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OPEN A multimodal deep learning

architecture for predicting
interstitial glucose for effective
type 2 diabetes management
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The accurate prediction of blood glucose is critical for the effective management of diabetes. Modern
continuous glucose monitoring (CGM) technology enables real-time acquisition of interstitial glucose
concentrations, which can be calibrated against blood glucose measurements. However, a key
challenge in the effective management of type 2 diabetes lies in forecasting critical events driven by
glucose variability. While recent advances in deep learning enable modeling of temporal patterns in
glucose fluctuations, most of the existing methods rely on unimodal inputs and fail to account for
individual physiological differences that influence interstitial glucose dynamics. These limitations
highlight the need for multimodal approaches that integrate additional personalized physiological
information. One of the primary reasons for multimodal approaches not being widely studied in this
field is the bottleneck associated with the availability of subjects’ health records. In this paper, we
propose a multimodal approach trained on sequences of CGM values and enriched with physiological
context derived from health records of 40 individuals with type 2 diabetes. The CGM time series were
processed using a stacked Convolutional Neural Network (CNN) and a Bidirectional Long Short-Term
Memory (BiLSTM) network followed by an attention mechanism. The BiLSTM learned long-term
temporal dependencies, while the CNN captured local sequential features. Physiological heterogeneity
was incorporated through a separate pipeline of neural networks that processed baseline health
records and was later fused with the CGM modeling stream. To validate our model, we utilized CGM
values of 30 min sampled with a moving window of 5 min to predict the CGM values with a prediction
horizon of (a) 15 min, (b) 30 min, and (c) 60 min. We achieved the multimodal architecture prediction
results with Mean Absolute Point Error (MAPE) between 14 and 24 mg/dL, 19-22 mg/dL, 25-26 mg/dL
in case of Menarini sensor and 6-11 mg/dL, 9-14 mg/dL, 12-18 mg/dL in case of Abbot sensor for 15, 30
and 60 min prediction horizon respectively. The results suggested that the proposed multimodal model
achieved higher prediction accuracy compared to unimodal approaches; with upto 96.7% prediction
accuracy; supporting its potential as a generalizable solution for interstitial glucose prediction and
personalized management in the type 2 diabetes population.
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Type 2 Diabetes Mellitus (T2DM) is characterized by insulin resistance, leading to elevated blood glucose levels,
and it accounts for approximately 90% of all diagnosed cases of diabetes'. Individuals with T2DM are at 15%
higher risk of mortality? as the International Diabetes Federation estimated 537 million people were affected,
causing 6.7 million deaths in 2021° and projected to rise up to 783 million by 2045. This not only impacts
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population health but also imposes a heavy financial strain on both individuals and the global healthcare system,
as the American Diabetes Association reported that the total cost of diagnosed diabetes in the United States was
412.9 billion USD in 20224, with a 35% increase in medical costs over the past decade®. Efforts to mitigate these
costs focus on early detection, effective management strategies, and preventive measures to reduce the incidence
and severity of diabetes complications®.

Multiple studies have shown that self-monitoring of blood glucose is effective in supporting diabetes
management®. With the advent of modern wearables and technologies, one study identified high compliance with
regular monitoring of blood glucose and other T2DM variables (e.g. diet, physical activity) among individuals
using smartphones compared to those using paper diaries’. The regular self-monitoring of blood glucose can
promote adherence to clinical guidelines for diet and physical activity, resulting in improvements in hemoglobin
Alc (HbAlc) levels®. Traditionally, regular blood glucose monitoring requires a finger prick test, which is
invasive and cumbersome®. In contrast, Continuous Glucose Monitoring (CGM) measures the concentration
of glucose in the interstitial fluid at regular intervals!®. While CGM is well established in type 1 diabetes care,
its use in T2D is expanding. The ADA Standards of Care in Diabetes 2025 recommend CGM for adults with
T2D on glucose-lowering therapies, reflecting its growing role in managing glycemic variability'!. CGM use in
T2D has been associated with reduced risk of severe hypoglycemia, diabetic ketoacidosis, and hospitalizations.
Developing accurate glucose predictive models for this population is therefore timely and clinically relevant.

Regular acquisition of blood glucose data holds significant potential for predicting future glucose levels and
improving glycaemic control!2. It also enables the estimation of critical glycaemic events, such as hypoglycaemia
(defined as blood glucose levels below 70 mg/dL) and hyperglycaemia (above 180 mg/dL)!*. However, there are
certain challenges associated with predicting blood glucose via CGM values only. Firstly, there is a proven 10-
min sensor delay between interstitial fluid glucose and actual blood glucose as measured by CGM!. Secondly,
CGM systems are susceptible to occasional sensor failure or signal loss, and therefore require reliable strategies
to ensure continuity of glucose monitoring during these periods!'>®.

Advances in artificial intelligence (AI), including traditional machine learning and deep learning techniques,
have enabled the development of models that predict interstitial glucose levels 15 to 60 min in advance based on
historical CGM-derived glucose readings'”"'®. However, clinical studies suggest the patient-specific differences
in glycaemic variability are possible due to underlying conditions (e.g., demographics, comorbidities, or diet
plans)!® and currently, predictive models do not inform CGM variations based on these underlying conditions.

To address the aforementioned challenge, in this study, glucose levels were monitored using a continuous
glucose monitoring (CGM) device, which measures glucose concentration in the interstitial fluid via the
subcutaneous tissue. We investigated a multimodal deep learning approach to estimate short-term interstitial
glucose levels in individuals with T2D in real-life conditions by informing continuous glucose monitoring
(CGM) data with baseline health conditions. The multimodal learning approach involves a sequential deep
learning pipeline trained on CGM sequences and context information, while baseline health data serve as
auxiliary knowledge to inform CGM variations, which are then combined via a multimodal fusion function.
The overall workflow of our architecture has been presented in Fig. 1. The details are presented in the upcoming
sections according to the TRIPOD statement as tabulated in Supplementary Table 1.

Results

Participants

Table 1 presents the set of input variables along with the characteristics examined in the present predictive
modelling study for the 40 subjects. In particular, 15 out of 40 patients used the GlucoMen Day CGM Menarini®
sensor (we call Sensor 1) for a monitoring period of 10-19 days, and the remaining 25 patients used the Libre
Abbott® system (we call Sensor 2) for a monitoring period of 8-28 days. This has served as initial step for
Ambulatory Glucose Profile (AGP) analysis.

Based on AGP analysis, the time spent in clinically defined glucose ranges varied across participants. On
average, participants spent approximately 2.68% of the time in low range (glucose <70 mg/dL) and 0.64% in
very low range (glucose <54 mg/dL), as shown in Fig. 2. Time spent in the high range (glucose > 180 mg/dL)
was approximately 20%, and time spent in the very high range (glucose>250 mg/dL) was approximately 5%.
The mean interstitial glucose across the cohort was 146.1 £22.98 mg/dL (see Table 2). The results were extracted
prior to data curation and preprocessing. Also, the Augmented Dickey-Fuller (ADF) confirmed that the CGM
time series for each patient was stationary over the observation period.

CGM prediction

Table 3 reports the performance of the unimodal prediction pipeline for a 15-min prediction horizon, evaluated
using Mean Absolute Percentage Error (MAPE)®. The results indicate that emphasizing local CGM features,
via weighting mechanisms informed by high CGM contextual variability, enhances prediction accuracy. The
Convolutional Neural Network (CNN) driven Long Short Term Memory (LSTM) i.e. CNN-LSTM model with
attention achieved the lowest MAPE across both sensors, demonstrating the benefit of incorporating temporal
dynamics and adaptive focus on high-variability regions in glucose trends. The statistical significance among
difference in MAPE among different architectures of CGM pipeline has been performed via T test*! and has been
presented in Table 4. The results show significant improvement towards adding LSTM and attention mechanism.
However, our experiments also suggest that adding more complex layers (e.g. adding multilayer convolutional
layers) will add further complexity in the architecture; resulting in decreased performance of the model.

Comparison between multimodal and unimodal architectures
After the CGM pipeline development, we then developed the multimodal architecture by performing additive
concatenation between the CGM pipeline and baseline pipeline trained via fully connected dense architecture.
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Fig. 1. Overall architecture of predicting the continuous interstitial glucose via multimodal architecture.

Feature Mean +std
Male: 45 (18)
Demographics Gender (%) Female: 55 (22)
Age (years) 67+9
Weight (kg) 80.42+28.46
Anthropometrics | Height (m) 1.63+0.12
Waist circumference (cm) 104.13+16.5
Baseline Blood Glucose (mg/dL) | 136.6+45.19
Baseline HbAlc (%) 7.42+1.11
Creatinine (mg/dL) 1.99+1.52
Urea Level (mg/dL) 49.44+30.65
Total cholesterol (mg/dL) 144.82+£33.78
LDL cholesterol (mg/dL) 67.17+32.11
HDL cholesterol (mg/dL) 46.86+£10.83
Triglycerides (mg/dL) 203.71+247.43

Biochemical tests

White blood cell count (10A3/uL) | 7.29+1.83
Red blood cell count (10/3/uL) 25.26+37.27

Haematocrit (%) 39.76+8.86
Plt (x 1000/uL) 206.31+£80.53
SGOT (IU/L) 35.42+32.22
SGPT (IU/L) 25.99+14.12
K (mmol/L) 4.57+0.48
Na (mmol/L) 125.52+42.24

Table 1. Descriptive characteristics of Central Greece pilot study. Plt, Platelet Count; SGOT, Serum Glutamic-
Oxaloacetic Transaminase; SGPT, Serum Glutamic-Pyruvic Transaminase; HbAlc, Haemoglobin Alc.
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Fig. 2. The time in ranges based on AGP report.

AGP report variables Mean + standard deviation
Average glucose (mgdL™!) 146.1+22.98%

Glucose management indicator (%) 6.8+0.55%

Glucose variability (%) 31.85+£7.36%

Table 2. The glucose statistics based on AGP report across all patients using CGM data over the entire period
of the study (Data are presented as mean + standard deviation).

Menarini sensor MAPE | Abbott sensor MAPE
CNN 14.61+18.98 7.22+8.89
LSTM 14.62+19.91 6.89+9.15
CNN +LSTM 14.51+20.06 7.04+9.25
CNN +LSTM + Attention | 14.24+19.42 6.80+9.31

Table 3. CGM population model comparison for predicting interstitial glucose with 15-min prediction
horizon.

‘CNN ‘LSTM ‘CNN+LSTM CNN +LSTM + Attention

Menarini sensor (Sensor 1) statistical significance of difference

CNN *
LSTM * *
CNN+LSTM * *
CNN +LSTM + Attention | * * *

Abbot sensor (Sensor 2) statistical significance of difference

CNN +hk ok *ohk
LSTM ko ok ook
CNN +LSTM A ok ok

CNN +LSTM + Attention | *** b Hx

Table 4. The statistical significance of difference among different CGM pipelines mentioned in Table 3. *p_
value <0.05; **p_value <0.01; **p_value <0.001.

The reason for opting for simpler architecture is because the performance of the complex multimodal architecture
was constrained by the availability of baseline variables. Including more baseline variables reduced the number
of subjects available for training, which in turn impacted model performance. Through our experiments, we
have achieved 7 sets of baseline variables which are present with respective number of patient numbers acquired
through both Menarini and Abbot sensors. The results have been presented in Table 5.

The comparison between unimodal and multimodal architectures has been presented in terms of MAPE
as shown in Figs. 3 and 4. We have also tabulated these results not only in terms of overall MAPE, but also

Scientific Reports |

(2025) 15:27625 | https://doi.org/10.1038/s41598-025-07272-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0 [Age, ‘Gender’] 15 25
1 [‘Age; ‘Gender), 'HbAlc (%)'] 8 17
2 [‘Age, ‘Gender), 'HbAlc (%)', 'Weight (kg)', Height (m)'] 6 13
3 [Age, ‘Gender, 'HbAlc (%)', 'Weight (kg)', 'Height (m)', HDL cholesterol (mg/dL)', "Total cholesterol (mg/dL)'] 5 9
4 E‘:‘g’,d‘]gﬁnder’, 'HbAlc (%)', 'Weight (kg)', Height (m)', 'HDL cholesterol (mg/dL)’, "Total cholesterol (mg/dL)', 'Blood Glucose (mg/dL), 'Urea level 5 7
5 [Age, ‘Gender, 'HbAlc (%), 'WeighF (kg)', 'Height (m)', 'HDL cholesterol (mg/dL)', 'Total cholesterol (mg/dL)', Blood Glucose (mg/dL)’, 'Urea level 3 5
(mg/dL)', 'K (mmol/L)', 'Haematocrit (%)', 'LDL cholesterol (mg/dL)']
6 [Age, ‘Gender, 'HbAlc (%), 'WeighF (kg)', 'Height (m)', 'HDL cholesterol (mg/dL)’, "Total Fholesterol (mg/dL)", ‘Blood Glucose (mg/dL)’, 'Urea level 2 4
(mg/dL)', 'K (mmol/L)', 'Haematocrit (%)', "LDL cholesterol (mg/dL)’, 'SGOT (IU/L)’, 'White blood cell count (10A3/uL)']

Table 5. List and number of baseline and demographic variables present for both Menarini and Abbot

subjects.
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Fig. 3. Comparing violin plot of absolute point error for multimodal and unimodal architectures developed
for Menarini sensor across different variable sets at three prediction horizon. The violin plot shows the
distribution of absolute point error 25%, 50% and 75% quartile via dashed line.

in terms of Hyperglycaemic MAPE (where acquired interstitial glucose was greater than 180 mg/dL) as well
as Hypoglycaemic MAPE (where acquired interstitial glucose was less than 70 mg/dL). The results have been
presented in Table 6. Due to low number of Hypoglycaemic events in Type 2 diabetic subjects acquired from
Abbot sensors, the Hypoglycaemic MAPE for these subjects have not been calculated. Besides, due to smaller
number of participants for set 5 and onwards, their MAPE results were not stable and therefore not included in
the results.
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Fig. 4. Comparing violin plot of absolute point error for multimodal and unimodal architectures developed
for Abbot sensor across different variable sets at three prediction horizon. The violin plot shows the
distribution of absolute point error 25%, 50% and 75% quartile via dashed line.

The results reveals that increasing the prediction horizon negatively impacted cross-validation accuracy. As
expected, MAPE increased with longer prediction horizons, with wider APE distributions observed at the 60-
min horizon. Despite of constrained availability of baseline variables, the multimodal architecture significantly
outperformed the unimodal model for the first four baseline variable sets at both 30-min and 60-min horizons.
For the 15-min horizon, the difference in cross-validated MAPE between architectures was not statistically
significant for the Menarini sensor (Sensor 1) with baseline sets 3 and 4 due to a smaller sample size (see Table 5),
but was significant for the Abbott sensor (Sensor 2), where more subjects were available. In summary, while the
unimodal and multimodal models performed comparably at the 15-min horizon, the multimodal architecture
showed significantly better performance at 30 and 60 min, likely due to the incorporation of baseline variables
that helped inform CGM trends over longer horizons.

Clinical explainability of prediction performance

We further evaluated the prediction performance of the multimodal architecture in a clinical context using
Parkes Error Grid analysis?2. The Parkes Grid Error was developed to present performance zones for blood/
interstitial glucose prediction performance for type 2 diabetic subjects. It has 5 zones ranging from zone A - E
with zone A defines “clinically accurate measurements with no impact on clinical actions” and zone B as “altered
clinical action, little or no effect on clinical outcome” The results are tabulated in Table 7 as well as shown in
Figs. 5 and 6 for some baseline variable sets. For each prediction horizon visualization, we selected the variable
set where the multimodal architecture significantly outperformed the unimodal model (as shown in Figs. 3,4).
The results demonstrate that, in all significant cases, multimodal predictions had a higher concentration of
values within Zone A of Parkes’ Error Grid for earlier baseline variable sets, across all horizons and for both
sensors, indicating greater clinical accuracy. The variable sets with low number of patients do present better
performance of unimodal architecture. Moreover, the multimodal models demonstrated improved performance
in clinically critical ranges, accurately predicting glucose values as low as 70 mg/dL (hypoglycemia) and as high
as 180 mg/dL (hyperglycemia). These findings suggest that incorporating personalized baseline information
not only enhances statistical performance, but also improves the clinical reliability of CGM prediction models.
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Sensor 1
15 min 30 min 60 min

Set |[MS1 | UM1 | p_value |MS1 | UM1 | p_value | MS1 | UM1 | p_value

0 14.1 | 14.2 19.6 |21.5 o 25.6 |26.5 o

1 14.8 | 15.1 * 19.9 |20.9 il 256 | 255
Overall MAPE 2 149 |15.2 * 20.3 | 20.6 260 |26.2

3 16.5 | 16.4 219 |228 o 263|268

4 243 |153 e 214 228 i 262 |274 ot

0 125 | 125 15.8 | 17.6 il 21.8 | 213

1 11.3 | 104 ek 16.0 | 16.5 * 23.1 |24.6 o
Hyperglycaemia MAPE | 2 11.5 | 11.7 157 | 174 bl 21.7 |21.6

3 112 | 11.1 142 | 154 b 21.2 | 209

4 132 | 11.7 14.7 | 16.0 o 209 |213 *

0 45.9 | 45.6 63.8 |81.6 i 99.9 105.6 | ***

1 52.1 |533 * 74.7 | 82.3 b 102.2 | 97.5 b
Hypoglycaemia MAPE | 2 472 | 4838 * 655 |71.8 ek 969 |101.3 |*

3 554 |503 ek 70.8 |82.6 i 933 |95.7

4 76.3 | 427 bt 69.4 |81.6 b 93.8 | 101.7 | ***

Sensor 2

Set |[MS2 |UM2 | p_value | MS2 | UM2 | p_value | MS2 | UM 2 | p_value

0 6.7 6.8 bt 9.2 9.4 b 120 |12.0

1 59 5.8 7.9 8.0 * 10.2 | 10.4 *
Overall MAPE 2 53 54 * 7.5 7.7 o 9.7 9.7

3 11.7 |95 bt 13.6 | 145 b 18.7 | 189

4 10.7 | 9.8 bl 13.8 | 13.3 ek 18.0 |18.9 ook

0 10.8 | 11.8 ek 18.6 | 16.1 o 235 |238

1 10.2 | 10.5 16.3 | 18.8 b 245 | 245
Hyperglycaemia MAPE | 2 12.6 | 14.0 bl 17.1 | 194 ek 26.6 | 27.7 b

3 126 | 11.5 o 16.6 | 18.1 o 236 |259 o

4 13.3 | 122 ek 18.3 | 19.0 * 256 |253

Table 6. Comparison of Multimodal architecture performance with Unimodal architecture in terms of

Mean Absolute Point Error (MAPE), Hyperglycaemic (interstitial glucose >180 mg/dL) and Hypoglycaemic
(interstitial glucose <70 mg/dL). MAPE between acquired interstitial glucose and predicted interstitial glucose.
We have include first 5 variable sets from Table 5. Due to low number of Hypoglycaemic events from patients
acquired by Abbot sensor, the performance in terms of Hypoglycaemic MAPE has not been included for

these patients. MS 1=Multimodal Sensor 1; UM 1=Unimodal Sensor 1; MS 2 =Multimodal Sensor 2; UM
2=Unimodal Sensor 2. Sensor 1: Menarini Sensor; Sensor 2: Abbot Sensor. *p_value <0.05; **p_value <0.01;
***p_value <0.001.

Discussion
Interpretation
In this study, we presented a novel multimodal architecture for predicting interstitial glucose with prediction
horizon of 15, 30 and 60 min based on 30-min CGM variation sampled at 5 min along with baseline information
of Type 2 subjects representing physiological status. Our novel multimodal architecture addresses several key
questions, and, to the best of our knowledge, this is the first study to develop a multimodal architecture for
predicting interstitial glucose of Type 2 diabetic subjects with personalized prior information. This study has
the potential to estimate the chronic events such as hyperglycaemia and hypoglycaemia in real time based on
personalized information with high clinical reliability. The technique was tested on a specific dataset of CGM
values collected via two different sensors (Menarini sensor 1 with 1-min sampling downsampled to 5 min
and Abbot sensor 2 with 15-min sampling which were upsampled to 5 min for consistency) from an elderly
population with Type 2 diabetes whose baseline information representing their physiological status was also
provided. The use of this original dataset highlights the robustness of the method in handling the complexities
and challenges inherent in cohort interstitial glucose prediction and its accuracy at the personalized level.
Initially, we developed the unimodal architecture in which we developed the training pipeline based solely
on CGM values. We first utilized basic deep learning blocks (such as convolutional neural networks (CNN),
and long short-term memory (LSTM)) which was followed by adding the attention mechanism in order to train
CGM sequential features while highlighting them based on temporal context. This improved the interstitial
glucose prediction performance at a prediction horizon of 15 min in terms of Mean Absolute Percentage Error
(MAPE) as separate architectures were developed for CGM values acquired from two different sensors; thus
compared separately.
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15 min 30 min 60 min
stela [B |c [p [E [A |B [c |[p |[E |A [B |Cc |[D [E
Multimodal Sensor 1
0 90.2% | 8.6% | 1.1% | 0.1% | 0.0% | 84.2% | 13.4% |2.2% | 0.2% | 0.0% | 76.8% | 19.4% | 3.6% | 0.2% | 0.0%
1 89.9% | 8.8% |1.2% | 0.1% |0.0% | 83.6% | 14.0% |2.2% | 0.2% | 0.0% | 75.8% | 20.6% |3.5% | 0.2% | 0.0%
2 88.4% | 10.2% | 1.3% | 0.1% | 0.0% | 82.5% | 15.1% | 2.3% | 0.2% | 0.0% | 76.1% | 19.6% | 4.0% | 0.3% | 0.0%
3 88.4% | 9.9% | 1.6% | 0.2% |0.0% | 81.5% | 15.4% |2.9% | 0.3% |0.0% | 74.0% | 21.2% | 4.6% | 0.2% | 0.0%
4 84.5% | 10.4% | 4.4% | 0.7% | 0.0% | 81.0% | 15.7% | 3.0% | 0.3% | 0.0% | 73.6% | 21.6% | 4.6% | 0.2% | 0.0%
Unimodal Sensor 1
0 89.7% | 9.1% | 1.0% | 0.1% | 0.0% | 82.6% | 15.4% | 1.8% | 0.1% | 0.0% | 76.8% | 19.2% | 3.7% | 0.3% | 0.0%
1 89.7% | 89% | 1.3% | 0.1% | 0.0% | 83.5% | 14.2% |2.1% | 0.2% | 0.0% | 74.1% |22.2% | 3.5% | 0.2% | 0.0%
2 89.4% | 9.1% | 1.3% | 0.1% | 0.0% | 81.8% | 15.9% |2.2% | 0.1% |0.0% | 75.1% | 20.6% | 4.2% | 0.1% | 0.0%
3 87.4% | 10.8% | 1.6% | 0.2% | 0.0% | 80.7% | 16.6% | 2.4% | 0.2% | 0.0% | 74.3% | 20.8% | 4.6% | 0.3% | 0.0%
4 86.6% | 11.8% | 1.4% | 0.2% | 0.0% | 80.7% | 16.7% | 2.5% | 0.2% | 0.0% | 73.7% | 21.3% | 4.8% | 0.2% | 0.0%
Multimodal Sensor 2
0 96.7% | 3.3% | 0.0% | 0.0% |0.0% | 95.2% | 4.8% | 0.1% | 0.0% |0.0% |93.0% | 7.0% | 0.0% | 0.0% | 0.0%
1 97.5% | 2.5% | 0.0% | 0.0% |0.0% | 96.0% | 4.0% | 0.1% | 0.0% |0.0% |93.5% | 6.5% | 0.1% | 0.0% | 0.0%
2 97.6% | 2.4% |0.0% | 0.0% |0.0% |96.4% | 3.6% |0.1% | 0.0% |0.0% |94.0% | 6.0% |0.1% | 0.0% | 0.0%
3 92.3% | 6.2% | 1.5% | 0.0% | 0.0% |91.2% | 7.9% | 0.9% | 0.0% | 0.0% | 85.4% | 13.4% |1.2% | 0.0% | 0.0%
4 93.2% | 5.6% | 1.2% | 0.0% | 0.0% | 90.1% | 8.9% | 1.0% | 0.0% | 0.0% | 83.6% | 14.2% |2.2% | 0.0% | 0.0%
Unimodal Sensor 2
0 96.6% | 3.3% | 0.0% | 0.0% | 0.0% | 94.7% | 5.2% | 0.0% | 0.0% | 0.0% |92.7% | 7.2% | 0.0% | 0.0% | 0.0%
1 97.5% | 2.4% | 0.0% | 0.0% | 0.0% | 96.0% | 4.0% | 0.1% | 0.0% | 0.0% | 93.5% | 6.4% | 0.1% | 0.0% | 0.0%
2 97.4% | 2.5% | 0.0% | 0.0% | 0.0% |96.0% | 4.0% | 0.0% |0.0% |0.0% |93.9% | 6.1% |0.0% | 0.0% | 0.0%
3 94.4% | 5.0% | 0.6% | 0.0% | 0.0% | 89.9% | 8.9% | 1.2% | 0.0% | 0.0% | 83.6% | 14.9% | 1.5% | 0.0% | 0.0%
4 94.3% | 5.0% | 0.7% | 0.0% | 0.0% | 90.4% | 8.6% | 1.0% | 0.0% | 0.0% | 84.4% | 14.3% | 1.3% | 0.0% | 0.0%

Table 7. Percentage distribution comparison of Parkes’ grid error zones for multimodal and unimodal
architectures for both Menarini (Sensor 1) and Abbot (Sensor 2).
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Fig. 5. Parkes’ Grid error comparison between multimodal and unimodal architectures at selected variable set
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Fig. 6. Parkes Grid error comparison between multimodal and unimodal architectures at selected variable set
for prediction horizon of 15 min, 30 min and 60 min for Abbot sensor.

The CGM training pipeline was then concatenated with the personalized baseline information pipeline
to inform variations in the CGM training through additive concatenation, leading towards multimodal
information. The multimodal architecture performance was compared with the unimodal architecture which
involved a CGM pipeline only for predicting with prediction horizon of 15, 30 and 60 min. The leave-day cross
validation protocol was introduced in which a day was kept out for testing purposes whereas the rest of days were
used as training set with day-window sliding after every cycle. The prediction performance was also compared in
terms of clinical significance using Parkes’ Grid error, a graphical tool used to evaluate both accuracy and clinical
relevance of glucose predictions in Type 2 diabetes subjects. The results show that informing the CGM variations
based on personalized baseline information improves the prediction performance at the cohort level.

The multimodal model architecture significantly outperformed the unimodal architecture in terms of MAPE
for first four baseline variable sets. For a prediction horizon of (i) 15 min, (ii) 30 min and (iii) 60 min, the MAPE
was between (i) 14-16 mg/dL, (ii) 19-21 mg/dL and (iii) 25-26 mg/dL respectively compared to unimodal
architectures with MAPE between (i) 14-16 mg/dL, (ii) 21-23 mg/dL and (iii) 26-27 mg/dL respectively.
Besides, there has been higher concentration in zone A of Parkes’ Grid error for multimodal architecture of
these variable sets which shows high clinical significance. Of course the increase of prediction horizon reduced
the prediction performance in terms of both MAPE and Parkes’ Grid error. Nevertheless, the performance drop
for multimodal architecture while moving from a prediction horizon of 15 min to 60 min was lower compared
to unimodal architectures as shown in APE distribution in Figs. 3 and 4.

In this study, we also observed the MAPE in terms of chronic events such as Hyperglycaemia and
Hypoglycaemia. We observed that the performance of predicting high interstitial glucose values (Hyperglycaemia)
was even better within 15 min and 30 min prediction horizon. This results in significance of our multimodal
architecture in the case of Type 2 diabetes as there had been high number of hyperglycaemic events in Type 2
diabetes. On the other hand, our multimodal architecture performance was relatively poor in predicting blood
glucose in hypoglycaemic range. This is because there had been low number of hypoglycaemic events occurred
in Type 2 diabetes; resulting in data imbalance problem.

Limitations

This study had some limitations. Firstly the bottleneck associated with multimodal architecture performance
for large baseline variable set was their availability. The variable sets were defined based on their availability
with respect to the individual patients. As shown in Table 5, increase in number of baseline variables reduced
the number of patients as there were only few patients with every baseline information. The low number of
patients actually impacted the multimodal architecture performance as it worked better for a higher number
of patients. Secondly, the CGM values collected for individual subjects were not consistent as data acquisition
varied from total number from 4 to 10 days. Our upcoming studies may incorporate augmenting the dataset
based on probabilistic distribution at the individualized physiology. Thirdly, the dataset size was relatively small
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(n=40) and unevenly split across the two CGM devices (Sensor 1 and Sensor 2). Although population models
were trained separately for each sensor to account for device-specific variation, domain adaptation techniques
were not applied in this study. Future work will explore such approaches to enhance model generalizability
across CGM systems and broader T2D populations.

In this study, we opt for additive concatenation approach due to the limitation of size of the dataset. This is
because adding model complexity (such as transformer mechanism) resulted in prediction performance. As a
part of our future studies, we aim to develop the advanced Graphical Neural Networks which can train the CGM
variations based on counterfactual analysis of underline comorbidities. Besides, due to limitations in terms of
dataset size, the performance depreciation was observed while increasing the underline comorbidities due to
their availability with limited patients.

Methods

Study protocol

This study is part of the GATEKEEPER strategy for the Multinational Large-Scale Piloting of an eHealth
Platform?®. The data were collected in the frame of the Central Greece High Complexity Phase I pilot study: a
non-interventional, prospective observational study. The applied eligibility criteria encompass elderly patients
with T2D and comorbidities, aged 60 years and older. These patients belonged to the intermediate and poor
health groups according to clinical guidelines mentioned in?*. These groups had 3 or more non-diabetic chronic
illnesses with mild to severe cognitive impairment. Specifically, people with T2D participated in Phase I, using
either the GlucoMen Day Menarini® Continuous Glucose Monitoring (CGM) system (15-min sampling interval)
or the Libre Abbot® system (5-min sampling interval) for a monitoring period of up to 4 weeks.

Calibration is the key difference among both sensors. Abbott’s FreeStyle Libre is factory calibrated and
remains stable throughout its lifespan, while Menarini’s GlucoMen Day requires periodic user calibration,
which can introduce variability. Sensor placement also differs: Abbott sensors are worn on the back of the arm,
and Menarini sensors may be placed elsewhere, affecting accuracy due to variations in skin thickness, blood
flow, and fat. Additionally, Abbott’s sensor measures every 15 min, while Menarini’s system measures every
minute, which can impact data quality, especially during rapid glucose changes. Both sensors can be influenced
by environmental factors like temperature, sweating, and physical activity, with Menarini’s sensor being more
sensitive to skin perspiration. These factors, along with individual physiological differences, contribute to
discrepancies between the two devices.

Patients with severe hearing or vision problems or any other acute or chronic condition that would limit the
ability of the user to participate in the study were excluded?. All the data collection methods were performed in
accordance with the relevant guidelines of the Institutional Review Board of Larisa University Hospital, which
are aligned with the Declaration of Helsinki?®. The names of all participants and other HIPAA identifiers?” have
been removed prior to data sharing. Furthermore, informed consent has been obtained from all participants and/
or their legal guardians. The timeline for the study protocol (incl. ethical approval, study design, data acquisition
and integration into GATEKEEPER high performance big data platform) has been presented in Supplementary
Fig. 1. For more information about study participants, please check clinical trials.gov ID NCT05461716.

Data curation and preprocessing

We applied exploratory techniques to visualize each patients CGM data, including histograms, autocorrelation
plots, partial autocorrelation plots, and the Augmented Dickey-Fuller (ADF) test. We also checked for duplicates
and outliers in each time series. To handle missing values in the glucose sensor data, linear interpolation was
applied to ensure continuity in the time series. Specifically, missing values in the glucose sensor readings were
imputed using linear interpolation. Additionally, for patients using the Abbott sensor, the data was kept at its
original sampling frequency of 15 min, as provided by the sensor. However, for patients using the Menarini
sensor, the data was resampled to a 5-min interval. Patients were excluded from the analysis if more than 50%
of their CGM data was missing, either due to sensor dropouts or user non-compliance. This threshold was set to
ensure that the remaining data was sufficiently complete to maintain the integrity and reliability of the analysis.
Each type of data was processed separately before merging. Min-Max scaling was applied to normalize the CGM
data to a range of [0, 1], while no normalization techniques were applied to the baseline variables.

Outcome and predictors definition

The output of the predictive model describes the concentration of glucose concentration in the interstitial fluid at
time t+ PH for a prediction horizon (PH) equal to 15, 30 or 60 min. The univariate models’ input comprises the
history of interstitial glucose concentration values, as recorded by the CGM system. In the case of multimodal
models, the input includes additionally specific EHR variables. T2D participated in this study used either the
GlucoMen Day Menarini® Continuous Glucose Monitoring (CGM) system with sampling interval of 15 min; or
the Libre Abbot® system with sampling interval of 5 min; for a monitoring period of up to 4 weeks. Besides, for
informing interstitial glucose variation with underline comorbidities, we have also included baseline variables
representing these comorbidities as predictors.

Multimodal architecture for CGM prediction

We developed multimodal architectures built upon deep neural networks which have the capability to model real-
time CGM variations while informing these variations via appropriate information fusion methods. The CGM
variations have been informed by patient electronic health records (e.g. demographics, or anthropometrics, as
shown in Table 1). CGM data had been acquired from T2DM patients under real-time conditions. We compiled
and compared the results by performing cross validation using the first 30 min of CGM data for training and
predicting the CGM values after prediction horizon of (i) 15 min, (ii) 30 min and (iii) 60 min. The training
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and test sets were derived based on setting the interval length of test set of one day which were sliding from
beginning till end of the dataset.

At the first instance, we derived the CGM-only trained population model to find optimal deep neural network
architecture; we call it unimodal architecture.

At the second instance, we derived the deep neural networks pipeline which was trained on the T2D patient
baseline information. First, we involved two baseline variables which were present in most of the subjects using
Abbot and Menarini CGM devices. The inclusion of more baseline variables led to a reduction in the number
of available subjects. At the end, there were only 6 subjects who had 14 baseline variables. The list has been
presented in Table 5. This enabled us to develop 7 multimodal architectures due to 7 baseline variables subsets.
The output of the baseline deep neural network was then fused into the CGM-only training pipeline (unimodal
architecture) via additive fusion methods followed by the deep neural network training on CGM variation
features informed by the baseline network.

We trained and compared unimodal and multimodal architectures across 7 variable sets for predicting CGM
values for the aforementioned prediction horizons of 15, 30 and 60 min. The comparison for both sensors was
performed separately using violin plot, showing the distribution of absolute point errors between predicted
CGM values and real CGM values, along with quartile markings at 25%, 50% and 75%. Due to instability in
the model performance for baseline variable set 5 and onwards, we included the performance comparison from
variable set 0 to variable set 4 only.

Clinical explainability of prediction performance

We further assessed the multimodal architecture prediction performance under clinical settings based on
Parkes grid error’?. The Parkes ‘grid error classifies the scatter plot of predicted interstitial glucose and reference
interstitial glucose for type 2 diabetic subjects in five different zones: A, B, C, D and E. The estimation in zone A
would be considered as ideal, whereas estimation in zone B would be considered as clinically acceptable.

Model development
The block diagram of architecture has been presented in Fig. 7. The architecture has been designed to predict
the interstitial glucose at defined time horizon based on (i) time series historical values from continuous glucose
monitoring (CGM) and (ii) static baseline health record information. Let CGM is represented as X has the
dimension of n x T; where n is number of users and T is the length of temporal dimension of the CGM input.
The CGM values had been acquired from multiple users across different number of days. Each user had been
provided one out of two types of CGM devices. One type of device had sampling frequency of 5 min whereas
other type of device had sampling frequency of 15 min. For users with a 15-min sampling interval (i.e., Abbot
Sensor 2), CGM time series were upsampled to 5 min intervals using linear interpolation. Similarly, Menarini
sensor with sampling interval of 1-min was downsampled to 5 min to ensure consistent temporal resolution
with Abbot Sensor 2. Considering data acquisition spanning around a couple of days, we performed the data
window scheme acquiring to — 5, t1 — t6, t7n—5 — t7n; where T™ is total number of samples for user n. We
used 30-min sample to predict interstitial glucose with time horizon of (i) 15 min, (ii) 30 min and (iii) 60 min.
As mentioned in Figs. 1 and 7, the local and temporal features of CGM have been acquired by 1D BiLSTM
network with attention layer followed by staked 1D CNN layer. The model initially prepares the CGM values
based on the aforementioned window scheme. Concurrently, the baseline data is treated as separate input which
is preprocessed and learned separately using a set of dense layers to extract representative deep features. After
acquisition of local and temporal features from CGM and representative deep features from baseline data, we

Scientific Reports |

(2025) 15:27625 | https://doi.org/10.1038/s41598-025-07272-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

added a fusion layer concatenating both types of features followed by a dense layer with sigmoid activation for
regressing the CGM values.

To model the temporal context of the CGM data, we first deployed BiLSTM layers; allowing temporal
patterns from CGM to be extracted. The core structure of the LSTM cell is the use of three gates i.e. the input
gate (i¢,), the forget gate (f:, ), and the output gate (0,,). These gates control the update, maintenance, and
deletion of information contained in a cell state Ct,.; Ct,._,, and C,. respectively whereas hy,. is the value of
the hidden layer at time ¢7. 6 s represent set of weight matrices and b s represent set of biases vectors which
are updated following backpropagation algorithm with each temporal iteration. Besides, 6 s and the b s are the
set of weight matrices and biases vectors, respectively, updated following the backpropagation through time
algorithm. In addition, ® represents the Hadamard product; o is the standard logistic sigmoid function; @ is
the concatenation operator; and ¢ the output activation function. Equations (1)-(7) give the transmission of
information in the memory cell at each step.

for =005 - [her_y, Xer | +by) (1)
ity = 0(0i - [her_y, Xep | +bi) )
Cip = tanh(0c - [heg_y, Xeg ] +be) 3)
Cip = fir ® Cop_, @ity ® Cop (4)
oty =000 - [htg_y, Xig] + bo) (5)
hiy = oty @ tanh(Cyy) (6)

yr = ¢(Oyher +by) ?)

In order to take the advantage of temporal context in both directions, we deployed BiLSTM which

combines i Put from two separate hidden LSTM layers in oppos1te dlrectlon to the same output. Let’s

consider X (¢o. 5) ( X'(to), X! (tl) X1t(t2), X (t3), X*(ts), X'(ts) ); for which LSTM hidden
—n —n —n —n —n  —n .

layer becomes ht = hy, htl, Ry oy, By, ht5) towards forward hidden sequence and

—1 11 1 1 —
h, = ( Pigy Py higy By, h tar P ts) towards backward hidden sequence. Thus, Eq. (7) is now driven as:

—rn - n
he = ( [htm,x (tT)} +bm) )
«—n <—n n
her =0 (05 Wi X7 0] 05 ©)
(B Tp) oo (T B iy) = BILSTM(X™ (to) , X" (1) , o, X" (t5) (10)
n —n «—n
yi =0, nzn Hop+ 0,5 hr + by?) (11)

The output 3" is used as an input to the self-attention layer which had been deployed to highlight the local CGM
features under consideration based on the temporal context. This can be represented by o (¢”, v*), o which is
the softmax function between query (context) of the attention layer ¢* and value of attention layer v® at time ¢
and ¢/.

edot(q: )

a(q*,v )z,t/ = W w2
t=0

where [ =6 is the number of output units of the BILSTM later. Since it is the self-attention mechanism, the input
to both is yy'.

The 1D Convolutional Neural Network (CNN) blocks had been deployed to model the local features provided
by self-attention layer based on temporal context of the CGM. 1D CNN can learn attention driven temporal
context time series univariate data where convolution is done separately along the time dimension for every
input vector. Formally if input o*(¢*,v*), ,, € R *! and kernel K is m x 1 then convolutional output in

lg—m
new feature space would be o’*(¢%,v%), ., € Rl , where d is the step size. Based on number of filters, the

t,tr
CNN expands the attention output to more abstract and informative features, called feature maps. Each value p;
of the feature map p is then fed into activation function, &, to calculate p; = @ (K Ty goliiti=1) 4 b) , where
activation function & is non-linear activation function RELU (x) = max(o, z), b is the bias and ¢®(#1+7~1
is the j observation from o“. The CNN networks have been followed by 20% dropout to avoid overfitting. The
kernel in the convolutional layer had been initialized by Glorot Uniform which initializes the convolutional

Scientific Reports |

(2025) 15:27625 | https://doi.org/10.1038/s41598-025-07272-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

weights based on uniform distribution within range [-limit, limit] where limit = ,/ ﬁ where fin is
number of input units and fo.: is number of output units.

As empirical experimentation, we put size of kernel K as 3 for CNN with number of filters as 100. The CNN
network was then followed by 10% dropout.

The multimodal fusion network allows to fuse the representations learned from the CGM values and the
baseline data. Considering that the learned representation from CGM values (i.e. CNN output) is Z' and the
learned representations from fully connected neural networks trained on baseline data is Z?. The fusion of both

representations are learned by multi-layer fully connected neural network. This can be represented as:
7 =G(Z" ® Z°, W) (13)

where @ is the fusion operator, W3 is the matrix of trainable weights and G is the multilayer fully connected
neural network. Following the multimodal fusion, we deployed dense layer regressor to predict the interstitial
glucose with specified prediction horizon. The regressor is a fully connected neural network followed by sigmoid
function. The final results of the regressor and classifier are represented as Y7 € T™ x 1 where T is total
number of time samples for the subject n.

The objective loss function of estimating interstitial glucose is log likelihood function represented as:

n Tk
L= (T tog [ 3 eont) (14)
k=1 i=1 jet;

where ¢; is the prediction horizon for estimating interstitial glucose of the subject k. Noting that loss function is
the summation of predicting interstitial glucose for every subject k with their respective samples T}.

Model evaluation

Mean Absolute Point Error (MAPE) has been selected to evaluate the model which measures average magnitude
of error produced by a model with the advantage of scale-independency and interpretability?. It can be
calculated as:

CGM? — cGMF
CGMA

1 n
MAPE = 100—

where CG M is actual CGM value and CGM/ is the predicted CGM value.

To evaluate model performance, we employed a leave-one-day-out cross-validation approach. In this method,
each day’s data was sequentially designated as the test set while the remaining data was used for training. This
sliding window technique ensured that each data point was tested at least once while maximizing the amount
of training data available for each iteration. For each iteration, data preceding the test day and data following
the test day were combined to form the training set, while the designated day was held out as the test set. This
data partitioning strategy is commonly used in time-series forecasting studies where temporal dependencies are
critical.

The multimodal architecture training and validation had been implemented on GATEKEEPER Big Data
platform where all the data from the pilot has been hosted and deep learning packages have been trained and
tested in the platform. The total training time was 1 min to run 50 iterations in each cross-validation cycle.

Related work

Deep learning has emerged as a leading approach in interstitial glucose predictions, with a primary focus on
applications in Type 1 Diabetes Mellitus (TIDM)?. Initial work using LSTM-based models on the OhioT1DM
dataset?>*® showed limited gains over feature-engineered traditional Machine Learning (ML) methods. More
sophisticated architectures, including attention-based Gated Recurrent Units (GRU)s! and CNNs?2, have since
demonstrated improved performance across T1D, T2D, and gestational diabetes datasets.

A growing number of studies aim to improve individual-level prediction accuracy while ensuring
generalizability across diverse populations and data sources. In the context of T1D, Zhu et al.* utilised meta-
learning and evidential deep learning (i.e., including an attention-based bidirectional Recurrent Neural Networks
(RNN) and evidential regression) to quantify uncertainty and personalize glucose forecasting. Daniels et al.*
introduced a multitask learning architecture that jointly models shared and individual-specific representations
of glucose dynamics in T1D patients. Regarding T2D, Deng et al.*> employed deep transfer learning with data
augmentation to improve robustness under limited data conditions. Sun et al.3® developed a Bayesian structural
time series model that incorporates clinical data priors (i.e., anthropometric and biochemical characteristics)
to address inter-individual variability in T2D. Similarly, Yang et al.’” proposed a clustering-based domain
adaptation approach, enabling more personalized modelling by aligning latent representations across patient
subgroups.

Complementary to models based solely on CGM, Montaser et al.*® proposed a seasonal stochastic local
modelling framework that explicitly incorporates variable-length, time-stamped events such as meals and
physical activity. This work underscores the relevance of irregular but clinically significant behavioural factors
in interstitial glucose prediction. Other contributions have emphasized model interpretability in multivariate
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glucose predictive modelling; a graph-attentive RNN (GARNN) framework® captures detailed interactions
among CGM and self-reported event data, enhancing both prediction accuracy and transparency.

Conclusion

In this paper, we designed and developed a novel generalized multimodal architecture based on 30-min CGM
values informed by baseline physiological information of Type 2 diabetic patients for predicting CGM values
with prediction horizon of 15, 30 and 60 min. To the best of our knowledge, this is the first study of predicting
interstitial glucose values where CGM variation were informed by individual physiology. Compared to unimodal
architecture, we achieved the mean absolute point error of (i) 14-16 mg/dL, (ii) 19-21 mg/dL and (iii) 25-
26 mg/dL for predicting CGM values with prediction horizon of 15, 30 and 60 min respectively while addressing
the clinical trustworthiness of our model. Besides, the multimodal architectures had lower MAPE for predicting
interstitial glucose compared to unimodal architectures in hypoglycaemic as well as in hyperglycaemic range.
The model had limitations due to the non-availability of baseline physiological information for every patient
along with the lower number of participants in the study. Therefore, as our planned future work, we aim to
develop the methodologies to augment missing information based on probabilistic distribution of the dataset.
Nevertheless, this model managed to predict the interstitial glucose for prediction horizon of up to 60 min
with adequate prediction accuracy which can serve as a first step for generalized interstitial glucose prediction
model. Besides, we also aim to conduct the studies based on impact of meal and exercises on interstitial glucose
variation.

Data availability

The data that support the findings of this study are available upon reasonable request to the pilot managers from
University Hospital of Larisa such as Alexandra Bargiota (abargio@med.uth.gr) and University of Thessaly such
as George E Dafoulas (gdafoulas@uth.gr).

Code availability
The code used in this study is available upon request to the corresponding author Dr. Muhammad Salman
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