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Defocus blur commonly arises from the cameras’ depth-of-field limitations. While the deep learning 
method shows promise for image restoration problems, defocus deblurring requires accurate training 
data comprising pairs of all-in-focus and defocus images, which can be difficult to collect in real-world 
scenarios. To address this problem, we propose a high-resolution iterative deblurring method for 
real scenes driven by a score-based diffusion model. The method trains a score network by learning 
the score function of focused images at different noise levels and reconstructs high-quality images 
through reverse-time stochastic differential equation (SDE). A prediction-correction (PC) framework 
corrects discretization errors in the reverse-time SDE to enhance the robustness of images during 
reconstruction. The iterative nature of diffusion models enables a gradual improvement in image 
quality by progressively enhancing details and refining marginal distribution with each iteration. 
This process allows the distribution of generated images to increasingly approximate that of sharply 
focused images. Unlike mainstream end-to-end approaches, this method does not require paired all-in-
focus and defocus images to train the model. The real-world datasets, such as self-captured datasets, 
were used for model training. Additional testing was conducted on the RealBlur and DED datasets to 
evaluate the efficacy of the proposed method. Compared to DnCNN, FFDNet and CycleGAN, superior 
performance was achieved by the proposed method on real-world datasets, including self-captured 
scenarios, with experimental results showing improvements of approximately 13.4% in PSNR and 
34.7% in SSIM. These results indicate that significant enhancement in the clarity of defocus images can 
be attained, effectively enabling high-resolution iterative defocus deblurring in real-world scenarios 
through the diffusion model.
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Defocus images result from the inherent limitations of the cameras’ depth-of-field during the capture process1. 
This defocusing phenomenon is prevalent in various typical scenarios, such as fast-paced photography, motion 
tracking, and remote monitoring. It can result in diminished image quality, loss of detail, and challenges in 
subsequent image processing tasks like semantic segmentation2,3 and object detection4,5. Traditional methods 
for solving the issue primarily involve filtering techniques like the Laplacian filter6, wavelet transform7, and 
reciprocal filtering8. Significant advancements have been made in enhancing these conventional methodologies. 
For instance, Mueller et al.9 developed an effective image interpolation framework based on wavelet-based 
linear interpolation. The framework restores spatial resolution and details by combining multi-scale analysis 
with geometric representation. Similarly, Lim et al.10 refined the Wiener filter restoration by incorporating a 
window function to minimize boundary artifacts and distortions, thereby improving the precision and quality of 
image restoration. Zheng et al.11 optimized the constrained least squares filter restoration method by employing 
an incremental constrained least squares filter to reduce the defocus blur in two-dimensional barcodes. Despite 
these advancements, filter-based methods often suffer from drawbacks such as information loss, inaccuracies in 
blur estimation, and suboptimal performance on severely defocused images12. Furthermore, traditional defocus 
image processing methods lack robustness and necessitate manual parameter adjustments, thereby demanding 
a high degree of operator proficiency13.

To overcome the limitations of filter-based techniques, several more efficient, precise, and robust alternatives 
have been put forward for the processing of defocus images, such as non-blind deconvolution. The techniques 
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involve estimating the blur kernel to achieve a high-quality image through deconvolution. For instance, Nisha 
et al.14 introduced a rapid deblurring method for infrared images and an analytical modeling approach for blur 
kernels. By combining accurate blur kernel estimation with the non-blind deconvolution technique, this method 
has enhanced the quality and real-time efficiency of the deblurring process. Goldstein et al.15 developed a novel 
method based on power spectrum statistical anomalies to extract motion blur kernels from blurred images. 
By directly estimating the power spectrum of the blur kernel from the input images and utilizing an enhanced 
phase recovery algorithm, the technique not only enhanced result accuracy but also reduced computational 
time. Pan et al.16 introduced a method that includes a L0-regularized prior and combines intensity and gradient 
data, in addition to employing a half-quadratic splitting optimization approach. This strategy produces reliable 
intermediate results for the estimation of blur kernel, leading to improved accuracy in the estimation of blur 
kernel and clearer image restoration. Nevertheless, the techniques employed to enhance blurred images by 
estimating blur kernels frequently oversimplify the real instances of blur and restrict defocus blur to particular 
forms17. As a result, they were less efficient under severe blurring scenarios.

In recent years, deep learning methods18–21 have been extensively utilized in the field of image processing, 
demonstrating significant potential in the application of defocus deblurring. For example, Nazir et al.18 proposed 
a new method that uses deep convolutional neural networks (DNNs) to simultaneously perform depth estimation 
and image restoration from defocus images. The framework combines depth estimation with image deblurring, 
effectively training the model using a defocus image dataset. The results demonstrated significant improvement 
in both depth estimation accuracy and image restoration, showcasing the powerful capabilities of deep learning 
in handling complex image restoration tasks. Zha et al.19 introduced a method for image restoration that utilizes 
a triple complementary prior. This method effectively utilizes non-local self-similarity (NSS) priors from both 
internal and external sources, enabling robust restoration without the need for extensive supervised training. 
By incorporating these priors, this method improves the quality of the restored images. Experimental results 
indicated that this method outperforms traditional image restoration techniques. Furthermore, Zha et al.20 
explored the effectiveness of simultaneously using NSS priors from both degraded images and an external 
clear image corpus. The method focuses on clustering similar image patches to form groups that enhance the 
restoration process.This proposed model demonstrated higher performance in recovering details and reducing 
artifacts, particularly in challenging scenes like severe blur. The results highlighted the potential of introducing 
external NSS priors in image restoration tasks, leading to higher quality output. Zamir et al.22 proposed a multi-
stage progressive image restoration method (MPRNet), which employs a U-Net network to iteratively optimize 
image quality by enhancing details in sequential stages. Cho et al.23 used a network with deep generative priors 
and a U-Net network for image blind deconvolution (MIMO-UNet). This network combines the deep generative 
model with the robust image restoration capability of the U-Net network, effectively restoring the original 
image even in the absence of specific blur information. Zhang et al.24 proposed a network (DBGAN) based on 
employing generative adversarial networks (GANs) for image deblurring. This method can better fit the blurring 
effect in the actual photography process by simulating the real blurring process to train GAN, leading to more 
precise image restoration. Furthermore, Tao et al.25 introduced a scale-recurrent network (SRN) for deep image 
deblurring. This network repeatedly utilizes the same network structure at different scales to achieve multi-
scale processing of images, effectively restoring image details from coarse to fine. While the U-Net network 
demonstrates efficiency in denoising and imaging tasks, it relies on substantial quantities of labeled data for 
training, which can be challenging to obtain. For GAN, controlling synchronization between two adversarial 
networks within its framework is difficult and may lead to unstable training processes26. Moreover, SRN may not 
perform well when handling images with significant scale variations.

Considering the limitations of the above networks, score-based diffusion models27 have gained attention 
for their distinct advantages and have demonstrated notable performance and benefits in the domain of image 
processing. Diffusion models generate new data samples by learning the underlying distribution of data27. 
This means that they can provide strong support for learning strategies that rely on large unlabeled datasets, 
such as unsupervised28 and semi-supervised29 learning approaches. Therefore, these models can show great 
practical value and significant advantages in the case of limited labelled data30. This study proposes a novel high-
resolution iterative defocus deblurring method for real scenes driven by score-based diffusion model, aiming to 
improve the clarity and enrich the informational content of defocus images. The method enhances the clarity and 
informational content of images by reconstructing defocus images through the acquisition of their probability 
distribution. Specifically, this method entails training data samples using specified imaging parameters and 
model, constructing a score network, and acquiring knowledge about the probability distribution of images. 
Ultimately, defocus images are reconstructed using reverse-time stochastic differential equation (SDE) to 
generate high-quality images31. The essence of the method is to learn a probability distribution and utilize it as 
a foundation for reconstructing defocus images. A major advantage is the model’s ability to extract consistent 
features even amid data ambiguities, utilizing prior knowledge to improve reconstruction quality. This model 
not only captures the intrinsic features of images but also has powerful generalization capability, effectively 
enhancing images in scenarios with limited labeled data. In contrast to conventional defocus image processing 
techniques, the defocus deblurring method grounded in score-based diffusion models provides superior 
precision and efficiency. The iterative nature of diffusion models enables a gradual improvement in image quality 
by progressively enhancing details and refining marginal distribution with each iteration. This process allows the 
distribution of generated images to increasingly approximate that of sharply focused images. Unlike mainstream 
end-to-end approaches, this method does not require paired all-in-focus and defocus images to train the model, 
which simplifies the process of dataset construction. The real-world datasets, such as self-captured datasets, were 
used for model training. Additional testing was conducted on the RealBlur and DED datasets to evaluate the 
efficacy of the proposed method. Compared to DnCNN, FFDNet, and CycleGAN, superior performance was 
achieved by the proposed method on real-world datasets, including self-captured scenarios, with experimental 
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results showing improvements of approximately 13.4% in PSNR and 34.7% in SSIM. These results indicate that 
significant enhancement in the clarity of defocus images can be attained, effectively enabling iterative defocus 
deblurring in real-world scenarios through the diffusion model.

Experimental results
The test dataset comprises real-world photos captured by our team on the campus of Nanchang University, 
DPDD dataset, DED dataset and RealBlur dataset. By importing the test images into the reconstruction part 
of the program, defocus deblurred images were obtained. Figures 1(a)−1(g) show the iterative process of image 
deblurring on defocus images driven by the score-based diffusion model. Figures  1(h)−1(n) and 1(o)−1(u) 
show the iterative process of two specific areas zoomed in from Fig.  1(g). Figures  1(v) and 1(w) show the 
variations in PSNR and SSIM during the image iteration process, respectively. The images started iterating from 
noisy versions, with the main features of the image subject beginning to emerge after 300 iterations, and then 
becoming clearer as the number of iterations increased. The local generation process of the images can also be 
observed in Figs. 1(h)−1(n) and 1(o)−1(u). At the 350th iteration, local contours of the image started to appear, 
and as the number of iterations increased, details such as the lines and contours of leaves and floor tiles became 
increasingly clear. By the 700th iteration, the image was essentially reconstructed using the proposed method, 
and the quality of the image was further improved. The graphical representations of PSNR and SSIM iterations 
indicate that during the initial 0 to 300 iterations, the PSNR metric exhibited a stable trend, while there was a 
slight rise in the SSIM values. However, after about 300 iterations, the values of both PSNR and SSIM began to 
rise rapidly. By the 700th iteration, the PSNR value had reached 24.79 dB and the SSIM value had risen to 0.83. 
Subsequently, both values exhibited a tendency towards stabilization, with the PSNR approaching 25.08 dB and 
the SSIM approaching 0.84, as illustrated by the black arrows in Figs. 1(v) and 1(w). By the 900th iteration, the 
PSNR value had reached its maximum level, and the quality of the image was further enhanced. These results 
demonstrate that the defocus deblurring method via the score-based diffusion model is capable of effectively 
enhancing defocus images (more information about the iteration process can be found in Visualization 1).

Figure 2 demonstrates the effect of different methods for deblurring on the self-photographed dataset. In scene 
1, Figs. 2(a)−2(f) show the reconstruction results using the proposed method, the FFDNet method32, the DnCNN 
method33, the CycleGAN method34, the defocus image and the real image, respectively. Figures 2(g)−2(l) follow 
the same convention in scene 2 and Figs. 2(m)−2(r) in scene 3. Figures 2(s)−2(t) show zoomed-in details of 
Figs. 2(f), 2(i) and 2(r), respectively. The reconstructed images using the proposed method show sharper details 

Fig. 1.  Defocus deblurring Processes. (a)-(g) are the defocus deblurring processes of defocus images using the 
proposed method, and (h)-(n) and (o)-(u) are the iterative processes of two specific areas indicated in (g). (v) 
and (w) are the changes in PSNR and SSIM during the image iteration.
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compared to the FFDNet method, DnCNN method and CycleGAN method. For example, leaves, chairs and 
floor tiles are very similar to the real image. It is clear that the images reconstructed using the proposed method, 
i.e., Figs. 2(a), 2(g), and 2(m), have much higher clarity and vividness compared to the images reconstructed 
using the FFDNet method, the images reconstructed using the DnCNN method, the images reconstructed using 
the CycleGAN method, and the defocus images. This proves the excellent performance of the proposed method. 
In terms of quantitative analysis, the proposed method achieves a PSNR of 25.08 dB and an SSIM of 0.84 in 
Fig. 2(a). Compared to the image reconstructed using the FFDNet method in Fig. 2(b), the PSNR and SSIM are 
improved by 2.41 dB and 0.2, respectively. Compared to the image reconstructed using the DnCNN method 
in Fig. 2(c), the PSNR and SSIM are improved by 2.79 dB and 0.23. Compared with the image reconstructed 
using the CycleGAN method in Fig. 2(d), the PSNR and SSIM improved by 2.24 dB and 0.13 compared with 
the corresponding defocus image in Fig. 2(e), they improved by 0.9 dB and 0.06, respectively. for Fig. 2(g), the 
proposed method achieves 25.75 dB of PSNR and 0.85 SSIM. Compared to the image reconstructed using the 
FFDNet method in Fig. 2(h), the PSNR and SSIM are improved by 3.57 dB and 0.17, respectively. Compared 
to the image reconstructed using the DnCNN method in Fig. 2(i), the PSNR and SSIM are improved by 3.46 
dB and 0.16, respectively. Compared to the image reconstructed using the CycleGAN method in Fig. 2(j), the 
PSNR is improved by 0.9 dB and 0.06, respectively. The PSNR and SSIM are improved by 3.25 dB and 0.12, 
respectively. they are improved by 2.03 dB and 0.08, respectively, compared with the corresponding defocus 
image in Fig. 2(k). for scene 3, the PSNR and SSIM of the image reconstructed using the proposed method in 
Fig. 2(m) are 25.37 dB and 0.85, respectively. the PSNR and SSIM of the image reconstructed using the proposed 
method in Fig. 2(n) are improved by 3.46 dB and 0.16, respectively. the PSNR and SSIM are improved by 2.03 
dB and 0.08, respectively. the PSNR and SSIM are improved by 2.04 dB and 0.08, respectively. The PSNR and 
SSIM of the image reconstructed using the FFDNet method are 2.89 dB and 0.27 respectively. compared to the 
image reconstructed using the DnCNN method in Fig. 2(o), they are 3.22 dB and 0.3 respectively. compared to 

Fig. 2.  Defocus deblurring results of self-captured images under different models. (a)-(f) are the 
reconstruction results using the proposed method, the FFDNet method, the DnCNN method, the CycleGAN 
method, the defocus image and GT, respectively. The same rule applies to (g)-(l) and (m)-(r). (s)-(u) are 
enlarged images of parts (f), (l), and (r), respectively.Ours, refers to an defocus deblurring method based on a 
fraction-based diffusion model; FFDNet, refers to a fast and flexible denoising method based on convolutional 
neural networks; DnCNN, refers to a deep convolutional neural network method for image denoising; 
CycleGAN, refers to an image reconstruction unsupervised generative model; Input, defocus image; GT, real 
situation.
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the image reconstructed using the CycleGAN method in Fig. 2(p), the PSNR and SSIM are 2.64 dB and 0.19 
respectively. They are improved by 2.09 dB and 0.15 compared to the defocus image in Fig. 2(q).The detailed 
data further demonstrates the significant advantages of using the proposed method for the defocus image 
reconstruction task as compared to the FFDNet method, the DnCNN method and the CycleGAN method.

For further analysis, Fig. 3 illustrates the error maps of the defocus deblurring results. Figures 3(a)−(f), (g)−
(l), and (m)−(r) correspond to the error maps of the respective scenes in Fig. 2, respectively. From these plots, 
it can be seen that the reconstructed images using the proposed method show fewer obvious errors, are clearer, 
and are closer to the real situation than the FFDNet method, the DnCNN method, and the CycleGAN method. 
Figures 3(s) and (t) correspond to the pixel values on the white dashed lines in Figs. 2(t) and 2(u), respectively. 
From Figs. 3(s) and (t), it can be seen that the pixel value curves corresponding to the proposed method are 
closer to the pixel value curves of the real situation than those of the FFDNet method, the DnCNN method, 
and the CycleGAN method, which demonstrates the advantage of the scoring-based diffusion model in defocus 
deblurring.

Figure 4 shows the image reconstruction results for different datasets with different methods. Figures 4(a1)−
(a6) show the reconstruction results using the proposed method, the reconstruction results of the FFDNet 
method, the DnCNN method, the CycleGAN method, the defocus image and the real image, respectively. The 
same conventions apply to Figs. 4(b1)−(b6), (c1)−(c6), and (d1)−(d6). Figures 4(e)−(h) are enlarged regions 
of Figs. 4(a6), (b6), (c6) and (d6). From these magnified images, it can be observed in detail that the images 
processed using the proposed method are clearer and more vivid, and the visual effect is enhanced, thus 
highlighting the effectiveness and superiority of the proposed defocus deblurring method. Also, the images 
reconstructed using the proposed method are clearer in details (e.g., stone steps, leaves, bicycle seats, and text) 
compared to the images reconstructed using the FFDNet method, the images reconstructed using the DnCNN 

Fig. 3.  Error maps of defocus deblurring results. (a)-(e), (f)-(j), and (k)-(o) correspond to error maps for their 
respective scenes in Figs. 2. (p) and (q) correspond to the pixel values at the white dashed line in Figs. 2(q) and 
2(r), respectively. Ours, indicates the defocus deblurring method based on the score-based diffusion model 
proposed; FFDNet, indicates the fast and flexible denoising method based on the convolutional neural network 
adopted; DnCNN, indicates the deep convolutional neural network method for image denoising adopted; 
Input, defocus images; GT, ground truth.
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method, the images reconstructed using the CycleGAN method, and the defocus images. This demonstrates 
the superiority of the score-based diffusion model in dealing with defocus blurring. The quantitative analysis 
results show that for the images in the RealBlur dataset, the reconstructed image using the proposed method 
in Fig. 4(a1) achieves a PSNR of 28.92 dB and an SSIM of 0.88. Compared with the FFDNet method, the PSNR 
improved by 1.92 dB and the SSIM improved by 0.2. Compared with the DnCNN method, the PSNR improved 
by 2.23 dB and SSIM improved by 0.23. Compared with CycleGAN method, PSNR improved by 1.24 dB and 
SSIM improved by 0.16. Compared with the corresponding defocus image, PSNR improved by 0.86 dB and SSIM 
improved by 0.1. The image data from the DED dataset shows that the reconstructed image using the proposed 
method in Fig. 4(b1) PSNR is 29.23 dB and SSIM is 0.92. Compared to FFDNet method, PSNR is improved by 

Fig. 4.  Defocus deblurring results recovered from different datasets using different methods. Figures (a1)-(a6) 
show the reconstruction results using the proposed method, the FFDNet method, the DnCNN method, the 
CycleGAN method, the defocus image and the real image (GT). The same convention is applied to Figures 
(b1)-(b6), (c1)-(c6) and (d1)-(d6). Figures (e)-(h) correspond to zoomed-in images of the boxed regions in 
Figures (a6), (b6), (c6), and (d6), respectively.Ours denotes the proposed defocus deblurring method based on 
the diffusion model of scoring; FFDNet denotes the fast and flexible denoising method based on convolutional 
neural networks; DnCNN denotes the deep convolutional neural network image denoising method employed; 
CycleGAN denotes the method of image reconstruction using unsupervised generative modeling. The input is 
an defocus image; GT is a real image.
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4.4 dB and SSIM is improved by 0.26. Compared to DnCNN method, PSNR of the proposed method is improved 
by 4.86 dB and SSIM is improved by 0.29. Compared to CycleGAN method, PSNR is improved by 3.66 dB and 
SSIM improved by 0.14. Compared with the corresponding defocus image, PSNR improved by 1.62 dB and 
SSIM improved by 0.07. The image data from the DPDD dataset shows that the image reconstructed using the 
proposed method in Fig. 4(c1) has a PSNR of 28.25 dB and an SSIM of 0.9. Compared with the FFDNet method, 
PSNR improved by 5.92 dB and SSIM by 0.23. Compared with the DnCNN method, the PSNR improved by 
5.19 dB and SSIM by 0.21. Compared with the CycleGAN method, the PSNR improved by 6.02 dB and SSIM 
by 0.18. Compared with the corresponding defocus image, the PSNR improved by 2.48 dB and SSIM by 0.05. In 
the self-acquired images, the reconstructed image using the proposed method in Fig. 4(d1) achieves a PSNR of 
25.65 dB and an SSIM of 0.88. Compared with the FFDNet method, the PSNR improved by 1.4 dB and the SSIM 
improved by 0.22. Compared with the DnCNN method, the PSNR improved by 1.84 dB and the SSIM improved 
by 0.26. Compared with CycleGAN method, PSNR improved by 3.55 dB and SSIM improved by 0.11. Compared 
with the corresponding defocus images, PSNR improved by 0.49 dB and SSIM improved by 0.12. With the 
proposed method, the images of these different datasets can be reconstructed efficiently and good results are 
achieved. This shows that the proposed method can be applied to different experimental environments and has 
some generalization ability to handle the reconstruction task of defocus images captured by different cameras. 
These quantitative analysis results provide strong evidence for the effectiveness of score-based diffusion models 
in supporting defocus deblurring (more information about the iterative process for self-captured images can be 
found in Visualization 2).

Conducting tests on defocus images with diverse degrees of defocus blur can not only verify the effectiveness 
of the proposed method once more but also make it possible to discuss the limitations of the proposed method. 
Tests were carried out on defocus images captured under different aperture sizes by using this method. The 
results are shown in Fig. 5. Figures 5(a)−(c) are respectively the results of using the proposed method, defocus 
image, and ground truth. The same convention also applies to Figs. 5(d)−(f) when the aperture size is set to f/6, 
Figs. 5(g)−(i) when the aperture size is set to f/4, Figs. 5(j)−(l) when the aperture size is set to f/2, and Figs. 5(m)−
(o) when the aperture size is set to f/1. Figures 5(p)−(t) are respectively the local enlarged views of the position 
within the yellow square frame in Fig.  5(c) under the aperture sizes on their left sides. As the aperture size 
decreases, the degree of defocus blur increases. Evidently, when the aperture size is relatively large, that is, 
when the degree of defocus blur is small, the proposed method can better accomplish the defocus deblurring 
task, making the resulting image clearer and more vivid compared with the test image, which demonstrates the 
excellent performance of the proposed method. It can be seen from Figs. 5(p)–5(t) that the tile lines and floor 
tile holes in the images reconstructed by the proposed method are all more clearly visible compared with the 
defocus images and are more similar to the ground truth. However, when the aperture size is set to f/1, that 
is, in the case of extreme defocus blur, the image reconstructed by using the proposed method shows little 
difference from the defocus image. In terms of quantitative analysis, when the aperture size is set to f/8, the 
degree of defocus blur is the minimum currently. The image reconstructed by using the proposed method and 
the defocus image are shown in Figs. 5(a)−(b). Compared with the defocus image, the PSNR and SSIM of the 
image after defocus deblurring increased by 1.75 dB and 0.11, respectively. When the aperture size is set to f/6, 
the defocus blur becomes more severe. The image reconstructed by the proposed method and the defocus image 
are shown in Figs. 5(d)–(e). The PSNR and SSIM are only enhanced by 1.61 dB and 0.15, respectively. When the 
aperture size is set to f/4, the defocus blur intensifies. The image reconstructed by using the proposed method 
and the defocus image are shown in Figs. 5(g)–(h). The PSNR and SSIM only increased by 0.74 dB and 0.16, 
respectively. When the aperture size is set to f/2, the defocus blur further intensifies. The image reconstructed by 
using the proposed method and the defocus image are shown in Figs. 5(j)−(k). The PSNR and SSIM of the image 
reconstructed by using the proposed method increased by 0.54 dB and 0.12, respectively, and the improvement 
range decreased again. Finally, in the case of extreme defocus blur, that is, when the aperture size is set to f/1, 
the image reconstructed by using the proposed method and the defocus image are shown in Figs. 5(m)−(n). 
The PSNR and SSIM of the image reconstructed by using the proposed method are only 23.91 dB and 0.65, 
respectively. Only the SSIM of this reconstructed image increased by 0.06 compared with the defocus image. 
This trend is consistent with the laws of physics: larger apertures lead to shallower depth of field with stronger 
defocus blur, increased blur kernel size and spatial variability, and more complex iterative model corrections. 
Despite the fact that the aperture parameters are not explicitly input, the model partially adapts to different blur 
intensities by empirically learning similar blur patterns from the training data. The experiments under different 
degrees of defocus blur also further illustrate the effectiveness of the proposed method.

Conclusion and discussion
In conclusion, this study proposes an innovative approach for the deblurring of defocus images driven by score-
based diffusion model, aiming to overcome limitations observed in existing defocus deblurring methods. The 
proposed technology involves both forward and reverse SDE processes. In the forward SDE process, zero-mean 
Gaussian white noise is introduced to perturb the data distribution of sharp images. It is essential to train a score 
network to estimate the gradient of the logarithm of the data distribution. This enables the effective sampling 
and capture of the prior distribution of images from the data distribution. Once the score network is trained, the 
prior knowledge obtained can be used to numerically solve the reverse-time SDE process under the approximate 
conditions. This reverse process gradually restores clear images from noisy ones, leading to successful defocus 
deblurring. The self-captured dataset, DPDD, RealBlur, and DED datasets were used to evaluate the performance 
of the proposed method. In the self-captured dataset, a PSNR of 25.65 dB and an SSIM of 0.88 were achieved 
using the proposed method. Compared to the FFDNet method, both PSNR and SSIM increased by 1.4 dB and 
0.22, respectively. In the DPDD dataset, the PSNR and SSIM achieved by the proposed method were 28.25 
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dB and 0.9, respectively, showing increases of 5.92 dB and 0.23 compared to the FFDNet method. In the DED 
dataset, the PSNR and SSIM achieved by the proposed method were 29.23 dB and 0.92, showing increases of 4.4 
dB and 0.26 compared to FFDNet method. Finally, in the RealBlur dataset, the PSNR and SSIM were 28.92 dB 
and 0.88, respectively, with improvements of 1.92 dB and 0.2 over the FFDNet method. These results strongly 
demonstrate the effectiveness of the proposed method in the field of defocus deblurring in real-world scenarios.
The proposed method achieved high-quality reconstruction of defocus images in real-world scenarios, but 
there is a limitation in reconstruction speed. As described in Sect. “Dataset acquisition and network parameter 
introduction”, the method takes 1 s per iteration and requires 700 iterations, resulting in a total reconstruction 
time of 12 min. Three factors primarily contribute to the lengthy reconstruction process. The diffusion model’s 
iterative nature is the first factor. The training process of the diffusion model involves training a score network 
to estimate the unknown score function ∇x log pt(xt). Once the score network Sθ(xt, t) is trained using Eq. 
(7), high-quality reconstruction of defocus images can be achieved by solving the reverse-time SDE using the 
approximate condition Sθ(xt, t) ≃ ∇x log pt(xt). The reverse-time SDE process typically requires numerous 
small-step iterations. Each reverse time step involves solving a differential equation, which generally requires 

Fig. 5.  The results of defocus deblurring under different aperture sizes. (a)-(c) are the reconstruction results 
using the proposed method, defocus images, and GT, respectively. The same convention applies to (d)-(f), (g)-
(i), (j)-(l) and (m)-(o). (p)-(t) are respectively the local enlarged views of the position within the yellow square 
frame in (c) under the aperture sizes on their left sides. Ours, indicates the defocus deblurring method based 
on the score-based diffusion model proposed; Input, defocus images; GT, ground truth.
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complex mathematical calculations and matrix operations, thus consuming substantial time and computational 
resources. Secondly, the complexity of the prediction-correction (PC) sampling process contributes to the overall 
time consumption. As shown in Fig. 7, after training the score network, the reverse-time SDE and annealed 
Langevin method can be implemented using the approximate condition Sθ(xt, t) ≃ ∇x log pt(xt). This paper 
employs the reverse-time SDE as a predictor and refines its results using the annealed Langevin method to 
correct the marginal distribution, resulting in more accurate and sharper images. Each step in this process 
requires computing the gradient of the image score, which is particularly time-consuming for high-resolution 
images. Although this approach enhances image quality, the computational cost per iteration is considerable. 
Running 1,000 iterations cumulatively results in significantly slower processing. Finally, the slow performance 
can also be attributed to limitations in computer hardware. The computational capacity of the RTX 2080Ti GPU 
is becoming inadequate, potentially facing challenges such as memory bandwidth limitations and insufficient 
parallelism, which negatively affect training and testing times. To shorten the time, the following three strategies 
can be considered. One is to reduce iteration time. Such as the Come-Closer-Diffuse-Faster (CCDF) method 
proposed by Chung et al.35, which begin the reverse SDE process from a single forward diffusion state closer 
to the target distribution rather than from pure Gaussian noise. This modification could dramatically cut down 
the required sampling steps, thereby reducing the total processing time. In addition to improving initialization, 
future research could also focus on reducing the number of iterations required during the reverse SDE process. 
For example, the Image Restoration Stochastic Differential Equation (IR-SDE) method proposed by Luo et 
al.36, have demonstrated that satisfactory results in 100 iterations by setting the iterative reconstruction to start 
from a degraded image. Another promising direction involves leveraging more advanced hardware and parallel 
computing techniques. Upgrading to GPUs with higher memory bandwidth and more processing cores could 
alleviate the current computational bottlenecks. By incorporating such techniques, it might be possible to strike 
an optimal balance between computational efficiency and image restoration quality without sacrificing the 
accuracy and robustness of the reconstructed images.

The generalization ability of the model is also an area that requires improvement. Firstly, the proposed method 
is primarily designed to address defocus deblurring, and its performance is generally less effective for other types 
of blur, such as motion blur. In this study, the training dataset comprises the DPDD and self-captured datasets, 
both specifically targeted for defocus blur. To improve this limitation, we aim to enhance our training dataset 
to include data representing various types of blur. Secondly, the method was tested in cases of extreme defocus 
blur, specifically when the aperture size is set to f/1, with results shown in Figs. 5(m)−5(n). The reconstructed 
image using the proposed method showed only a 0.06 improvement in SSIM compared to the defocus image, 
indicating limited performance in extreme defocus blur scenarios. This phenomenon is not accidental, but stems 
from the irreversibility of the physical degradation process. Moreover, method based on score diffusion model in 
this paper belongs to the data-driven paradigm, whose performance is highly dependent on the reversibility of 
blur-sharp pairs in the training data, whereas the difficulty of recovery is exacerbated by the insufficient a priori 
information and the lack of fuzzy kernel diversity in extreme blur scenarios. To address this issue, a broader 
range of samples reflecting diverse aperture settings and defocus blur levels could be incorporated to better 
handle extreme defocus blur.

Enhancing model performance is also critically important. One approach to achieve this is by improving 
the quality of samples generated by diffusion models. For example, Smith et al.37 proposed a framework called 
SAGDiff (self-attention-guided diffusion model). It can enhance feature extraction by introducing a self-attention 
mechanism during the diffusion process, thereby improving the quality of generated samples. Integrating self-
attention guidance and other optimization techniques within the diffusion model could further elevate image 
quality and model stability from multiple aspects, which is particularly advantageous for handling complex 
textures and high-noise environments. Additionally, this study currently relies on a single model to learn prior 
information. However, the prior knowledge that a single model can capture is inherently limited, whereas multiple 
models can complement each other in data generation, providing a richer information set. To facilitate handling 
diverse types of blur, we consider implementing multi-model learning38,39. For instance, Li et al.38 introduced 
FedDiff, a multimodal collaborative diffusion federated learning framework. This framework employs a dual-
branch diffusion model to extract data features, with each model inputting data into separate branches of the 
encoder. Inspired by this approach, we aim to embed multiple models within the same reconstruction task, 
leveraging their capabilities to learn prior information from different perspectives. This strategy could enhance 
the model’s performance and reconstruction quality in addressing various types of blur.

This work combines a score network with SDE to tackle the challenge of defocus images. It not only exhibits 
theoretical innovation but also shows broad application prospects in practical applications. For instance, it can 
be applied to high-resolution imaging, surveillance system image enhancement, and medical imaging to improve 
image quality and diagnostic accuracy. Athough the method currently faces challenges in terms of reconstruction 
speed and generalization to other types of blur, it has indicated high-resolution iterative defocus deblurring 
in real-world scenarios through the diffusion model. By reducing iteration time, exploring more efficient 
training algorithms, diversifying the training data, and exploring multimodal and collaborative frameworks, 
future work can build upon the foundation laid by this study to develop even more efficient and versatile image 
restoration systems. With further refinement, the proposed approach holds significant promise for a wide array 
of practical applications, ultimately leading to enhanced image quality and improved performance in numerous 
technological domains.
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Methods
Langevin dynamics
Langevin dynamics have the capability to produce samples from a probability density p(x) by utilizing the 
estimated gradient of the log data distribution ∇x log pt(xt)40. It starts from an initial point when t = 0 and 
iteratively refines it in a noisy gradient ascent manner, thus increasing the value of the log density log pt(xt). In 
many cases, the score function is easier to model and estimate than the original probability density function41. 
This is especially true for unnormalized density functions, as the score function has the advantage of being 
independent of the partition function. The iterative estimation of Langevin dynamics is shown in Eq. (1). 
Throughout the iterative recovery process, the samples at each perturbed noise level serve as the initial input 
for the subsequent noise level until the minimum level is reached, expanding the samples for the network, and 
gradually generating the final recovery outcomes.

	 xt+1 ← xt + α∇x log pt(xt) +
√

2αz, 0 ≤ t ≤ T,� (1)

The process involves a given step size α > 0, standard Gaussian noise z, a total number of iterations T , and 
initial samples x from an arbitrary prior distribution π(x). When the step size α is sufficiently small and the 
total number of iterations T  is large enough, the distribution of the samples will approach the target probability 
density function under specific regularity conditions42. Under this circumstance, it is assumed that there is a 
neural network Sθ(xt, t) parameterized by θ, known as the score network Sθ(xt, t), which has been trained to 
estimate the gradient of the log probability density function:

	 xt+1 ← xt + αSθ(xt, t) +
√

2αz, 0 ≤ t ≤ T,� (2)

By substituting ∇x log pt(xt) in Eq. (1) with Sθ(xt, t), samples can be approximately generated from p(x) 
using annealed Langevin dynamics.

Score-based diffusion model
The diffusion model aims to learn from randomly sampled i.i.d. (independently and identically distributed) 
samples that follow the target distribution to generate additional new samples. To achieve this objective, it is 
essential to find a distribution that is as close to the target distribution as possible and then sample from it. 
Typically, the probability distribution is represented using the score function, where the score function is the 
gradient of the log of the probability density function ∇x log pt(xt). Score-based diffusion model is a method of 
estimating data distribution through the optimization of a parameterized score network. The model incorporates 
both forward and reverse time diffusion processes, with the forward time diffusion process commonly referred 
to as SDE, as shown in Fig. 1. By gradually injecting noise (Gaussian noise is chosen in this article) into the 
dataset, the complex data distribution is smoothly transformed into a known prior distribution. Subsequently, 
by progressively removing the noise, the prior distribution is transformed back into the data distribution. The 
reverse-time SDE relies only on the time-dependent gradient field of the perturbed data distribution, also known 
as the score. Through the application of score-based diffusion model, neural networks can effectively estimate 
these scores, and by combining numerical SDE solvers with the noise conditional score network (NCSN) method, 
sampling can be conducted to generate defocus deblurring images. In addition, the concept of a predictor–
corrector (PC) sampler is introduced, which offers dual advantages in terms of discretization error control and 
numerical stability. The sampling result of the numerical SDE solver is taken as the predictive result, while the 
annealed Langevin dynamics method acts as a corrector to correct the marginal distribution of the estimated 
samples, thus generating images with more apparent defocus deblurring effects.

(xt)T
t=0 is assumed to be a continuous diffusion process with xt ∈ R, where t ∈ [0, T ] is a continuous-

time variable. x0 ∼ pdata, pdata represents the data distribution of the target image xT ∼ pT ( pT  is the prior 
distribution containing pdata information) is the prior distribution related to the target learned during the 
forward SDE process. The representation of the forward SDE is shown in Eq. (3).

	 dx = f(x, t)dt + g(t)dw,� (3)

In this formula, f(x, t) ∈ R and g(t) ∈ R represent the drift coefficient and diffusion coefficient, respectively. 
w ∈ R and w represent the Brownian motion process. To sample from the data distribution, NCSN can be 
trained to estimate the gradient of the log data distribution ∇x log pt(xt), instead of the data density p(x). The 
gradient can then be used to solve the reverse-time SDE to generate data from noise. Through this method, the 
capabilities of neural networks can be employed to model complex data distributions and introduce noise in the 
generation process to facilitate sample generation.

Figure  6 shows the forward and reverse SDEs. During the training process of the forward SDE, prior 
information related to the target x(T ) ∼ pT  is learned. Then, the reverse problem of Eq. (3) is solved, ultimately 
obtaining samples x(0) ∼ pdata. This reverse process can also be represented as a reverse-time SDE, as shown 
in Eq. (4). The reverse-time SDE is a diffusion process that converts the prior distribution back to the data 
distribution by gradually removing noise.

	 dx =
[
f(x, t) − g(t)2∇x log pt(xt)

]
dt + g(t)dw,� (4)

In this process of reverse diffusion, w is the standard Wiener process, which represents time reversing from 
T  to 0. dt represents an infinitesimally small negative time step. Once the score function ∇x log pt(xt) of the 
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marginal distribution at each time point t is known, the reverse diffusion process can be expressed as Eq. (4) and 
sampling simulations can start from p0. This process allows for the reverse reconstruction of data distributions 
based on known score information, thus generating samples. By selecting different parameters for f(x, t) and 
g(t), various SDEs can be constructed. In this paper, a Variance Exploding (VE) SDE is chosen as the core 
framework of the diffusion process, mainly based on its theoretical advantages in the dynamic range of noise 
scale and iterative refinement capability, which are highly compatible with the needs of the defocusing deblurring 
task. VE-SDE is defined as shown in Eq. (5):

	
f(x, t) = 0, g(t) =

√
d[σ2(t)]

dt
,� (5)

where σ(t) > 0 is a monotonically increasing function of the noise scale. To solve Eq. (4), a perturbation kernel 
pσ(x̃|x) := N(x̃; x, σ2I) is established. The positive noise scale is expressed as shown in Eq. (6):

	 σmin = σ1 < σ2 < · · · < σN = σmax,� (6)

where σmin is sufficiently small and σmax is sufficiently large so that pσmin (x) ≈ pdata(x) and 
pσmax ≈ N(x; σ2

maxI). This design allows the noise variance to “explode” with time in the forward diffusion 
process. In the reverse process, the model needs to be iteratively refined from high noise levels to low noise 
levels. This wide range of noise spans allows more flexibility in covering the multiscale nature of the defocus 
blur, thus supporting the model’s gradual recovery of high-frequency details during the inverse process. Next, 
NCSN Sθ(xt, t) is trained to approximate the gradient of the log data distribution at each time step. The training 
process is shown in the upper part of Fig. 7. To solve Eq. (4), the score function needs to be known for all time 
steps. The unknown ∇x log pt(xt) can be replaced with ∇x log pt(xt|x0) using the denoising score matching43 
with the help of NSCN, where ∇x log pt(xt|x0) is the gradient of the Gaussian perturbation kernel centered at 
x0. During the denoising score matching training, the parameters of the score network Sθ(xt, t) are optimized 
according to Eq. (7):

	
θ∗ = arg min

θ

Et

{
λ(t)Ex0 Ext|x0

[
∥Sθ(xt, t) − ∇xt log pt(xt|x0)∥2

2

]}
,� (7)

where Et

{
λ(t)Ex0 Ext|x0

[
∥Sθ(xt, t) − ∇xt log pt(xt|x0)∥2

2

]}
 represents the loss function. After the 

network is trained through Eq. (7), the reverse-time SDE can be solved approximately using conditional 
Sθ(xt, t) ≃ ∇x log pt(xt), enabling the deblurring and reconstruction of defocus images, as indicated by Eq. 
(8):

	
dx = −d[σ2(t)]Sθ(xt, t) +

√
d[σ2(t)]

dt
dw,� (8)

To correct errors in the discretized evolution of the reverse-time SDE, PC sampling is introduced, as shown in 
the lower part of Fig. 7. The score-based diffusion model initially generates preliminary predicted reconstruction 
images by numerically solving the reverse-time SDE as predictions. Then the annealed Langevin method is 
employed as a corrector to adjust the marginal distribution of the estimated samples, thus refining the initial 
predictions. The prediction process is shown in Eq. (9). The target image x̃i is generated from the prior 
distribution learned.

	
x̃i = xi + (σ2

i+1 − σ2
i )Sθ(xi, σi+1) +

√
σ2

i+1 − σ2
i z,� (9)

Fig. 6.  Forward and reverse SDEs.
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where σi is the noise scale, z is zero-mean Gaussian white noise, and i represents the number of discrete steps 
(i.e., iterations) in the reverse-time SDE. The correction algorithm shown in Eq. (10) is used to correct the 
marginal distribution of the estimated samples.

	 x̂i = x̃i + εiSθ(x̃i, σi+1) +
√

2εiz,� (10)

After the PC sampling updates, a singular data operation is required, as shown in Eq. (11). This operation 
constrains the generated images, enhancing image details, reducing artifacts or other unrealistic features, and 
thus making the generated images more realistic and credible.

	 xi−1 = x̂i − α(x̂i − X).� (11)

The pseudocode for the defocus deblurring algorithm in this article is given as Algorithm 1, which includes two 
main loops: (1) The outer loop, the defocus image, enters the network for an initial prediction and then proceeds 
to the inner loop for correction; (2) The inner loop corrects the prediction through 1,000 iterations of annealed 
Langevin. Throughout the entire loop iteration process, both the data prior and data fidelity terms for prediction 
and correction are updated. The defocus images are deblurred through these 1,000 iterations.

Fig. 7.  Defocus deblurring Workflow. Top: Denoising score matching is used during the training process to 
learn the gradient distribution. Bottom: deblurring process; iterative implementation of defocus deblurring 
between the numerical SDE solver and gradient descent. DC, data consistency.
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Algorithm 1.  Training for prior learning.

The network structure of NCSN
The following diagram illustrates the network structure of NCSN for the forward SDE, as shown in Fig.  8, 
where R, C and A represent residual block, convolutional layer and attention block, respectively. Convolutional 
layers serve as feature extractors, retaining the main components of objects in the image while eliminating 
noise. The convolutional kernels are sized 3 × 3. The feature maps then undergo down-sampling to decrease 
their spatial dimensions. The features are subsequently processed by a sequence of residual blocks. Following 
a series of residual blocks, an attention mechanism block is added to improve the ability of the feature maps to 
convey information at specific resolutions. The feature maps proceed to the up-sampling phase to increase their 
spatial dimensions. In this part, features are processed through a sequence of residual blocks and up-sampled 
as needed. Up-sampling can be done through simple interpolation or convolutional up-sampling (chosen based 
on configuration). An attention mechanism block can be added after each residual block. Ultimately, through 
a series of convolutional and normalization layers, the required prior information is obtained. The input and 
output layers of the NCSN network have one channel each.

Dataset acquisition and network parameter introduction
After data preprocessing, the dataset used in this study consists of approximately 23,000 images, derived from 
the images captured with a Sony RX100III camera in Nanchang University campus scenes and part of Dual-Pixel 
Defocus Deblurring (DPDD)44 dataset. The images captured with the Sony RX100III camera supplement the 
DPDD dataset, adding a diverse array of real scenes that occur within the dynamic environment of Nanchang 
University’s campus. The DPDD dataset contains 500 carefully captured scenes. This dataset consists of 2,000 
images, including 500 DoF blurred images with their 1,000 dual-pixel sub-aperture views and 500 corresponding 
all-in-focus images. The diversity allows the dataset to effectively simulate various blurring scenarios encountered 

Fig. 8.  Structure diagram of NCSN network. R, C and A represent residual block, convolutional layer, and 
attention block, respectively.
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in the real world, providing robust support for the evaluation of defocus deblurring. Selected parts of the dataset 
are shown in Fig. 9.

This study also additionally included two datasets, Real-World Blur (RealBlur)45 and Defocus Image 
Deblurring (DED)46, for testing. The RealBlur dataset, captured using the Sony A7RM3 camera paired with the 
Samyang 14 mm F2.8 MF lens, is a large-scale real-world blurred image dataset designed to support the learning 
and benchmarking of deblurring algorithms. This dataset contains 3,758 pairs of images for training and 980 
pairs of images for testing, covering 182 different scenes. The DED dataset captured by using the Lytro Illum 
light field camera is the first large-scale real-world dataset used for defocus map estimation and defocus image 
deblurring, which includes both defocus and focused images. Through testing on different datasets, a more 
comprehensive assessment of the proposed method’s performance under various application scenarios can be 
conducted.

The images were resized to 256 × 256 and underwent 1,000 iterations during the image generation process. 
The learning rate was configured as 2 × 10–4, and pixel values were normalized before being fed into the network. 
To enhance the diversity of samples, a range of larger σ values could be sought in setting the perturbation kernel 
pσ(x̃|x) := N(x̃; x, σ2I). However, excessively large σ values would lead to a greater noise scale, necessitating 
more memory capacity to support the simulated Langevin dynamics process and subsequently increasing the 
computation time. In order to balance the diversity of perturbations with the stability of training, the range of 
σ was empirically set between 0.01 and 300. Gaussian noise was employed to perturb the data distribution to 
achieve a better defocus deblurring effect. The method was implemented using the PyTorch framework and 
mainly developed in a Python environment. The model was trained and optimized using the Adaptive Moment 
Estimation (Adam) method. In this work, the computation is performed on a graphical processing unit (GPU; 
GeForce RTX 2080Ti).

The training of the model involves estimating the unknown score function by training a score network. 
Throughout the training process, it is necessary to continuously add noise to the training data and learn the data 
distribution. The duration of training varies depending on the various levels of noise. Additionally, the training 
duration of the proposed method also depends on the configuration of the graphics processing unit employed 
in the experiment and the quantity and size of the training dataset. During the training phase, a checkpoint 
is saved every 10,000 epochs, which takes approximately 40 min. A total of 30 checkpoints were obtained in 
this experiment, and the optimal training model was selected. Defocus deblurring is an iterative process. As 
observed from Fig. 4, the iterative process stabilizes around the 700th iteration, with each iteration taking about 
1s. Therefore, the defocus deblurring process takes approximately 12 min.

Ablation studies
The proposed method has three components that can output the defocus deblurring images: the reverse-
time SDE, the annealed Langevin algorithm, and the gradient descent operation. To evaluate the respective 
contributions of these components, ablation experiments were conducted on these three components within 
the self-captured dataset. The evaluation metrics are PSNR and SSIM. However, since the input of the annealed 

Fig. 9.  Training Samples. (a)-(f) are from the DPDD dataset. (g)-(l) are from the self-captured dataset.
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Langevin operation is the result of the reverse-time SDE, it is impossible to test the annealed Langevin operation 
alone.

The test results are shown in Table 1. It can be seen from the experimental results that the test results of using 
the reverse-time SDE alone are rather poor. The average PSNR and SSIM of the output deblurring images are only 
11.1 dB and 0.21, respectively. This is because the reverse-time SDE has inherent limitations when used alone. 
Without the correction mechanism of subsequent steps, the initial prediction of the reverse-time SDE tends to 
be overly smooth and fails to effectively restore the details in the original image. After introducing the annealed 
Langevin algorithm, the PSNR and SSIM are increased by 2.2 dB and 0.07, respectively. This is because the main 
function of the annealed Langevin algorithm is to correct the marginal distribution. Although it can bring about 
certain improvements, the improvement effect is relatively limited. However, after combining with the gradient 
descent operation for data consistency, both the PSNR and SSIM of the test results have achieved a qualitative 
leap. This indicates that the gradient descent operation plays a crucial role in refining the generated images by 
forcibly maintaining the consistency between the output images and the original input. This process not only 
helps to reduce artifacts but also enhances the details that are often lost during the initial prediction process. 
The fact that the PSNR and SSIM have respectively increased to an average of 26.79 dB and 0.84 indicates that 
the integration of the gradient descent provides a powerful mechanism, which can ensure a close connection 
between the generated images and those in the real scene. The comparison of each component presented in 
Table 1 not only reflects the effectiveness and contribution of each component but also provides insights for 
subsequent model optimization work, ensuring the universality and effectiveness of this model under a series 
of conditions.

Data availability
The datasets generated and/or analysed during the current study are available in the GitHub repository, ​h​t​t​p​s​:​/​/​
g​i​t​h​u​b​.​c​o​m​/​y​q​x​7​1​5​0​/​H​I​D​D​-​D​M​​​​​.​​
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