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A new one-parameter discrete distribution, namely the Poisson Haq (PH) distribution, is proposed 
by a mixture of the Poisson variable and an independently distributed Haq random variable. This 
model effectively analyzes over-dispersed count datasets by extending Poisson distribution. Various 
useful statistical properties of the PH distribution are derived and discussed. The failure rate of the 
proposed distribution is “increasing” and “upside bathtub” shaped. The model parameter estimation 
is performed using renowned estimation approaches, method of moments, and method of maximum 
likelihood estimation. A parametric regression model tailored for count datasets is also developed 
using the proposed distribution. A simulation study is conducted to demonstrate the performance 
and behavior of the proposed estimators. The present study validates that the new count model 
adequately explains the medical datasets, which are the number of infected patients with the Nipah 
virus, the number of mammalian cytogenetic dosimetry lesions, and the Length of Hospital Stay. 
Additionally, we also estimate the model parameter using the Bayesian approach with gamma prior. 
Compared to widely used alternatives such as the Poisson (AIC = 145.16, BIC = 147.19), Poisson moment 
exponential (AIC = 137.53, BIC = 139.56), Poisson-XLindley (AIC = 135.86, BIC = 137.88) distributions and 
others, our model demonstrates improved fitting accuracy, as evidenced by lower AIC (135.78) and BIC 
(137.81) values for first data and similarly for second data applications. Finally, to validate the fit of the 
PH regression model, it is applied to the Length of Hospital Stay dataset.
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Data modeling complexity has risen significantly because of excessive data collection across fields like 
engineering, medicine, ecology, epidemiology, and renewable energy1–7. Poisson distribution stands as the 
principal statistical tool for examining data sets with count values. A critical aspect of the Poisson distribution 
will be referred to as equal dispersion (variance is equal to mean). Practically there are situations where Poisson 
distribution is unsuitable for modeling data with a high degree of under and overdispersion. Overdispersion 
is a phenomenon that is frequently seen in count data and presents serious difficulties for statistical modeling.

The mixed Poisson models are adaptable tools for the analysis of count data exhibiting heterogeneity and 
overdispersion. Over the years, various researchers have been introduced by mixing Poisson distribution with 
various continuous distributions. Some examples of Poisson mixture models are; The generalized Poisson-
Lindley distribution8 and applied in reliability and biological studies. Poisson Amarendra distribution9 arises 
by compounding the Poisson and Amarendra distributions. It is utilized to model the ecological and insurance 
claims datasets. Poisson Garima distribution10 effectively captures overdispersed count data and has been 
applied in health and social sciences. Poisson Shanker distribution proposed by11 has been shown to perform 
well in actuarial and demographic studies. Poisson pseudo-Lindley distribution introduced by12 explored 
its several statistical properties, including descriptive measures, quantile function, and Lorenz curve. The 
parameters were estimated using maximum likelihood estimation (MLE) and the applicability of the proposed 
model was demonstrated using two real-world datasets. Bernoulli Poisson moment exponential distribution13 is 
studied along with its various generating functions and mathematical characteristics. Parameter estimation was 
conducted using the MLE approach and its applicability was established using three datasets. Poisson Quasi-
Lindley distribution was put forward by14. They comprehensively studied its different reliability properties. 
Additionally, an extensive simulation study was conducted and parameter estimation was performed using 
the MLE method. Ref15. Introduced one parameter Poisson Agu Eghwerido and derived its various properties, 
including factorial moments, generating function, and entropies. The parameter of the said model was estimated 

1Department of Quantitative Methods, School of Business, King Faisal University, Al-Ahsa 31982, Saudi Arabia. 
2School of Statistics, Minhaj University Lahore, Lahore, Pakistan. 3College of Statistical Sciences, University of the 
Punjab, Lahore, Pakistan. email: ama.alomair@kfu.edu.sa

OPEN

Scientific Reports |        (2025) 15:23281 1| https://doi.org/10.1038/s41598-025-07223-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-07223-y&domain=pdf&date_stamp=2025-6-16


using both classical and Bayesian approaches. Ref16. proposed discrete Poisson Aradhana distribution to study 
overdispersed data sets. To explore the behavior of the proposed model in depth, various statistical measures 
were derived. Parameter estimation was performed using the maximum likelihood method, along with a 
comprehensive simulation analysis. Ref17. proposed Poisson moment exponential distribution and applied it 
to four datasets to demonstrate its practicality. The parameter estimation was performed using seven different 
estimation approaches. Ref18. investigated the Poisson XLindley distribution to study right skewed, leptokurtic, 
and overdispersed datasets. Numerous reliability characteristics of the derived model were explored. The 
parameter of the new model was estimated by utilizing six different estimation techniques. Poisson Mirra, its 
regression model, and its first-order integer-valued autoregressive process (INAR-1) were introduced by19. The 
INAR-1 model parameters were estimated using Yule-Walker, conditional maximum likelihood, and conditional 
least squares methods. Poisson’s new XLindley was instigated20 and its fundamental mathematical and statistical 
properties were explicitly studied. Ref21. developed a two-parameter discrete Poisson mixing distribution 
and derived its key properties. A new count regression model was proposed, and the model’s applicability 
was demonstrated using asymmetric datasets. Ref22. introduced Poisson entropy-based weighted exponential 
distribution for modeling right-skewed data with heavy tails. Parameters were estimated using MLE and 
Bayesian methods. Its applicability was demonstrated with three real-world datasets. Ref23. developed Poisson 
quasi-Shanker distribution, derived key properties, and estimated parameters, and endorsed its applicability 
through simulation and real datasets. Ref24. proposed Poisson Quasi XLindley distribution, a two-parameter 
discrete model. Its several key statistical properties were analyzed explicitly. The model was applied to two real 
datasets and integrated into a count regression framework as well. Some more examples of discrete models are; 
discrete Poisson-Lindley distribution25 new geometric distribution26 discrete extended odd Weibull exponential 
distribution27 discrete Half-Logistic distribution28 discrete exponentiated moment exponential distribution29 
Posson Komal distribution30 and Poisson Xrama distribution31.

Each of these compound models offers specific benefits and draws limitations in their usage. The acceleration 
of technological development produces a tremendous amount of complex high-dimensional data that spreads 
across healthcare domains with finance and social science and engineering operations. Numerous contemporary 
data models find difficulty in accurately reflecting intricate statistical patterns which include extreme over-
dispersion, zero inflation, and non-normal distributional forms. The rapid generation of emerging datasets 
demands swiftly developing interpretative statistical models that remain practical and computationally efficient 
to perform accurate analyses of complex datasets. Therefore, this study attempts to introduce a novel Poisson 
compound model based on the Haq distribution, which is designed to better capture the variations present 
in complex datasets. Haq distribution is a one-parameter powerful and flexible probability model designed 
to handle complex datasets with overdispersion, skewness, and reliability characteristics. Its derivation from 
a mixture of exponential and Xgamma distributions allows it to capture variations in real-world data more 
effectively than many existing models. The Haq distribution offers both a heavier right tail and higher flexibility 
for describing over-dispersion patterns better than standard distributions including the Lindley and moment-
exponential distributions. Application of the Haq distribution in the Poisson framework gives users better control 
over tail effects and extreme distributions in addition to skewness properties that align with real-world count 
data patterns. The mathematical structure of the Haq distribution enables smooth integration-based operations 
for generating the pmf and calculating moments as well as additional properties while maintaining behavioral 
richness in its modeling framework.

The Haq distribution was originally presented by32. It was obtained by mixing Xgamma (f1 (x)) and 
exponential (f2 (x)) distributions with scale parameter θ  for both and mixing proportions p1 = 1

1+θ  and 
p2 = θ

1+θ . The probability density function of the Haq distribution is given as

	
f (x) =

(
θ

1 + θ

)2
(

2 + θ + θ x2

2

)
e−θ x, x > 0, θ > 0.� (1)

.
As stated earlier, the current work introduces the Poisson-Haq distribution, a novel mixed Poisson distribution 

formed by combining the Poisson and Haq distributions. The study’s particular aims are:

•	 To develop the new Poisson-Haq distribution and derive its key mathematical properties, including probabil-
ity mass function, moments, and other essential characteristics.

•	 To estimate the parameters of the proposed distribution using the maximum likelihood and method of mo-
ments techniques. Additionally, conduct a comprehensive simulation study to evaluate the performance and 
reliability of these estimators.

•	 To further estimate the distribution’s parameters using Bayesian estimation methods, providing an alternative 
approach to inference.

•	 To demonstrate the practical applicability and adequacy of the Poisson-Haq distribution by fitting it into two 
medical datasets, thereby illustrating its utility in real-world scenarios.

The structure of the study is as follows: Sect. "Poisson Haq distribution" presents the derivation of the Poisson 
Haq distribution, along with a visual depiction of its probability mass function and hazard rate function. Section 
"Mathematical characteristics of PH distribution" focuses on the calculation of the key theoretical properties. 
Section “Parameter estimation” details the statistical inference of the new distribution parameters using both 
the method of moments and maximum likelihood estimation. A new count regression model is presented in 
Sect. "Posson Haq regression model". Section “Data applications” represents the application of the new model to 
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medical field datasets. Section “Bayesian analysis” covers an analysis based on the Bayesian approach, while Sect. 
“Conclusion” contains the concluding remarks.

Poisson Haq distribution
A random variable X is said to follow a PH distribution if it satisfies the following representation.

	 (X|λ) ∼ P oisson (λ ) and (λ |θ ) ∼ Haq (θ ) .

Using Eq. (2) and the probability mass function of the Poisson distribution, the PH distribution is obtained as 
follows:

	

P (X = x; θ ) =
∞∫

0

e−λ λ x

x!

(
θ

1 + θ

)2
(

2 + θ + θ λ 2

2

)
e−θ λ dλ ,

	

=
(

θ

1 + θ

)2 1
x!

∞∫

0

(
(2 + θ ) λ xe−λ −λ θ + θ λ 2+x

2 e−λ −λ θ

)
dλ ,

	

=
(

θ

1 + θ

)2 1
x!


(2 + θ )

∞∫

0

λ xe−λ (1+θ )dλ + θ

2

∞∫

0

λ 2+xe−λ (1+θ )dλ


 ,

	

=
(

θ

1 + θ

)2 1
x!


(2 + θ )

∞∫

0

λ (x+1)−1e−λ (1+θ )dλ + θ

2

∞∫

0

λ (x+3)−1e−λ (1+θ )dλ


 ,

Applying the standard gamma function formula: 
∞∫
0

xn−1e−α x = Γ (n)
(α )n

	
=

(
θ

1 + θ

)2 1
x!

[
(2 + θ ) Γ (x + 1)

(1 + θ )x+1 + θ Γ (x + 3)
2(1 + θ )x+3

]
,

	
=

(
θ

1 + θ

)2
(

1
(1 + θ )x+1

) [
(2 + θ ) + θ (2 + x) (1 + x)

2(1 + θ )2

]
,

	
P (X = x; θ ) = θ 2

(1 + θ )x+3

[
2 (2 + θ ) (1 + θ )2 + θ (2 + x) (1 + x)

2(1 + θ )2

]
, x > 0, θ > 0.� (2)

The behavior of the pmf at the lower and upper limits is described by

	
lim

x→ 0
P (x) = lim

x→ 0

[
θ 2

(1 + θ )x+3

(
2 (2 + θ ) (1 + θ )2 + θ (2 + x) (1 + x)

2(1 + θ )2

)]
= θ 2 (2 + θ )

(1 + θ )3 ,

.
and

	
lim

x→ ∞
P (x) = 0.

.
Figure 1 depicts a graphical depiction of the PH distribution for various parameter values. It demonstrates 

that the distribution is unimodal and skewed to the right.
Equation (3) provides the expression for the cumulative distribution function (cdf) of the PH distribution.

	
F (x) = 1 −

(
2 + θ

(
x2θ + x (2 + 5θ ) + 2 (1 + θ ) (5 + θ (3 + θ ))

))

2(1 + θ )5+x
.� (3)

Using the Eq. (3), the survival function is gained and given as

	
S (x) =

2 + θ
(
x2θ + x (2 + 5θ ) + 2 (1 + θ ) (5 + θ (3 + θ ))

)

2(1 + θ )5+x
.� (4)

The hazard function also known as the failure rate is defined by taking the ratio of pmf to the survival function. 
The failure rate shows how the risk of an event changes over time. An increasing failure rate makes events happen 
more frequently over time like machines breaking down. A decreasing failure rate indicates events occur earlier 
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in the time when products tend to break down soon after production. The hazard rate of PH distribution is given 
by

	
h (x) = θ 2 (4 + θ (x (3 + x) + 2 (6 + θ (4 + θ ))))

2 + θ (x2θ + x (2 + 5θ ) + 2 (1 + θ ) (5 + θ (3 + θ ))) .� (5)

.
The reverse hazard rate (also called the past failure rate) is a reliability metric that measures the probability of 

failure in a small interval before time t. It tells us how likely it is that an event has already occurred by a certain 
time, which is useful for early detection in areas like equipment monitoring or healthcare. Mathematically, it is 
defined as the ratio of pmf to the distribution function and is given as

	
rh (x) = θ 2 (4 + θ (x (3 + x) + 2 (6 + θ (4 + θ ))))

2(1 + θ )5+x − 2 + θ (x2θ + x (2 + 5θ ) + 2 (1 + θ ) (5 + θ (3 + θ )))
� (6)

.
Figure 2 presents visual representations of the hazard function of PH distribution using different parameter 

values. The distribution curve for h (x) undergoes distinct shape modifications as the parameter θ  value 
increases. The hazard rate exhibits an upward trend in its pattern when θ  maintains small values. The hazard 
rate shows a heightened steepness when parameter values fall within moderate ranges based on the curve 
changes. For larger θ , the shape shifts to a bathtub form: hazard rate first dips and then rises again.

Mathematical characteristics of PH distribution
In this section, we derive many essential mathematical aspects of the Poisson Haq distribution and conduct a 
thorough investigation of their behavior.

Moments
The rth factorial moments of random variable X can be obtained as

Fig. 1.  Density plots for different choices of parameters.
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	 u′
(r) = E

[
E

(
X(r)|λ

)]

	

=
(

θ

1 + θ

)2
∞∫

0

(∑
∞
x=0xr e−λ λ x

x!

) (
2 + θ + θ λ 2

2

)
e−θ λ dλ ,

	 whereX(r) = X (X − 1) (X − 2) . . . (X − r + 1)

	

u′
(r) = θ 2

(1 + θ )2

∞∫

0

λ r

(∑
∞
x=r

e−λ λ x−r

(x − r)!

) (
2 + θ + θ λ 2

2

)
e−θ λ dλ ,

.
Let y = x − r, we get the following.

	

u′
(r) = θ 2

(1 + θ )2

∞∫

0

λ r

(∑
∞
y=0

e−λ λ y

y!

) (
2 + θ + θ λ 2

2

)
e−θ λ dλ ,

	

u′
(r) = θ 2

(1 + θ )2


(2 + θ )

∞∫

0

λ re−θ λ dλ + θ

2

∞∫

0

λ r+2e−θ λ dλ


 ,

	
u′

(r) = θ 2

(1 + θ )2

[
(2 + θ ) r!

θ r+1 + θ

2
(r + 2)!
θ r+3

]
,

	
u′

(r) =
[

r!
(

2θ (2 + θ ) + (r + 2) (r + 1)
2θ r(1 + θ )2

)]
; θ > 0� (7)

Moment generating function
The moment-generating function can be derived as

	
Mx (t) =

∑
∞
x=0etxP (x) ,

Fig. 2.  Failure rate visuals for various parameter selections.
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Mx (t) =

∑
∞
x=0etx

[
θ 2(2 + θ )
(1 + θ )x+3 + θ 3 (2 + x) (1 + x)

2 (1 + θ )x+5

]
,

	
Mx (t) = θ 2(2 + θ )

(1 + θ )3

[∑
∞
x=0

etx

(1 + θ )x

]
+ θ 3

2 (1 + θ )5

[∑
∞
x=0

etx (2 + x) (1 + x)
(1 + θ )x

]
,

	
Mx (t) = θ 2(2 + θ )

(1 + θ )3

[∑
∞
x=0

etx

(1 + θ )x

]
+ θ 3

2 (1 + θ )5

[
2

∑
∞
x=0

etx

(1 + θ )x + 3
∑

∞
x=0

xetx

(1 + θ )x +
∑

∞
x=0

x2e
tx

(1 + θ )x

]
,

.
Using the geometric series formula

∑ ∞
x=0arx = a

1−r  and after simplification, we obtain the following 
result.

	

∑
∞
x=0

etx

(1 + θ )x = 1 + θ

1 − et + θ
;

∑
∞
x=0

3xetx

(1 + θ )x = 3et(1 + θ )
(1 − et + θ )2 ;

∑
∞
x=0

x2e
tx

(1 + θ )x = et(1 + θ )(1 + et + θ )
(1 − et + θ )3

After simplification,

	
Mx (t) =

θ 2 (
2et (1 + θ ) (2 + θ ) − 2 − e2t (2 + θ ) − θ (6 + θ (4 + θ ))

)

(et − θ − 1)3(1 + θ )2 . t ̸= ln(1 + θ )� (8)

Similarly, the characteristic function (CF) and the probability-generating function of the PH distribution are 
derived using the same approach as the moment-generating function and are given below, respectively.

	
φ x (it) =

θ 2 (
2eit (1 + θ ) (2 + θ ) − 2 − e2it (2 + θ ) − θ (6 + θ (4 + θ ))

)

(eit − θ − 1)3(1 + θ )2 . it ̸= ln(1 + θ )� (9)

and

	
Px (t) = θ 2 (2t (1 + θ ) (2 + θ ) − 2 − t (2 + θ ) − θ (6 + θ (4 + θ )))

(t − θ − 1)3(1 + θ )2 . t ̸= (1 + θ )� (10)

.
The first four moments about the origin are

	
E (X) = θ 2 + 2θ + 3

θ (1 + θ )2 ,

	
E

(
X2)

= 12 + 7θ + 4θ 2 + θ 3

θ 2(1 + θ )2 ,

	
E

(
X3)

= 60 + 48θ + 21θ 2 + 8θ 3 + θ 4

θ 3(1 + θ )2 ,

	
E

(
X4)

= 360 + 408θ + 180θ 2 + 67θ 3 + 16θ 4 + θ 5

θ 4(1 + θ )2 ,

.
Variance (V ar) and Index of dispersion (ID) of PH distribution are given by

	 V ar (X) = E
(
X2)

− (E (X))2,

	
V ar (X) = 3 + 19θ + 20θ 2 + 12θ 3 + 5θ 4 + θ 5

θ 2(1 + θ )4 ,

.
and

	
ID (X) = V ar (X)

Mean (X) = 3 + 19θ + 20θ 2 + 12θ 3 + 5θ 4 + θ 5

θ (1 + θ )2(3 + 2θ + θ 2)
.

.
The coefficient of skewness (CS) and the coefficient of kurtosis (CK) can be determined using the following 

formulas.
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CS (X) =

E
(
X3)

− 3E
(
X2)

E (X) + 2(E (X))3

(E (X2))
3
2

,

and

	
CK (X) =

E
(
X4)

− 4E
(
X3)

E (X) + 6E
(
X2)

(E (X))2 − 3(E (X))4

(E (X2 ))2 .

.

•	 Table 1 shows that as θ increases, the mean decreases rapidly, while the variance decreases more slowly, result-
ing in a consistently high Index of Dispersion (ID). This constant overdispersion reflects the typical behavior 
of real-world count data involving rare but extreme events, such as insurance claims, equipment failures, or 
hospital admissions.

•	 At the same time, both the coefficient of skewness (CS) and coefficient of kurtosis (CK) increase significantly 
with θ . The increase in skewness indicates a growing asymmetry, with a longer right tail, meaning that large 
counts become increasingly probable relative to the mean. The sharp increase in kurtosis signifies heavier tails 
and a higher peak, characteristic of datasets with a preponderance of small counts punctuated by occasional 
large outliers.

Parameter Estimation
This section is based on parameter estimation using two widely recognized estimation approaches: the method 
of moments and maximum likelihood estimation. Both approaches are explored in detail, providing insight into 
their usefulness in estimating the parameters of the PH distribution. Furthermore, a detailed simulation study 
is carried out to assess the behavior accuracy of these estimates under different scenarios. This comprehensive 
analysis aids in understanding the practical performance of estimation techniques in real-world applications.

Maximum likelihood estimator (MLE)
The log-likelihood function for the PH distribution can be written as

	 l (θ ) = 2nlog (θ ) − log (2) − log (1 + θ )
∑

n
i=1 (xi + 5) +

∑
n
i=1log

(
2 (2 + θ ) (1 + θ )2 + θ (2 + xi) (1 + xi)

)
.� (11)

.
To optimize the equation above, we calculate the partial derivative concerning θ and obtain

	
∂ l (θ )

∂ θ
= 2n

θ
− 1

(1 + θ )
∑

n
i=1 (xi + 5) +

∑
n
i=1

(1 + xi) (2 + xi) + 2(1 + θ )2 + 4 (1 + θ ) (2 + θ )
(1 + xi) (2 + xi) θ + 2(1 + θ )2 (2 + θ )

.� (12)

θ Mean Var CS CK CV ID

0.05 56.2812 1316.83 1.10002 4.83147 0.64476 23.3973

0.50 3.77778 15.2894 1.57280 6.27145 1.03486 4.04575

1.00 1.50000 3.75000 1.96231 8.30667 1.29099 2.50000

1.50 0.88000 1.70560 2.16994 9.60034 1.48406 1.93818

2.00 0.61111 1.01543 2.30112 10.3951 1.64894 1.66162

2.50 0.46531 0.69941 2.40410 10.9577 1.79733 1.50312

3.00 0.37500 0.52604 2.49702 11.4299 1.93410 1.40278

3.50 0.31393 0.41896 2.58610 11.8742 2.06181 1.33454

4.00 0.27000 0.34710 2.67325 12.3152 2.18204 1.28556

4.50 0.23691 0.29588 2.75896 12.7615 2.29595 1.24887

5.00 0.21111 0.25765 2.84326 13.2156 2.40441 1.22048

6.00 0.17347 0.20460 3.00738 14.1455 2.60755 1.17947

7.00 0.14732 0.16962 3.16527 15.0977 2.79561 1.15138

8.00 0.12809 0.14486 3.31700 16.0650 2.97146 1.13095

9.00 0.11333 0.12641 3.46290 17.0421 3.13719 1.11542

10.0 0.10165 0.11215 3.60340 18.0260 3.29437 1.10323

11.0 0.09217 0.10078 3.73894 19.0143 3.44419 1.09338

15.0 0.06719 0.07174 4.23937 22.9911 3.98639 1.06770

20.0 0.05023 0.05276 4.79293 27.9828 4.57320 1.05045

30.0 0.03340 0.03452 5.74253 37.9813 5.56235 1.03347

Table 1.  Mean, var, CS, CK, CV, and ID of the PH distribution.
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.
The ML estimator may be produced by numerically solving Eq. (10), which cannot be represented simply in 

terms of parameters.

Method of moments estimator (MME)
The MME can be obtained by setting the population mean equal to the sample mean. Thus, the MME of θ , 
denoted as θ̂ , is derived by solving the following equation.

	

−
x= θ̂

2
+ 2θ̂ + 3

θ̂
(

1 + θ̂
)2 .� (13)

Simulation
We present here a comprehensive simulation study to assess the performance of both estimation methods 
discussed in the previous subsection. To investigate how the estimators behave under different sample sizes, 
both small and large sample sizes are considered. Specifically, we considered the following sample sizes of n = 25, 
50, 100, 200, and 300 to generate a sample. The simulation process is repeated N = 10,000 times to ensure robust 
results. For each generated sample, we calculate the four key performance metrics to evaluate the behavior of 
estimators: The average estimate (AE), absolute bias (AB), mean relative error (MRE), and mean square error 
(MSE).

	
AB = 1

N

∑
N
i=1

∣∣∣θ̂ − θ

∣∣∣ , MRE = 1
N

∑
N
i=1

∣∣∣θ̂ − θ
∣∣∣

θ
, and MSE = 1

N

∑
N
i=1

(
θ̂ − θ

)2
.

The calculated values for each of these performance measures are summarized in Table  2. Additionally, the 
heatmap based on AB, MRE, and MSE measures are presented in Fig. 3.

Table 2; Fig. 3 present simulation findings for the performance of MLE and MME estimation methods for 
different samples and various choices of parameter θ . It is observed that.

•	 In the majority of cases, the maximum likelihood estimation approach provides smaller values of AB, and 
MRE compared to MME, indicating that MLE tends to be more accurate, especially for higher parameter 
values and sample sizes.

•	 As the sample size increases both estimators tend towards the true value of the parameter. This is a character-
istic behavior for estimators that tend to converge to the true parameter.

•	 As the parameter θ  increases, the difference between MME and MLE becomes more noticeable, with MLE 
consistently showing smaller errors.

•	 The MLE and MME estimators show a reduction in AB and MSE as the sample size increases. However, MME 
tends to have slightly larger AB and MSE values than MLE, particularly for higher values of parameter.

Posson Haq regression model
A new count regression model based on Poisson Haq distribution is proposed in this section. The PMF is 
defined in terms of parameter θ , which is a transformation of the mean parameter µ > 0. The transformation 
θ = θ (µ ) is presented by:

	
θ (µ ) = −2µ − 1

3µ
+ µ 2 + 2µ + 1

3µ (A)1/3 + (A)1/3

3µ

where A = 1 + 3µ + 30µ 2 + µ 3 + 3
√

3
√

2µ 2 + 6µ 3 + 33µ 4 + 2µ 5.(Proof is given in Appendix).
The PMF of the PHaq distribution for count variable Y  is articulated as:

	
P (Y = y | µ ) = 0.5

(
θ

1 + θ

)2 2 (2 + θ ) (1 + θ )2 + θ (2 + y) (1 + y)
2(1 + θ )y+3 , y = 0,1, 2, . . . .

We denote this probability model Y (θ , µ ), where µ  serves as the mean parameter.
Assume the count response variable Yi for the i-th observation follows the P H (θ , µ ) model. Let 

E (Y ) = µ i and to relate the mean µ i to the random variable, we utilize the log-link function:

	 µ i = exp
(
β xT

i

)
, i = 0,1, 2, . . . .

where β = (β0, β1, ..., βp)T  is the vector of regression coefficients, and xi = (xi1, xi2, . . . , xip)T  is the 
vector of explanatory variables for the i-th observation. Substituting the log-link function µ i = exp

(
β xT

i

)
 

and re-parameterization θ (µ ), we obtain the regression model that can be fitted to real-world count data. The 
likelihood function of the new count regression model is given by
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logL (β ) =

∑
n
i=1log

{
0.5

(
θ i

1 + θ i

)2 2 (2 + θ i) (1 + θ i)2 + θ i (2 + yi) (1 + yi)
2(1 + θ i)yi+3

}
.

	 where θ i = θ (µ i) and µ i = exp
(
β xT

i

)
.

.
Now the estimates of the proposed regression parameters by maximizing the above log-likelihood function 

with respect to β  using numerical optimization methods using R software.

Data applications
In this section, we compare the new count distribution with widely recognized discrete probability distributions 
to assess its applicability and adequacy. To facilitate the analysis, we utilized three datasets from different domains: 
one is the number of mammalian cytogenetic dosimetry lesions, and the other examines remission times (in 
months) of Nipah virus infection. To perform the comparison, we consider different count distributions, each 
model offering unique features suited to different types of data. The competitive distributions include Poisson 
moment exponential (PME)17 Poisson XLindley (PXL)18 Poisson Ramos-Louzada (PRL)33 Poisson entropy-
based weighted exponential (PEWE)22. Additionally, we examine the standard Poisson distribution, widely used 
for modeling rare events. The density functions of these models are given below.

	
P (X = x; θ ) =

(
1 + 1

θ

)−x (x − 1 + θ (θ − 1))
(θ − 1) (1 + θ )2 ; x = 0,1, 2,3, . . . , θ ≥ 2,

	
P (X = x; θ ) =

θ 2 (
x + θ 2 + 3 (1 + θ )

)

(1 + θ )x+4 ; x = 0,1, 2,3, . . . , θ > 0,

Parameter n

MLE MME

E
(
θ̂

)
AB

(
θ̂

)
MRE

(
θ̂

)
MSE

(
θ̂

)
E

(
θ̂

)
AB

(
θ̂

)
MRE

(
θ̂

)
MSE

(
θ̂

)

θ = 0.5

25 0.5333 0.0333 0.0666 0.0099 0.5317 0.0758 0.1517 0.0098

50 0.5240 0.0240 0.0481 0.0045 0.5248 0.0508 0.1016 0.0046

100 0.5190 0.0190 0.0380 0.0022 0.5190 0.0373 0.0747 0.0023

200 0.5174 0.0174 0.0347 0.0012 0.5175 0.0276 0.0553 0.0013

300 0.5162 0.0162 0.0324 0.0009 0.5162 0.0237 0.0474 0.0009

θ = 1.0

25 1.1328 0.1328 0.1328 0.0909 1.1182 0.2075 0.2075 0.0903

50 1.0987 0.0987 0.0987 0.0402 1.1030 0.1531 0.1531 0.0410

100 1.0810 0.0810 0.0810 0.0205 1.0775 0.1084 0.1084 0.0198

200 1.0751 0.0751 0.0751 0.0123 1.0715 0.0847 0.0847 0.0113

300 1.0732 0.0732 0.0732 0.0097 1.0723 0.0802 0.0802 0.0097

θ = 1.5

25 1.7959 0.2959 0.1972 0.4404 1.7848 0.4223 0.2815 0.3944

50 1.7073 0.2073 0.1382 0.1567 1.7229 0.2963 0.1975 0.1748

100 1.6759 0.1759 0.1173 0.0826 1.6643 0.2087 0.1391 0.0751

200 1.6574 0.1574 0.1049 0.0476 1.6601 0.1772 0.1181 0.0497

300 1.6518 0.1518 0.1012 0.0383 1.6511 0.1605 0.1070 0.0383

θ = 2.0

25 2.5386 0.5386 0.2693 1.3454 2.4957 0.6827 0.3413 1.1850

50 2.3448 0.3448 0.1724 0.4592 2.3648 0.4699 0.2350 0.4627

100 2.2895 0.2895 0.1447 0.2138 2.2886 0.3476 0.1738 0.2091

200 2.2448 0.2448 0.1224 0.1196 2.2503 0.2793 0.1397 0.1194

300 2.2361 0.2361 0.1180 0.0946 2.2492 0.2595 0.1297 0.1004

θ = 2.5

25 3.2719 0.7719 0.3088 2.5904 3.3809 1.1391 0.4556 4.7998

50 2.9931 0.4931 0.1972 0.9343 3.0060 0.6672 0.2669 0.9549

100 2.8883 0.3883 0.1553 0.4216 2.8965 0.4909 0.1964 0.4399

200 2.8426 0.3426 0.1370 0.2384 2.8571 0.3937 0.1575 0.2629

300 2.8285 0.3285 0.1314 0.1869 2.8241 0.3473 0.1389 0.1862

θ = 3.0

25 3.9815 0.9815 0.3272 4.2620 4.1697 1.5121 0.5040 7.7775

50 3.6994 0.6994 0.2331 1.8749 3.6636 0.8976 0.2992 1.8394

100 3.4898 0.4898 0.1633 0.7736 3.5343 0.6504 0.2168 0.8134

200 3.4288 0.4288 0.1429 0.4025 3.4305 0.4939 0.1646 0.4129

300 3.4056 0.4056 0.1352 0.3032 3.4186 0.4496 0.1499 0.3110

Table 2.  Parameter estimates, bias, mres, and MSEs of PH distribution for parameters.
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P (X = x; θ ) = θ x (1 + x)

(1 + θ )x+2 ; x = 0,1, 2,3, . . . , θ > 0,

	
P (X = x; θ ) = θ ((1 + θ ) ln (θ ) − (1 + x) θ )

(1 + θ )x+2 (ln (θ ) − 1)
; x = 0,1, 2,3, . . . , θ > 0,

and

	
P (X = x; θ ) = e−θ θ x

x! ; x = 0,1, 2,3, . . . , θ > 0.

Fig. 3.  Heatmaps for Bias, MRE, and MSE based on different choices of parameter and sample size.

 

Scientific Reports |        (2025) 15:23281 10| https://doi.org/10.1038/s41598-025-07223-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


.
The parameters of all considered distributions are estimated using the MLE method, which ensures that 

the selected parameters maximize the likelihood function based on the observed data. For the determination 
of best-fitted probability distribution, a detailed assessment is conducted using various information criteria 
and goodness-of-fit measures. These measures include: the Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC), and Chi-Square goodness-of-fit. The determination of the best-fit distribution is 
based on the minimum values of AIC, BIC, and Chi-Square test statistic and higher the values log-likelihood 
and Chi-Square p-values.

Infected patients of Nipah virus data
The first dataset is about the survival time (in months) of Kerela, the Indian state, resident who was infected 
by the Nipah virus in 201734. Some descriptive statistics for this dataset are mean = 0.7636, variance = 0.8311, 
skewness = 1.8575 and kurtosis = 6.1792. Figure  4 presents various descriptive plots to visually explore the 
dataset, including a Violin plot to combine distributional information with summary statistics, a Boxplot to 
highlight the distribution and potential outliers, a Q-Q plot to assess the normality of the data by comparing it 
to a theoretical distribution, and a Histogram to show the frequency distribution of the data.

The parameter estimates observed frequencies (Obs. Fr.) and expected frequencies (Exp. Fr.) of all fitted 
distributions along with goodness-of-fit measures for the Nipah Virus dataset are given in Table 3.

Table 3 reveals that the PH distribution achieves the smallest AIC, BIC, and Chi-Square test statistic values 
compared to other distributions, indicating that it offers the best fit to the observed data among all the competitive 
distributions. Furthermore, Fig. 5 presents a comparative visualization of the Obs. and Exp. Frequencies for the 
considered count models. This graphical representation allows for a clearer understanding of how well each 
probability distribution aligns with real-life data.

Mammalian cytogenetic dosimetry lesions data
The second dataset represents the number of mammalian cytogenetic dosimetry lesions induced by exposure 
to streptogramin (NSC-45383) in rabbit lymphoblasts at a dosage of 70 3bc g/kg35. We first computed some 

X Obs. Fr.

Exp. Fr.

PH PRL PXL PME PEWE Poisson

0 33 32.319 2.0391 31.886 29.616 13.823 26.453

1 12 13.401 8.2212 13.807 16.157 14.908 19.839

2 6 5.7576 9.5403 5.9290 6.6110 10.957 7.4398

3 3 2.5247 8.7520 2.5284 2.4045 7.0041 1.8599

4 1 1.1168 7.2374 1.0718 0.8199 4.1627 0.3487

5 1 0.8810 20.210 0.7777 0.3921 5.1457 0.0596

Total 56 56 56 56 56 56 56

MLE α̂ 1.6979 2.7573 1.5406 0.3749 1.1287 0.7499

GOF Measures

−l 66.892 108.84 66.928 67.767 83.838 71.582

AIC 135.78 219.67 135.86 137.53 169.68 145.16

BIC 137.81 221.70 137.88 139.56 171.70 147.19

χ 2 0.2112 500.56 0.3219 1.5147 37.443 4.8903

df 1.0 4.0 1.0 1.0 3.0 1.0

p-value 0.6458 0.0000 0.5704 0.2184 0.0000 0.0270

Table 3.  The mles, frequencies, and goodness-of-fit values for the Nipah virus dataset.

 

Fig. 4.  Descriptive plots for the Nipah Virus dataset.
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descriptive metrics of these datasets to illustrate their behavior such as the mean lesion count is 0.5400 with a 
variance of 1.3319, the skewness is 1.7109, and the coefficient of kurtosis is 5.6532. These descriptive measures 
indicate a positively skewed with heavy tails, suggesting a relatively low frequency of extreme lesion counts.

Additionally, to better understand these patterns some descriptive plots including Boxplot, Histogram, 
Violin, and Q-Q plots are generated and are listed in Fig. 6. These descriptive plots complement the numerical 
summaries by highlighting the overall pattern, central tendency, shape, and outliers of the data.

The MLEs, Obs. and Exp. Frequencies and goodness-of-fit metrics for cytogenetic dosimetry lesions data are 
presented in Table 4. Further, the Obs. and Exp. Frequencies are also generated for all fitted distributions and 
listed in Fig. 7.

It is observed that the Poisson-Haq distribution efficiently analyzes this dataset as compared to other 
distributions.

Application of the PH regression model
Now we take into account the dataset that was reported in36. The information shows the length of cardiovascular 
patients’ stay at the hospital. A total of 3589 observations were taken into account using the COUNT package in 
R software. The considered dataset is known as AZPRO data. The purpose of this study is to examine how the 
response variable “length of patients’ stays at the hospital (los)”, is impacted by the variables such as cardiovascular 
procedure (procedure), gender (sex), Admission type (admit), and age. The barplot of the quantity of doctor 
visits is shown in Fig. 8.

Now by utilizing the following log-link function to associate the variables with the response mean.

Fig. 6.  Descriptive plots for the cytogenetic dosimetry lesions dataset.

 

Fig. 5.  Obs. and Exp. Frequencies of all fitted distributions for the Nipah Virus dataset.
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	 log (µ i) = β 0 + β 1 ∗ procedure + β 2 ∗ sex + β 3 ∗ admit + β 4 ∗ age

The data is fitted with Poisson regression, Poisson-transmuted record type exponential (PTRTE)37and the 
proposed PH regression model. The parameter estimates and model selection measures are presented in Table 5.

Table 5 displays all findings of the proposed regression model along with considered competitive regression 
models. It is conclusive that all the competitive regression models are significant, as the p-value for each model 
is less than 5%. Furthermore, the table also confirms that the PH regression model fits the data best with the 
highest log-likelihood and the lowest AIC and BIC scores as compared to others.

Bayesian analysis
In this section, the Bayesian estimation approach is employed to estimate the parameters of the new count 
distribution. Bayesian technique offers a powerful framework for parameter estimation by incorporating prior 
information about the parameter(s) in the system of prior distribution(s). For this purpose, we assume gamma 
prior to the parameter θ , reflecting our preliminary identification or convention about its possible values. The 

Fig. 7.  Obs. and Exp. Frequencies of all fitted distributions for the cytogenetic dosimetry lesions dataset.

 

X Obs. Fr.

Exp. Fr.

PH PRL PXL PME PEWE Poisson

0 200 195.9764 40.267 194.5782 186.0004 74.266 174.8245

1 57 66.9847 44.300 68.5440 79.0868 79.276 94.4052

2 30 23.6390 41.910 24.0289 25.2206 58.397 25.4894

3 7 8.5153 36.708 8.3879 7.1491 37.515 4.5881

4+ 6 4.8846 136.81 4.4611 2.5431 50.547 0.6928

Total 300 300 300 300 300 300 300

MLE α̂ 2.2094 2.8186 2.0512 0.2700 1.1133 0.5400

GOF Measures

−l 299.21 575.24 299.31 302.41 434.29 314.23

AIC 600.42 1152.5 600.63 606.83 870.59 630.45

BIC 604.13 1156.2 604.33 610.53 874.29 634.16

χ 2 3.2945 789.78 3.5809 9.2566 297.02 30.527

df 2.0 3.0 2.0 2.0 3.0 2.0

P-value 0.1925 0.000 0.1668 0.0097 0.0000 0.0000

Table 4.  The mles, frequencies, and goodness-of-fit values for the cytogenetic dosimetry lesions dataset.
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posterior density combines both observed data and prior information and is obtained using Bayes’ theorem. 
This density involves the multiplication of the likelihood function and prior information. The resultant posterior 
distribution delivers an updated estimate of the parameter θ  that combines both prior information and the 
evidence from the data.

	 p (θ |x) ∝ L (θ |x) p (θ )

The gamma distribution is widely considered prior distribution. It is suitable due to its conjugation with many 
likelihood functions commonly used in the Bayesian paradigm.

The posterior density for parameter θ  is given by

	
p (θ |x) = baθ a−1e−θ b

Γ (a)
∏

n
i=1

θ 2

(1 + θ )xi+3

[
2 (2 + θ ) (1 + θ )2 + θ (2 + xi) (1 + xi)

2(1 + θ )2

]
.� (14)

.
It is easily seen from Eq. (11) that the posterior density is not available in closed form, necessitating the use 

of computational techniques for parameter estimation. To acquire posterior summaries of interest, we utilized 
the Markov Chain Monte Carlo (MCMC) technique which is well-suited for sampling from complex posterior 
density functions.

The simulation program generated 1,007,000 samples from the joint posterior distribution. The first 7,000 
samples are discarded as a burn-in period to mitigate the impact of seed values on the final parameter estimates. 
A thinning interval of 200 is utilized to reduce autocorrelation among successive samples, ensuring the resulting 
set of samples is approximately independent. The mean of these samples is utilized to compute Bayes estimates. 
To ensure the accuracy and validity of results, coverage diagnostics are performed. Trace plots of the sample 
values are examined to assess the stability of the Markov chain. Additionally, we also use the Geweke diagnostic, 
which uses a z-score to compare the means of two non-overlapping segments of the chain, which are normalized 
by the asymptotic standard error of the difference. The convergence deemed satisfactory of the absolute value 
of the z-score is less than 1.96. All calculations and analyses are performed using the MCMCpack package with 
the R software.

Para.

PH PTRTE Poisson

Esti. (SE) p-value Esti. (SE) p-value Esti. (SE) p-value

β 0 1.4060(0.0381) < 0.0001 2.9942(0.0429) < 0.0001 1.4560(0.0158) < 0.0001

β 1 0.9580(0.0294) < 0.0001 0.9655(0.0362) < 0.0001 0.9603(0.0122) < 0.0001

β 2 − 0.1256(0.0306) < 0.0001 − 0.1255(0.0364) < 0.0001 −0.1239(0.0118) < 0.0001

β 3 0.3683(0.0305) < 0.0001 0.3940(0.0366) < 0.0001 0.3266(0.0121) < 0.0001

β 4 0.1190(0.0324) < 0.0001 −0.0107(0.0043) < 0.0001 0.1222(0.0124) < 0.0001

α - - 4.7501(0.1664) - - -

−l 10,822 11,164 11,190

AIC 21,653 22,338 22,390

BIC 21,684 22,369 22,421

Table 5.  The findings of the PH regression model.

 

Fig. 8.  The bar plot of the number of doctor visits.
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The posterior summaries, including the posterior mean, standard deviation, Geweke diagnostic scores, and 
highest posterior density interval (HPD) intervals, are listed in Table 6. These findings deliver a comprehensive 
overview of the Bayesian estimates and their associated uncertainties. The posterior samples for the PH 
distribution parameter for both datasets are shown in Figs. 9 and 10.

Conclusion
This study presents and examines a novel one-parameter probability distribution for count data. This novel 
count probability model is derived using the mixed Poisson compounding technique and named as Poisson Haq 
(PH) distribution. The PH distribution is capable of addressing the need for modeling count datasets exhibiting 
overdispersion. The failure rate of PH distribution is showing an increasing pattern.

The essential statistical and reliability characteristics of PH distribution were mathematically and numerically 
derived, including cumulative distribution function, survival and hazard functions, moment, and associated 
measures. It has been observed that the mean and variance of PH distribution decreases with an increase in 
parameter values. This implies that the new distribution tends more concentrated around lower values with 
higher values of the parameter. The coefficients of skewness and kurtosis also show an increasing pattern for 
higher parameter values. The distribution becomes more skewed to the right, more pronounced peak and 
heavier tails. The dispersion index gradually decreases for larger values of the parameter.

The distribution parameter has been estimated using the methods of moments and maximum likelihood 
estimation. It has been observed that as the sample size increases both estimators tend towards the true value of 
the parameter. The MLE and MME estimators show a reduction in Bias and MSE as the sample size increases. 
However, MME tends to have slightly larger Bias and MSE values than the MLE, particularly for higher values 

Fig. 10.  Traceplot, histogram, and ACF plot for the cytogenetic dosimetry lesions dataset.

 

Fig. 9.  Traceplot, histogram, and ACF plot for the Nipah Virus dataset.

 

Dataset Bayes Estimate S.D. S.E. HPD Geweke z-score

Nipah Virus 1.6873 0.2646 0.0026 (1.2109, 2.2324) −0.8895

Lesions 2.1985 0.1740 0.0017 (1.8703, 2.5490) 0.2059

Table 6.  The posterior summaries of the PH distribution for both datasets.
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of the parameter. Further, it has been seen that as the parameter θ  increases, the difference between MME and 
MLE becomes more noticeable, with MLE consistently showing smaller errors.

To demonstrate the versatility of the new distribution, three datasets related to medical science are considered. 
The first data is associated with the number of infected patients with the Nipah virus, the second one is about 
the number of mammalian cytogenetic dosimetry lesions, and the third data is related to the length of hospital 
stay. Comparative analyses show that the new distribution analyzed these datasets adequately as compared 
to considered competitive distributions. Additionally, the Bayesian estimation approach is also employed to 
estimate the parameter of PH distribution.

Future research aims to investigate additional modifications and applications of the PH distribution. Potential 
directions but not limited to, exploring actuarial measures, examining reliability characteristics like mean 
residual life function and entropy, and forms of truncated, zero-inflated, and neutrosophic models. Additionally, 
this distribution can be applied to population size estimation. These advancements are anticipated to enhance 
the versatility and applicability of the proposed distribution, solidifying its position as a robust and competitive 
model in the realm of statistical literature.

Data availability
Data availability: All data generated or analysed during this study are included in this published article.

Appendix
The solution of re-parameterization for θ  in terms of µ .
We are given the equation:

	

(
θ2 + 2θ + 3

)
θ (1 + θ )2 = µ .

Multiply both sides by the denominator:

	 θ (1 + θ )2µ = θ 2 + 2θ + 3

Expand the left-hand side:

	
(
θ 3 + 2θ 2 + θ

)
µ = θ 2 + 2θ + 3

Move all terms to one side:

	 µ θ 3 + 2µ θ 2 + µ θ − θ 2 − 2θ − 3 = 0

	 µ θ 3 + (2µ − 1) θ 2 + (µ − 2) θ − 3 = 0

Divide through by µ:

	
θ 3 +

(
2µ − 1

µ

)
θ 2 +

(
µ − 2

µ

)
θ − 3

µ
= 0

This is a cubic equation in θ . Using the cubic formula, we get:

	
θ (µ ) = −2µ − 1

3µ
+ µ 2 + 2µ + 1

3µ (A)1/3 + (A)1/3

3µ

where A = 1 + 3µ + 30µ 2 + µ 3 + 3
√

3
√

2µ 2 + 6µ 3 + 33µ 4 + 2µ 5.
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