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The synergistic effects of landscape composition and spatial configuration are critical for regulating 
terrestrial carbon storage. However, their dynamic relationships and driving pathways remain poorly 
understood, especially in high-altitude semi-arid ecosystems. As the world’s largest alpine carbon 
sink, the Qinghai Tibetan Plateau (QTP) is undergoing rapid landscape transformation, threatening 
the stability of its carbon storage function. This study integrates the InVEST carbon storage 
model with Fragstats metrics to investigate how multiscale landscape dynamics influence carbon 
storage services on the QTP. From 1980 to 2020, grasslands experienced the most significant land 
conversion (468 × 103 km2), primarily into unused land (75.39%), forest (15.32%), and water (7.67%). 
These transitions increased landscape fragmentation and diversity while reducing aggregation and 
connectivity. Carbon storage was positively correlated with Aggregation Index and Largest Patch 
Index, but negatively correlated with Patch Density and Edge Density. Over four decades, total carbon 
storage (TCS) decreased by 4.86% from 270 × 108 to 258 × 108 t driven largely by a 29 × 108 t loss in 
grassland carbon, partly offset by an 11 × 108 t gain in forests. These findings help improve land use 
planning and management to boost carbon storage in high-altitude areas.

Keywords  Land use change, Landscape pattern, Carbon storage service, Qinghai-Tibetan Plateau

Ecosystem services represent a crucial nexus between human society and natural ecosystems and are 
indispensable for human well-being and sustainable economic and social development1–3. However, the United 
Nations Ecosystem Assessment Report indicates that 60% of the world’s ecosystem services have degraded 
over the past half century, thereby endangering the security and stability of global and regional ecosystems4,5. 
Among these services, terrestrial carbon storage plays a key role in climate regulation by absorbing atmospheric 
carbon dioxide, yet land use change remains the second-largest driver of CO₂ emissions after fossil fuels 
(Causing approximately 3.2 billion tons of carbon dioxide emissions annually)6–8. Land use and land cover 
(LULC) influences regional carbon storage by altering vegetation cover and soil quality9. Landscape patterns, 
an important expression of LULC, directly influence landscape heterogeneity through spatial changes, leading 
to alterations in ecosystem services and functions10,11. Recent studies showed that there are complex spatial 
correlations and feedback between carbon storage services and landscape pattern dynamics, rather than a simple 
linear relationship12,13.

Numerous studies have examined the links between landscape patterns and terrestrial carbon storage 
using a variety of spatial modeling tools and ecological indicators. For instance, researchers have employed 
spatially explicit models such as InVEST and FLUS to estimate carbon storage dynamics in relation to land use 
transitions and landscape metrics (e.g., patch density, contagion, edge density) across agricultural, urban, and 
forested regions14,15. At the regional scale, studies in the Yangtze River Delta and Pearl River Delta revealed 
that landscape fragmentation and urban expansion can significantly reduce ecosystem carbon sequestration 
potential16. Moreover, connectivity and aggregation indices have been shown to correlate with soil organic 
carbon and aboveground biomass, particularly in forest and wetland ecosystems4,12,17.
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Despite the progress made, several critical knowledge gaps remain. First, the combined effects of landscape 
composition (e.g., the proportion of different land cover types) and configuration (e.g., spatial arrangement and 
fragmentation) on carbon storage have rarely been investigated in an integrated manner. Most existing studies 
tend to focus on a single aspect of landscape patterns—either composition (e.g., how much forest, grassland, 
water, or urban area exists within a region) or configuration (e.g., how these land cover types are spatially 
arranged), while overlooking their joint influence on ecosystem functions such as carbon storage. In reality, the 
interaction between composition and configuration can exert both positive and negative effects on biodiversity 
and ecosystem functioning. For example, it has been found that land use, slope, and elevation gradients can 
explain the spatial patterns of landscape services in the Yangtze River Basin18, while in high-altitude areas, 
landscape dynamics are primarily driven by land use and elevation gradients19. Therefore, simultaneously 
considering both landscape composition and configuration across different elevation zones is essential for 
accurately assessing ecosystem services. Second, existing research on the impacts of landscape composition 
and configuration on ecosystem services has largely focused on low-altitude areas—such as coastal or marine 
habitats, forests, and drylands—while our understanding of how these relationships operate in high-altitude, 
semi-arid ecosystems remains limited20. Third, most current studies rely on static or short-term observations, 
neglecting the long-term evolution of landscape–carbon interactions21. This oversight is particularly critical in 
mountainous regions, where climate variability and elevation gradients are pronounced. These areas tend to be 
ecologically fragile, with more complex landscape structures and limited self-regeneration capacity. Therefore, 
identifying the spatiotemporal impacts of landscape pattern changes on ecosystem services at a regional scale is 
vital for informing future landscape management and promoting sustainable development in such vulnerable 
areas.

The QTP is not only the world’s highest and largest plateau but also a crucial ecological security barrier for 
Asia. It’s cold, arid climate and slow soil decomposition rate result in unusually high soil organic carbon storage, 
accounting for nearly one-quarter of China’s total21,22. As a major carbon sink, absorbs 120 to 140 million tons 
of carbon dioxide annually—a pivotal contribution to China’s carbon neutrality targets23. However, recent 
decades have witnessed dramatic landscape changes, including lake expansion, desertification, and grassland 
degradation, driven by rapid urbanization and climate change24–26. These transformations threaten the Plateau’s 
carbon sink capacity, yet little is known about how the spatial distribution and configuration of landscape 
elements shape the dynamics of carbon storage services on the QTP. Most existing studies have focused on soil 
or individual land use types, lacking a holistic, pattern-based perspective27,28.

To address these gaps, this study adopts a landscape pattern–carbon storage coupling framework to investigate 
the dynamic response of carbon storage services to both the composition and configuration of multiple land 
cover types on the QTP. This represents a novel analytical approach, particularly well-suited to capturing the 
complexity of land–carbon interactions in fragile high-altitude ecosystems. Specifically, this study aims to: (1) 
analyze the spatiotemporal evolution of land use and landscape structure from 1980 to 2020; (2) quantify changes 
in carbon storage across different land use categories; and (3) evaluate the influence of landscape composition 
(e.g., the proportion of land cover types) and configuration (e.g., patch size and connectivity) on TCS. The 
findings offer practical guidance for developing land management and carbon sequestration strategies tailored 
to the unique environmental conditions of the QTP.

Material and methods
Study area
Qinghai-Tibetan Plateau (QTP) is situated in the southwestern region of China (26°00′-39°47′N, 73°19′-
104°47′E), covering 2.57 million square kilometers, which constitutes 26.8% of China’s total land area (Fig. 1). 
Including the entire Tibet Autonomous Region and Qinghai Province, and parts of Yunan Province, Gansu 
Province, Sichuan Province and Xinjiang Uygur Autonomous Region29. There is a significant regional land 
cover transition from alpine deserts to alpine grasslands, meadows, mats, shrubs, and forests as one moves 
from northwest to southeast30. Plateau is characterized by extensive vegetation coverage, which offers essential 
carbon sequestration services and is vital to the global carbon cycle31. Therefore, QTP has become an ideal site 
for studying the dynamic response of carbon storage services to key landscape patterns in typical alpine climate 
areas.

Datasets
LULC data were obtained from the Data Center for Resources and Environmental Sciences, Chinese Academy 
of Sciences (RESDC) (http://www.resdc.cn). The spatial resolution of the LULC data is 30 m. Account for the 
stability of land cover over short-term periods, a 10–20 years interval was chosen to more clearly highlight the 
characteristics of LULC structure changes. This study selected LULC data from the years 1980, 1990, 2000, 2010, 
and 2020 to delegate the land cover and landscape features of the QTP during different periods. This study 
focused on six primary land categories: cropland, forest, grassland, water, construction land, and unused land.

Carbon density data for different LULC types on the QTP were statistically analyzed by collecting data from 
the China Ecosystem Research Network (http://www.cnern.org.cn) and selecting published literatures29,32–36 
(Table 1). TCS was calculated based on LULC data.

The elevation dataset, sourced from Geospatial Data Cloud (http://www.gscloud.cn) with a spatial resolution 
of 90 m, was employed to examine the dynamic changes in landscape patterns across different altitudes from 
1980 to 2020.

Methods
The workflow for assessing the impact of landscape pattern changes on carbon storage services in the QTP is 
shown in Fig. 2. The study includes the following four parts: first, the spatiotemporal dynamics of different LULC 
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types during the period from 1980 to 2020 (including: 1980, 1990, 2000, 2010, and 2020) are analyzed; second, 
landscape pattern indices are calculated for different periods, elevations, and land types based on LULC data; 
third, the total carbon storage in four basic carbon pools (aboveground, underground, soil, and dead biomass) 
for different land types over the past 40 years is quantified; finally, a correlation analysis is conducted to quantify 
the relationship between the dynamics of landscape patterns in different land types and carbon storage services.

Spatiotemporal LULC change analysis
The LULC transition matrix was utilized to evaluate the rates of change among different LULC types37. The 
formula is as follows:

	
Li = Si − Sii

Si
× 1

T
� (1)

LULC types Cabove Cbelow Csoil Cdead

Cropland 4.8 8.3 53.62 0.53

Forest 44.9 17.6 207.93 7.09

Grassland 0.75 6.7 104.4 0.74

Water 0.3 0 0 0

Construction land 0 0 0 0

Unused land 0.89 0 26.02 0

Table 1.  Carbon density across various LULC types on the QTP (t hm−2). Cabove, Cbelow , Csoil, Cdead was 
the aboveground biomass, belowground biomass, soil organic, and dead organic matter, respectively.

 

Fig. 1.  The location of the Qinghai Tibetan regions (QTP), China. Note: Generated using ArcGIS Pro 3.1, ​h​t​t​p​s​
:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​e​n​-​​u​s​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​p​r​o​/​o​v​e​r​v​i​e​w.
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where i is a certain LULC type; Si is the area before transferred; Sii is the area that does not be transferred; T  
represents the duration of the study.

Selections and measurements of Landscape metrics
Landscape pattern metrics provide a quantitative assessment of the structural composition and spatial 
arrangement of landscape patterns across three hierarchical levels: patch, landscape, and class. The patch level 

Fig. 2.  Technology roadmap for this study. Note: Generated using Visio Standard 2021, ​h​t​t​p​s​:​​/​/​w​w​w​.​​m​i​c​r​o​s​​o​f​t​.​
c​o​​m​/​e​n​-​​u​s​/​m​i​c​​r​o​s​o​f​t​​-​3​6​5​/​v​​i​s​i​o​/​f​l​o​w​c​h​a​r​t​-​s​o​f​t​w​a​r​e.
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focuses on the attributes of individual landscape patches, the landscape level captures the overall spatial pattern 
of the entire study area, and the class level aggregates landscape characteristics across various land types. The 
landscape pattern system encompasses intricate information that cannot be expressed by a single metric. 
Generally, a single index can only summarize information regarding one or a few aspects of the entire landscape 
system38. Therefore, the selection of landscape metrics should adhere to the following principles: First, highly 
correlated metrics should be excluded in statistical analyses. Second, the selection of landscape metrics should 
be guided by the research objectives and the regional characteristics. As this study focuses on ecosystem services 
in the plateau region—specifically carbon storage—metrics related to patch connectivity and fragmentation 
were prioritized. Accordingly, the Aggregation Index (AI) and Patch Density (PD) were selected to represent 
landscape connectivity and fragmentation, respectively, in relation to ecosystem service functions. Finally, the 
Shannon Diversity Index (SHDI) and the Shannon Evenness Index (SHEI) were used to assess overall landscape 
diversity and evenness across the plateau. The definition and range of landscape metrics are described in Table 
2. All landscape metrics were computed using FRAGSTATS 4.2 software, which is used to analyze and evaluate 
landscape metrics.

Moving window method and Semi-variogram model
The moving window technique applies raster data to extract relevant landscape metrics, shifting one grid 
incrementally from the top-left corner across the area. During this process, landscape metrics are calculated for 
each window, enabling the visualization of the spatial distribution of landscape metrics in the landscape level39. 
The accuracy of the computed results is influenced by the scale at which landscape features were selected. The 
ideal analysis granularity for the study area was established using the granularity effect of landscape pattern 
metrics alongside the area information conservation evaluation model. This granularity was then used to apply 
the semi-variation function to obtain the optimal analysis amplitude, thereby determining the feature scale. 
This study selected the PD, AI, and SHDI metrics, set the moving window size to an odd multiple of 300 m, and 
used 3600 m as the upper limit to calculate and statistically analyze the landscape metrics changes at different 
granularities. A lower (C0/(C0 + C)) value indicates reduced spatial variation and increased stability of the 
landscape metrics (see SI Appendix Figure S1). The stability of the three landscape pattern metrics initially 
increases and then decreases with the increase of window radius, reaching a certain value before stabilizing. 
Consequently, the determination of the feature scale can be carried out. The results demonstrated the presence 
of clear turning points on the trend chart at particle sizes of 1200 m and 1800 m. When the window was 900 m, 
it displayed an upward trend and unstable changes, while at 1500 m and 2100 m, it showed a downward trend 
and unstable changes, which could not be used as characteristic scales. The spatial variation characteristic values 
of the three landscape indices begin to stabilize at approximately 3000 m, indicating that this scale can reflect 
the spatial configuration and properties of the research area’s landscape. An excessive scale (3300 m or 3600 m) 
can lead to a significant loss of information patterns; therefore, this study selected 3000 m as the optimal feature 
analysis scale for the landscape pattern of the QTP.

This study employs the semi-variogram model (SVM) to determine the scale of landscape characteristics 
based on moving windows. The SVM reflects the spatial relationship between a sampling point and its 
neighboring sampling points39. Regionalized variable Z(x) at points x and x + h is half of the variance of the 
Z(x) subtraction the Z(x+h)  to define the semi-variogram, denoted as r (x, h):

	 r (x, h) = 1/2Var

[
Z(x) − Z(x+h)

]
� (2)

The SVM reflects the spatial relationship between a sampling point and its adjacent points. The curve has two 
important points: the point with a 0 interval and the inflection points when the semi-variogram trend stabilizes. 

Metric Scales Description Range

Aggregation index (AI) C&L The degree of aggregation of landscapes or landscape types can be characterized by examining the connectivity between patches 
of each landscape type 0 ≤ AI ≤ 100

Edge density (ED) C&L The proportion of the total length of common edges between different landscape patches to the landscape area can be used to 
assess the fractal degree of the landscape

ED > 0, no 
limit

Patch density (PD) C&L The density of a specific area within the landscape which reflect the overall heterogeneity and degree of fragmentation of the 
landscape

PD > 0, no 
limit

Largest patch index 
(LPI) C&L The proportion of the largest patches of each type relative to the total landscape area indicates the magnitude and direction of 

human impact, as reflected by changes in its value 0 < LPI ≤ 100

Landscape shape index 
(LSI) C&L Assessing the deviation of a patch’s shape from an equivalent circle or square area highlights the variability of patches within the 

landscape
LSI ≥ 1, no 
limit

Splitting index (SPLIT) C&L It denotes the degree of separation between different patches within a landscape, with smaller values indicating a more 
concentrated landscape

SPLIT > 1, 
no limit

Mean patch area 
(AREA_MN) C&L The ratio of the total patch area to the number of patches of that type reflects the degree of landscape heterogeneity No limit

Shannon’s diversity 
index (SHDI) L It can reflect the heterogeneity and diversity characteristics of the landscape SHDI ≥ 0, 

no limit

Shannon’s evenness 
index (SHEI) L The evenness of different patch types across the landscape, with larger values approaching 1, indicating a uniform distribution 

where no single patch type dominates 0 ≤ SHEI ≤ 1

Table 2.  The description of the landscape metrics. Landscape class level (C); and landscape level (L).
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These two points generate four corresponding parameters: Nugget, Range, Still, and Partial Still, which reflect 
changes in landscape pattern. The joint action of the sampling points produces Nugget (C0). As the interval 
between the sampling points increases, the initial nugget value reaches a stable constant, which is Still (C + C0). 
The partial base value, which is the structural variance C, represents the difference between the base value and 
the nugget effect. The block-to-base ratio C0/(C + C0) denotes the proportion of block value to base value. The 
smaller the ratio of C0/(C + C0), the more stable the spatial autocorrelation. When the ratio variation tends to 
stabilize, it indicates that the landscape index tends to stabilize in spatial variation.

InVEST model
The InVEST model is a comprehensive ecosystem service and trade-off assessment model that provides technical 
support for visualizing, analyzing dynamically, and quantifying ecosystem functions40. We employed the carbon 
storage and sequestration module of the InVEST 3.7.0 model to estimate the TCS on the QTP from 1980 to 2020. 
The carbon storage is based on LULC data and divides it into four basic carbon pools: Cabove, Cbelow , Csoil and 
Cdead. The formula is as follows:

	
Ct =

n∑
i=1

(Ci−above + Ci−below + Ci−soil + Ci−dead) × Si� (3)

where Ct is the total carbon storage (TGS); i is a specific LULC type; n is the total number of LULC types; and 
Si refers to the area of LULC type i( unit: hm2).

Correlation analysis
The values of different LULC landscape metrics and TCS within grids were exacted to points. Then, the 
relationship between landscape indices and carbon storage was determined by Pearson’s test from 1980 to 202010.

Results
LULC dynamic variations
As shown in Fig. 3 and Table 3, the overall LULC structure of the QTP remained stable, with less than 1% (the 
ratio of the total land area transferred from the plateau to the total plateau area) of area changing between 1980 
and 2020. However, significant changes were observed in both the area and proportion of various land types. 
Grassland was the predominant LULC type, constituting exceed half of the total area of the QTP, primarily 
distributed in the southeastern and central regions. Unused land comprised approximately 30%, mainly located 
in the northern region. Forest accounted for around 11% and was situated in the southeastern part of the plateau. 
Water covered 4.5% and were uniformly distributed across the QTP. Construction land and cropland represented 
0.07% and 0.8%, respectively, and were found in the southeastern plateau and certain river valleys (Fig. 3 and 
Table 3). Over the past four decades, the area of construction land experienced an extraordinary growth rate of 
122.31%, making it the most rapidly expanding category. This was followed by increases of 26.36% in unused 
land and 24.55% in water resources. Additionally, cropland and forest land expanded by 18.67% and 15.1%, 
respectively.

Significant differences in conversion rates across different land types from 1980 to 2020. Grasslands 
experienced the largest area of conversion, totaling 468 × 103  km2, primarily converting to unused land, 
forest, and water. The transferred areas accounted for 75.39%, 15.32%, and 7.67% of the total converted area, 
respectively (Fig. 4). The transform of grasslands to unused land was widely observed in the southern part of the 
Xinjiang Uygur Autonomous Region; grasslands to unused land was primarily distributed in southeastern Tibet 
and Gansu Province, while grassland-to-water conversions were scattered distributed in the plateau (Fig. 3). 
The total conversion area of unused land amounted to 204.7 × 103  km2, mainly converting to grassland and 
water, accounting for 79.3% and 13% of the total converted area, respectively. In the southern Xinjiang Uygur 
Autonomous Region, there was widespread conversion of unused land to grassland. Forests experienced a total 
conversion area of 48.3 × 103 km2, with 84% of this area transitioning to grassland and 8.5% to unused land. 
The transition from forest to grassland and unused land areas was widely distributed in the river valleys of 
southeastern Tibet, while the rates of conversion between other LULC types remained relatively low.

Dynamics of landscape patterns at both the landscape and class levels
The landscape pattern showed an obvious spatiotemporal change over the past four decades (Fig.  4 and SI 
Appendix Figure S2). At the landscape scale, PD, LSI, SHDI, and SHEI demonstrated upward trends, while LPI, 
AREA_MN, and AI exhibited downward trends (Table 4). The LPI and AI, which reflect the dominant types 
and connectivity of landscapes, showed a decreasing trend, indicating increased human impact, resulting in a 
decrease in dominant landscape types, as well as decreasing connectivity and aggregation between landscapes. 
SHDI and SHEI have grown rapidly and showed a gradually increasing trend in space from northwest to 
southeast, indicating an increase in landscape diversity and richness on the QTP (see SI Appendix Figure S2).

As altitude increases, landscape fragmentation, diversity metrics, and evenness metrics initially increase and 
subsequently decrease (Fig.  5). Forest landscapes dominate the southeastern edge of the plateau at altitudes 
below 2500 m, accounting for only 2.37% of the entire plateau area and exhibiting a relatively low degree of 
landscape fragmentation. The altitude range between 2,500 and 3,500 m includes both the sparsely vegetated 
northern desert area and the primary human activity region in the east. These areas are characterized by 
increasing landscape fragmentation (PD > 0.4) and high diversity (SHEI > 0.56). The main grazing areas are 
situated in the middle to high-altitude range between 3500 and 4500 m, characterized by a higher degree of 
landscape fragmentation and complex landscape shapes. The high-altitude zone between 4500 and 5500 m is 
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primarily composed of high-altitude grasslands and alpine vegetation in the northwest, covering over half of 
the total plateau area (51.79%). This zone is characterized by uniform and complete landscape types, with a 
high degree of clustering of landscape patches (AI > 92). In extremely high-altitude areas above 5500 m, the 
landscape exhibits the highest degree of aggregation, high landscape richness and evenness, diverse LULC types, 
and relatively low fragmentation.

Overall, landscape metrics at different altitudes exhibited significant temporal variation trend. Before 2000 
fluctuations in these metrics were relatively small, but after 2000, the range of fluctuations increased of all 
landscape metrics. In low-altitude and medium–high altitude areas, PD and SHDI exhibit a notable upward 
trend, while LPI shows a significant decline trend, suggesting increased landscape fragmentation and decreased 
patch aggregation from 1980 to 2020. In contrast, in high-altitude areas, AI demonstrates an increasing trend. 
The degree of landscape fragmentation in extremely high-altitude areas is accelerating, while the richness and 
evenness of the landscape have improved (Fig. 6).

LULC types

1980 2000 2020 1980–2020

Area (× 103 km2) Percent (%) Area (× 103 km2) Percent (%) Area (× 103 km2) Percent (%) Area change (%)

Cropland 19.72 0.76 20.31 ↑ 0.78 ↑ 23.41 ↑ 0.90 ↑ 18.67 ↑

Forest 275.42 10.62 274.71 ↓ 10.59 ↓ 317.04 ↑ 12.22 ↑ 15.11 ↑

Grassland 1516.07 58.46 1515.34 ↓ 58.43 ↓ 1265.73 ↓ 48.80 ↓ − 16.51 ↓

Water 108.7 4.19 109.74 ↑ 4.20 ↑ 135.39 ↑ 5.22 ↑ 24.55 ↑

Unused land 672.24 25.92 672.95 ↑ 25.95 ↑ 849.45 ↑ 32.75 ↑ 26.36 ↑

Construction land 1.2458 0.05 1.44 ↑ 0.06 ↑ 2.769 ↑ 0.11 ↑ 122.31 ↑

Table 3.  LULC area changes from 1980 to 2020 on the QTP. ↑ indicates a growing trend, while the ↓ indicates 
a decreasing trend.

 

Fig. 3.  The spatial distribution of LULC in 1980, 1990, 2000, 2010, and 2020, and the changes between 1980 
and 2020 on the QTP. Note: Generated using ArcGIS Pro 3.1, ​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​e​n​-​​u​s​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​
i​s​-​p​r​o​/​o​v​e​r​v​i​e​w.
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The rate of change in landscape metrics varied obviously between different LULC types (Fig.  7). For the 
cropland, the SPLIT, ED, and LPI mostly increased at a rate of 17.3%, while other landscape metrics showed no 
significant changes between 1980 and 2000; For forest, LPI increased by 15.6%, while the AREA_MN decreased 
at a rate of 13.2%, with no significant changes in other landscape metrics; For the grassland, AREA_MN showed 
an increasing trend, while other metrics exhibited no significant variations. For the water, the SPLIT decreased, 
while the change rates of AI, AREA_MN, and PD all increased, with PD showing the most significant rise at 
23.4%; For the construction land, the AI increased, while LPI, ED, SPLIT and LSI decreased; For the unused 
land, ED, PD and AI decreased, while other indices show no significant changes. Between 2000 and 2020, for 
cropland, LSI and ED showed a significant decreasing trend, while SPLIT, AI, ED, LPI and AREA_MN increased, 
with AI mostly growing at a rate of 14.3%; For forest, all landscape metrics showed an increasing trend; For the 
grassland, except for LPI and AI, others landscapes metrics increased; For the water, LSI, AREA_MN, LPI, and 
AI all increased, with LPI experiencing the most substantial growth at 34%, while SPLIT, ED and PD decreased; 
For the construction land, exception of LSI and LPI, others landscapes metrics increased; For the unused land, 
exception of the PD, others landscapes metrics increased.

Year PD LPI ED LSI AREA_MN SPLIT SHDI SHEI AI

1980 0.08 49.33 7.97 323.28 1243.09 3.76 1.07 0.60 88.02

1990 0.08 49.32 7.98 323.45 1242.54 3.76 1.07 0.60 88.01

2000 0.08 48.79 8.00 324.30 1241.83 3.83 1.07 0.60 87.98

2010 0.09 30.18 8.84 358.09 1108.54 4.31 1.17 0.65 86.72

2020 0.09 29.93 8.85 359.00 1095.06 4.33 1.17 0.65 86.70

Table 4.  Variations in landscape metrics from 1980 to 2020 on the QTP.

 

Fig. 4.  Various LULC types transitions on the QTP from 1980 to 2020 (unit: 103 km2). Note: Generated using 
Origin 2021, https://www.originlab.com/
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Temporal and spatial in carbon storage services
The spatial distribution of TCS shows notable heterogeneity, exhibiting a decreasing trend from southeast to 
northwest (Fig. 8). Between 1980 and 2020, TCS decreased significantly, with 16.5% of regions experiencing a 
decline, 10.6% showing an increase, and 72.7% exhibiting no significant changes. The increase in carbon reserves 
was primarily observed in the southeastern and central regions, specifically in the Yarlung Zangbo River and 
Hengduan Mountain regions, with a few areas in the Qiangtang Plateau. Conversely, the areas with decreased 
TCS were primarily located in the central and western regions of the plateau, specifically within the central and 
western parts of the Tibet Autonomous Region.

The TCS exhibited a declining trend from 1980 to 2020 on the QTP (Fig. 9). By 2020, TCS had decreased 
by 4.86% compared to 1980. Between 1980 and 2000, the TCS remained stable at 270 × 108 t. Since 2000, TCS 
has rapidly declined, reaching 258 × 108 t, which was the lowest in the four decades. In the four carbon pool, 
the Csoil was 240 ~ 227 × 108 t, which accounts for approximately 88% of the QTP. The Cabove and Cbelow  
carbon storage was 14 ~ 13 × 108 t and 13–15 × 108 t, accounting for approximately 5% of the TCS. The Cdead 
was about 3 × 108 t, only accounting for 1% of the TCS in the plateau (Fig. 9a). The grasslands have the highest 
TCS (148 ~ 177 × 108 t), followed by forest (75 ~ 86 × 108 t), unused land (18 ~ 23 × 108 t), cropland (1.2 ~ 1.4 × 108 
t) and water (0.4 ~ 1 × 108 t). Cropland, forest, and unused land show an increasing trend in TCS, while the 
grasslands were decreasing during the 1980 to 2020 (Fig. 9b). Especially, after to 2000, grassland carbon storage 
has significantly declined by 29 × 108 t, while forest and unused land increasing by 11 × 108 t and 5 × 108 t.

Effect of landscape pattern on carbon storage services
Alterations in landscape pattern metrics for various land types have a significant effect on ecosystem services 
associated with carbon storage (Fig. 10). At the class level, the carbon storage services of cropland showed a 
significant positive correlation with AREA_MN, AI, and LSI, while there was a negative correlation with SPLIT 
and PD. For forest and grassland, carbon storage services were positively correlated with AI, LPI and AREA_
MN, while there was a significant negative correlated with SPLIT, PD and ED. For water, carbon storage services 
had a positive correlation with LSI and ED, while there was a negative correlation with AI. For construction 
land, carbon storage services had a positive correlation with LSI and ED, but negatively correlated with AI and 

Fig. 5.  Spatial distributions and vertical distributions characteristics of average landscape metrics on the QTP 
from 1980 to 2020. Note: Generated using ArcGIS Pro 3.1, ​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​e​n​-​​u​s​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​
s​-​p​r​o​/​o​v​e​r​v​i​e​w; and using FRAGSTATS 4.2, https://www.fragstats.org/
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AREA_MN. Similarly, for unused land, positive correlations were observed with ED and SPLIT, while negative 
correlations were found with LPI and AI.

Discussion
Validation of model and limitations
This study employed the InVEST model to quantify the spatiotemporal dynamics of carbon storage on the 
Tibetan Plateau over the past four decades. Given the limited availability of field measurement data, the model 
outputs were validated using estimates from previous studies. The results reveal a spatial gradient in carbon 
storage characterized by higher values in the southeast and lower values in the northwest, a pattern broadly 
consistent with numerous prior studies. The estimated carbon storage range of the plateau in this study is 
between 258 × 108 and 270 × 108 t, which closely aligns with the estimates of 247–259 × 108 t and 262–272 × 108 t, 
respectively by Gao et al.29 and Hao et al.41, thereby suggesting a reasonable level of credibility.

Despite the model’s is widely used for estimating carbon storage and sequestration due to its simplicity 
and accessibility, it exhibits substantial limitations in representing dynamic ecological processes—particularly 
those associated with vegetation growth, species-specific functional traits, and human-led restoration activities. 
First, the structural limitations of the InVEST model result in an oversimplification of the carbon cycle. For 
instance, while warming may extend the growing season and enhance vegetation carbon sequestration, it can 
also accelerate soil respiration, leading to carbon loss—interactions that are not adequately captured by the 
model. Moreover, key biological processes such as photosynthesis and microbial activity are omitted, and 
carbon storage is assumed to change linearly over time, which may introduce bias in carbon sink estimates42. 
In particular, the model fails to incorporate age-dependent growth dynamics, lacking a module that represents 
biomass accumulation across different forest age classes. However, forest age significantly affects net primary 
productivity and carbon sequestration potential, with younger stands often acting as stronger carbon sinks than 
older forests43. Additionally, the model does not account for species-specific variation in carbon accumulation 
rates or phenological responses. Tree species differ markedly in growth rates, leading to differential carbon 
sequestration trajectories. As a result, carbon estimates may be biased in regions with high biodiversity. Recent 
research has also highlighted that:

Fig. 6.  Vertical distribution characteristics of landscape metrics from 1980 to 2020. Note: Generated using 
FRAGSTATS 4.2, https://www.fragstats.org/;and using python 3.11.8, ​h​t​t​p​s​:​​/​/​w​w​w​.​​p​y​t​h​o​n​​.​o​r​g​/​d​​o​w​n​l​o​​a​d​s​/​r​e​​l​e​
a​s​e​/​​p​y​t​h​o​n​​-​3​1​1​8​/
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Fig. 7.  Heat map of the rate of change in landscape pattern metrics for different LULC types from 1980 to 
2020 on the QTP. The data were standardized using the "maximum value method." The radii of the heat map 
circles represent the landscape metrics for 1980 and 2020, while the circle colors indicate the rate of change 
in these metrics from 1980–2000 and 2000–2020, illustrating the range of changes across different land types. 
(a) 1980–2000. (b) 2000–2020. Note: Generated using FRAGSTATS 4.2, https://www.fragstats.org/;and using 
python 3.11.8, ​h​t​t​p​s​:​​/​/​w​w​w​.​​p​y​t​h​o​n​​.​o​r​g​/​d​​o​w​n​l​o​​a​d​s​/​r​e​​l​e​a​s​e​/​​p​y​t​h​o​n​​-​3​1​1​8​/
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Fig. 9.  Variations in Total Carbon Storage (TCS) from 1980 to 2020. (a) Change in carbon storage of different 
carbon pool in the QTP from 1980 to 2020. (b) TCS for different LULC types. Note: Generated using the Invest 
model ​h​t​t​p​s​:​​/​/​n​a​t​u​​r​a​l​c​a​p​​i​t​a​l​p​r​​o​j​e​c​t​​.​s​t​a​n​f​​o​r​d​.​e​d​​u​/​s​o​f​t​​w​a​r​e​/​i​n​v​e​s​t; and using the Origin 2021, ​h​t​t​p​s​:​/​/​w​w​w​.​o​r​i​g​i​
n​l​a​b​.​c​o​m​/​​​​​​​​

 

Fig. 8.  Space layout of total carbon storage (TCS) for the year for the year 1980, 1990, 2000, 2010, 2020, and 
1980–2020 variation on the QTP. Note: Generated using ArcGIS Pro 3.1, ​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​e​n​-​​u​s​/​a​r​​c​g​i​s​/​p​​r​
o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​p​r​o​/​o​v​e​r​v​i​e​w; and using the Invest model ​h​t​t​p​s​:​​/​/​n​a​t​u​​r​a​l​c​a​p​​i​t​a​l​p​r​​o​j​e​c​t​​.​s​t​a​n​f​​o​r​d​.​e​d​​u​/​s​o​f​t​​w​a​r​e​/​i​n​
v​e​s​t.
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Climate-induced phenological shifts, such as earlier leaf emergence or delayed senescence—can alter 
photosynthetic dynamics and carbon uptake44. In particular, longer growing seasons have been shown to 
enhance carbon assimilation in temperate forests45. Nonetheless, InVEST model does not simulate seasonal 
or interannual variability in vegetation carbon fluxes, limiting its ability to capture the temporal complexity of 
ecosystem functioning under climate change.

Second, the model lacks functionality to incorporate user-defined ecological restoration practices—such 
as reforestation schedules, thinning regimes, or fertilization interventions. Consequently, it cannot simulate 
the temporal trajectory of post-restoration carbon gains. To address these limitations, future research could 
integrate process-based ecosystem models that explicitly simulate biophysical and physiological processes, or 
develop hybrid approaches that combine the InVEST framework with time-series data derived from remote 

Fig. 10.  Variations in the correlation between landscape metrics and total carbon storage (TCS) across 
different LULC types in 1980, 2000, and 2020. Note: * represents significance level p < 0.05, **represents 
significance level p < 0.01. Note: Generated using python 3.11.8, ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​p​y​t​h​o​​n​.​o​​r​g​​/​d​o​w​n​l​​o​a​​d​s​/​​r​e​l​e​​a​s​​e​/​p​y​
t​​​h​o​n​-​3​1​1​8​/
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sensing. Furthermore, the model lacks the capacity to dynamically couple with permafrost thermodynamic 
processes. Previous studies have shown that the permafrost regions of the Tibetan Plateau store approximately 
160–180 × 108 t of soil organic carbon, accounting for roughly 2.4% of global soil carbon stocks46. Deeper soil 
carbon in these areas is particularly sensitive to changes in temperature and moisture. However, this study 
only considered carbon storage variations within the top one-meter soil layer across major land cover types. 
Future work should therefore incorporate assessments of deep soil organic carbon in permafrost regions into the 
modeling framework to enhance the comprehensiveness and accuracy of carbon storage estimations.

Meanwhile, this model has certain limitations in evaluating long-term ecosystem responses to global change. 
To overcome these limitations and provide a more comprehensive evaluation, future research should consider 
integrating InVEST with process-based terrestrial ecosystem models such as CASA (Carnegie-Ames-Stanford 
Approach) and LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator)29. These models simulate 
carbon fluxes in response to environmental drivers and can capture the nonlinear interactions between climate 
variability and vegetation dynamics. In addition, incorporating climate scenario projections (e.g., CMIP6 outputs) 
would allow for the assessment of future trajectories of carbon storage under different climate pathways40.

The correlation between LULC and landscape pattern
Over the past four decades, climate change and human activities have been the dominant drivers of LULC 
and landscape pattern changes on the QTP. While the overall LULC structure has remained relatively stable 
(land transfers affecting less than 1% of the plateau (see SI Appendix Table S1), substantial transitions among 
specific LULC types have occurred, particularly in grasslands. Grasslands have experienced the most extensive 
conversion, mainly into unused land and forest, altering the plateau’s landscape configuration10,30. This trend is 
most evident in the northwest QTP, southern Xinjiang, and western Tibet, where grasslands have transformed 
into bare land. This finding is consistent with the research conducted by Zhang and Zhou47. As warming 
intensifies and human pressures mount, conflicts between grasslands and livestock have accelerated degradation. 
Surveys indicate that degraded grassland now spans approximately 700,000 km2—about 25% of total grassland 
area on the plateau45.

From the 1970s to 2010, decertified areas increased by 506,075 km2 at an 8.3% growth rate16. Rapid temperature 
increases have disrupted alpine vegetation metabolism and reduced vegetation cover; while overgrazing and 
rodent infestations have worsened fragmentation. Between 2000 and 2010, grassland degradation peaked, with 
the most severe impacts observed in Three-River-Source National Park, the Qiangtang Plateau, and the Ruoergai 
Wetland. In the Three Rivers Headwater Region, moderately to severely degraded grassland expanded from 18 
to 27%16. During the same period, the grassland–livestock balance index rose from 67.88 to 79.90%, largely due 
to overgrazing and drought40. In eastern Tibet, degraded grassland increased by 22%, with half the degradation 
attributed to human activities like fencing, which fragmented pastures47. Rising temperatures and declining 
precipitation further exacerbated grassland decline, resulting in simplified vegetation structures and reduced 
ecological resilience.

Landscape fragmentation serves as a key indicator of LULC transition. Over the past two decades, grasslands 
and water bodies on the QTP have shown high fragmentation rates of 26.3% and 23.4%, respectively (Fig. 6). The 
reduction in patch size and transformation of continuous landscapes into isolated patches have weakened habitat 
connectivity and species dispersal. These changes not only threaten ecological stability but also reduce habitat 
quality. As the source region for major rivers, the QTP has also experienced increasing watershed fragmentation 
driven by dam construction, road development, and agricultural expansion48. By 2023, eight cascade dams 
had been planned along the Yarlung Tsangpo River, and eleven large-scale dams were built in the Lancang 
River Basin49,50. These projects disrupted longitudinal river connectivity, reduced baseflow, impaired surface–
groundwater interactions, and degraded wetland vegetation50. Concurrent land reclamation and urban growth 
in ecologically sensitive regions like Three-River-Source National Park have intensified patchiness and further 
decreased carbon storage capacity51.

Construction land and cropland have also expanded significantly since 1980. Construction land is the fastest-
growing LULC category on the QTP, increasing by 122.31% over 40 years—91.82% of that growth occurred after 
2000, highlighting the rapid pace of urbanization. Landscape metrics such as PD, ED, and AREA_MN have all 
increased, reflecting heightened fragmentation. At the same time, the AI index, indicating stronger connectivity 
and the emergence of large, contiguous urban patches. Population growth and socio-economic development 
have driven these changes. Between 1980 and 2020, the combined population of Tibet and Qinghai rose from 5.6 
million to 9.6 million, and their GDP surged from 9.4 billion to 486.9 billion RMB52. Urban construction areas 
tripled, highway lengths quadrupled, and tourist numbers soared from 0.27 million to over 90 million18,38. These 
pressures contributed to greater human interference and landscape fragmentation.

Cropland fragmentation has similarly intensified. While the LPI has risen, indicating dominant cropland 
patches, increased fragmentation has resulted in more dispersed land parcels10. This shift is influenced by both 
policy and population pressures53. Since the mid-1970s, the altitudinal limits for cultivating winter wheat and 
highland barley have expanded by 133  m and 550  m, respectively, with suitable cropland expanding by 870 
km2 by 200054. This expansion has primarily occurred in ecotones between agriculture and animal husbandry, 
increasing land-use intensity at higher elevations. The impacts of population growth on cropland distribution 
manifest in two ways55. First, higher food demand in densely populated areas requires more arable land; second, 
infrastructure development for rural settlements and public services consumes additional cropland56. According 
to official data, crop yields in Tibet increased from 2505 kg/ha in 1987 to 5711 kg/ha in 201711. However, this 
intensification has heightened spatial heterogeneity and fragmentation across agricultural landscapes on the 
plateau.

Altitudinal variations in landscape patterns on the QTP are primarily shaped by species distribution along 
elevation gradients57. Intensified landscape fragmentation in extreme high-altitude, while the richness and 
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evenness of the landscape have improved of the QTP is primarily driven by glacier retreat and permafrost 
degradation, which have reduced by ~ 15% and ~ 16%, respectively, over the past 50 years. Glacial retreat (10–
15  m/year) and permafrost thaw expose glacial till, bare ground, and karst lakes, breaking once-continuous 
habitats58. Meanwhile, climate-driven species migration has increased landscape richness and evenness, with 
new plant species colonizing ice-edge zones and species like Dolophragma polytrichoides shifting upward in 
elevation59.

Impacts of landscape patterns on carbon storage across various land types
The InVEST model was used to assess the spatiotemporal variation of TCS across the QTP from 1980 to 
2020. Results revealed a declining TCS trend from southeast to northwest, consistent with previous studies29. 
However, since 2000, the TCS trajectories among different land types have diverged. While forest, cropland, 
and unused land exhibited increasing carbon storage, grasslands and water bodies showed declines. These 
shifts are closely tied to regional climatic dynamics43,52: central and western plateau regions have experienced 
limited precipitation, higher temperatures, and more frequent droughts, leading to grassland degradation and 
reduced carbon sequestration18. In contrast, warming and increased humidity in parts of the southwest and 
southeast have facilitated grassland-to-forest transitions, enhancing vegetation productivity and carbon uptake 
via photosynthesis10.

Changes in landscape patterns have significantly reshaped ecosystem structure and function, thereby altering 
carbon storage potential57. Forests and grasslands, which together contribute over 95% of the QTP’s total carbon 
stock, are particularly sensitive to landscape configuration2,37. Our correlation analysis indicates that forest TCS 
positively correlates with landscape aggregation indices (AI and AREA_MN) and negatively with fragmentation 
metrics (SPLIT, ED, and PD). This implies that clustered, less fragmented forest patches support higher carbon 
densities15. Previous findings in Qinghai Province confirm that high TCS areas are typically large, complexly 
shaped, but spatially cohesive forest and grassland patches37. Habitat fragmentation reduces forest patch size 
and intensifies edge effects, potentially accelerating soil organic carbon decomposition and impairing canopy 
photosynthetic efficiency58. Likewise, in grasslands, fragmentation disrupts nutrient cycling and seed dispersal, 
leading to lower vegetation productivity and reduced soil carbon sequestration59.

Unlike forests and grasslands, the TCS of unused land shows a positive correlation with ED, suggesting that 
moderate fragmentation may enhance microhabitat heterogeneity, thereby promoting local vegetation recovery 
and soil organic carbon accumulation. For example, fragmentation at the desert margins may give rise to small-
scale vegetation patches, which in turn enhance local carbon sequestration. However, excessive fragmentation 
can still lead to soil erosion and carbon loss, necessitating a balance between fragmentation degree and 
carbon storage effects2. In the central and western regions of the QTP, climate drying has intensified grassland 
degradation, and fragmentation has further weakened their carbon sink function14. In contrast, humidification 
in the southeastern region has facilitated forest expansion, but high levels of fragmentation may still constrain 
the potential for carbon storage27.

Therefore, scientifically informed land-use policies are urgently required to enhance carbon sequestration 
potential in this ecologically vulnerable region and to support China’s national goals of carbon peaking and 
carbon neutrality. First, grazing intensity should be strategically optimized to maintain ecosystem integrity 
while sustaining pastoral livelihoods60 This includes the implementation of rotational grazing systems and 
livestock quotas determined by ecological carrying capacity, whereby rangelands are delineated into exclusion, 
rest, and active grazing zones based on vegetation productivity and ecological sensitivity. In ecologically fragile 
subregions, permanent grazing exclusions should be strictly enforced year-round to prevent further ecological 
degradation61. Furthermore, satellite-based monitoring of grassland productivity should be employed to 
continuously adjust grazing intensity in response to both seasonal and interannual climatic variability. Second, 
comprehensive large-scale ecological restoration programs should be promoted to maximize the region’s 
terrestrial carbon sink potential. Key initiatives include the “Return Grazing Land to Grassland” program, 
wetland restoration projects, and the establishment of a standardized evaluation system that integrates carbon 
sink enhancement as a core performance indicator62,63. Third, adaptive vegetation management is essential in 
the face of climate change47. This includes introducing drought and cold resistant deep-rooted species (e.g., 
Elymus nutans Griseb.) to enhance belowground carbon pools, and managing water resources through small-
scale hydropower infrastructure in regions experiencing rising precipitation, which can mitigate seasonal 
drought and support vegetation recovery51,64.

While the present study emphasizes the effects of landscape fragmentation on carbon storage, it is essential 
to acknowledge that the carbon dynamics of alpine ecosystems are also strongly influenced by ongoing climatic 
changes, particularly in ecologically sensitive regions such as the QTP. Warming temperatures are accelerating 
permafrost thaw, releasing large quantities of soil organic carbon, while increased precipitation has promoted 
vegetation greening and carbon uptake. Conversely, overgrazing remains a critical driver of carbon loss in 
grasslands. The resulting decline in TCS triggers cascading ecological effects: (1) reduced water conservation 
capacity due to permafrost degradation, threatening downstream water supply for over 250 million people 
in the Yangtze and Yellow River basins16; (2) increased habitat fragmentation, endangering migratory species 
like the Tibetan antelope19; (3) altered carbon–climate feedback loops that may intensify global warming; and 
(4) diminished pastoral incomes by 20–30%, intensifying the conflict between ecological protection and rural 
livelihoods30. Hence, integrating landscape pattern optimization with adaptive ecosystem management is crucial 
to safeguarding both carbon stocks and regional ecological stability.

Conclusions
This study analyzed the spatiotemporal changes of LULC and landscape patterns on the QTP from 1980 to 
2020. The InVEST model was utilized to assess TCS, and correlation analysis was conducted to investigate 
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TCS dynamically responds to variations in landscape patterns. The results showed that the overall LULC 
structure on the QTP remained stable, with less than 1% of the plateau area undergoing changes over the past 
four decades. However, there were significant differences in conversion rates between different land types. 
Grasslands experienced the largest conversion, totaling 468 × 103 km2, primarily into unused land, forest, and 
water, accounting for 75.39%, 15.32%, and 7.67% of the total converted area. The spatiotemporal trends of the 
QTP landscape pattern were evident, showing increased diversity and fragmentation, characterized by intricate 
boundaries, reduced patch aggregation, and distinct vertical gradient variations with altitude. As elevation 
increases, landscape fragmentation, diversity, and evenness indices initially rise, followed by a subsequent 
decline. Significant changes were observed in the landscape metric of water, construction land, grassland, and 
unused land, while forests and cropland exhibited relatively minor fluctuations. Carbon storage services have 
declined over the past four decades, with significant spatial heterogeneity and a gradual decrease from southeast 
to northwest. The effect of landscape pattern changes on carbon storage services differed among LULC types, 
with AI, LPI, and AREA_MN positively correlating with carbon storage in forestland and grassland, while PD, 
SPLIT, and ED showed a negative relationship. The research provides theoretical guidance for optimizing LULC 
and landscape planning on the QTP, enhancing regional carbon storage services, and promoting sustainable 
development.

Data availability
All data presented in this study are available from the corresponding author on reasonable request.
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