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Phosphatidylinositol phosphate kinases (PIPKs) exist in three isoforms: I, II, and III. Some of these 
enzymes are promising drug targets for cancer, metabolic disorders, and neurodegenerative diseases. 
Type II PIPKs are notable for their dual roles, to perform phosphorylation reactions acting as lipid 
kinases and to carry out catalytic-independent functions. The dysregulation of Type II PIPKs is linked 
to several diseases, including psychiatric disorders, cancer, and infections. There is still a need to 
explore for strong inhibitors of these kinases. This study used a similarity search method to find 
analogs of the known PI5P4K2C inhibitor, DVF (5-methyl-2-(2-propan-2-ylphenyl)-N-(pyridin-2-
ylmethyl)pyrrolo[3,2-d]pyrimidin-4-amine). It utilized open-access platforms like SwissSimilarity, 
SwissBioisosteres, and the STITCH database for the initial screening of molecules. Drug-likeness 
assessment of the selected molecules was followed by molecular docking and molecular dynamics 
simulations to evaluate their binding affinity and stability. Post-simulation analysis revealed four 
promising hit compounds, each containing a pyrrole-pyrimidine core, which exhibited superior binding 
free energies and interactions at the allosteric site compared to DVF. These findings highlight potential 
candidates for further development as PI5P4K2C inhibitors.
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The involvement of phosphatidylinositol phosphate kinases (PIPKs) in multiple diseases, particularly human 
cancers such as lung cancer and breast cancer, has led to interest in developing small molecule inhibitors that target 
different classes of these kinases. The three types of PIPKs generating phosphatidylinositol bisphosphates are, 
Type I phosphatidylinositol-4-phosphate 5-kinases (Type I PI4P5Ks), Type II phosphatidylinositol-5-phosphate 
4-kinases (Type II PI5P4Ks) and Type III phosphatidylinositol-3-phosphate 5-kinases (PIKfyve). These enzymes 
catalyze the hydroxyl phosphorylation reaction of specific PI species to form double-phosphorylated lipids 
sequentially, regulating both substrate and product levels.

The PI5P4Ks use phosphatidylinositol 5 phosphate (PI5P) as a substrate to produce PI(4,5)P2, which is 
essential for autophagosome-lysosome fusion1,2. The cellular level of PI(5)P is decreased by the Type II PIPK-
catalysed reaction that generates PI(4,5)P2 at specific cellular locations3,4. The main role of phosphoinositides 
(PI) is to interact with the specific and functionally important complement peripheral proteins by attracting it 
towards the membrane. The contribution of PI in the selection of specific peripheral protein for the membrane 
helps in regulating the activity of integral membrane proteins. The interaction of PI with the molecules that are 
recruited to the membrane or reside in the membrane for example, ion channels and transporters affect cellular 
functions. The PI5P4Ks have emerged as promising therapeutic targets for diseases like cancer, immunological 
disorders, and neurodegenerative conditions, due to their key role in regulating cell signaling pathways.

The Type II PI5P4K family consists of three isoforms, encoded by the PI5P4K2A, PI5P4K2B, and PI5P4K2C 
genes, which give rise to α, β, and γ forms, respectively. Among these isoforms, PI5P4K2A is the most active, while 
PI5P4K2C has less catalytic activity5,6. PI5P4K2C is found in the Golgi, autophagosomes, and endomembrane 
compartments1,7. The specific function of each isoform is determined by the variable N- and C- terminal regions 
of the lipid kinase domain and dimerization domain of PI5P4K8. PI5P4Ks regulate PI3K/Akt/mTORC pathways, 
insulin signaling, and are crucial for surviving metabolic stress9. Loss of PI5P4Ks leads to increased PI(4,5)P2 
levels, which serve as a substrate for PI3K-catalysed production of PI(3,4,5)P310. PI5P4K2C is also known to 
regulate the Notch pathway11. Furthermore, PI5P4Ks play a key role in immune modulation; for example, the 
lack of PI5P4K2C in mice resulted in increased levels of proinflammatory cytokines and T-helper cells due to 
mTORC1 signaling hyperactivation. Additionally, several studies have associated PI5P4K2C single nucleotide 
polymorphisms (SNPs) with autoimmune diseases12.
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A precise regulation of the various PIPKs is crucial for maintaining the cellular PI pool. The altered 
expression of the α, β, and γ isoforms of Type II PIPKs has been observed in various cancers, including 
leukemias, glioblastomas, breast cancer and soft tissue sarcomas13. PI5P4Ks are critical for cancer cell survival 
under oxidative stress, as their depletion leads to decreased glucose metabolism, reduced oxygen consumption, 
and increased AKT phosphorylation. Many studies suggest that PI5P4Ks are promising therapeutic targets 
for cancer and other metabolic disorders. Several PI5P4K inhibitors have been developed, including isoform-
specific and multi-isoform inhibitors.

The development of selective inhibitors for kinases has traditionally centered on the ATP-binding site. For 
example, I-OMe Tyrphostin AG-538 is a specific ATP-competitive inhibitor of PI5P4K2A, while SAR088m is a 
pyrimidine-2,4-diamine inhibitor specific to PI5P4K2B. PI5P4K2C has specific inhibitors, such as NCT 504 and 
NIH-128488,14. However, this approach often results in cross-reactivity with other kinases, leading to unwanted 
side effects. In contrast, allosteric inhibition offers a promising alternative, as allosteric sites tend to be more 
specific to individual isoforms, reducing off-target effects.

Recently, “compound 40”, 5-methyl-2-(2-propan-2-ylphenyl)- ~ {N}-(pyridin-2-ylmethyl)pyrrolo[3,2-d]
pyrimidin-4-amine (DVF)15 was developed from NIH-12848. The pIC50 values of DVF against the PI5P4Kα, 
PI5P4Kβ and PI5P4Kγ + isoforms were reported as < 4.3, < 4.6 and 6.2, respectively as measured by ADP-Glo 
assay and with a pIC50 value of 6.1 against PI5P4Kγ wild-type determined from InCell Pulse in intact cells. 
The protein PI5P4Kγ + refers to the PI5P4Kγ construct containing mutations corresponding to the residues in 
PI5P4Kα; three amino acids (QAR) insertion at location139 plus an additional 11 amino acid mutations, S132L, 
E133P, S134N, E135D, G136S, D141G, G142A, E156T, N198G, E199G, and D200E. The binding constants (KDs) 
were also determined for PI5P4Kγ-wild-type (68 nM) and PI5P4Kβ (> 30,000 nM) using commercial assays. 
These experimental results indicate the preferential binding of DVF to PI5P4K2C.

Allosteric binding pockets have been well exploited in the recent past for the purpose of drug design. For 
example, the virtual screening of diverse molecules from commercial libraries, followed by docking calculations, 
binding energy prediction, and structural clustering identified inhibitors that bind the allosteric pocket in 
Caspase-6. These computational findings were confirmed experimentally based on fluorescence-based assays16. 
The pharmacophore modeling of allosterically bound methylenetetrahydrofolate dehydrogenase 2 enzyme 
combined with molecular docking, molecular dynamics (MD) simulations, and free energy calculations was 
used for inhibitor design17. All-atom MD simulations and analysis of protein–ligand interactions were employed 
to understand the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric 
modulators18. Asciminib, an FDA-approved drug in October 2021 was designed as an allosteric inhibitor of 
BCR-ABL1 kinase through fragment-based drug design approach using NMR. The low-affinity fragments were 
optimised using similarity and pharmacophore searches based on multiple crystallised fragments19. Some recent 
review articles have summarised the merit of structure-based drug design20–22.

Although potent inhibitors specific to PI5P4K2C have been reported, there is a need to develop more potent 
inhibitors specific to PI5P4K2C to explore their therapeutic potential as a drug target. Targeting allosteric binding 
pockets is a worthwhile strategy specifically for a protein target that has several structurally related proteins. 
Inhibitors that recognise different binding sites to target PI5P4Ks may improve the selectivity and minimize off-
target effects, making them more effective therapeutic agents. Molecular similarity is a crucial concept in drug 
discovery, based on the assumption that structurally similar molecules display similar properties. Similarity 
assessments between small molecules proven to be effective in drug discovery are widely used in the early 
stages of drug development to find novel molecules and enhance the potency or pharmacokinetic properties of 
lead compounds. In the present work, we employed molecular similarity search and bioisosteric replacement 
strategies to improve the binding and efficacy of the previously identified small molecule DVF as an allosteric 
inhibitor of PI5P4K2C lipid kinase as summarised in Fig. 1.

Results and discussion
Allosteric site analysis and validation
The structure of PI5P4K2C features an allosteric binding pocket that is bound with DVF (5-methyl-2-(2-propan-
2-ylphenyl)- ~ {N}-(pyridin-2-ylmethyl)pyrrolo[3,2-d]pyrimidin-4-amine) and AMP-PNP located close to 
the N-terminal β-sheet region deposited in the RCSB PDB under ID 7QPN15. Only the B chain in the crystal 
structure binds to another molecule of DVF. We have considered the consensus binding pocket of DVF in both 
A and B chains for all the computational studies. The allosteric binding pocket in PI5P4K2C consists of Asp161, 
Met162, Ser164, Asn165, Leu166, Tyr169, Leu182, Pro183, Phe185, Phe272, Leu273, Leu276, Ile278, Tyr281, 
Leu330, Ile331, Asp332, Leu334 and Thr335 amino acid residues. Additionally, several non-bonding interactions 
were observed (Fig. 2) with DVF. Such as, a hydrogen bond is formed between the side chain of Asn165 and 
the central pyrimidine N4 atom of DVF. The NH group linking the pyrrolopyrimidine and methylpyridine 
groups in DVF interacts with the carboxylate group of Asp332 via hydrogen bonding. The hydroxyl group of 
Thr335 forms a hydrogen bond with the pyridine group of DVF, which also engages in a pi-alkyl interaction 
with Pro183. A pi-alkyl interaction is also observed between the phenyl ring with an isopropyl group in DVF 
and Met162. Furthermore, a pi-sigma interaction occurs between Ile278 and the pyrrolopyrimidine group, while 
Asp161 forms a pi-anion interaction with the pyrrole group of the inhibitor. The presence of the isopropyl near 
the pyridine group of DVF contributes to the stability of the ligand conformation. Although the ligand is well-
positioned inside the binding pocket, the bicyclic core containing the methyl pyrrole group remains solvent-
accessible.

The validation of docking was performed to assess the accuracy of the docking procedure. This process 
involved redocking the reference molecule (DVF) into the allosteric site, followed by superposition and 
measuring the root mean square deviation (RMSD). The superposition of the docked conformations of the 
reference molecule DVF in the PI5P4K2C protein model, using PyRx and AutoDock 4.2 for validation purposes, 

Scientific Reports |        (2025) 15:33890 2| https://doi.org/10.1038/s41598-025-07480-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


is shown in Fig. 3. Thus, with this approach, we aimed to validate that the docking protocol adopted in this work 
allowed the re-docked ligand to bind to the allosteric site where it originally bound, with an RMSD of 0.45 Å 
(AutoDock 4.2) and 1.07 Å (PyRx) between the crystal structure and docked poses.

Molecule selection
All the compounds retrieved from similarity criteria by SwissSimilarity, STITCH, and SwissBioisostere were 
filtered based on their drug-likeness to eliminate the unfavoured molecules from the present study.

Initially, SwissSimilarity generated a total of 800 molecules, including the two classes: ChEMBL (actives only) 
and ZINC (lead-like) compounds. These molecules were then evaluated based on a similarity score, with a 
threshold set at 0.75. From this analysis, 143 molecules from the ChEMBL actives class and 115 molecules 
from the ZINC lead-like class were found to have a similarity score above the threshold, indicating a stronger 
potential for relatedness. Additionally, the query returned nine molecules in the STITCH server, that possessed 
Tanimoto scores between 0.53 to 0.57. A higher Tanimoto score (closer to 1) indicates greater similarity between 
the molecules. Molecules have been classified as similar molecules (Tanimoto scores are > 0.7) and as medium 
similar molecules (Tanimoto scores between 0.5 and 0.7)23. The molecules generated by the STITCH database 
had a Tanimoto score between (0.53 to 0.57) with the reference molecule, DVF, indicating that the molecules 
share only medium similarity with the query structure. Since we are targeting the allosteric site, we believe that 
the newly identified molecules may not bind the closely related off-targets strongly.

The identified molecules were CHEMBL2418346, CHEMBL2418347, AGN-PC-069BQU, AGN-PC-069BM8, 
AGN-PC-069BM9, AGN-PC-BMA, AGN-PC-ALR, AGN-PC-oMU1T5, AGN-PC-oN9PGP. Chemical-protein 
interactions (Fig. 4) were observed between CHEMBL2418346 and the mechanistic target of rapamycin (MTOR), 
similar to the interactions seen for CHEMBL2418347 and AGN-PC-069BQU. Additionally, a chemical-protein 
interaction was observed between AGN-PC-069BM8 and both phosphatidylinositol-4,5-bisphosphate 3-kinase, 

Fig. 1.  Summary of workflow for the selection of molecules for in silico investigation as PI5P4K2C inhibitors.

 

Scientific Reports |        (2025) 15:33890 3| https://doi.org/10.1038/s41598-025-07480-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


catalytic subunit alpha (PIK3CA) and MTOR. Moreover, AGN-PC-069BM9 interacted with PIK3CA, and AGN-
PC-oN9PGP with neuropeptide Y receptor Y5 (NPY5R). The network distance is representative of the strength 
and confidence such as the evidence suggesting a functional link between the predicted functional partners in a 
chemical-protein interaction. The green line indicates a chemical protein interaction with stronger associations 
represented by thicker lines. The protein–protein interactions are indicated in grey color.

The SwissBioisostere database was utilized to identify similar structures or fragments that returned 33 entries 
as bioisosteric replacements for the pyrrole-pyrimidine group in the reference molecule DVF. The database 
provided several fragments along with information on their impact on activity, as well as changes in properties 
like ΔLogP, ΔTPSA, etc., based on data from literature (PubMed) or bioassays (Assay ID). The results (Fig. S1) 
were analyzed, and two bioisosteric replacements containing oxygen and sulfur heteroatoms as a replacement for 
nitrogen heteroatoms24 were selected. These selections were made based on their demonstrated improvement in 
activity, while maintaining minimal changes in LogP, TPSA, and molecular weight (MW).

ADME study
The molecules obtained from different sources were assessed for their drug-likeness properties using a webserver 
called SwissADME. Among the molecules above the similarity threshold of 0.75, around 133 molecules from 
ChEMBL and 84 molecules from ZINC qualified for the preliminary drug-likeness properties and were taken 
further for molecular docking studies. Nine molecules obtained from the STITCH server and two molecules 
selected from SwissBioisostere also maintained favorable drug-likeness properties and were used for docking 
studies. The details about the pharmacokinetic properties of the molecules selected for molecular docking 
studies are provided in Table S1.

Fig. 2.  The non-bonding interactions of the reference molecule, DVF at the allosteric site of PI5P4K2C.
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The computational prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) 
properties is important for the subsequent steps of in-silico drug design. The predicted ADME properties of 
chemical compounds derived from the SwissADME webserver were analysed and the following results were 
observed:

•	 The TPSA values of the selected molecules ranged between 33.95 to 114.51 Å2 within the optimal range of 
TPSA = 0 to 140 Å2 suggestive of good oral bioavailability.

Fig. 4.  The chemical-protein interactions existing between the chemical structures and protein targets.

 

Fig. 3.  (A) The PI5P4K2C bound to inhibitor molecule DVF deposited as PDB ID: 7QPN and docked 
conformer of reference molecule DVF in (B) PyRx (Co-crystallised DVF (cyan) and docked conformer 
(pink)). (C) AutoDock 4.2 (Co-crystallised DVF (cyan) and docked conformer (brown)).
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•	 The lipophilicity measured as consensus Log Po/w varied between 0.90 and 4.62 within the optimal range of 
Log Po/w = -4.0 to 5.6 indicating that molecules can permeate cell membranes easily and distribute effectively.

•	 The water solubility determined by Log S value ranged between -2.42 to -6.06 concerning the optimal value of 
Log S < 6 for the selected molecules suggestive of moderate solubility.

•	 The skin permeation factor also termed as Log Kp was recorded between -4.22 cm/s to -7.69 cm/s with respect 
to optimal value of Log Kp = -6.1 to -0.19 cm/s indicative of moderate to low skin permeability.

•	 The synthetic accessibility suggesting ease of synthesis varied from 2.10 to 3.86 with respect to synthetic ac-
cessibility scale = 1 to 10.

The selected compounds from the applied workflow (Fig. 5) were considered promising candidates for further 
investigation based on their structural and chemical properties.

Molecular docking analysis
After the assessment of the drug-likeness properties, the ligand structures obtained from various sources like 
ChEMBL (actives), ZINC (lead-like), STITCH, and SwissBioisosteres were prepared and utilized for docking 
purposes in PyRx and AutoDock software. The docking was first conducted in PyRx as a screening tool to 
identify molecules with greater binding affinity at the allosteric site. These molecules were docked again in 
AutoDock 4.2 tools to come up with the best hit molecules. In the docking process, a binding affinity value is 
assigned to each molecule to rank the molecules based on their binding potential. The lower the binding affinity 
score, the better the binding potential of the ligand.

The allosteric binding site comprises residues, Asp161, Met162, Ser164, Asn165, Leu166, Tyr169, Leu182, 
Pro183, Phe185, Phe272, Leu273, Leu276, Ile278, Tyr281, Leu330, Ile331, Asp332, Ile333, Leu334 and Thr335. 
The docking results were exported to Discovery Studio Visualizer to examine the binding interactions of the 
ligands with the receptor. Analysis of two-dimensional (2D) ligand interactions was done to eliminate the 
molecules from the study that did not form any conventional hydrogen bonds or other non-bonding interactions 
with the residues present in the PI5P4K2C allosteric site. These 2D protein–ligand interactions are shown in 
Table 1. A summary of the interactions is provided in Table 1 along with docking scores obtained from the 
docking studies. The reference molecule DVF achieved a binding score of -9.26 kcal/mol in AutoDock 4.2 and 
-10.4 kcal/mol in PyRx. The docking scores of the hit molecules ranged between -7.06 and -10.0 kcal/mol in PyRx 
and -7.31 kcal/mol to -11.1 kcal/mol in AutoDock 4.2. Analysis of the docked poses revealed that hydrophobic 
amino acid residues, Met162, Leu166, Tyr169, Leu182, Pro183, Phe185, and Ile278 interacted with the ligands 
via Pi-alkyl interactions, Pi-Pi stacked interactions, Pi-Pi T-shaped interactions, Pi-sigma interactions. The 
hydrophilic residues Asp161, Asn165, Asp332, and Thr335, formed hydrogen bonds with the ligands. Leu330 
and Ile331 were also occasionally involved through hydrogen bonding and van der Waals (vdW) interactions 
with the ligands.

Thus, from this overall analysis, it was observed that the selected molecules were involved in the conventional 
non-bonding interactions with the allosteric binding pocket of PI5P4K2C. The protein–ligand interactions 
formed an essential criterion for the examination of hit molecules for further studies. In addition, the similarity 
scores between the reference and hit molecules (I-XI) selected from molecular docking were computed using 

Fig. 5.  The workflow of methods employed to identify potential hit molecules using allosteric inhibitor DVF as 
the query.
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Sl. 
no IUPAC nomenclature of ligand 2D plot of protein–ligand interactions

Docking 
Score Amino acid 

residues in 
non-bonding 
interactions

AutoDock/
PyRx (kcal/
mol)

1
DVF 2-(2-isopropylphenyl)-5-methyl-N-
(pyridin-2-ylmethyl)-5H-pyrrolo[3,2-d]
pyrimidin-4-amine

-9.26/-10.4

Hydrogen bond- 
Asn165, Asp332, 
Thr335
Pi Anion- 
Asp161
Pi Sigma- Ile278
Pi Alkyl- Met162, 
Pro183

2 3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-
2-yl)phenol -7.38/-8.0

Hydrogen bond- 
Met162, Leu330, 
Thr335
Pi Sigma-Tyr169
Pi-Pi T shaped-
Phe185
Alkyl and Pi 
Alkyl- Leu166, 
Leu182, Pro183

3 (3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-
2-yl)phenyl)methanol -7.31/-7.8

Hydrogen bond- 
Met162, Leu330
Pi-Pi T shaped- 
Phe185
Pi Alkyl- Leu166, 
Leu182, Leu273, 
Ile278

4 2-(2-isopropylphenyl)-5-methyl-4-(pyridin-2-
ylmethoxy)-5H-pyrrolo[3,2-d]pyrimidine -9.07/-9.9

vdW and Carbon 
Hydrogen bond- 
Leu330
Hydrogen bond- 
Asn165, Thr335
Alkyl Pi Alkyl- 
Met162, Tyr169, 
Leu182, Pro183, 
Phe272
Pi Sigma- Ile278

Continued
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Sl. 
no IUPAC nomenclature of ligand 2D plot of protein–ligand interactions

Docking 
Score Amino acid 

residues in 
non-bonding 
interactions

AutoDock/
PyRx (kcal/
mol)

5 2-(2-isopropylphenyl)-5-methyl-4-((pyridin-2-
ylmethyl)thio)-5H-pyrrolo[3,2-d]pyrimidine -9.18/-8.7

Pi Donor 
hydrogen bond- 
Asn165
Hydrogen bond- 
Thr335
Pi Anion- 
Asp161
Alkyl and Pi 
Alkyl- Met162, 
Leu166, Tyr169, 
Leu182, Pro183, 
Phe272, Ile278

6 2-(2-methoxyphenyl)-N-((5-methylpyrazin-2-yl)
methyl)quinazolin-4-amine -8.48/-9.6

Carbon 
Hydrogen bond- 
Leu330
Hydrogen bond- 
Asn165, Asp332, 
Thr335
Pi Sigma- Ile278
Pi-Pi Stacked- 
Phe185
Pi Sulfur- Met162
Alkyl and Pi 
Alkyl- Tyr169, 
Leu182, Pro183, 
Phe272, Leu273

7 N-(2-(2H-isoindol-1-yl)ethyl)-2-(pyridin-2-yl)
quinazolin-4-amine -9.35/-10.0

Hydrogen bond- 
Met162, Asn165
Pi Anion- 
Asp161, Asp332
Pi-Pi Stacked-
Tyr169
Pi Alkyl-Leu182

Continued
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Sl. 
no IUPAC nomenclature of ligand 2D plot of protein–ligand interactions

Docking 
Score Amino acid 

residues in 
non-bonding 
interactions

AutoDock/
PyRx (kcal/
mol)

8 N-(2,3-dihydro-1H-inden-2-yl)-2-(6-
methylpyridin-3-yl)quinazolin-4-amin -9.75/-10.9

Hydrogen bond- 
Met162, Thr335
Pi-Pi Stacked and 
Pi Pi T Shaped- 
Tyr169, Phe185
Alkyl and Pi 
Alkyl- Leu182, 
Pro183, Ile331

9 N-(2,3-dihydro-1H-inden-2-yl)-2-(5-
methylpyridin-3-yl)quinazolin-4-amine -10.0/-11.1

Hydrogen bond- 
Met162, Thr335
Pi Pi Stacked- 
Tyr169
Alkyl and Pi 
Alkyl- Pro183, 
Phe185, Leu273, 
Ile278

10 2-(2-(pyridin-3-yl)quinazolin-4-yl)-2,3,4,9-
tetrahydro-1H-pyrido[3,4-b]indole -9.11/-10.2

Hydrogen bond- 
Asp161, Thr335
vdW and Carbon 
Hydrogen bond- 
Asn165, Leu330
Pi Sigma- Met162
Pi Pi T shaped- 
Phe185
Pi Alkyl- Pro183
Pi Anion- 
Asp161

Continued
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ChemMine Tools available at https://chemminetools.ucr.edu/similarity/ and provided in Table S2. During the 
analysis of compound pair similarity, the ChemMine interface calculates the atom pair and maximum common 
substructure (MCS) similarities with Tanimoto coefficients. The MCS is a graph-based similarity concept 
defined as the largest substructure shared between the two compounds. It is a pair-wise concept and the results 
(size of MCS relative to source structure) can be applied to compute similarity coefficients. MCS provides an 
accurate and sensitive similarity measure even for compounds with large size differences. The MCS Tanimoto 
and MCS size for the hit molecules varied from 0.25–0.63 and 11–21, respectively. A lower MCS Tanimoto 
score signifies that the molecules are structurally different with a small portion of common substructure. A 
higher MCS Tanimoto score suggests that the maximum common substructure between the molecules is large 
and they share similar bonding patterns or chemical motifs. The AP Tanimoto scores varied between 0.25–0.86 
for the selected hit molecules obtained from molecular docking. A low score near 0.2 is suggestive of weak 
similarity in terms of commonality or overlap whereas a high score near 0.8 is representative of strong similarity 
or substantial overlap between the elements in the compared structures.

Molecular dynamics simulations
The MD simulations studies were used to identify stable protein–ligand complexes. Thirteen molecular systems 
were analyzed to investigate the protein dynamics of PI5P4K2C, both in its apo form and when complexed 
with the reference molecule DVF and hit compounds (Hit I to Hit XI), using GROMACS 5.1.4 software. Of 
these systems, four molecular complexes (Hit I to Hit IV) demonstrated greater stability during 250 ns MD 
simulations. The extent of deviations in the Cα atoms throughout the MD run was assessed using parameters like 
RMSD and root mean square fluctuations (RMSF), which were plotted as a function of time.

Sl. 
no IUPAC nomenclature of ligand 2D plot of protein–ligand interactions

Docking 
Score Amino acid 

residues in 
non-bonding 
interactions

AutoDock/
PyRx (kcal/
mol)

11 N4-((1-phenethyl-1H-imidazol-2-yl)methyl)
pyrido[2,3-d]pyrimidine-4,7-diamine -8.86/-9.3

vdW and Carbon 
Hydrogen bond- 
Met162
Hydrogen bond- 
Asn165, Ile331
Pi Pi Stacked- 
Tyr169
Hydrogen bond- 
Asn165, Ile331
Pi Alkyl- Leu182, 
Pro183, Leu273, 
Ile278

12 3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-
2-yl)aniline -7.06/-8.0

Hydrogen bond- 
Met162, Asp332, 
Thr335
Pi Sigma- Met162
Pi-Pi T shaped- 
Phe185
Pi Alkyl- Leu166

Table 1.  The docking scores of reference and ligand molecules at the allosteric site of PI5P4K2C along with the 
non-bonding interactions.
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From the protein RMSD plots (Fig. 6A) it was observed that the RMSD of the apo protein reached up to 
0.47 nm, while the protein RMSD was lower when complexed with DVF and the hit molecules, indicating the 
enhanced stability of the protein–ligand complexes. Among all molecules, Hit II displayed the lowest protein 
RMSD. The PI5P4K2C when complexed with the reference and hit molecules, the RMSD increased to 0.3 nm 
till 50 ns and further slowly increased to 0.37 nm till 150 ns. The clustering of all molecular complexes was 
observed at RMSD below 0.4 nm, however, in the Hit IV bound molecular complex, a noticeable change was 

Fig. 6.  The RMSD plots for the apo and complexed states of PI5P4K2C bound to reference and hit molecules 
as (A) RMSD protein (B) RMSD ligand (C) RMSF.
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observed after 102 ns (0.33 nm) and 197 ns (0.38 nm) after which the complex remained stable. The RMSD of 
ligands (Fig. 6B) remained below 0.15 nm with reference molecule and Hit IV showing a minimum deviation of 
0.05 nm. Thus, from the RMSD plots it was observed that the molecular systems attained stability when bound 
to hit and reference molecules when compared to the apo state alone. The identification of flexible residues in 
the molecular system was understood from the RMSF plot (Fig. 6C) which showed larger fluctuations (> 0.2 nm) 
of residues towards the N-terminal end of the protein. In all the complexes, residues from Glu295-Phe305 and 
Lys341-Thr360 were found to be flexible long loops. Incidentally, these regions were not defined in the three-
dimensional crystal structure (PDB ID:7QPN). In addition, the regions, Ser225-Lys231 and Asn247-Asn249 
located around the hinge region were also found to be flexible. In the N-terminal domain residual fluctuations 
were seen for Asn86-Arg91 that is present as a connecting loop between the two β strands. Similarly, flexibility 
was seen for the glycine-rich loop situated at the top of the hinge binding pocket and comprising residues 
Gly135-Asp138. It was studied that these fluctuations occurred outside the allosteric binding site and hence 
did not lead to conformational changes at the binding site. Further significant fluctuations in these regions 
reveal the structural alterations leading to protein conformational changes required for the enzyme activity. Low 
RMSF values (< 0.2 nm) observed for the allosteric binding site residues are indicative of the stability gained 
upon ligand binding. It was studied that all the interacting amino acid residues present in the allosteric site 
exhibited a low RMSF value of less than 0.2 nm, suggesting that the hit-bound molecular systems showed good 
conformational stability.

The interactions between the hit molecules and residues within the allosteric binding site were examined using 
the structures from most populated cluster obtained from MD simulations trajectories (Table 2). Key residues, 
such as Met162, Asn165, Leu330 and Thr335 were involved in hydrogen bonding across nearly all protein–
ligand complexes. This observation is further supported by the number of frames (Table S3) and distance plots 
(Fig. S2), which indicate the presence of these intermolecular hydrogen bonds across 25,000 frames per complex. 
The Fig. S3 illustrates the number of hydrogen bonds as a function of time throughout the MD simulations. In 
addition, a comparison of the average structure and the structure from cluster-1 is shown in Table S4.

Mechanical stiffness and normal mode analysis
The mechanical stiffness plots of all the molecular systems were generated using the Anisotropic Network 
Model. The study was carried out to gain information about the relative mobilities of regions under tension and 
resistance to deformation as they might be relevant for biological function. The mean value of the effective spring 
constant was computed for all the molecular systems.

In the mechanical resistance map (Fig. S4) the blue-colored regions indicate mechanically stiff regions while 
red-colored regions denote easily deformable parts of the protein. Interestingly, in the apo protein, only the 
disordered N-terminal amino acid region Val34-Gln36 was mechanically weak with a spring constant value 
close to 6.3 k (a.u), while the rest of the apo PI5P4K2C displayed a relative stable structure with > 7 k (a.u). The 
Hit II and Hit IV showed a mechanically weak region with a spring constant value close to 6.4 and 6.5 k (a.u) at 
Gly303-Phe305. While the PI5P4K2C complex with Hit III displayed mechanically weak region around His345-
Thr360 with a spring constant value close to 6.2 k (a.u). In general, the regions Asn86-Arg91, glycine-rich loop 
Gly135-Asp138, Ser225-Lys231, Asn247-Asn249, Glu295-Phe305 and Lys341-Thr360 with an effective spring 
constant value lower than 8 k (a.u) reflected the lower mechanical stiffness. These regions are more disposed 
to deformation than others. While the stable regions in the protein with well-defined secondary structures 
displayed an effective spring constant value around 11 k (a.u) in the mean plots. Thus, through this study elastic 
nature of the PI5P4K2C protein was studied.

NMA is a simple and fast method to determine the vibrational modes and flexibility in the protein. It 
provides a time-independent approach to gain an understanding of the mechanism of slow and large amplitude 
motions. The protein dynamics analysis using NMA was carried out and ten normal modes were calculated for 
each molecular system. Among these first three modes were chosen and studied for comparison with the apo 
structure of PI5P4K2C. The study revealed the flexible regions corresponding to the N-terminal loop region 
in the apo PI5P4K2C and in complex with Hit II and Hit III. In all the structures, residues Asn86-Arg91 that 
form a connecting loop between the two β strands in the N-terminal domain showed highest mobility. The 
complex with Hit IV showed the least mobility among all the molecular systems studied. The complex with Hit 
II displayed a dynamical structure in highly mobile loops situated near the hinge binding pocket i.e. Glu295-
Phe305 and the helix-loop region (Lys341-Thr360) that connects to the N-terminal domain in PI5P4K2C. These 
large motions from the NMA plots are indicated in Fig. S4.

Principal component analysis and free energy landscapes
The various structural and conformational changes involved during protein–ligand binding can be studied 
using the essential dynamics, employing PCA. In this method, eigen vectors and eigen values are calculated to 
describe the motion of atoms as well as the atomic contribution for that movement during MD trajectories of 
protein. The PCA calculations were performed for the 250 ns MD simulations trajectories of each molecular 
system. The resultant 25,000 frames were utilized to know the Cα atom’s motion as a function of time. The 
PC1 and PC2 projected into two-dimensional space as they captured most of the variance and conformational 
ensembles of PI5P4K2C were analysed. The representation of scatter plots for each molecular system is provided 
in Fig. 7. From the plots, it is observed that conformational changes took place in the protein when it is bound 
to the ligand as seen from scatter plots (Fig. 7 B-F) when compared to apo-protein (A) indicating that ligand 
binding is responsible for different conformational changes in protein dynamics. In addition, the conformational 
distribution of PI5P4K2C in protein–ligand complexes when bound to reference molecule DVF (B), Hit I (C), Hit 
II (D), and Hit III (E) were almost similar indicative of the similarity between reference and hit molecules. The 
lesser variance observed in PI5P4K2C- Hit I, PI5P4K2C-Hit II and PI5P4K2C-Hit III complexes is suggestive 

Scientific Reports |        (2025) 15:33890 12| https://doi.org/10.1038/s41598-025-07480-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Sl. No Ligands Cluster1
Non-bonding interactions 
in the complex

1
DVF
2-(2-isopropylphenyl)-5-methyl-N-(pyridin-2-ylmethyl)-5H-
pyrrolo[3,2-d]pyrimidin-4-amine

vdW and carbon hydrogen 
bond-Asp161
Hydrogen bond- Asn165, 
Thr335
Pi-Pi T shaped- Tyr169
Alkyl and Pi alkyl-Met162, 
Pro183, Leu273, Ile278

2 Hit I
3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-2-yl)phenol

vdW and carbon hydrogen 
bond- Asn165
Hydrogen bond- Met162, 
Leu330
Alkyl and Pi-alkyl- 
Leu273, Leu276, Ile278

3
Hit II
(3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl)
methanol

vdW and carbon hydrogen 
bond-Asn165
Hydrogen bond- Met162, 
Thr335
Alkyl and Pi-alkyl- 
Leu273, Leu276, Ile278

Continued
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of the stability gained upon binding to the hit molecules with similar structural characteristics. PI5P4K2C-
Hit II molecular system, in particular, showed less overall motion suggestive of the stability acquired whereas 
Cα deviations were greater for apo PI5P4K2C and PI5P4K2C-Hit IV molecular systems that displayed high-
frequency motion among all the systems studied. Thus, large protein conformational changes were observed in 
the apo PI5P4K2C and PI5P4K2C-Hit IV bound molecular systems.

The 2D free energy landscape (FEL) plots of PI5P4K2C in apo form and when bound to reference and hit 
molecules (Hit I to Hit IV) were constructed to understand the free energy profiles (Fig. S5) due to changes 
in the conformational dynamics during 250 ns MD simulations run. The plots were generated using the eigen 
vectors obtained from PCA. The 2D contour maps indicate the regions with high or low energy structures. The 
red colour patterns determine the maximum energy structures and the regions with minimum energy structures 
are indicated with a deep blue colour. The apo PI5P4K2C covered larger ranges of PC1 and PC2 (18.1 kJ/mol), 
indicating a more rugged free energy surface than the complexed protein. The apo protein clearly showed one 
free energy well in four basins. When complexed with reference, Hit II and Hit III molecules there are two 
energy wells in four basins. While the Hit I and Hit II displayed one conspicuous free energy well in more than 
3 basins. The apo PI5P4K2C showed Gibbs free energy in the range of 0 to 18.1 kJ/mol while the PI5P4K2C 
bound to reference molecule DVF and other hit molecules exhibited Gibbs free energy in the range of 0 to 17 kJ/
mol. This observation suggested that the apo protein underwent significant structural alterations compared to its 
initial state while the molecular complexes of PI5P4K2C bound to reference and hit molecules were more stable.

CarcinoPred-EL study
The toxicity of reference and selected hit molecules as potential carcinogens were studied from CarcinoPred-
EL server. It was found that all the four hit molecules were predicted to be non-carcinogens by Ensemble RF, 
Ensemble SVM, and Ensemble XGBoost models. The details involved in the prediction of class for the studied 
molecules are represented in Table 3. This study suggests that the hit molecules may serve as clinically safer 
compounds than the reference molecule DVF.

Sl. No Ligands Cluster1
Non-bonding interactions 
in the complex

4
Hit III
2-(2-isopropylphenyl)-5-methyl-4-(pyridin-2-ylmethoxy)-5H-
pyrrolo[3,2-d]pyrimidine

vdW and carbon hydrogen 
bond-Leu330
Hydrogen bond- Asn165, 
Thr335
Pi-sigma-Leu276
Pi-Pi T-shaped and 
Amide-Pi stacked- Tyr169, 
Phe185, Ile331
Alkyl and Pi-alkyl-Met162, 
Leu182, Pro183, Phe272, 
Ile278

5
Hit IV
2-(2-isopropylphenyl)-5-methyl-4-((pyridin-2-ylmethyl)thio)-
5H-pyrrolo[3,2-d]pyrimidine

Hydrogen bond- Asn165, 
Thr335
Pi-Pi stacked- Phe185
Alkyl and Pi-alkyl-Met162, 
Tyr169, Leu182, Pro183, 
Phe272, Leu273, Leu276, 
Ile278

Table 2.  Intermolecular interactions of reference molecule and identified hit molecules (I—IV) bound to 
PI5P4K2C from the structure of most populated clusters from MD simulations trajectories.
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Bioactivity prediction study
The selected hit molecules were evaluated for the potential to inhibit Type II PI5P4K2C using the predict 
bioactivity tool in Molinspiration Chemoinformatics [Molinspiration Cheminformatics free web services, 
Slovensky Grob, Slovakia]. The predicted bioactivity scores as kinase inhibitor for reference and hit molecules 
(I-IV) were found to be 0.24, 0.33, 0.71, 0.47, and -0.07 respectively. The bioactivity prediction analysis indicated 
that the hit molecules can exhibit promising activity towards PI5P4K2C, as measured by bioactivity scores for 

Fig. 7.  The PCA scatter plots for PI5P4K2C in (A) apo and complexes bound to (B) DVF (C) Hit I (D) Hit II 
(E) Hit III (F) Hit IV.

 

Scientific Reports |        (2025) 15:33890 15| https://doi.org/10.1038/s41598-025-07480-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


kinase inhibitors. The hit molecules specifically Hit I to Hit III, showed higher scores than the reference molecule, 
with scores ranging from 0.33 to 0.71 as kinase inhibitors. In contrast, Hit IV exhibited the least potential and 
showed a negative value of predicted kinase inhibitory activity.

Binding free energy calculations
The binding energies of the molecular systems were calculated using the g_mmpbsa tool, based on the MD 
trajectories. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) ΔG analysis (Table 4) 
revealed that Hit II (-103.64 kJ/mol), Hit III (-163.67 kJ/mol), and Hit IV (-150.65 kJ/mol) exhibited significantly 
lower ΔG values compared to the reference molecule DVF (-68.44 kJ/mol), indicating stronger binding affinity 
and greater stability in these complexes. While Hit I displayed a ΔG value of -64.92 kJ/mol, comparable to that 
of DVF, suggesting a similar level of binding efficiency.

Further breakdown of the energy components; vdW, electrostatic, polar, and apolar energies showed that 
the hit molecule-bound systems had higher contributions from these interactions than the reference molecule. 
This suggests that the enhanced stability of Hit II, Hit III, and Hit IV is likely due to stronger non-covalent 
interactions, which contribute to their more favorable binding energies. The contribution of individual residues 
to the binding free energy was also analyzed, as illustrated in Fig. 8.

From the residue contribution plot, it was observed that amino acid residues such as Met162, Tyr169, Pro183, 
Phe185, Leu273, Leu276, Ile278, and Leu334 in the allosteric site contributed more towards the binding free 
energy values. The findings of the study aligned with results obtained from docking studies since these residues 
were seen to be involved in several non-bonding interactions with ligands. Thus, from this study, it is inferred 
that Hit II, Hit III, and Hit IV molecules possess lower ΔG values in comparison to the reference molecule.

Conclusions
PI5P4K lipid kinases are critical regulators of various cellular processes, including lipid transport, integral 
membrane protein signaling, and the recruitment of proteins to different intracellular locations. Previous studies 
have identified PI5P4Ks as promising drug targets for the treatment of neurodegenerative and immunological 
disorders, as well as cancer. However, the development of potent inhibitors against these lipid kinases has been 
limited, highlighting the need for further research. While the 3D crystal structures of PI5P4K2C complexed with 
inhibitors have been solved, these inhibitors bind at the ATP-binding site, presenting a challenge for achieving 
selectivity. Thus, targeting allosteric sites on lipid kinases offers a more selective therapeutic approach.

One such allosteric inhibitor, DVF, has been identified to bind to PI5P4K2C, as in PDB ID 7QPN. This 
study aimed to identify structural analogs from different sources that bear similarity to the DVF molecule and 

Sl. No Ligand vdW Energy Electrostatic Energy Polar Solvation Energy SASA Energy ∆G(MM-PBSA)

Ref -101.044 ± 2.127 -23.765 ± 0.519 65.324 ± 1.241 -8.954 ± 0.190 -68.439 ± 1.799

Hit I -102.695 ± 1.475 -35.003 ± 0.595 83.532 ± 1.062 -10.711 ± 0.149 -64.925 ± 1.192

Hit II -148.159 ± 1.479 -40.713 ± 0.422 99.208 ± 0.862 -13.890 ± 0.139 -103.639 ± 1.258

Hit III -215.035 ± 0.551 -41.866 ± 0.172 111.946 ± 0.365 -18.734 ± 0.048 -163.677 ± 0.488

Hit IV -200.877 ± 0.941 -35.015 ± 0.269 103.247 ± 0.520 -17.908 ± 0.084 -150.650 ± 0.849

Table 4.  Binding free energies (kJ/mol) from MM-PBSA study of reference molecule DVF, and identified hit 
molecules bound to PI5P4K2C.

 

Ligand Ensemble CDK CDKExt CDKGraph KR KRC MACCS Pubchem Average Class

DVF

RF 0.45 0.46 0.37 0.44 0.43 0.57 0.37 0.44 Non-Carcinogen

SVM 0.60 0.43 0.49 0.46 0.46 0.60 0.52 0.51 Carcinogen

XGBoost 0.07 0.19 0.47 0.45 0.85 0.63 0.76 0.49 Non-Carcinogen

Hit I

RF 0.42 0.34 0.34 0.46 0.62 0.34 0.42 0.42 Non-Carcinogen

SVM 0.39 0.40 0.39 0.38 0.49 0.33 0.43 0.40 Non-Carcinogen

XGBoost 0.07 0.19 0.47 0.45 0.78 0.63 0.76 0.48 Non-Carcinogen

Hit II

RF 0.39 0.36 0.35 0.39 0.54 0.30 0.32 0.38 Non-Carcinogen

SVM 0.40 0.38 0.41 0.32 0.44 0.29 0.39 0.37 Non-Carcinogen

XGBoost 0.07 0.19 0.47 0.45 0.78 0.63 0.76 0.48 Non-Carcinogen

Hit III

RF 0.40 0.39 0.48 0.36 0.53 0.35 0.40 0.42 Non-Carcinogen

SVM 0.31 0.41 0.53 0.36 0.35 0.35 0.44 0.39 Non-Carcinogen

XGBoost 0.07 0.19 0.47 0.45 0.70 0.63 0.76 0.47 Non-Carcinogen

Hit IV

RF 0.45 0.39 0.40 0.29 0.50 0.44 0.29 0.39 Non-Carcinogen

SVM 0.36 0.38 0.52 0.24 0.28 0.38 0.37 0.36 Non-Carcinogen

XGBoost 0.07 0.19 0.47 0.45 0.70 0.63 0.76 0.47 Non-Carcinogen

Table 3.  Prediction of chemical carcinogenicity for reference and identified hit molecules.
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investigate them as potential allosteric inhibitors by in-silico methods. Hence, structurally similar compounds 
were explored to identify potent molecules with enhanced binding affinity and improved pharmacokinetic 
properties than the reference molecule DVF. To achieve this, chemical and structurally similar molecules (~ 269) 
were collected from sources such as SwissSimilarity, STITCH, and Swiss Bioisostere. Initial screening of the 
generated output molecules for drug-likeness was followed by molecular docking and visualization of protein–
ligand interactions to evaluate binding affinity.

From the docking studies, 12 hit molecules were identified, which were further evaluated for their stability 
through MD simulations when complexed with PI5P4K2C. The dynamic behaviour and structural stability of 
PI5P4K2C bound to hit molecules were monitored. Post-simulation analysis revealed that molecular complexes 
involving Hit I to Hit IV molecules demonstrated strong binding at the allosteric site of PI5P4K2C and remained 
stable throughout the 250 ns MD simulations. In addition, NMA, mechanical stiffness, and PCA were carried 
out to study the structural conformations and variations of Type II PI5P4K2C bound to these hit molecules. 
Evaluation of the molecules (Hit I to Hit IV) for carcinogenicity and predicted bioactivity suggested Hit I, Hit 
II, and Hit III molecules to be better structural analogs for DVF as they exhibited greater predicted kinase 
inhibitory potential than DVF and were non-carcinogenic. Moreover, Hit II, Hit III, and Hit IV identified as 
(3-(4-morpholino-5H-pyrrolo[3,2-d]pyrimidin-2-yl)phenyl)methanol, 2-(2-isopropylphenyl)-5-methyl-4-
(pyridin-2-ylmethoxy)-5H-pyrrolo[3,2-d]pyrimidine, and 2-(2-isopropylphenyl)-5-methyl-4-((pyridin-2-
ylmethyl)thio)-5H-pyrrolo[3,2-d]pyrimidine, respectively exhibited greater binding free energies than the 
reference molecule, DVF. Thus, these findings highlight Hit I, Hit II, and Hit III with their favorable non-bonding 
interactions and greater binding free energies compared to DVF as potential candidates for further development 
as PI5P4K2C allosteric inhibitors. These hit molecules with pyrrole-pyrimidine as the core moiety similar to 
DVF have the potential to bind to Type II PI5P4K2C protein with good affinity and can be used to design 
novel anticancer agents. These analyses provide valuable insights for the future design of potent drug candidates, 
particularly for targeting cancer. Further experimental studies may be needed to gain a clear understanding of 
the allosteric inhibitory potential of Hit I, Hit II, and Hit III molecules against PI5P4K2C.

Materials and methods
Protein preparation
The crystal structure of the γ isoform, PI5P4K2C, bound to the allosteric inhibitor DVF, with PDB ID 7QPN, 
was selected as the target protein for this study. The missing residues in the crystal structure of the protein (PDB 
ID: 7QPN) were built into the model structures predicted by the I-TASSER server25 and used for this study. The 
best model was selected based on its C-score, TM-score, and cluster density. The output models, along with their 
prediction details, are provided in Fig. S6. Throughout the study, the co-crystallized inhibitor DVF was used as 
the reference molecule in the protein–ligand complex. The binding site residues were identified using the "define 
and edit binding site" feature in the Discovery Studio visualizer.

Construction of ligand library
Drugs with similar chemical structures have been found to exhibit similar pharmacological actions26. The concept 
of similarity has been recently used in drug repurposing studies for inhibition of SARS-CoV2 replication27. We 
obtained chemical molecules from freely available web servers, including SwissSimilarity28, STITCH database29, 
and SwissBioisostere30, using the similarity approach.

Fig. 8.  The residue contribution in binding free energy values calculated for PI5P4K2C complexes bound to 
reference molecule DVF and identified hit molecules (Hit I-Hit IV).
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SwissSimilarity
SwissSimilarity is a web tool that rapidly screens small molecules for potential ligands. It uses various approaches, 
including 2D molecular fingerprints (like FP2) and 3D similarity methods (such as Align-IT and Shape-IT), to 
make efficient predictions. SwissSimilarity has been used to build libraries for identifying histamine H3 receptor 
ligands31 and analogs of PKMYT1 inhibitors32.

In this study, we chose the ChEMBL database33, which contains 402,239 active molecules, to represent 
bioactive compounds. We also used the ZINC database34, which includes 2,817,546 purchasable lead-like 
compounds, as a compound library. The combination of FP2 and electroshape methods was used for searching 
similar molecules. Molecules with a similarity score of > 0.75 were selected from both the ChEMBL (actives 
only) and ZINC (lead-like) compound libraries for further study on drug-likeness.

STITCH database
The chemical structures available in the STITCH database, accessible at (http://stitch.embl.de), were retrieved by 
providing the query molecule DVF as a smiles string. The database offers several query options, including full-
text searches for common names of proteins or chemicals. Additionally, similar chemicals stored in the database 
can be searched by providing the SMILES strings of the query compound. The chemical structures that matched 
the input structure displayed with Tanimoto scores were generated from the STITCH database.

SwissBioisostere
The lead optimization step in drug discovery is both time-consuming and challenging. This is because even 
slight modifications to active compounds against a target of interest can disrupt the balance between potency 
and key parameters like toxicity, bioavailability and metabolic stability. However, understanding bioisosteres 
can help identify analogs for synthesis, allow fine-tuning the biological and biophysical properties of the active 
compound, as seen with the reference molecule DVF in our study.

The SwissBioisostere database, accessible at http://www.swissbioisostere.ch, offers a wealth of information on 
molecular replacements for a query molecule, including their performance in biochemical assays. This enables 
researchers in drug discovery to identify bioisosteric modifications of lead molecules and view details of possible 
molecular replacements. The SwissBioisostere homepage features two chemical sketchers, allowing users to 
submit queries and perform replacements for a particular substructure. The results can be sorted by differences 
in LogP, TPSA, class counts, MW, and chemical similarity, all presented in a tabular format. A scoring scheme 
ranks the replacements based on observed bioactivity differences, target classes, number of targets, and Murcko 
scaffold families35. The results are based on values provided by the ChEMBL database, corresponding to the 
replaced fragment of a particular compound. The filtered results can be exported as a CSV file. Consequently, the 
reference molecule was used as a query in SwissBioisostere to search for potential replacements in the structure. 
By incorporating the best replacements into the original structure, we developed the reference molecule into 
bioisosteres.

The number of molecules with similar chemical structures to reference molecule DVF was compiled and 
downloaded in SDF format from SwissSimilarity, STITCH database, and SwissBioisostere. Before proceeding to 
molecular docking studies, these molecules were examined for their drug likeliness as a pre-filtering step.

ADME study
For a molecule to act as a drug, it must have the right physicochemical and pharmacokinetic properties. Studying 
ADMET properties of chemical structures early in the drug discovery pipeline can reduce failures in later clinical 
trials. Parameters like polarity, lipophilicity, size, water solubility, saturation, and gastrointestinal absorption are 
useful in determining a chemical compound’s drug-likeness. Moreover, evaluating molecules based on relevant 
pharmaceutical physicochemical properties—such as MW, number of rotatable bonds, number of hydrogen 
bond acceptors, number of hydrogen bond donors, and Lipinski’s rule of five helps ensure the study of clinically 
safer compounds.

In the present study, we estimated lipophilicity, polar surface area, solubility, skin permeation, and synthetic 
accessibility scale (1–10) measured by descriptors like Log Po/w (-4.0 to 5.6), TPSA (0 to 140 Å2), Log S (< 6), and 
Log Kp (-6.1 to -0.19 cm/s) respectively from the SwissADME web server36,37. After the preliminary screening 
of the molecules for drug-likeness, we selected those with favorable pharmacokinetic properties for molecular 
docking studies.

Molecular docking
The type II lipid kinase PI5P4K2C bound to the reference molecule DVF was chosen as the target structure 
for virtual screening using PyRx38. The receptor and reference molecule DVF were imported into PyRx using 
the ‘Import Molecule’ tool. The ‘make macromolecule’ and ‘make ligand’ options were used to prepare the 
macromolecule and ligand structures for docking and to save them in pdbqt format. The ligands were energy-
minimized using PyRx 0.8 (force field: Universal force field; optimization algorithm: conjugate gradients; the 
number of steps: 200; the number of steps for update: 1; stop if energy difference < 0.1). The binding site of 
the allosteric inhibitor, consisting of 5 Å residues around DVF, was used for docking the ligands in PyRx. The 
predefined allosteric binding site coordinates were adjusted to align the grid box, ensuring it covered all the 
amino acids at the protein’s binding site. The output results, including docking scores and RMSD values for each 
ligand conformer, were analyzed to select the best molecules based on higher docking scores and lower RMSD 
values. The best molecules selected from PyRx screening were then docked using AutoDock 4.2 tools39 at the 
receptor’s allosteric site. The receptor and ligand molecules were loaded and prepared before docking. In the 
protein preparation step, polar hydrogens were added to the receptor, torsions were set, and the structure was 
saved in pdbqt format.
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Similarly, ligands were loaded, and torsions were set to save them in pdbqt format. A grid box was defined 
around the inhibitor molecule DVF, centered at X = 63.470 Å, Y = 53.110 Å, and Z = 47.470 Å, which included the 
binding site residues. The grid box had a spacing of 0.375 Å. For each ligand, 10 docking poses were generated, 
with a maximum of 27,000 generations per GA run. The crossover rate was set to 0.8, and the gene mutation rate 
was set to 0.02. The conformers obtained for each ligand were visualized in the Discovery studio visualizer to 
analyze the non-bonding interactions at the allosteric site. To validate the docking protocol, the co-crystallized 
inhibitor DVF was re-docked at its allosteric site in the protein. The re-docked complex was superposed with 
the initial complex in UCSF Chimera, and the RMSD between the two complexes was calculated. This analysis 
assessed the docking protocols’ efficiency and accuracy. The molecules with high binding affinity and a greater 
number of interactions in the allosteric site were selected for further MD studies.

Molecular dynamics simulations
The MD simulations study provides information about the conformational stability of protein–ligand complexes. 
To investigate this, MD simulations were conducted for the Type 2 PI5P4K2C model structure in both its 
apo form and complexed state, where the latter was complexed with the reference molecule and shortlisted 
compounds from molecular docking. The simulations ran for 250 ns using GROMACS 5.1.4 software40. This 
study aimed to analyze the stability of the docked protein-hit complexes. The force fields for hit molecules were 
generated in Antechamber41 using the ACPYPE42, while protein force fields were generated by AMBER ff99SB43. 
The complexes were solvated in a cubic box with a simple point charge (SPC)44 water molecules and neutralized 
by adding Na+ and Cl- ions at a concentration of 0.15 M NaCl. To relieve the system of short-range bad contacts, 
energy minimization was performed using the steepest descent method for 50,000 steps. The system was 
then equilibrated in an NVT step until it reached 300 K, followed by equilibration in an NPT step to attain a 
suitable density (1 atm, 300 K). Both equilibration steps were performed for a 100 ps timescale. The V-rescale 
thermostat45 method was used to maintain the temperature, while the Parinello-Rahman method46 controlled 
the pressure. The Particle Mesh Ewald47 method with a PME order of 6 and a relative tolerance of 10–6 was used 
to handle long-range electrostatics. Short-range interactions were evaluated using a neighbor list of 10 Å.

The Lennard–Jones and real space electrostatic interactions were cut off at 9 Å, and hydrogen bonds were 
constrained using the LINCS algorithm48. The final models of all complexes were produced by averaging snapshots 
from the MD simulation trajectories. To assess conformational changes in the apo and ligand bound states of 
the complexes, RMSD and RMSF for Cα atoms were calculated. The convergence of the MD simulations was 
also evaluated by analyzing RMSD. Protein conformational clustering is an effective method that can be carried 
out on the simulation data to detect the structural changes in the system ensemble49. The RMSD clustering 
analysis was performed to evaluate atomic heterogeneity in the protein conformers from simulation. The RMSD 
conformational clustering was executed by the Gromos algorithm50 and the gmx cluster module in GROMACS 
was employed to group similar conformations based on structural similarity. In this work we adopted a Cα RMSD 
cut-off of 0.15 nm to obtain clusters. The clustering analysis enabled identification of dominant conformational 
states and dynamics of all the molecular systems. The CPPTRAJ module in Amber was used to monitor the 
hydrogen bonds formed during the trajectory. The hydrogen bond donors and hydrogen bond acceptors are 
specified with the “hbond” command as masks in CPPTRAJ. The standard convention is followed to define a 
hydrogen bond donor consisting of a heavy atom and hydrogen while hydrogen bond acceptor contains a single 
atom. The presence of a hydrogen bond is determined using the distance and angle criterion to give distance, 
angle of each hydrogen bond and average occupancy as the output51. The best molecules identified after post-
MD analyses and ADMET prediction were replicated for reproducibility of MD results (Fig. S7).

Mechanical stiffness and normal mode analysis
The MechStiff application of ProDy52, a Python package to study protein dynamics by structure-based analysis 
was employed for evaluating the mechanical stiffness in PI5P4K2C protein. The MechStiff tool measures the 
mechanical resistance in response to an external force applied at specific positions on the 3D structure. The 
input used in MechStiff can be a known modeled structure as an elastic network for visualization and analysis of 
anisotropic fluctuations and conformational dynamics. The rigidity in the protein structure is calculated for each 
residue, averaged over all pairs is represented in the form of a 2D map. The force constant measured as effective 
stiffness or resistance in response to all possible pulling directions is also determined from the calculation. The 
information obtained from these plots can help to identify the anisotropic response of protein to external forces. 
The mechanical stiffness plots were obtained for all the molecular systems using an Anisotropic network model 
(ANM)53. The application of normal modes in the prediction of mobile regions inside the protein has been 
widely used in research. In particular, the lowest modes are focused upon as they hold information about most 
movable parts of the protein or slow large amplitude motions. The large motions describe the conformational 
changes required for protein functioning and biological processes such as recognition of ligands or binding. The 
information concerning structural variations can be utilized to gain an understanding of biological activity54,55. 
Therefore, the normal mode wizard available in ProDy was used to build an elastic network-based model and for 
performing ANM calculations to identify flexible regions and large motions in the PI5P4K2C.

Principal component analysis and free energy landscapes
The global or correlated motions of the protein56 can be determined from PCA. The structural and conformational 
changes detected from the PCA scatter plots of protein are useful to monitor the motions in the apo structure 
and protein–ligand complexes during MD simulations. PCA helps in the dimensionality reduction of data while 
keeping the significant information. Through this analysis additional details like the conformational space 
accessible to protein can be known, which may not be captured through the RMSD plots. The PCA was crucial 
to understanding the conformation alterations of KRAS4B57 due to partner binding and G12C mutation. The 
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PCA analysis suggested that phosphorylation alters structural fluctuation in the switch domains of KRAS58. 
The projection of 3D coordinates over the first two principal components was done to obtain 2D maps. The 
2D scatter plots are representative of protein dynamics during the simulated time through which information 
about conformational convergence or macrostates explored by protein can be known. Therefore, the 3N × 3N 
covariance matrix where N signifies the number of atoms was generated from the 3D coordinates. Eigen 
values were obtained by the diagonalization of the matrix and principal components were the corresponding 
eigenvectors. MODE-TASK59 tools were utilized to carry out PCA for studying the overall motion of PI5P4K2C 
during the 250 ns MD simulations trajectories in all the molecular systems.

FEL analysis was performed for all the molecular complexes from 250  ns MD simulation trajectories to 
understand the essential movement of PI5P4K2C protein in apo state and in hit molecules bound complexes. 
The GROMACS ‘gmx covar’, ‘gmx anaeig’ and ‘gmx sham’ modules were employed to construct FEL from the 
principal components (PC1 and PC2). The distribution of stable conformations and structural states were 
analysed from these landscapes. The following equation was used to calculate FEL:

ΔG(PC1,PC2) = -kBTlnP(PC1,PC2).
Here PC1 and PC2 represent the reaction coordinates, Boltzmann constant is represented by kB, T stands for 

temperature of the system, and P(PC1,PC2) represents the probability distribution.

Carcinogenicity prediction study
Evaluation of the proposed hit molecules for toxicity remains the most important step in the drug development 
process. Cancer-causing chemicals known as carcinogens may result in serious health effects. Therefore, to 
prevent drug-induced cancer carcinogenicity tests must be performed for the new compounds before approving 
their curability. An online carcinogenicity prediction server, CarcinoPred-EL60 (Carcinogenicity Prediction 
using Ensemble learning methods) was used to test the studied molecules for carcinogenicity. The server that 
employs three different classification models such as Ensemble SVM, Ensemble RF, and Ensemble XGBoost was 
used for the estimation of chemical compounds to be carcinogenic or non-carcinogenic.

Bioactivity prediction
The inhibitory potential of the hit molecules that formed stable protein–ligand complexes was examined through 
the prediction of bioactivities using an online server called Molinspiration Chemoinformatics available at ​h​t​t​p​s​:​
/​/​w​w​w​.​m​o​l​i​n​s​p​i​r​a​t​i​o​n​.​c​o​m​​​​ [Molinspiration Cheminformatics free web services, Slovensky Grob, Slovakia]. The 
molecules were drawn in the molecule sketcher. The predict bioactivity tool allowed prediction of the activity 
of ligands to different receptors such as ion channel modulator, protease inhibitor, kinase inhibitor, etc. with 
respective Molinspiration bioactivity scores. The predicted bioactivity scores of reference and hit molecules were 
recorded to rank them in the order of kinase inhibitory potential.

Binding free energy calculations
The molecular processes including molecular associations, chemical reactions, and protein folding are all driven 
by free energy. Moreover, the binding affinity of ligands in the protein–ligand complex can be assessed from the 
binding free energy calculations. The MM-PBSA61 is a widely used method for measuring the binding free energy 
of protein–ligand complexes and plays an important role in drug discovery. The g_mmpbsa tool computes the 
free energy of the system in three consecutive steps. The first step involves the calculation of potential energy in 
a vacuum followed by the computation of polar and non-polar solvation energies of the system in the next steps.

The expression of ΔGbinding in a protein–ligand complex is computed by the following equation62,63

	 ∆Gbinding = Gcomplex− (Gprotein + Gligand) ;

Gcomplex represents the total free energy of the protein–ligand complex,
Gprotein and Gligand are the total free energies of protein and ligand in the solvent in isolated forms.
Thus g_mmpbsa tool was utilized to compute binding free energies for protein–ligand complexes comprising 

the reference molecule DVF and hit molecules from MD studies. The output trajectories obtained from MD 
simulations (250 ns) in GROMACS were employed for evaluating the ΔGbinding values for all molecular systems. 
The various contributions from electrostatic, vdW, polar solvation energy, and SASA energies (kJ/mol)) were 
calculated during this step. The residue-wise contribution to the binding free energies was also recorded.

Data availability
The datasets used and/or analysed during the current study are available from the supplementary data.
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