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scale dental data
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This research introduces Oral Score Basic (OS-B), a novel Artificial Intelligence (Al) derived
methodology designed to provide a comprehensive, objective assessment of individual teeth and
overall oral health, initially focused on dental conditions. Leveraging data from more than 340,000
patients across 2,558 U.S. dental practices, OS-B combines radiographic findings and periodontal
probing depths with a treatment probability-weighted cost function to quantify the severity of
dental conditions. The OS-B score aims to address limitations in prior oral health scoring systems by
incorporating nuanced clinical data accounting for disease severity, and providing a scalable, data-
driven approach to measuring oral health. This score was developed using Overjet's FDA-cleared

Al platform, which detects dental conditions using bitewing and periapical radiographs, providing

a detailed analysis of each tooth. OS-B’s effectiveness was validated by demonstrating a strong
correlation between tooth scores and treatment costs, surpassing the predictive power of previous
scoring systems. This research presents a foundational framework for Al-enabled oral health scoring,
with potential applications in value-based care, population risk analysis, and consumer health
management. Future iterations may expand to include additional dimensions of oral health beyond
clinical conditions such as risk factors and measures of oral function and esthetics, further enhancing
the score’s public health and clinical utility and patient engagement.

Oral health is a critical component of overall health and well-being; yet quantifying it comprehensively has
remained a challenge. Over the past five decades, numerous oral health scores have been developed to summarize
oral health status and to measure the impact of healthcare interventions. Notable examples include the work of
Nikkias et al."?, the Index of Oral Health Status by Marcus et al.3, the Oral Health Index published by Burke
and Wilson* that was later modified and developed by Denplan (Winchester, UK) and renamed the Oral Health
Score’. Self-reported measures of oral health and oral health related quality of life such as the OHIP-56, and the
GOHALT have been developed and extensively validated. However, these measures are based on patient reports
and have several important limitations including recall bias, lack of clinical specificity, and limited sensitivity to
change following treatment interventions. More recently, commercial products such as Previser have emerged
as an evidence-based risk score for oral diseases®. While these previous efforts have been valuable, they are
constrained by limited sample sizes and often rely on binary disease classifications, failing to capture the nuanced
complexity of oral health conditions. The advent of artificial intelligence (AI) and advanced computer vision
techniques powered by deep learning now presents an unprecedented opportunity to revolutionize oral health
assessment.

Table 1 provides a comparative overview of prior methodologies to create an oral health outcome measure,
highlighting both their strengths and limitations in relation to a new proposed methodology that utilizes
Al derived clinical findings and cost-weighting in a large U.S. national data set (OS-B). While existing tools
like the Oral Health Status Index (OHSI), the 5-item Oral Health Impact Profile (OHIP-5), and traditional
epidemiological measures—such as the Decayed, Missing, and Filled Teeth (DMFT) index and the Community
Periodontal Index (CPI)—serve specific purposes, they do not offer a comprehensive measure of oral health status
or effectively predict treatment needs and related costs. These indices typically rely on subjective evaluations,
whereas the proposed OS-B leverages Al-driven detection and a treatment probability-weighted cost function,
resulting in a more precise and clinically relevant evaluation.

The development of a more sophisticated oral health score is imperative, driven by several significant
healthcare trends. The ongoing transformation from fee-for-service to value-based care models necessitates
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Criteria

Marcus index (OHSI)

The 5-item oral health impact
profile (OHIP-5)

Traditional epidemiological
measures (DMFT, CPI, etc.)

OS-B (Al-based oral health assessment with cost-
weighting)

Primary assessment

Composite scoring of oral

Patient-reported questionnaire
on oral health-related quality of

Clinical examination of dental

Al-driven analysis of radiographic and clinical data

method health indicators life (OHRQoL) and periodontal status
Objectivity & Objective, but method- Subjective; relies on patient Objective, but examiner- Highly objective—AlI ensures standardized,
consistency dependent responses dependent automated evaluations across large datasets

Disease severity
categorization

Provides a single index score

Limited; ordinal scale from 0-4

Basic severity grading (e.g.,
DMEFT counts decayed teeth)

Advanced, using Al to quantify severity trends

Predictive power for
treatment needs

Low—focuses on oral function
rather than clinical disease
progression

Low; does not predict treatment
needs

Low; primarily records current
status

Strong—correlation coefficient (-0.441), representing
a200% improvement over OHSI

Coverage of oral
health factors

Assesses functional limitations
(e.g., chewing ability) rather
than clinical conditions

Focuses on quality of life
impacts

Focuses on caries, missing
teeth, and periodontal disease

More comprehensive—assesses teeth, bone levels,
treatment history, and cost implications

severity

data

not capture patient experience

Periodontal None—does not directly assess Assesses periodontal pockets Limited—assesses interproximal bone levels but
. None N .
assessment periodontal health (CPI) excludes soft tissue and functional measures
Cost consideration | None None None Uses CDT—coded treatment costs to weight disease
severity
Real-time decision None None None Provides real-time, Al-assisted insights
support
Personalization for . . Generalized OHRQoL . . Patient-level scoring with potential for
. Population-based analysis Population-based analysis S A . . .

patients assessment individualized monitoring and intervention planning

A Limited sensitivity to disease | Subjective, lacks disease-specific | Lacks predictive insights, does R_el'les on radiographic data from patients with dental
Limitations visits; does not account for uncompleted treatments,

soft tissue conditions, or patient-reported outcomes

Table 1. Comparative overview of oral health indices: strengths, limitations, and performance relative to the

proposed ai enabled composite oral score.

robust outcome measures. An Al-derived oral health score could precisely quantify changes in oral health
related to clinical interventions, enabling more accurate assessment of care effectiveness. Concurrently, the shift
in dental practice modality, with an increasing rate of dentists affiliating with dental support organizations and
practicing in groups’, provides an opportunity to measure and monitor services provided and their impact
on health status. Moreover, the growing consumer interest in health monitoring and management calls for
accessible tools that empower individuals. A consumer-friendly oral health score could play a crucial role in
early detection and prevention, potentially reducing the need for invasive and costly treatments. Gamification
of such a score could further engage and motivate consumers to better manage their oral health. Finally, private
or public payers of care would benefit from an objective clinical outcome measure that could be utilized in
population risk analysis, plan design, and provider network assessment. These factors collectively underscore
the need for a comprehensive, Al-driven oral health score that can serve multiple stakeholders in the healthcare

ecosystem.

This research aims to address these needs by developing and validating a novel, AI-enabled composite oral
score—Oral Score Basic (OS-B)—that overcomes the limitations of prior oral health scoring systems. Our
methodology leverages large-scale clinical data from 2558 dental practices and more than 343,000 patients
across all 50 U.S. states, representing one of the most comprehensive and geographically diverse datasets ever
used in dental research. OS-B uses objective, quantifiable measures to assess individual tooth health, combining
radiographic findings and periodontal measurements with a treatment probability-weighted cost function. This
approach moves beyond binary disease classification by capturing disease severity—for example, quantifying
caries using the relationship between DMFP and treatment cost. Tooth-level scores are generated using FDA-
cleared deep learning models, which provide consistent and scalable assessments far more reliable than self-
reported or examiner-dependent evaluations. The individual tooth scores are then averaged to compute a
patient-level oral score. Because this initial version focuses specifically on dental health indicators, we refer to
it as Oral Score - Basic (OS-B). This foundational research establishes a framework that can be expanded to
include additional oral health dimensions such as function, esthetics, and patient-reported outcomes, aligning
with the World Health Organization’s holistic definition of oral health!®.We hypothesize that AI-driven analysis
can yield a more consistent, objective, and scalable approach to oral scoring based on the most comprehensive
and accurate data available and tested this hypothesis by comparing the OS-B scores to the Marcus et. Al OHSI>.
Our study utilizes Al analysis of dental radiographs from an unprecedented sample of 343,297 patients across
2,558 dental practices in the United States. This extensive dataset allows for a more nuanced and comprehensive
assessment of dental conditions than ever before possible.

By developing this innovative scoring system, we aim to provide a valuable tool for clinicians, researchers,
and policymakers to better understand, monitor, and improve oral health outcomes. Additionally, with further
development and validation, the OS-B has the potential to empower consumers in managing their oral health,
ultimately contributing to improved overall health and reduced healthcare costs.
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Methods

The OS-B is built using data from 2,558 dental practices across the United States who used the Overjet, Inc.
Practice Application'! and includes data from 321,530 adult patients who were 21 years of age or older (Figure
1). All patient data were deidentified in accordance with HIPAA guidelines to ensure confidentiality. These
practices are located in every U.S. state as well as Puerto Rico.

The development of the OS-B included defining the clinical components of the score, developing a test
dataset and subsets, and developing a novel treatment probability weighted cost-function to calculate a weighted
individual tooth score from each of the patient’s 28 permanent teeth, excluding third molars. The adult human
dentition typically includes up to 32 teeth, including four third molars (wisdom teeth). Contemporary dental
public health research increasingly adopts 28-tooth frameworks for population-level studies. This methodology
uses the 28 tooth framework in order to determine a more consistent and comparable metric across diverse
demographic groups, minimizing confounding variables associated with third molar variability. We acknowledge
that third-molars can impact overall health, particularly in the context of periodontal disease, and future research
should further explore the use of the 32- vs. the 28-tooth framework in the score calculation. For the purposes
of this study, individual tooth scores for the patient’s 28 permanent teeth were then averaged into a mouth-level
summary score called OS-B. Once constructed, we conducted a preliminary validation of OS-B on the test
dataset and compared the OS-B to the Marcus et. al OHSI.

The clinical condition of the 28 permanent teeth was assessed using findings from the Overjet Al platform
and its proprietary, FDA-cleared Machine Learning Algorithms (MLA) along with periodontal probing depth
data from patient electronic records. Overjet's Al models for detecting and segmenting caries, calculus, periapical
radiolucencies (PARL), margin discrepancies, and existing restorations—including fillings, crowns, root canal-
treated (RCT) teeth, and implants—are all based on a proprietary Convolutional Neural Network architecture
designed to perform object detection and segmentation on dental radiographs. The architecture includes a CNN
backbone based on ResNet with Feature Pyramid Network (FPN) for feature extraction, a Region Proposal
Network (RPN) to generate candidate object regions, and a final stage that predicts bounding box locations,
instance masks, and keypoints as needed. Table 2 presents the standalone sensitivity and specificity of each
model used in this research.

Opverjet’s algorithms detect and segment clinical conditions on bitewing and periapical radiographs, and Figs.
2 and 3 provide examples of how these clinical findings are noted on dental radiographs.

The dental conditions analyzed by the Overjet AI platform include:

(1) Tooth status as either present, missing, or a root tip, which is defined as a tooth with more than 95 percent
of the anatomical crown either missing or decayed.

(2) Radiolucencies on the tooth structure indicative of demineralization and/or dental caries.

(3) The type and extent of dental restorations on an individual tooth including radiographic evidence of full
and partial coverage crowns, fillings, root canals, and/or the presence of a dental implant in place of the
tooth.

(4) The percentage of the tooth’s coronal tooth structure that is decayed, missing and/or filled, calculated by the
Overjet platform as the Decayed, Missing, and/or Filled Proportion (DMFP).

s

S

Fig. 1. Geographic distribution of the 2558 dental practices whose data were used to develop the OS-B.
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Precision greater than 0.5 mm

12

K210187 Bonelevel | g Gitivity > 88%, Specificity > 95%
K233590!3 Restorations | Sensitivity >80%, Specificity > 98%
K231678 PARL Sensitivity > 88%, Specificity > 84%
K233738!° Caries Sensitivity > 83%, Specificity>97%
K2209281° Calculus Sensitivity > 73%, Specificity > 99%

Table 2. Standalone sensitivity and specificity of Overjet's Al models for dental condition detection and
segmentation.

Analyzed Images
7 E

\

Original Images

Fig. 2. This figure illustrates the clinical findings on dental radiographs as they appear in their original

state and as analyzed by the Overjet Al platform. Images (A) and (C) are the original radiographs; images

(B) and (D) are analyzed radiographs by the Overjet AI platform. Image B has segmentations in white to
represent enamel, purple for pulp, blue for restorations including implant restorations, red for caries, marginal
discrepancies in yellow box, calculus in an orange box, and millimeter bone level measurements in green,
yellow and red corresponding to the value measured. Tooth numbers are presented in pink. Image (D). In
addition to identifying caries and measuring bone levels, this radiograph includes a PARL, indicated as a
yellow-green crescent shape at the apex area of tooth number 10.

(5) Interproximal alveolar bone levels (ABL) measured in millimeters from the cemento-enamel junction
(CEJ) to the most apical crest of the interproximal alveolar bone, as an indicator of the tooth’s periodontal
status.

(6) Interproximal calculus on cementum for each tooth on both bitewing and periapical radiographs, scored as
either absent or present.

(7) Periapical Radiolucencies (PARL) on periapical radiographs that may or may not be associated with an
endodontic root filling. PARL is scored as either absent or present.

(8) Margin discrepancy (MD) where a full or partial coverage crown or filling has a defective margin, an over
contoured or under contoured restoration, or an overhang where a restorative material extends beyond or
over the margin apically. MD is scored as either absent or present. Note that this feature of the Overjet Al
platform is not currently FDA cleared but was included in the analysis because it adds information about
the quality of existing restorations.
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Fig. 3. Top ROW: The teeth images (A) and (B) are used to illustrate 2-dimensional segmentations similar to
the radiographs (C) and (D). From the top left, in image (A) illustrates the location of the CEJ on the tooth.
The portion of the tooth identified as above or coronal to the dotted line is defined as the coronal portion

of the tooth, and the area of the tooth below or apical to the CE] is considered the root portion of the tooth.
Image (B) depicts in 2 dimensions how the tooth is segmented to calculate DMFP by identifying the coronal
portion of the tooth that is decayed (red), missing (orange), and filled (green). Image (C) shows a standard
periapical radiograph without AI generated predictions. Image (D) shows the Al-analyzed image illustrating
the decayed, missing and filled segmentations on this radiograph. The DMFP calculation for tooth number 30
is 0.71. Bottom Row: Image (E) illustrates the anatomical landmarks that are used to measure the interproximal
alveolar bone level: CEJ and crest of bone. The distance between these two points is the reported bone level
(BL). This measurement is analyzed on the mesial and distal of each tooth on the radiograph and can be seen
on the bone level image (F).

Al model performance and training process

As part of the data cleaning and preprocessing pipeline, all patient and clinic data extracted from practice
management systems (PMS) were assigned unique identifiers to prevent cross-association of information.
Radiographs were matched to appointment dates, and any radiographs lacking an associated appointment date, as
well as patients without documented age, were excluded from the dataset. Additionally, data related to proposed
dental treatment plans or delivered treatments were linked to the corresponding patient and appointment using
unique identifiers to ensure data consistency and integrity across clinical records. These steps were implemented
to ensure that only accurate, complete, and temporally consistent data were used in developing and validating
the OS-B score.

The AI models utilized in this study were originally developed and trained for clinical applications, using
a robust dataset that reflected diversity across key variables such as patient demographics, image quality, and
sensor types. Radiographs were annotated by calibrated dentists trained through a standardized internal process.
While the models were not trained specifically for this research, they were applied here in the context of oral
health quantification, demonstrating adaptability to new use cases beyond their original clinical deployment.

We implemented a methodical data partitioning strategy, creating separate training and test sets with the
test set comprising tens of thousands of radiographs. Both datasets maintained balanced distributions across
demographic and imaging characteristics. To ensure unbiased performance evaluation, we enforced strict
patient-level separation between training and test sets, preventing any single patients data from appearing in
both.

Our development follows a continuous improvement methodology based on real-world performance
feedback. We systematically monitor model performance in clinical deployment settings and analyze practitioner
feedback to identify specific failure patterns or edge cases. This intelligence informs our dataset enrichment
strategy, allowing us to augment both training and test datasets with representative examples of challenging
scenarios. This feedback loop enables our models to progressively improve their generalization capabilities,
particularly for clinically important but statistically underrepresented presentations.
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Developing the dataset

For the purposes of this study, we used deidentified data from 2,558 dental practices, which were randomly
divided into three categories: a training dataset (n = 1,808), a validation dataset (n = 254) and a test dataset (n
= 496). The training dataset was further subdivided to calculate a treatment probability-weighted cost-function
for four clinical conditions:

(1) Dental caries on teeth without crowns;

(2) Recurrent dental caries on teeth with crowns;

(3) Alveolar bone level and periodontal probing depth; and
(4) Periapical radiolucency.

For each patient in the training dataset, we included clinical findings from their most recent dental radiographs,
along with treatments provided in the 12 months following the latest radiographs as documented in the patient
record using CDT codes. The average cost associated with each CDT code was calculated across all clinics.
Additionally, probing depth (PD) measurements for each tooth were extracted from the patient records, with the
maximum probing depth per tooth serving as an indicator of periodontal status.

Each data subset was constructed by applying filtering criteria. Initially, Overjets MLA determined the teeth
as positive for specific findings and negative for others. Subsequently, the teeth were required to have received
a specified set of treatments within one year of detecting a clinical finding being detected on a radiograph, as
documented by CDT codes extracted from the patient records. Any treatments provided outside the primary
dental practice were not available for inclusion in the dataset.

Table 3 provides an overview of the patient count, tooth count, along with the inclusion and exclusion criteria
for the overall training dataset and subsets. For example, the caries subset includes teeth identified by Overjet’s
MLA as positive for caries and negative for other clinical findings, such as margin discrepancies, calculus, root
tips, bone levels exceeding 2.0 mm, PARL, implants, crowns, root tips, and bridges. Additionally, each tooth was
required to have received treatment — such as a filling, crown, root canal therapy (RCT), extraction, or implant
— within one year from the time of detection, as indicated by CDT codes in the patient’s electronic record, to
remain in the dataset. These filtering criteria ensured that teeth included in each dataset were treated primarily
due to conditions detected by Overjet AL

The inclusion and exclusion criteria in Table 3 were designed to isolate the impact of each clinical condition
on treatment decisions. For each condition, criteria were selected to ensure that the treatment received was
most likely attributable to that specific finding, minimizing confounding effects from co-occurring conditions.
For example, in the caries subset, teeth with other significant findings—such as PARL, crowns, implants, RCTs,
bridges, or alveolar bone levels greater than 2 mm—were excluded to ensure that the treatment was primarily
due to caries alone. Similarly, for the PARL subset, teeth were included only if they were positive for PARL and
free from other overlapping conditions that could independently influence treatment. This approach was the
most effective way to reduce confounding effects when attributing treatment patterns and costs to individual
clinical findings.

Table 4 summarizes patient age and gender distribution across the overall training dataset and within each
data subset for the four specific clinical conditions. Patients within the caries subset were slightly younger than
those in the overall training dataset. In contrast, patients with the remaining clinical conditions were older, on
average, which aligns with the increased prevalence of these conditions with advancing age.

Development of a “treatment probability weighted cost-function” to calculate the OS-B
tooth scores

This research uses multiple data inputs to derive a novel treatment probability-weighted cost function for
determining an individual tooth score. Using tooth-specific treatments administered within 12 months after
the dental radiographs and the tooth’s state as calculated by Overjets MLA, we developed a function to estimate
treatment costs based on the tooth’s clinical condition. The tooth score is based on the treatment cost needed
to restore the tooth. The scoring acknowledges that dental restorations cannot perfectly replicate original tooth
health. Higher treatment costs correspond to a lower tooth score, and lower costs correspond to a higher score.

Treatments provided within

Number of | Number 12 months of the Dental
Training data subset patients of teeth | Overjet Al positive findings | Overjet Al findings exclusions radiographs
Overall 321,530 524,298 | All Not applicable Not applicable

. . crown, ABL>2 mm, RCT, implant, bridge, PARL, Filling, crown, RCT, extraction
Caries 292,521 454,111 | Caries calculus, root tips and implants
Alveolar Bone Level ABL>2 mm, and the greatest . . : Scaling and Root Planing
(ABL) and Probing Depth | 6,556 42,951 (worst) PD measure for that i;?)‘:’g’ Zarles, RCT, implant, bridge, PARL, calculus, (SRP), extraction, implants, and
(PD) tooth from the PMS P advanced bone level treatments
PARL 7,103 7,619 | PARL crown, ABL>2 mm, RCT, implant, bridge, caries, RCT, extraction and implants
calculus, root tips

Crown recurrent caries 18,078 19,617 crown + caries ABL>2 mm, RCT, implant, bridge, calculus, root tips | Crown, extractions and implants

Table 3. The number of patients, number of teeth, inclusion and exclusion criteria for the training data set and
each data subset for the four specific clinical conditions.
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Overall training dataset | Caries recurrent caries PARL ABL and PD
Median patient age 38 36 31 4 >0

years years years years years
Mean age (std. dev) | 42.7 years | 16.5 std. dev 400 16.0 std. dev | 210 170 std. dev | 470 | 17.0std. dev | 2% | 163 std. dev

years years years years

Female 183,544 57.1% 166,787 | 57.0% 11,104 | 61.4% 3,972 | 56% 3263 | 49.8%
Male 132,389 41.2% 120,395 | 41.2% 6,806 | 37.7% 3,021 | 42.5% 3280 | 50.0%
Unknown 5,567 1.7% 5308 | 1.8% 168 0.9% 110 1.5% 13 0.2%

Table 4. Summary of patient age (median, mean, standard deviation) and gender distribution for the overall
training dataset and subsets defined by four specific clinical conditions.

(B) Treatment Cost vs DMFP

(C) Tooth Score vs DMFP

—e— Treatment Cost 100
3000 4 == Function Approximation

0.6 0.8 10 0.0 0.2 04 06 0.8 10 0.0 0.2 04 0.6 0.8 1.0
DMFP DMFP DMFP

Fig. 4. (A) Treatment distribution across DMFP values. The red line represents the probability of receiving

a filling, which steadily declines as DMFP increases. As the DMFP value increases, the likelihood of more
extensive treatments increases; the orange line shows the probability of crown placement, which peaks at a
DMFP value of approximately 0.68 before declining. The green line indicates the probability of root canal
therapy (RCT), which rises with DMFP. The blue line represents the combined probability of extraction or
implant placement, which increases sharply with higher DMFP scores. These trends mirror clinical practice,
where increasing structural damage drives a shift toward more invasive and costly interventions. The error
bars in this panel illustrate the 95% confidence intervals of the computed probabilities.(B) Treatment cost as a
function of DMFP. This plot illustrates how treatment costs escalate with increasing DMFP. The red line depicts
the average observed cost of treatment within 12 months following the assessment, which increases with rising
DMFP values, reflecting the need for more extensive and expensive procedures as disease severity worsens.

The green line represents a second-degree polynomial approximation of cost, which closely aligns with the
observed trend, validating the reliability of the prediction. (C) Tooth score and caries-related deductions across
DMFP values. This panel displays how the OS-B score for a tooth is calculated based on its DMFP. The blue
line shows the resulting tooth score, which declines from 100 to 0 as DMFP increases from 0 to 1. In contrast,
the green line shows the number of points deducted due to caries, which rises proportionally with DMFP. The
deduction is derived by linearly scaling the cost function in (B), such that no points are deducted when DMFP
is 0 and the maximum 100-point deduction is applied when DMFP is 1. The opposing trajectories of the two
lines highlight the scoring logic and the increasing impact of carious damage.

Once the individual tooth scores are calculated, the patient’s OS-B is determined by averaging the tooth scores
of 28 individual teeth, excluding third molars.

The treatment probability-weighted cost function integrates both the likelihood and cost of various dental
treatments indicated for specific clinical conditions. The clinical state of the tooth determines a distribution
of possible treatments. The estimated treatment cost is calculated by multiplying the cost of each treatment
by its associated probability. Finally, this expected treatment cost is used to adjust the tooth’s health score by
subtracting the weighted cost from the base score of 100 (representing a healthy tooth).

A score of 100 is assigned to a healthy tooth that exhibits no restorations or pathology. As clinical findings
are detected, the score decreases accordingly. For example, a tooth exhibiting initial caries or radiolucent areas
of demineralization would have a higher score than a tooth with more extensive caries requiring more invasive
and expensive treatment. Conversely, a tooth with extensive caries is assigned a lower score due to the likelihood
of needing a multi-surface or full coverage restoration to return it to a state of health.

To illustrate how a tooth is scored using the treatment probability-weighted cost-function, we initially focused
on the caries data subset, employing the DMFP as a metric for coronal caries severity. Within our training
dataset, caries emerged as the most common clinical finding, affecting 85.2% of patients and 67.3% of teeth.

Figure 4A and B plot the probability of treatment and treatment cost against the DMFP value of a tooth with
caries, respectively, and Fig. 4C plots tooth score as a function of DMFP. At low DMFP, the treatment cost is
relatively low because only a small proportion of coronal tooth structure is compromised by demineralization or
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caries and a dental restoration or filling is the most performed treatment. As the DMFP increases treatment cost
increases, as a larger portion of the tooth is compromised, necessitating more extensive interventions such as
crowns, root canals, or extraction and placement of implants. These treatments are more invasive and expensive,
leading to higher overall treatment costs.

Treatment patterns in Fig. 4A reflect clinical treatment distributions based on DMFP values. When DMFP
is low—indicating minimal damage to tooth structure—fillings are the predominant treatment choice, allowing
for conservative management of demineralized and carious tooth structure. As DMFP increases, showing
greater structural compromise of the coronal tooth structure, treatments shift toward more extensive options
like crowns, root canal therapy (RCT), or extractions with implant placement. This progression mirrors clinical
practice, where severely damaged teeth require more extensive rehabilitation.

DMEFP, while a valuable indicator of structural damage, is just one factor considered when making clinical
treatment decisions. Clinical care is also influenced by dentist preferences, patient choices, symptoms, overall
health, medical history, insurance coverage, and socioeconomic factors. For example, a patient with a high-
DMFP tooth might choose extraction over a crown, RCT, or implant due to cost concerns, limited insurance,
or access barriers to more complex and often more expensive treatment. This likely explains the sharp increase
in extraction probability at higher DMFP values. While these external factors introduce variability in treatment
selection, particularly in moderate to severe cases, the overall treatment trends consistently reflect how damage
of the coronal tooth structure guides clinical decision-making in dental practice.

Figure 4B illustrates the relationship between a tooth's DMFP and its treatment cost for the next 12 months.
We approximate this relationship using a second-degree polynomial of the form (green curve in Figure 4B).

Cost =a+ DMFP +bx DMF P>

Values of a and b are obtained using the least squares regression algorithm. The tooth score is calculated by
subtracting points from 100, with the deduction proportional to treatment costs over the next 12 months. This is
mathematically realized by linearly scaling the polynomial via the following 2 constraints: no points are deducted
when the DMFP is 0, and 100 points are deducted when the DMFP = 1.

Figure 5A illustrates the variation in treatment costs as a function of DMFP. At lower DMFP values, indicating
less compromised coronal tooth structure, fillings are the most common treatment, with costs ranging from
$200 to $600. As DMFP increases, the likelihood of full-coverage restorations (crowns) and extractions followed
by dental implant placements, also increases, resulting in higher associated costs, as shown in Figure 5B.
Consequently, the cost distribution shifts upward, and for DMFP values exceeding 0.8, extraction and implant
placement become the most likely treatment, with typical costs ranging from $3000 to $4000.

A tooth’s score after restoration depends on two factors: the severity of the decay and compromised coronal
tooth structure and the understanding that dental treatments cannot fully restore a tooth to perfect health. Our
research estimates that restored teeth regain approximately 80% of their original health status.

The severity is measured by the tooth’s Average DMFP which is defined as
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Fig. 5. (A) Treatment cost distribution as a function of DMFP in the caries dataset. At each DMFP interval,
the minimum, maximum and mean costs are indicated by markers () at the bottom, middle, and top of each
vertical bar, respectively. The blue violin plots represent the density of treatment costs, indicating the intervals
where treatment costs are most frequently observed. (B) Stacked bar chart showing treatment probabilities
across the same DMFP intervals. As DMFP increases, the likelihood of more complex treatments (crown, RCT,
extraction +implant) increases, while the probability of receiving a filling decreases.
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Restoration Average DMFP | Points deducted due to average DMFP | Points deducted due to restoration=0.2 * (Points deducted due to average DMFP)
Crown 0.59 50 10

RCT 0.7 61.5 12.3

Filling 0.32 [23, 50] (4.6, 10]

Implant (extraction) | 0.72 64.5 12.9

Table 5. Determination of weightings various restorations based on the tooth's DMFP.

Condition Root canal (RCT) | Crown | Extraction+implant | Points deduction
PARL 59% - 41% 63.3
Crown recurrent caries | — 82% 18% 52.6

Table 6. Summary of treatment distribution and tooth score point deductions for PARL and recurrent caries
associated with a crown restoration.

Here P(treatment|DM F P) denotes the probability of treatment for a given DMFP, derived from Fig. 5B. For
example, the average DMFP for a crown treatment is 0.59. A tooth with this level of decay loses 50 points from
its score. After crown placement, the tooth recovers 80% of these lost points, meaning only 10 points (20% of 50)
are permanently deducted. This scoring system reflects that while restorative treatments significantly improve
tooth function, they cannot achieve the same level of health as an original, undamaged tooth. Table 5 includes
the determination of weightings for four types of restorations: 1) a full coverage restoration (crown); 2) a root
canal treatment; 3) filling; and 4) an extraction and placement of a dental implant.

The number of points deducted for a filling depends on its size, with a minimum deduction of 4.6 points and
a maximum of 10 points. Here we capped the point deductions for fillings to that of a crown treatment because
filling treatments generally retain more original coronal tooth structure as compared to a crown.

To account for findings such as PARL and recurrent caries under crowns, we used a simple weighted average
technique to determine point deductions. For each of these conditions we obtained the probability distribution
of different treatment types, and used the DMFP-based point deduction for each of those treatments together
with the probabilities as the weights, to find the average point deductions. Table 6 provides a summary of
the treatment distributions and corresponding point deductions for PARL and recurrent caries under crown
restorations, as represented by the following formula:

Tscondition - Z P(t)TSt

t=1

where T'Scondition represents either PARL or recurrent caries under crown, P(t) denotes the probability of a
given treatment for the condition, and T'S; is the DMFP-based point deduction for the treatment performed
for the condition.

Points are deducted when a tooth’s bone levels exceed 2.0 mm, where a measurement < 2.0 mm is considered
healthy. The deduction amount is proportional to the treatment cost at that bone level. Figures 6A and B illustrate
the treatment probability and associated costs over the next 12 months as a function of a tooth’s bone level.

Following a methodology similar to that used in caries analysis, a first-degree polynomial is used to
approximate the relationship between treatment cost and bone level of a tooth (red curve in Figure 6B):

Cost =a* BL+b

The values of a and b are determined using the least squares regression algorithm. This first-order polynomial is
then linearly scaled based on two constraints: no points are deducted when the bone level is less than or equal
to 2.0 mm, and 63.5 points are deducted when the bone level reaches 6.71 mm. Similar to the Average DMFP,
the Average Bone Level (BL) for extraction is 6.71 mm. We propose that the tooth score for a tooth requiring
implant placement and restoration whether due to elevated bone levels or severe caries, should be equivalent.
Figure 6C plots tooth score as a function of bone level.

Interproximal calculus on a tooth’s cementum typically requires scaling and root planing (SRP) treatment,
with an associated cost equal to that of a tooth displaying a DMFP of 0.07, as seen in Figure 4B. According to
the relationship between DMFP and tooth score (Figure 4C), 4.5 points are deducted from a score of 100 at
this DMFP. Therefore, the presence of interproximal calculus results in a 4.5-point deduction. Similarly, a tooth
typically requires SRP treatment when its probing depth exceeds 4 mm. Following the same point deduction
approach as for interproximal calculus, 4.5 points are deducted when the probing depth surpasses 4 mm.

Point deductions due to Margin Discrepancy (MD) vary based on its type. If the margin discrepancy occurs
on a filling, the deduction is based on the tooth’s DMFP. If the MD occurs on a crown, we assume that the tooth
requires crown replacement, leading to a deduction of 50 points. A deduction of 100 points is applied when
a tooth is missing or when only a root tip remains. Table 7 summarizes the point deductions for each clinical
condition.
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Fig. 6. (A) Probability of various treatment types based on the bone level of teeth in the AL & PD dataset.

The error bars in this panel illustrate the 95% confidence intervals of the computed probabilities. Advanced
treatments may include procedures such as gingival flap surgery, osseous surgery, bone replacement grafts,
and distal or proximal wedge procedures. (B) Relationship between treatment cost and bone level for the same
set of teeth. The blue curve represents the estimated treatment costs, while the red line shows a first-degree
polynomial approximation of cost. (C) Tooth Score vs. Bone Level. Tooth score decreases linearly as bone level
exceeds 2.0 mm, with deductions scaled to treatment cost (B). At 6.71 mm, the average extraction threshold,
63.5 points are deducted. This scoring approach aligns with caries-based indices for consistent assessment of
tooth health.

Condition Points deduction

Missing tooth 100

Root tip 100

PARL 63.3

Crown recurrent caries 52.6

Caries 60.41*DMFP + 39.59*DMFP2
Bone Level (BL) 13.67*BL—27.33

PD >4 mm or Interproximal calculus on cementum | 4.5

Margin discrepancy (on filling) (60.41*DMFP +39.59*DMFP2)
Margin discrepancy (on crown) 50

Filling [4.6, 10]

Crown 10

RCT 12.3

Implant 12.9

Table 7. Summary of point deductions for each clinical condition.

The previous sections explored how each of the eight clinical findings affects individual tooth scores. Each
individual finding results in a specific number of points deducted from an ideal score of 100. When multiple
findings are present, each deduction is calculated separately and then they are combined, as illustrated in Figure
7. The total deduction is subtracted from 100 to yield the final tooth score, while missing teeth and root tips are
automatically assigned a score of zero.

Since multiple conditions can often be addressed with a single restorative or endodontic procedure, treatment
costs are non-additive. Thus, deductions for decay, MD, and PARL are combined by taking the maximum value
among these findings. Similarly, deductions for elevated probing depth and interproximal calculus are also
combined using the maximum value, as both conditions are typically treated together through SRP. Bone level
deductions are treated independently from other findings, reflecting their distinct nature and specific treatment
requirements. Restorative deductions (crowns and fillings) are only applied if there is no concurrent MD or
decay, as restorations are automatically accounted for by the DMFP when these conditions are present. Figure 7
provides an illustration of the calculation process for individual tooth scores, while Figures 8 and 9 demonstrate
the application of these calculations in patient cases.

Example: Step-by-step calculation of individual tooth score

We provide the following example to illustrate how individual tooth scores are calculated using our
methodology. Consider a tooth with the following clinical findings:

« Moderate decay affecting 40% of the coronal area (DMFP =0.4)
« Radiographic interproximal bone level measurement of 4.0 mm
o Periapical radiolucency (PARL)
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Fig. 7. OS-B is calculated by first determining individual tooth scores, as shown in this figure, and then
averaging these scores across the 28 permanent teeth, excluding third molars. Missing teeth and root tips are
assigned a score of zero.
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Fig. 8. Patient A’s original full-mouth X-rays (FMX) without AI predictions can be compared to the AlI-
analyzed FMX. Using Al predictions and the calculated oral score for each tooth, the odontogram provides
individual tooth scores and an overall oral score. Patient A has an overall Oral Score of 65.5, impacted by
findings including PARLs, bone levels, caries, calculus, MD, RCTs, and extensive restorative treatments.
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Patient B: Original FMX
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Fig. 9. Patient B’s original FMX and Al-analyzed FMX illustrate predications used to calculate each tooth’s
Oral Score. The odontogram indicates an overall oral score of 98.7, primarily attributed to six restorations. This
patient most likely has a prior history of dental decay that was successfully treated with dental restorations,
restoring the patient’s health to an improved but not perfect OS-B of 98.7.

o Calculus present on the root surface
Step 1. Calculate individual condition deductions, approximated to one decimal place.

o Caries deduction: DMFP of 0.4 results in 30.5 points deducted using the equation from Table 7: (60.4 x 0.4) +
(39.6%0.4%) =24.2+6.3=30.5 points

« Bone loss deduction: 4.0 mm bone level results in 27.4 points deducted: (13.7x4.0) —27.3=54.8-27.3=27.
5 points

« PARL deduction: 63.3 points (fixed value from Table 7)

o Calculus deduction: 4.5 points (fixed value from Table 7)

Step 2. Apply clinical prioritization rules As illustrated in Fig. 7, the scoring system applies clinical rules to avoid
double-counting related conditions:

o Decay vs. PARL: Use the maximum deduction (63.3 points for PARL > 30.5 points for caries)
» Boneloss: Applied independently (27.5 points)
o Calculus: Applied independently (4.5 points)

Step 3. Calculate final tooth score. Final calculation: 100 - (63.3+27.5+4.5)=4.7
This tooth score of 4.7 out of 100 indicates the severely compromised condition of the tooth requiring
extensive treatment.

Results

The dataset and subsets developed for this study are large, geographically dispersed, and generally represent
the population of patients who seek care at dental practices across the United States. There are slightly more
females than males, which is expected because females have slightly higher annual dental visit rates as compared
to males. For example, the 2020 National Health Interview Survey (NHIS) indicates that 69.4% of females visit
the dentist annually as compared to 64.2% of males'”. The distribution of clinical findings as seen in Table 1

approximate epidemiological studies of the prevalence of these conditions'®.

Correlation of OS-B with tooth treatment cost

Prior work by Marcus et al.? to develop an Oral Health Status Index (OHSI) used a paired preference technique
and data from 232 simulated adult patient cases to create 315 pairs; 12 dentists were asked to choose the healthier
patient in each pair. This information was then used to determine weights for each clinical finding. The scores of
all 32 teeth were summed to generate the overall oral score.

We compared the two dental scoring systems, the OHSI tooth level score and the new OS-B tooth score, by
examining how well they predict future treatment costs. We analyzed data from 124,583 teeth across 36,164
patients in 454 clinics not involved in OS-B's development. The study used CDT codes to determine treatment
provided within that dental practice within 12 months of the date of the dental radiographs.
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We calculated both OHSI and OS-B scores for each tooth and compared them to treatment costs using
Pearson correlation coefficients':

e OHSI Score: — 0.134
e OS-B Score: — 0.441

The negative correlations indicate that healthier teeth (higher scores) require less expensive treatments. OS-B
showed significantly stronger predictive power (-0.441) compared to OHSI (-0.134), representing a 200%
improvement. This improved accuracy stems from OS-B's ability to account for disease severity. For instance,
while OHSI deducts the same 2.4 points for both minor and severe cavities, OS-B assigns different scores based
on caries severity as measured by the DMFP, with the understanding that more severe cavities result in higher
treatment costs.

Impact analysis of clinical findings
OS-B evaluates tooth health using nine clinical findings, each weighted differently to calculate the final tooth
score. To understand the importance of each finding, we performed a leave-one-out analysis, removing one
component at a time and measuring how this affects the score’s ability to predict future treatment costs.

Results (correlation with future treatment costs):

« Complete OS-B Score: —0.44
« Without Caries: —0.22

« Without Bone Loss: —0.45

« Without PARL: -0.44

« Without Restorations: —0.42

Removing the caries component caused the most significant drop in predictive power (from -0.44 to -0.22).
This makes sense clinically as caries is a common, treatable condition that often requires expensive procedures
(fillings, root canals, extractions and implants). In contrast, removing other components had minimal impact.
Bone loss, for example, barely affected the correlation (-0.45). Similarly, existing restorations without active
disease (-0.42) typically do not need immediate treatment. This suggests that caries status is a dominant driver
of near-term treatment needs and costs. Given its strong influence on predictive accuracy, future work could
explore whether assigning greater weight to the caries component in the OS-B scoring system may further
enhance its clinical utility. Such refinements, coupled with validation across diverse datasets, could improve
the model’s ability to guide both practitioners and patients toward more timely and cost-effective interventions.

OS-B scores: age and gender patterns

Analysis of OS-B scores demonstrates predictable patterns across age and gender demographics. As expected,
oral health scores progressively decline with age, reflecting the cumulative impact of dental diseases over time.
Gender-based analysis reveals a consistent pattern where women maintain marginally higher OS-B scores
compared to men across all age groups. This gender disparity aligns with established national health data, which
documents men’s increased susceptibility to oral health challenges, including higher rates of periodontal disease,
oral cancer, and dental trauma, often attributed to less rigorous oral hygiene practices and fewer dental visits®.
These demographic trends in OS-B scores are visually represented in Figure 10.

Discussion

Our study represents a significant advancement in oral health assessment through the application of artificial
intelligence and computer vision to analyze radiographic and clinical data from 2,558 U.S. dental practices. The
novel treatment probability-weighted cost function provides a more sophisticated approach to quantifying oral
health compared to previous methodologies. The OS-B addresses key limitations of previous scoring systems,
notably the Oral Health Status Index®. While OHSI was valuable, its development was constrained by limited
clinical examiners and sample size. Additionally, OHSI’s binary categorization of complex conditions like
dental caries failed to capture disease severity, which is a crucial determinant of treatment needs and costs.
Our validation demonstrates OS-B's superior predictive power for future treatment costs (correlation coefficient
—0.44 versus —0.13 for OHSI), representing a 200% improvement. Clinically, this significant enhancement
translates into a more accurate estimation of treatment costs over the following 12 months. Unlike the OHSI,
OS-B more effectively highlights the urgency and value of preventive care and early interventions. By offering
a score that patients can easily interpret, it supports more informed health decisions and encourages behaviors
aimed at maintaining a higher score, ultimately reducing long-term treatment needs and associated costs.

The OS-B offers value to multiple stakeholders: clinicians, payers, and consumers. For clinicians, the OS-B
represents the first step toward an efficient, standardized, and objective metric for measuring dental status and
clinical outcomes. The OS-B provides clinicians with a simple, objective, and consistent way to assess the health
of individual teeth. By integrating radiographic findings with probing depth measurements, it helps standardize
how tooth conditions are evaluated across different patients, providers, and visits. This makes it easier to track
changes over time, assess risk, and plan personalized treatments based on the patient’s needs. For payers, future
iterations of this methodology would enable the development of data-driven quality metrics that can be used to
assess the impact of clinical interventions, programs, and plan designs on patient oral health.

Additionally, a consumer version could be developed to help individuals better understand their oral
health status, identify improvements for daily oral care, and recognize the potential benefits of professional
interventions. A consumer-friendly version of the OS-B score has the potential to significantly increase patient
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Fig. 10. OS-B distribution analysis. (A) Shows the distribution of Oral Score Basic (OS-B) across four age
groups: 21-40, 41-60, 61-80, and 81-100. Each age group has a violin shape representing the distribution of
OS-B scores, with a mean line and 2 lines showing maximum and minimum. (B) Shows the distribution of
OS-B scores for male (M) and female (F) patients. Each gender has a violin shape showing the range of OS-B
scores, with a line indicating the mean and others for the maximum and minimum scores.

engagement by making oral health more tangible and trackable. For it to be effective, such an application would
need to be easily accessible—ideally via a smartphone app that patients can interact with on a daily basis. The
score would update automatically after each dental visit, incorporating the latest clinical data. In addition to
clinical findings, the consumer version could also factor in self-reported behaviors such as brushing and flossing
frequency, dietary habits, and lifestyle factors. By providing users with a regularly updated, easy-to-understand
metric—similar to a sleep or fitness score—patients may become more proactive about their oral hygiene. This
type of feedback loop can reinforce healthy behaviors and encourage timely dental visits, ultimately supporting
preventive care and better long-term oral health outcomes.

Further research is needed to further validate the OS-B and to evaluate the addition of other oral health
components to expand its utility and enable a more holistic assessment of oral health. Impact analysis identified
dental caries as the strongest predictor of future treatment costs, affecting 85.2% of patients and 67.3% of teeth
in our dataset. However, this finding may partially reflect methodological constraints in periodontal assessment,
which was limited to interproximal bone levels and pocket depth measurements. The OS-B demonstrated
expected demographic trends across age and gender, aligning with established epidemiological patterns.
However, several limitations warrant acknowledgment, including the reliance on radiographic findings from
patients with dental visits as well as a limited number of variables that do not fully capture the complexity of
periodontal disease. Further research is needed to assess the incremental value of including a more robust set
of periodontal measures such as clinical attachment loss, bleeding on probing, and furcation involvement to the
calculation of the OS-B.

The cost-based weighting considers CDT codes for care that was delivered to each patient. However, we do
not take into account care that was recommended and not provided, nor do we know why that treatment was
not completed. We also did not consider any dental care that was provided by a dental specialist or other dental
practitioner beyond the practice data available for investigation. However, because the dataset is derived from
many dental practices across the U.S,, it is likely to be representative of general dental care provided to patients
in the U.S. as compared to studies that include a smaller number of patients or care provided by a more limited
panel of clinicians.

Overjet currently serves more than 2,500 dental clinics across the United States, with our OS-B development
and validation dataset derived from this clinical network. While this provides a robust foundation for U.S.
population assessment, we acknowledge important limitations in demographic representation and geographic
diversity—particularly regarding populations outside the U.S. Further research should address these limitations
through clinical validation using data sets with patients located both within and beyond the U.S. These combined
efforts will enable us to quantify OS-B performance across different populations, identify necessary adjustments
to account for regional oral health variations, and ultimately refine the OS-B formulation to ensure meaningful
applicability across global dental care settings.

While the OS-B represents a significant advancement, it is limited by its reliance on radiographic findings
from patients with dental visits and limited periodontal measures and does not account for soft tissue conditions,
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measures of oral function or other patient-reported oral health measures. The OS-B does not account for
variations in treatment planning and the nuanced process of prioritizing treatment delivery, as well as patient
treatment acceptance. This research focused on adult patients and was not intended to be applicable to dental
patients under the age of 21 years. Future iterations should aim to incorporate these factors, be extended to other
age groups, and undergo additional clinical validation in various patient groups or populations. This research
should also be expanded to focus on risk indicators, including bio-behavioral variables as well as information
about the patient’s medical conditions and medications. Future research should also explore the relationship of
the score to dental practice type, as well as to additional provider and patient characteristics including social
determinants of health.

We recognize that the use of Al in dentistry raises important ethical considerations, particularly regarding
its role in clinical decision-making, the potential for bias and concerns for data privacy. A detailed discussion of
ethics, bias, privacy, and provider oversight is beyond the scope of this manuscript. However, a recent report from
the U.S. National Academy of Medicine presents an AI Code of Conduct framework to guide the responsible
development and use of Al in health and medicine based on a set of principles®!. The report encourages that all
stakeholders play a role in ensuring that “health AI contributes positively to society and advances in the human
condition, and avoids the risks associated with incongruent or malicious use of the tools and technologies”
Similarly, the World Health Organization has published guidance on ethics and governance of Al for health??
and many professional organizations have done the same, providing guidance for specific health disciplines. Two
notable publications focused on the use of Al in dentistry include a Standards Committee on Dental Informatics
White Paper from the American Dental Association?® and the FDI World Dental Federation policy statement?*.

Recognizing the potential for bias in Al systems—particularly those trained on imbalanced datasets—Overjet
proactively builds and curates large and diverse training datasets that reflect a wide distribution of patient age,
gender, and image acquisition characteristics. The same principles were applied in the development of the OS-B
score. Further research and validation of the OS-B should include the use of non-U.S. data sets as well as data
sets with broad representation in terms of geographic regions and sociocultural factors. Overjet is committed
to incorporating data from a broader range of patients to further strengthen the fairness and generalizability
of our models. Adhering to the highest standards of patient care and privacy protection, we maintain strict
HIPAA compliance and implement sophisticated security protocols across our systems, further validated by our
HITRUST certification. Regular monitoring and updates maintain these high standards, and rigorous testing
and regulatory clearance precede any deployment in patient care.

In clinical practice, our FDA-cleared dental AI technologies function exclusively as supportive tools
for licensed dental professionals, enhancing their diagnostic capabilities while preserving the fundamental
importance of clinical expertise and judgment. Overjet’s Al technologies, including the models supporting the
OS-B score, are designed to function strictly as assistive tools to aid licensed dental professionals in diagnosis
and treatment planning. They are not intended to replace clinical judgment or to independently determine
patient care decisions. Overjet's dental AI products have received FDA clearance specifically for use in this
assistive capacity.

The OS-B presented in this research, while limited to radiographs and probing depth measurements, provides
a pathway for incorporating patient data from various sources and modalities, including extraoral and intraoral
photographs, Cone-Beam Computed Tomography (CBCT) and other dental imaging modalities, cephalometric
analysis, medical history, and other risk indicators including salivary biometrics into the formulation of an
oral health score. In the future, Al capabilities in dentistry will extend far beyond radiographic interpretation,
advancing toward a multi-modal representation of patients’ oral health. The development of the next generation
of multi-modal AT in dentistry will help address the limitations of the current OS-B and pave the way for an
advanced and more comprehensive version of the oral score.

Conclusion

To the best of our knowledge, OS-B represents the first large-scale data-driven approach to summarize the
health status of individual teeth as well as provide a patient-level summary score. Our approach leverages dental
healthcare costs as an objective measure to quantify the severity of various conditions, which were incorporated
into the current definition of OS-B. Except for probing depth measurements, OS-B can be automatically
calculated based on a detailed analysis of patients’ dental radiographs using the Overjet AI platform. OS-B
shows good trends at the population level such as decreasing with age, showing some differences between men
and women. Our approach of using treatment cost for each tooth as a basis paves the way to an oral score
with multiple potential applications and benefits. We strongly believe that the robust evidence presented in this
research suggests that AI and large-scale data will profoundly impact the improvement of oral health, with tools
like the OS-B playing a pivotal role in centering care around the patient.

Data availability

The dataset supporting the findings of this study will be made available to qualified researchers upon reasonable
request, at no cost, following publication. Interested parties may submit a request for access to ResearchRe-
quest@Overjet.ai. Upon approval, researchers will be provided with a secure download link for receiving the
data. In no event will any protected health information be made available to researchers. Receipt of the data will
be subject to Overjet’s terms and conditions.
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