefined, reorganizing these segments into a matrix of shape (C ∗ V ∗ L, S), enabling 
independent processing of each segment’s features. For each time segment, SBE applies a unified linear mapping 
function to obtain key feature values, specifically expressed as:

	 E = X ∗ W + b� (3)

Here, E denotes the embedded feature representation, W  represents the weight matrix of the linear transformation, 
and b is the bias term. This mapping embeds the data from each time segment into a D-dimensional latent space, 
enabling more effective capture of intra-interval feature patterns while supporting interaction models among 
complex components.

SBE divides long time series into short segments for independent modeling, effectively capturing local 
temporal features while improving computational efficiency and gradient stability, making it particularly suitable 
for multi-component and multivariate time series prediction tasks.

Multi-stage attention
To address the need for modeling complex interactions among variables in time-series data, we propose an MSA 
module that integrates temporal and channel dual-stage attention mechanisms to effectively capture the dynamic 
characteristics of multivariate time-series data. This design consists of two core stages: the temporal stage and 
the dimensional stage, each addressing specific challenges to collectively improve the modeling of complex 

Fig. 1.  MMTransformer model architecture.
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multivariate interactions. In the temporal stage, it captures cross—time—segment dynamic dependencies; in 
the channel stage, it adopts a shared routing matrix to encode interactions between components and variables. 
This mechanism enables the model to capture synchronous and lagged interactions between components (such 
as shared GPU memory usage).

	(1)	 Temporal stage attention mechanism

Time-series data exhibit pronounced temporal dependencies, and directly modeling dynamic temporal changes 
aids in capturing the relationships and interactions among variables across the temporal dimension. The temporal 
stage leverages a multi-head self-attention mechanism to explicitly model temporal dependencies, improving 
the model’s responsiveness to dynamic variations. For the input tensor X ∈ RB×C×V ×L×D , where B is the 
batch size, C  is the number of components, V  is the number of variables, L is the number of time segments, and 
D is the embedding dimension, the time-segment attention mechanism captures the dynamic relationships of 
variables across time segments using a multi-head attention operation. The specific equation is as follows:

	 Qt = XWQ, Kt = XWK , Vt = XWV � (4)

Here, WQ, WK , WV ∈ RD×h are the projection matrices for queries, keys, and values, and Dh is the dimension 
size of each head. The attention scores for the time-segment layer are then calculated as:

	
Attentiont = softmax

(
QtK

⊤
t√

Dh

)
Vt� (5)

To ensure model stability and information integrity, the time-segment layer further incorporates residual 
connections and normalization operations:

	 Ot = LayerNorm(X + Attentiont)� (6)

And enhances the feature representation capability through a multi-layer perceptron (MLP):

	 Ot = LayerNorm(Ot + MLP (Ot))� (7)

	(2)	 Channel stage attention mechanism

In multi-component scenarios, interactions between components and variables can have a significant impact 
on model performance. To address this, the channel stage models variable interactions in greater detail, 
enhancing prediction accuracy while reducing computational complexity. Specifically, a shared routing matrix 
R ∈ RL×F ×D  (where F  represents the number of routers) is introduced to model channel interactions.

First, the output of the time phase Ot ∈ RB×C×V ×L×D  is reshaped via a dimensional reconstruction 
operation into Xdim ∈ R(B∗L)×(C∗V )×D  enabling channel-interaction modeling among dimensions through 
dimension reconstruction for modeling interactions among dimensions to enable channel interaction modeling. 
The channel stage aims to capture collaborative relationships among components and variables via sending and 
receiving phases, while maintaining computational efficiency. The specific equations are as follows:

	 Qc = RWQ, Kc = XdimWK , Vc = XdimWV � (8)

	
Ragg = softmax

(
QcK⊤

c√
Dh

)
Vc� (9)

The channel receiving phase distributes interaction information via the routing matrix:

	
Xout = softmax

(
KDR⊤

agg√
Dh

)
Ragg � (10)

Finally, the output of the channel stage is reshaped back to its original form Xout ∈ RB×C×V ×L×D , with 
residual connections and an MLP layer applied:

	 XMSA = LayerNorm(Xout + MLP (Xout))� (11)

In the dual-stage attention mechanism, the temporal stage focuses on dynamically modeling temporal 
dependencies, while the channel stage captures interactions among components and variables, with the routing 
matrix substantially reducing the computational overhead of channel interactions.

Multi-scale encoder–decoder
Encoder
We introduce a multi-scale encoder structure designed to progressively extract multi-granularity features and 
capture the dynamic evolution of local and global information. The encoder is composed of multiple encoder 
blocks, each comprising a segment merging layer and several MSA layers.
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The segment merging layer primarily serves to combine adjacent data segments along each dimension, 
producing coarser-grained representations. This approach aggregates local information, reduces sequence 
length, and enhances the efficiency of processing long sequences. Let the input tensor have a shape 
Xpadded ∈ RB×C×V ×L×D , When the number of sequence segments S is not divisible by the window size 
w, padding is applied to the input data to ensure operational integrity. The resulting padded tensor shape is 
Xpadded ∈ RB×C×V ×(L+P )×D

Here, P = w − (Lmodw). Then, segment merging is used to combine w adjacent data segments along each 
dimension to generate a new representation:

	 Xmerged = Linear(LayerNorm(Xpadded))� (12)

Here, LayerNorm is used for normalization, and Linear is a linear transformation for further mapping of the 
merged features. An encoding block is the basic building unit of the encoder. Each encoding block includes 
an optional segment merging layer and multiple MSA layers. The depth s of an encoding block determines the 
number of MSA layers at each scale:

	 Block = MSA1 + MSA2 + · · · + MSAs� (13)

The entire encoder’s architecture progressively extracts features in a multi-scale manner, and its output is a list 
containing the encoding results for each scale:

	 E = [E1, E2, . . . , Es]� (14)

Here, Es denotes the output from the s-th encoder block. As the scale increases, sequence length decreases 
progressively, while feature dimensions expand, facilitating the effective fusion of multi-scale information.

Decoder
The decoder aims to integrate encoded results from various scales and incrementally produce the final 
prediction. The decoder comprises multiple decoding layers, with each layer generating local predictions at its 
corresponding scale and combining all scale predictions to yield the final output. Each decoding layer comprises 
an MSA layer and a cross-attention layer.

The MSA layer captures both local and global dependencies in time-series data, while the cross-attention layer 
dynamically integrates intermediate outputs from the decoding layer with encoded results at the corresponding 
scale, thereby strengthening multi-scale dependency modeling. Specifically, the output from the preceding 
decoding layer is first processed by the MSA layer. The cross-attention mechanism then combines this output 
with the corresponding encoding layer’s result to generate weighted feature representations, further enhancing 
prediction accuracy.

	
CrossAttention = softmax

(
QDK⊤

e√
Dh

)
Ve� (15)

Here, QD , Ke, Qe are the query, key, and value feature representations of the decoder and encoder, respectively. 
After cross-attention, the features are transformed non-linearly using an MLP, which consists of two fully 
connected layers and utilizes the GELU activation function to enhance feature representation:

	 MLP (X) = F C2(GELU(F C1(X))� (16)

Additionally, residual connections and layer normalization are employed to stabilize the training process and 
enhance generalization capability. Following these steps, each decoding layer produces local prediction results. 
The final output is computed by aggregating the predictions from all decoding layers:

	
Ŷ =

∑s

i=1
XP redi � (17)

Here, XP redi  is the prediction result of the i-th decoding layer. By progressively extracting time-series features 
of varying granularity using the multi-scale encoder and integrating these with the decoder for multi-scale 
fusion and decoding, the MSA module enables efficient modeling of both global and local features. The segment 
merging layer in the encoder greatly improves the efficiency of processing long sequences, while the decoder 
leverages multi-layer cross-attention and MSA layers to model intricate temporal dependencies and multivariate 
relationships, culminating in high-precision predictions.

Numerical experiments
Dataset and implementation details
Existing datasets primarily focus on single-component systems or fail to account for the intricate dependencies 
among components in multi-component applications, which are crucial for accurate resource prediction. To 
achieve our research objectives, we constructed two high-quality datasets derived from real-world application 
scenarios: the Courseware Production system workload Dataset (CPD) and the Digital Human Video Creation 
system workload Dataset (DHVCD). This section elaborates on the dataset construction process and highlights 
its key characteristics.
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Dataset overview
The datasets developed in this study target two representative application scenarios, each emphasizing the 
resource usage patterns of three core components to capture the intricate resource consumption characteristics 
of multi-component applications.

	(1)	 CPD

This dataset originates from an intelligent educational content generation application designed to produce high-
quality PPTs based on user-provided prompts. The core components are:

Image Generation Generates images related to the theme based on the given prompts;
Image Expansion Extends the generation of additional images consistent with the theme;
Copywriting Generation Analyzes the generated images and drafts text content that aligns with the PPT.
These components constitute the core functional modules of the application, with resource usage patterns 

significantly influenced by the dynamics and interactivity of input information, as well as the scale and type of 
generated content.

	(2)	 DHVCD

The digital human video creation system workload dataset originates from a digital human construction and 
interaction application designed to generate digital humans from user-input appearances and support real-time 
interaction. The core components are:

Digital Human Model Inference Processes user-input appearances to infer and generate the basic features of 
the digital human;

Video Synthesis Synthesizes seamless interactive videos based on the digital human’s appearance;
Service Invocation Enables real-time dialogue between users and the digital human, encompassing both voice 

and text interactions.
These components collaboratively construct a complete digital human service functionality chain, with 

dependencies existing among them. Furthermore, its resource usage patterns dynamically evolve based on user 
interaction intensity and application complexity.

Dataset construction process
To capture resource usage patterns in multi-component application scenarios and offer high-quality support 
for resource prediction and optimization research, we developed two realistic and fine-grained datasets. The 
following sections provide a detailed explanation of the dataset construction process across three aspects: 
collection metrics, collection methods, and collection steps.

	(1)	 Collection metrics

The key to collecting performance data is monitoring and evaluating the core resource states during system 
operation. This study primarily focuses on the performance of six modules: CPU, GPU, video memory, disk, 
memory, and network. To ensure the data accurately captures the dynamic nature of multi-component scenarios, 
multiple components were deployed, focusing on recording regular fluctuations in resource usage while avoiding 
prolonged inactivity or sustained high loads.

Ideal datasets should demonstrate clear fluctuation patterns with substantial differences between peaks and 
troughs, improving the accuracy of resource prediction. During the actual collection process, it was observed 
that disk, memory, and network usage exhibited minimal fluctuations, rendering them insufficient for research 
purposes. Consequently, the following three core metrics were chosen as the primary focus of the study:

CPU Utilization Indicates the percentage of CPU usage during a specific time period, used to measure the 
level of CPU resource activity.

GPU Memory Usage Measured in megabytes (MB), reflecting the task’s occupation of GPU memory.
GPU Utilization Indicates the percentage of effective time spent by the GPU executing computational tasks, 

used to assess the GPU’s actual workload.
These three metrics collectively provide a critical perspective on computational resource usage, encompassing 

the performance dimensions of CPU and GPU while uncovering their collaborative usage patterns in multi-task 
scenarios, thereby establishing a robust data foundation for multi-component resource optimization research.

	(2)	 Collection methods

In both the CPD and DHVCD, the three core component services are deployed on servers using Docker 
containers. The Docker API and Python Docker library are used to obtain performance data for each container, 
including CPU usage and real-time GPU status (memory usage and utilization). Precise CPU utilization is 
calculated by measuring time differences and normalizing the data. Data from multiple containers is collected 
in parallel using a multithreading approach, with a 1-s sampling interval. A streaming interface is employed to 
extract data sequentially, ensuring temporal consistency.

	(3)	 Collection steps

The overall data collection process is divided into the following three steps: Deploy the services using Docker 
containers, specifying memory size, CPU core allocation, and GPU device numbers, and open API interfaces 
to enable external interactions; Write automated scripts to loop through service component startups, randomly 
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set sleep times to simulate real-world usage scenarios, and adjust configurations once the services stabilize 
for formal data collection; Use collection scripts to access API interface objects for each container and collect 
metrics such as CPU utilization, GPU memory usage, and GPU utilization via multi-threading, formatting the 
data and storing it as CSV files.

For the CPD, data was collected once per second, resulting in a total of 40,000 data points; for the DHVCD, 
data was collected every 5  s, resulting in a total of 55,420 data points. During the data validation process, 
timestamp comparisons at the beginning, end, and middle ensured that time interval differences were within 
0.01 s. The consistency between resource usage trends and scenario characteristics was also observed to further 
verify the data’s accuracy and reliability.

Finally, the dataset was split into training, validation, and the test sets in a 70%, 10%, and 20% ratio, with 
the detailed distributions presented in Fig.  2. With this meticulously designed collection process, this study 
successfully developed a high-quality multi-component resource usage dataset, offering critical support for 
future research on resource prediction and optimization.

Experimental setup
To ensure uniformity in data features and stability in model learning, zero-mean normalization was applied to 
the training, validation, and test sets using the mean and standard deviation derived from the training set. The 
primary goal of the experiment is to assess the model’s prediction performance across various future window 
sizes H and to analyze how past window size (T) influences prediction accuracy. During the experiment, we 
varied the past window size (T) to observe its effect on future window prediction performance H and identified 
the optimal T value. The process involved incrementally adjusting T and selecting the best value based on 
the model’s predictive performance. Once the optimal T was determined, it remained fixed for subsequent 
experiments.

Batch training was employed in the experiments, with a batch size of 24, 20 epochs, and a segment merging 
window size w = 2. To enhance training efficiency and mitigate overfitting, an early stopping strategy was 
employed, terminating training if the loss failed to decrease significantly over three consecutive iterations. 
Mean Absolute Error (MAE) and Mean Squared Error (MSE) were utilized as the primary evaluation metrics 
to comprehensively assess the model’s prediction performance and stability. Optimizing these metrics can more 
accurately predict system resource requirements (such as GPU memory usage), thus avoiding waste caused by 
over-allocation of resources and process blockages triggered by insufficient resources.

Experiments were conducted on a system equipped with an NVIDIA RTX 4090 24GB GPU, leveraging 
its high-performance computing capabilities to ensure reliable and efficient results. For clarity in describing 
experimental results, the three components in each dataset were labeled as Component A, Component B, and 
Component C.

Main experiment
The experimental results, presented in Tables 1 and 2, systematically compare the performance of eight 
model frameworks in multi-component, multivariate resource prediction scenarios. To thoroughly assess the 
effectiveness and superiority of the proposed MMTransformer model, we conducted a comparative analysis 
against several representative traditional models (LSTM34, GRU35, and RNN36) and state-of-the-art time-series 
forecasting models (Transformer37, Autoformer38, Informer39, and Fedformer40). The comparative models range 

Fig. 2.  Dataset splits.
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from traditional recurrent networks to the latest self-attention-based methods, ensuring a comprehensive and 
scientifically rigorous evaluation.

The results in Table 1 for the courseware production system dataset show that MMTransformer consistently 
outperforms other models in MSE and MAE across all time steps, highlighting its superior capability in 
complex time-series prediction tasks. For example, under a short past window (24), MMTransformer 
significantly surpasses the best-performing traditional model, RNN, reducing MSE and MAE by approximately 
68.9% and 62.8%, respectively. Compared to the top-performing mainstream time-series model, Fedformer, 
MMTransformer achieves reductions of 53.4% and 69.0%, respectively.

In the dataset experiment of the digital human video authoring system in Table 2, MMTransformer 
also demonstrated its strong adaptability and prediction accuracy. In the past short time window (24), 
MMTransformer’s MSE and MAE indicators decreased by 27.6% and 20.9% relative to the RNN model, and by 
5.9% and 1.3% relative to the Fedformer model. However, with the increase of the past time window (e.g. 384), 
MMTransformer’s MSE and MAE indicators decreased by 13.1% and 19.9% relative to the Fedformer model.

A deeper analysis indicates that MMTransformer’s superior performance is attributed to its innovative multi-
scale encoder-decoder architecture and multi-stage attention mechanism. This architecture enables dynamic 
weight allocation between local and global patterns in time-series data, effectively capturing both short-term 
dependencies and long-term trends. The segment merging module mitigates feature redundancy and improves 
the efficiency of modeling high-dimensional multivariate data. The multi-stage attention mechanism strengthens 
the ability to capture intricate multi-component interactions and adapt to dynamic multivariate variations.

To evaluate the model’s performance in resource prediction across different scenarios, we conducted 
experiments on the CPD and DHVCD, using an input sequence length of T = 48 and a prediction length of H  
=192. For the three primary resource metrics in both datasets (CPU utilization, GPU memory consumption, and 
GPU utilization), we visually compared the model’s predictions against the actual data, as illustrated in Figs. 3 
and 4.

Figure 3 presents the prediction results for the CPD. Compared to the DHVCD, this dataset exhibits more 
complex resource usage patterns, yet the model achieves high prediction accuracy across all three components 
and three resource dimensions. The relatively constant GPU memory usage and GPU utilization of Component 
C in the CPD can be attributed to its nature as a persistent large model service deployed with vllm41. After 
deployment, GPU memory usage and utilization become fixed. Figure 4 illustrates the prediction results on 
the DHVCD. The model effectively captures the periodic variation trends in resource usage across the three 
components (Component A, Component B, and Component C). Specifically, the predictions for GPU memory 
usage and GPU utilization closely align with the actual values, highlighting the model’s strong capability to 
capture complex dynamic changes in resource utilization. The prediction accuracy for CPU utilization in 
Component A is relatively lower due to the significant variability in CPU usage during actual operations. When 
the component is inactive, CPU utilization is close to 0%, but when active, it fluctuates between 0 and 800% 
(utilizing 8 CPU cores, hence utilization can exceed 100%).

Ablation studies
Impact of hyperparameters on experimental results
To further evaluate the model’s performance under different parameter configurations, we conducted three sets 
of ablation experiments, focusing on the effects of past window size T, fixed segment length S, and the number 
of attention heads N  on prediction performance. All experiments were performed on the DHVCD.

Models Ours LSTM GRU RNN Transformers Autoformer Informer Fedformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.3918 0.4038 0.6523 0.5626 0.6542 0.5605 0.5408 0.5102 0.4934 0.5332 0.4737 0.5022 0.4284 0.4292 0.4165 0.4090

48 0.4013 0.4079 0.6670 0.5724 0.6621 0.5674 0.5612 0.5221 0.5003 0.5326 0.4964 0.5102 0.4368 0.4334 0.4273 0.4241

96 0.4383 0.4170 0.7306 0.6060 0.6793 0.5791 0.6578 0.5742 0.5502 0.5739 0.5348 0.5630 0.5109 0.5364 0.5010 0.5219

192 0.4522 0.4249 0.7573 0.6168 0.7258 0.6053 0.6804 0.5879 0.6099 0.6325 0.5769 0.6020 0.5217 0.5425 0.5140 0.5402

384 0.4662 0.4366 0.7902 0.6441 0.7479 0.6192 0.7015 0.5979 0.6119 0.6393 0.6170 0.6331 0.5400 0.5535 0.5363 0.5450

Table 2.  Results of resource prediction by different models on the DHVCD. Significant values are in [bold].

 

Models Ours LSTM34 GRU35 RNN36 Transformer37 Autoformer38 Informer39 Fedformer40

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.0683 0.0983 0.3345 0.3387 0.3350 0.3337 0.2197 0.2645 0.1771 0.1590 0.2632 0.2502 0.1872 0.1701 0.1465 0.1661

48 0.1208 0.1434 0.4177 0.3896 0.4081 0.3817 0.2763 0.3147 0.2646 0.2024 0.3548 0.3151 0.2668 0.2282 0.2250 0.2194

96 0.2076 0.2217 0.4728 0.4289 0.4666 0.4216 0.4136 0.3957 0.4073 0.3709 0.4194 0.3704 0.3929 0.3062 0.3388 0.2902

192 0.3090 0.3043 0.4979 0.4425 0.4968 0.4418 0.4828 0.4366 0.5239 0.4450 0.4704 0.4728 0.4256 0.4022 0.3995 0.3899

384 0.3984 0.3681 0.5157 0.4586 0.5125 0.4529 0.5140 0.4524 0.5344 0.4704 0.5316 0.4870 0.4499 0.4222 0.4371 0.4119

Table 1.  Results of resource prediction by different models on the CPD. Significant values are in [bold].
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Fig. 4.  Results of our proposed model for resource prediction on the DHVCD.

 

Fig. 3.  Results of our proposed model for resource prediction on the CPD.
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First, we analyzed the impact of varying past window sizes T, gradually increasing T from 24 to 384. The 
results are summarized in Table 3. When T=48, the model achieves its optimal performance, as evidenced by 
the low MSE and MAE values. This suggests that a moderate input sequence length is most effective at capturing 
short-term dependencies. As T increases further, the prediction performance deteriorates (e.g., when T = 384, 
H = 192, MSE rises from 0.3081 to 0.3205), indicating that excessively long input sequences may introduce 
irrelevant information, burdening the model’s learning process. When T is too small (e.g., T = 24), the model 
exhibits poorer performance, highlighting that short input sequences are insufficient to capture essential 
contextual information. For consistency, the past window size T was fixed at 48 in all other experiments.

Next, we analyzed the effect of varying segment lengths (S) on model performance, gradually increasing S 
from 3 to 12. The corresponding results are presented in Table 4. When S = 6, the model achieves its best MSE 
and MAE values, demonstrating that a well-chosen segment length effectively structures the input information. 
As S extends to 12, model performance either stabilizes or slightly declines, indicating that overly long segments 
may introduce information overload, thereby diminishing prediction accuracy. The adaptability of segment 
length is especially vital for capturing local temporal dependencies, as both overly short and overly long segments 
can impair model performance. Therefore, in all subsequent experiments, S was set to 6.

Next, we explored how varying the number of attention heads (N) affects model performance, increasing 
N from 2 to 8. The corresponding results are presented in Table 5. Increasing the number of attention heads 
enhances model performance. When N is increased from 2 to 4, both MSE and MAE exhibit noticeable reductions. 
However, when N is further increased to 8, performance gains become negligible, and in certain cases, slight 
degradation is observed. This effect may stem from excessive attention heads increasing model complexity. In 
small-scale datasets, redundant parameters fail to significantly improve the model’s representational capacity. 
Consequently, in all subsequent experiments, N was set to 4.

The results of the three ablation studies confirm that input sequence length, segment length, and the number 
of attention heads are critical factors affecting model prediction accuracy. A well-chosen parameter configuration 
ensures an optimal balance between model complexity and predictive performance.

Therefore, in all subsequent experiments, the parameters were set as follows: T = 48, S = 6, and N = 4.

Attention heads 2 4 6 8

Metric MSE MAE MSE MAE MSE MAE MSE MAE

24 0.3995 0.4126 0.3918 0.4038 0.3994 0.4130 0.3985 0.4079

48 0.4079 0.4192 0.4013 0.4079 0.4021 0.4085 0.4031 0.4094

96 0.4412 0.4274 0.4383 0.4170 0.4398 0.4282 0.4363 0.4236

192 0.4605 0.4369 0.4522 0.4249 0.4623 0.4372 0.4650 0.4380

384 0.4702 0.4418 0.4662 0.4366 0.4777 0.4431 0.4796 0.4490

Table 5.  Effects of different attention spans N on experiments. Significant values are in [bold].

 

S 3 6 9 12

Metric MSE MAE MSE MAE MSE MAE MSE MAE

24 0.3925 0.4033 0.3918 0.4038 0.3904 0.4029 0.3928 0.4037

48 0.4110 0.4130 0.4013 0.4079 0.4081 0.4111 0.4050 0.4097

96 0.4407 0.4279 0.4383 0.4170 0.4404 0.4301 0.4403 0.4253

192 0.4600 0.4351 0.4522 0.4249 0.4659 0.4417 0.4628 0.4359

384 0.4820 0.4537 0.4662 0.4366 0.4720 0.4420 0.4758 0.4434

Table 4.  Effects of different segment lengths S on experiments. Significant values are in [bold].

 

T 24 48 96 192 384

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.0894 0.1158 0.0683 0.0983 0.0704 0.1006 0.0686 0.0964 0.0697 0.0993

48 0.1431 0.1640 0.1208 0.1434 0.1225 0.1453 0.1233 0.1429 0.1260 0.1458

96 0.2203 0.2299 0.2098 0.2206 0.2114 0.2221 0.2103 0.2175 0.2142 0.2215

192 0.3187 0.3114 0.3081 0.3033 0.3113 0.3003 0.3141 0.3045 0.3205 0.3066

384 0.4066 0.3774 0.3983 0.3672 0.4008 0.3672 0.4055 0.3715 0.4124 0.3866

Table 3.  Effects of different past window sizes T on experiments. Significant values are in [bold].
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Effect of network structure on experimental performance
This section analyzes the impact of three crucial components in the proposed network architecture on 
experimental performance. In this analysis, we use the Transformer model as the baseline, incorporate the SBE 
model, and subsequently introduce the MSA and MED modules to examine their impact on performance. The 
results are presented in Table 6.

Initially, without any enhancement modules, the baseline Transformer model demonstrates suboptimal 
prediction performance, with MSE increasing by 24.0% at H = 24 and 19.9% at H = 384. This suggests that the 
baseline model has significant limitations in capturing complex temporal dependencies and processing long-
sequence tasks.

With the integration of the SBE module, the model exhibits notable improvements across all future windows. 
Specifically, at H = 24, MSE and MAE decrease by 9.8% and 15.1%, respectively, while at H = 384, they decrease 
by 13.7% and 23.1%, confirming the SBE module’s effectiveness in capturing essential local features.

When the MSA module is added on top of the SBE module, performance improves further. At H = 24, MSE 
and MAE decrease by 19.0% and 23.3%, respectively, while at H = 384, reductions reach 19.7% and 29.7%. 
These results confirm the MSA module’s effectiveness in two-stage attention feature modeling, with particularly 
notable enhancements in long-sequence tasks. Likewise, integrating the MED module on top of the SBE module 
leads to further improvements, albeit slightly less than those achieved with the MSA module. Nonetheless, this 
confirms that the MED module strengthens the model’s ability to represent complex temporal relationships by 
incorporating multi-level features into the decoding process via a dynamic routing mechanism.

The “SBE + MSA + MED” configuration achieves the best results. At H = 24, MSE and MAE decrease by 
20.6% and 24.3% respectively, while at H = 384, the decreases reach 23.8% and 31.7%. These results demonstrate 
the synergy among the modules: SBE enhances feature representation, MSA captures complex dependencies, 
and MED fuses multi-scale information. This detailed breakdown clearly illustrates the contribution of each 
component to the overall model performance, considering both the interdependencies among modules and 
isolating their independent effects.

Figure  5 visualizes the resource prediction outcomes for different model configurations. To effectively 
showcase the multi-component and multivariate characteristics of the DHVCD, we select Component A’s CPU 
utilization, Component B’s GPU memory usage, and Component C’s GPU utilization as the prediction targets, 
with a future time window of H = 192.

To evaluate the effectiveness of the multi-scale encoding strategy within the MED module, we conducted 
a systematic analysis of multi-scale encoding results across different prediction step lengths. The results are 
presented in Fig. 6.

The multi-scale encoding strategy proves highly effective in both short-term and long-term prediction tasks. 
In short-term prediction tasks, a properly chosen encoding depth significantly improves the ability to model 
local features. In long-term prediction tasks, global feature extraction can be achieved without excessively deep 
network layers.

Computational complexity analysis
Table 7 provides a theoretical complexity comparison between our model architecture and other models, where 
T denotes the past window size, H represents the future window size, S indicates the segment length in the SBE 
module, and D denotes the number of dimensions.

In the encoder stage, our model partitions the input sequence and applies a scaling mechanism to the segment 
dimension D, and thereby reduces complexity to O( DT 2

S2 ). If S is sufficiently large (indicating appropriate 
segmentation granularity) or D does not increase significantly, our model can sustain low computational costs 
even for long sequences.

During the decoding phase, our model exhibits a complexity of O( DH(H+T )
S2 ). Compared to the Transformer 

and other models, our approach demonstrates superior efficiency, particularly when the future window H is 
large.

Beyond theoretical complexity, we also measured real-world resource consumption. MMTransformer 
maintains GPU memory usage under 24GB even with long future windows (H > 3072), outperforming 
Transformer and Autoformer, which exceed this limit. We conducted a comparison of memory usage across 
different models for varying future window sizes H and analyzed the training speed per batch, as illustrated in 
Fig. 7. The Transformer and Autoformer models surpassed the 24 GB single GPU memory limit at H = 3072 
and H = 4608, respectively.

Models Transformer SBE SBE + MSA SBE + MED SBE + MSA + MED

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 0.4934 0.5332 0.4449 0.4525 0.3998 0.4087 0.4201 0.4294 0.3918 0.4038

48 0.5003 0.5326 0.4599 0.4587 0.4175 0.4171 0.4354 0.4345 0.4013 0.4079

96 0.5502 0.5739 0.4938 0.4751 0.4495 0.4318 0.4671 0.4502 0.4383 0.4170

192 0.6099 0.6325 0.5160 0.4848 0.4743 0.4449 0.4884 0.4621 0.4522 0.4249

384 0.6119 0.6393 0.5278 0.4914 0.4841 0.4497 0.5003 0.4670 0.4662 0.4366

Table 6.  Network structure ablation experiment. Significant values are in [bold].
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Method Encoder Decoder

Transformer O(T)2 O (H (H + T ))

Autoformer O (T logT ) O
((

T
2 + H

)
log

(
T
2 + H

))

Informer O (T logT ) O (H (H + logT ))

Fedformer O (T ) O
(

T
2 + H

)

Ours O
(

DT 2
S2

)
O

(
DH(H+T )

S2

)

Table 7.  Complexity of different model architectures.

 

Fig. 6.  Different levels of coding differences.

 

Fig. 5.  Visualization of resource forecasts for different structural combinations.
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As shown in the charts, our model achieves the lowest memory usage when H < 3072 and surpasses all other 
models in training speed, which is highly significant for efficient model training.

Conclusion
To tackle the resource prediction challenges in multi-component applications, this paper introduces 
MMTransformer, a Transformer-based model. To address the limitations of traditional single-step and 
single-variable forecasting methods, this model integrates SBE, MSA, and MED. By incorporating these 
modules, MMTransformer achieves substantial improvements in time-series feature extraction and modeling, 
demonstrating superior performance in complex multi-component and multi-variable resource prediction tasks.

Furthermore, to validate the effectiveness and superiority of MMTransformer, two real-world multi-
component datasets were developed. By analyzing multiple resource metrics, three key indicators were selected. 
In predicting core resource metrics, MMTransformer exhibits superior performance compared to traditional 
models (e.g., LSTM, GRU, RNN) and state-of-the-art models (e.g., Fedformer, Autoformer, Informer). 
Specifically, compared to the best-performing baseline models, MMTransformer achieves a 17.46% reduction 
in MSE and a 4.49% reduction in MAE, while demonstrating greater stability and accuracy in long-sequence 
forecasting.

Ablation experiments systematically examined the effects of input length, attention head count, and segment 
length on model performance, confirming the complementary roles of SBE, MSA, and MED in improving 
prediction accuracy. Additionally, computational complexity analysis underscores MMTransformer’s efficiency 
in managing high-dimensional, complex time-series forecasting tasks.

Although current validation focuses on CPD and DHVCD datasets, MMTransformer exhibits promising 
generalization potential. In future work, we will apply the model to broader application scenarios, such as multi-
server orchestration in cloud platforms, distributed edge computing environments, and industrial IoT systems. 
These tests will further demonstrate its cross-domain adaptability.

In addition, we plan to evaluate MMTransformer on larger-scale public datasets such as the Google Cluster 
Traces and Azure Telemetry. The model will also be tested on multi-component systems with heterogeneous 
resources (e.g., CPU-GPU-TPU hybrids) and dynamic workloads, supporting robustness assessment under 
more realistic conditions.

Lastly, due to real-world limitations, current datasets only cover single-day high-frequency samples. To assess 
seasonal robustness, we plan to work with industry partners to collect multi-week and quarterly data, validating 
the model’s long-term prediction performance and adaptability to seasonal fluctuations.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason 
able request.
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