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Metabolic Associated Fatty Liver Disease (MAFLD), previously known as Non-Alcoholic Fatty Liver 
Disease, is a growing global health issue associated with obesity, type 2 diabetes, and metabolic 
syndrome. This study investigates the potential of metformin, a common anti-diabetic drug, to slow 
the progression of MAFLD using a multi-omics approach. Male Wistar rats were fed a choline-deficient 
diet to induce MAFLD and treated with metformin through their drinking water for 48 weeks. We 
conducted a comprehensive analysis including liver histology, untargeted metabolomics, lipidomics, 
and gut microbiome profiling to assess the effects of metformin on liver and gut metabolic patterns. 
Metformin administration led to significant changes in gut microbiome diversity and the abundance of 
specific microbial species in MAFLD rats. Histological analysis showed that metformin-treated rats had 
reduced lipid accumulation and fibrosis in the liver compared to untreated MAFLD rats. Metabolomic 
and lipidomic analyses revealed that metformin corrected abnormal lipid metabolism patterns, 
reduced hepatic fat deposition, and influenced key metabolic pathways associated with MAFLD 
progression. Our findings suggest that metformin has a protective role against MAFLD by modulating 
gut microbiota and liver metabolism, thereby slowing the progression of hepatic fibrosis. This study 
provides insights into the therapeutic potential of metformin for MAFLD by addressing metabolic 
pattern disorders and abnormal changes in gut microbial diversity, highlighting its impact on lipid 
metabolism and gut-liver axis interactions.
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Metabolic Associated Fatty Liver Disease (MAFLD), also known as Metabolic associated fatty liver disease and 
formerly referred to as Non-Alcoholic Fatty Liver Disease (NAFLD), has emerged as a major non-communicable 
liver disease globally1,2. The escalating prevalence of conditions like obesity, type 2 diabetes, and metabolic 
syndrome has seen a concurrent surge in MAFLD cases, positioning it as a paramount public health concern3,4. 
Epidemiologically, MAFLD afflicts approximately 25% of the worldwide population, with notable regional 
disparities. The Middle East and South America report the highest incidences, followed closely by Asia, North 
America, and Europe5,6. The swift urbanization and adoption of unhealthy dietary habits in developing nations 
have notably amplified the number of MAFLD cases7,8.
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Several intertwined risk factors play pivotal roles in MAFLD onset and progression. Central obesity, marked 
by increased visceral fat, stands out as a primary risk determinant9,10. Insulin resistance, frequently resulting 
from obesity, plays a crucial role in the accumulation of fat in the liver11. Chronic liver fibrosis, a consequence 
of MAFLD, significantly elevates the risk of liver function deterioration in affected individuals1,12,13. Genetic 
predispositions, such as polymorphisms in the PNPLA3 and TM6SF2 genes, heighten MAFLD susceptibility14. 
Importantly, changes in metabolic patterns, notably in lipid and carbohydrate metabolism, critically influence 
the progression of MAFLD15–17. These metabolic alterations can exacerbate hepatic steatosis, inflammation, and 
fibrosis, accelerating the disease’s progression. Understanding and targeting these metabolic shifts is therefore 
crucial in managing MAFLD. Additionally, gut microbiota imbalances, signified by a disproportionate ratio 
of beneficial to harmful bacterial species, have been implicated in MAFLD’s pathogenesis, though the precise 
mechanisms remain under exploration18. Lean MAFLD patients, despite having a normal or lean body type, face 
significant risks of liver fat accumulation and fibrosis. Unlike obese MAFLD, the pathogenesis in lean patients 
is more complex, potentially involving genetic factors, insulin resistance, and gut microbiota imbalances. These 
patients often find it difficult to improve their condition through standard weight management strategies, 
making treatment particularly challenging. In summation, the rising tide of MAFLD underscores the urgency 
for early detection and intervention. Recognizing and addressing these high-risk determinants can pave the way 
for tailored therapeutic and preventive strategies. As our comprehension of MAFLD deepens, a comprehensive 
approach encompassing lifestyle modifications, pharmacological interventions, and potential microbiota 
modulation becomes indispensable in confronting this global health challenge.

Primarily used for treating type 2 diabetes, Metformin lowers blood sugar levels by inhibiting glucose 
production in the liver and enhancing glucose utilization in muscles19,20. Its benefits extend to improving 
pancreatic β-cell function and increasing insulin sensitivity, reducing insulin resistance21,22. The drug’s 
effectiveness in mitigating hepatic fat accumulation has recently positioned it as a key treatment option for 
metabolic diseases like MAFLD and Metabolic Associated Steatohepatitis23,24. Additionally, Metformin’s 
potential in anti-aging, due to its activation of AMP-activated protein kinase (AMPK), a crucial enzyme in 
energy regulation, by mimicking a state of starvation, is garnering interest25,26. Its role in metabolic disease and 
weight loss research continues to expand, promising new therapeutic discoveries.

To investigate the mechanism by which metformin affects the local hepatic metabolism of diet-induced 
MAFLD, we utilized Wistar rats that had been fed a choline-deficient diet since weaning as our experimental 
subjects27,28. Long-term intervention was carried out by adding metformin to their drinking water. We 
observed that lean MAFLD rats shown a significant impact on hepatic metabolic patterns, especially lipid 
metabolism. Furthermore, we found that in lean MAFLD rats, metformin treatment led to notable differences 
in gut microbiome composition, metabolic pattern changes, and lipid metabolism. These findings suggest that 
metformin not only alters hepatic metabolism but also significantly affects the gut microbiota and systemic 
metabolic processes, contributing to its therapeutic effects in MAFLD.

In summary, our findings bolster a potential notion that during the progression of lean MAFLD liver fibrosis, 
the use of metformin can modulate hepatic metabolic patterns, leading to some beneficial alterations. While 
these changes did not significantly improve fat deposition, they did demonstrate a decelerating effect on the 
progression of fibrosis. Against the backdrop of challenging dietary habits, an increased moderate intake of 
metformin might offer some health benefits in mitigating lean MAFLD-associated liver fibrosis. Material and 
methods. Whole workflow is described in Fig. 1A.

Materials and methods
Accordance and approval statement
Our study adhered to all relevant ethical regulations and followed the research protocol approved by the 
Research Center Ethics Committee of Shandong cancer hospital (SDTHEC2020004088). We confirm that all 
methods were carried out in accordance with relevant guidelines and regulations. We confirm that all methods 
are reported in accordance with ARRIVE guidelines (https://arriveguidelines.org). 16 S rRNA sequencing and 
metabolic analysis were carried out by Lianchuan Biotechnology Co. Ltd (Hangzhou, China).

Portions of the language in this article have been refined and optimized with the assistance of the GPT 4.0 
model. The purpose of utilizing the GPT 4.0 model is to enhance the fluency and readability of the text, and not 
for generating scientific content or data. All scientific viewpoints, data analyses, and conclusions in this study 
were independently formulated by the authors, without intervention from artificial intelligence tools. We declare 
this to ensure academic integrity and transparency in our research.

Subject
Our study exclusively examined male rat because male animals exhibited less variability in phenotype. All 
animal models used in this study were male Wistar rats. The rats were first-generation offspring from a breeding 
study where the parents had been obtained from HuaFukang Experimental Animal Center (Beijing, China). 
All rats were born no more than 3 days apart and were weaned on postnatal day 21. All rats were raised in the 
same standard environment. Each rat cage was housed with only one Wistar rats and they were kept in a light 
(12-hour light and dark cycle) barrier environment at 22 °C. During this study time, all rats were free to drink 
water and diet. A total of 25 rats were divided into three subgroups: the blank control group (Control group), the 
MAFLD-related liver fibrosis group (CDD group), and the metformin intervention group (MI group). The rats 
in control group were freely accessed to clean water and standard rat diet (Keaoxieli Co. Ltd. Beijing, China). In 
separate diet-induced MAFLD model in CDD group and MI group, rats were maintained on Choline-Deficient, 
Amino acid-defined HFD (45 kcal% fat) containing 0.1% methionine (CDAHFD, A06071309, Research Diets 
Inc. New Brunswick, NJ) for 48 weeks. In contrast to the clean drinking water provided to the CDD group, rats 
in the MI group had metformin hydrochloride added to their drinking water. The drug was administered to rats 
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by dissolving metformin (Aladdin Inc., Shanghai, China) in water, and the drug concentration was adjusted 
according to changes in the amount of water consumed by the rats to ensure that the daily dose of the drug 
ingested was approximately 200 mg/kg/d. The metformin intervention started concurrently with the CDD diet 
and lasted for 48 weeks.

Rats were anesthetized using inhalational anesthesia with a small animal anesthesia machine (RWD Inc., 
Shenzhen, China), inducing anesthesia with 3% isoflurane followed by maintenance at 1.5% isoflurane. Then we 
measured body weight and length to calculate Lee’s index (Lee’s index = body weight3 /body length*100), and 
weighed the liver to calculate the ratio of liver to body weight. Blood samples were obtained via cardiac puncture, 
and serum samples were extracted by centrifugation (3500 rpm, r = 10 cm, 10 min), then stored at -80℃ until 
analysis. Hematology analysis of blood samples was performed using an auto hematology analyzer BC-2600 vet 
(Mindray Biomedical Electronics Co., Ltd., Shenzhen, China) following the manufacturer’s instructions. After 
blood collection, the liver and kidneys were excised and weighed. The levels of AST and ALT in both blood 
samples and liver tissues were determined using an automated Chemray-240 clinical analyzer (Rayto Co., Ltd., 
Shenzhen, China).

In this experiment, the hematological analysis of rat blood samples was conducted using the Mindray BC-
5000vet fully automated hematology analyzer. Samples were prepared following the manufacturer’s guidelines 
to ensure quality control throughout the collection and processing of the rat blood specimens. The analyzer 
automatically performed the counting and classification of blood cells, including red blood cells (RBCs), white 
blood cells (WBCs), and platelets (PLTs). It also provided detailed parameters such as red cell distribution 
width (RDW), mean corpuscular volume (MCV), and the neutrophil to lymphocyte ratio (NLR). The index of 
neutrophil to lymphocyte ratio is calculated by dividing the count of neutrophils by the count of lymphocytes. 
This ratio is derived from a standard Complete Blood Count (CBC). The formula is: NLR = Lymphocyte count/
Neutrophil count.​.

The quantification of hepatic lipid accumulation was conducted by randomly selecting three non-overlapping 
fields of view from Oil Red O-stained liver specimens of four rats each from the CDD and MI groups (A total of 
12 images) by ImageJ software (National Institutes of Health, US). The proportion of the area occupied by red 
lipid droplets was calculated to quantify the accumulation of lipids.

In research protocols, rats were euthanized under strict ethical guidelines. After inducing deep anesthesia 
using isoflurane inhalation via a gas anesthesia chamber, blood samples were collected via terminal cardiac 
puncture. To ensure sustained unconsciousness during the procedure, an anesthetic facemask maintained 
continuous isoflurane delivery. Following blood collection, cervical dislocation was performed as the secondary 
euthanasia method while the animal remained fully anesthetized, minimizing distress. Death was confirmed 
by absence of reflexes and cardiopulmonary arrest. This dual-phase approach complies with AVMA guidelines 
for humane endpoints and anesthesia-based euthanasia. All experimental protocols used were approved and 

Fig. 1.  Metformin treatment improves fat deposition and liver fibrosis in MAFLD. (A) Experimental 
procedure; (B) General liver morphology in different rat groups; (C) Lee’s index in rats; (D) LWR in rats; (E) 
H&E, Oil Red O, and Masson’s Trichrome staining of rat liver; (F) Liver function in rats. Con/Control: control 
group with standard diet; CDD: choline-deficient high-fat diet group; MI: metformin-treated plus choline-
deficient high-fat diet group; LWR: Liver Weight Ratio; p-values obtained via two-tailed unpaired Student’s 
t-tests; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance.
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implemented in accordance with ethical committees and conformed to the highest international standards for 
the humane care of animals in biomedical research.

16s DNA extractions and PCR amplification
The DNA was extracted from various samples using the CTAB method following the manufacturer’s instructions. 
The full-length 16S rRNA gene was then amplified using primers 27F: 5’-AGRGTTYGATYMTGGCTCAG-3’ 
and 1492R: 5’-RGYTACCTTGTTACGACTT-3’, each tagged with a specific barcode for individual samples. The 
PCR amplification was carried out in a total reaction volume of 20 µL, which included 4 µL of 5× FastPfu Buffer, 
2 µL of 2.5 mM dNTPs, 0.8 µL of each primer (5 µM), 0.4 µL of FastPfu Polymerase, 10 ng of template DNA, and 
PCR-grade water for volume adjustment. The PCR conditions for amplifying the full-length prokaryotic 16 S 
rRNA gene included an initial denaturation at 95 °C for 2 min, followed by 25 cycles of denaturation at 95 °C for 
30 s, annealing at 55 °C for 30 s, extension at 72 °C for 1 min, and a final extension at 72 °C for 5 min.

Library construction and sequencing
The PCR products were confirmed through 2% agarose gel electrophoresis and subsequently purified using 
the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, USA), following the manufacturer’s guidelines. 
After quantification using QuantiFluorTM-ST (Promega, USA), the amplicon pools were prepared for library 
construction. SMRTbell libraries were created utilizing the Pacific Biosciences SMRTbellTM Template Prep kit 
1.0 (PacBio, USA) and sequenced on the PacBio Sequel II platform (LC-Bio Technology Co., Ltd., Hangzhou, 
China).

Data analysis
We generated Circular Consensus Sequence (CCS) reads from raw subreads using SMRT Link (v6.0) with the 
following parameters: minPasses = 3; minPredictedAccuracy = 0.99. Subsequently, lima (v1.7.1) was utilized 
to differentiate CCS reads from different samples, and cutadapt (v1.9) was employed to identify primers. 
We retained CCS reads that fell within the length range of 1200  bp to 1650  bp after length filtration. After 
dereplication and the removal of chimeric sequences using DADA2, we obtained a feature table and feature 
sequences. Alpha diversity and beta diversity were calculated by normalizing to the same sequences randomly.

Alpha diversity was applied to analyze the complexity of species diversity within a sample using 6 indices, 
including Chao1, Observed-features, Goods coverage, Shannon, Simpson, Pielou-e. All these indices were 
calculated using QIIME2. Beta diversity was calculated using QIIME2. The Amplicon Sequence Variants (ASVs) 
were annotated by aligning feature sequences with the SILVA database (release 138). Other diagrams were 
created using R packages.

Untargeted metabolomics
Liver samples
The collected samples were thawed on ice, and metabolites were extracted using 80% methanol buffer. Briefly, 
50 mg of each sample was extracted with 0.5 ml of pre-cooled 80% methanol. The extraction mixture was then 
stored at -20 °C for 30 min. After centrifugation at 20,000 g for 15 min, the supernatants were tran Supplementary 
Figure erred into new tubes and vacuum dried. The dried samples were re-dissolved with 100 µL of 80% methanol 
and stored at -80 °C until LC-MS analysis. Additionally, pooled QC samples were prepared by combining 10 µL 
from each extraction mixture.

Parameter setting
All samples were acquired using the LC-MS system in the following order: Firstly, all chromatographic separations 
were performed using an UltiMate 3000 UPLC System (Thermo Fisher Scientific, Bremen, Germany). An 
ACQUITY UPLC T3 column (100 mm*2.1 mm, 1.8 μm, Waters, Milford, USA) was used for the reversed-phase 
separation, and the column oven was maintained at 40 °C. The flow rate was set at 0.3 ml/min, and the mobile 
phase consisted of solvent A (5mM ammonium acetate and 5mM acetic acid) and solvent B (Acetonitrile). 
Gradient elution conditions were as follows: 0 to 0.8 min, 2% B; 0.8 to 2.8 min, 2–70% B; 2.8 to 5.6 min, 70–90% 
B; 5.6 to 6.4 min, 90–100% B; 6.4 to 8.0 min, 100% B; 8.0 to 8.1 min, 100–2% B; 8.1 to 10 min, 2% B.

Data analysis
The acquired MS data underwent various pretreatments, including peak picking, peak grouping, retention time 
correction, second peak grouping, and annotation of isotopes and adducts, all performed using XCMS software. 
LC − MS raw data files were converted into mzXML format and then processed using XCMS, CAMERA, and 
the metaX toolbox, implemented with R software. Each ion was identified by combining retention time (RT) 
and m/z data. The intensities of each peak were recorded, generating a 3D matrix containing arbitrarily assigned 
peak indices (retention time-m/z pairs), sample names (observations), and ion intensity information (variables).

Metabolite annotation was carried out by matching the exact molecular mass data (m/z) of samples with 
those in online databases such as KEGG (www.KEGG.jp/KEGG/kegg1.html) and HMDB. Kyoto Encyclopedia of 
Genes and Genomes (KEGG) Enrichment Analysis (https://www.kegg.jp/kegg/): A KEGG pathway enrichment 
analysis of differential genes was conducted using the clusterProfiler package, and the results were presented 
in the form of bubble plots and histograms29–32. A mass difference between the observed and database values 
of less than 10 ppm was used to annotate the metabolite. The molecular formula of metabolites was further 
identified and validated through isotopic distribution measurements. An in-house fragment spectrum library of 
metabolites was also used to validate metabolite identification.

The intensity of peak data was further preprocessed using metaX. Features that were detected in less than 
50% of QC samples or 80% of biological samples were removed. The remaining peaks with missing values 
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were imputed using the k-nearest neighbor algorithm to enhance data quality. PCA was performed for outlier 
detection and batch effects evaluation on the pre-processed dataset. Quality control-based robust LOESS signal 
correction was applied to the QC data with respect to the order of injection to minimize signal intensity drift 
over time. Additionally, metabolic features with relative standard deviations > 30% across all QC samples were 
removed.

Student t-tests were conducted to detect differences in metabolite concentrations between two phenotypes, 
and the p-values were adjusted for multiple tests using the Benjamini–Hochberg False Discovery Rate (FDR) 
method. Supervised PLS-DA was performed through metaX to discriminate different variables between groups. 
A VIP value cutoff of 1.0 was used to select important features. We adopted VIP value > 1 as the screening 
threshold, as metabolites with VIP values exceeding 1 generally exhibit higher biological relevance. This criterion 
aligns with the majority of comparable studies and is widely employed in metabolomics research to effectively 
identify metabolites that make significant contributions to model predictions.

Untargeted lipidomics
Liver samples
The collected samples were thawed on ice, and metabolites were extracted using a lipid extraction buffer. In brief, 
100 mg of sample was mixed with 1 ml of pre-cooled lipid extraction buffer (IPA: ACN: H2O = 2:1:1), followed 
by vortexing for 1 min and incubation at room temperature for 10 min. The extraction mixture was then stored 
overnight at -20 °C. After centrifugation at 4,000 g for 20 min, the supernatants were transferred into new 96-
well plates. These samples were subsequently stored at -80 °C until the LC-MS analysis. Additionally, pooled QC 
samples were prepared by combining 10 µL from each extraction mixture.

Parameter setting
All samples were acquired by the LC-MS system followed machine orders. Firstly, all chromatographic separations 
were performed using an ACQUITY UPLC System (Waters, Milford, MA, USA). A Kinetex UPLC C18 column 
(100  mm*2.1  mm, 100  A, phenomenex, UK) was used for the reversed phase separation. The column oven 
was maintained at 55  °C. The flow rate was 0.3 ml/min and the mobile phase consisted of solvent A (ACN: 
H2O = 6:4, 0.1% formic acid) and solvent B (IPA: ACN = 9:1, 0.1% formic acid). Gradient elution conditions were 
set as follows: 0 ~ 0.4 min, 30% B; 0.4 ~ 1 min, 30–45% B;1 ~ 3 min, 45–60% B; 3.5 ~ 5 min,60–75% B; 5 ~ 7 min, 
75–90% B; 7 ~ 8.5 min, 90–100% B; 8.5 ~ 8.6 min, 100% B; 8.6 ~ 8.61 min, 100–30% B; 8.61 ~ 10 min, 30%B.

Data analysis
A high-resolution tandem mass spectrometer, TripleTOF 6600 (SCIEX, Framingham, MA, USA), was employed 
to detect metabolites eluted from the column. The Q-TOF operated in both positive and negative ion modes. The 
curtain gas was set at 30 PSI, Ion source gas 1 and Ion source gas 2 were both set at 60 PSI, and the interface heater 
temperature was maintained at 650 ℃. In the positive ion mode, the Ionspray voltage was set at 5000 V. For the 
negative ion mode, the Ionspray voltage was set at -4500 V. Mass spectrometry data were acquired in IDA mode, 
with the TOF mass range spanning from 60 to 1200 Da. The survey scans were collected in 150 ms intervals, and 
up to 12 product ion scans were obtained if they exceeded a threshold of 100 counts per second (counts/s) with 
a 1 + charge-state. The total cycle time was fixed at 0.56 s. Four times bins were summed for each scan at a pulser 
frequency value of 11 kHz, monitored through the 40 GHz multichannel TDC detector with four-anode/channel 
detection. Dynamic exclusion was set for 4 s. Calibration for mass accuracy was performed every 20 samples 
during acquisition. Additionally, to assess the stability of the LC-MS throughout the acquisition, a QC sample 
(Pool of all samples) was acquired after every 10 samples.

ELISA
The serum samples were tested using a commercially available rat ELISA kit (D731062-0096, Sangon, Shanghai, 
China). In a 96-well plate pre-coated with antibodies, standard sample wells, blank wells, and detection sample 
wells were set up. In the detection wells (triplicates), 50 µL of rat serum was added to the bottom of each well. 
After sealing the plate with a sealing membrane, it was incubated at 37 °C for 30 min. The sealing membrane 
was then removed, and the liquid was discarded. The plate was dried and subjected to 5 repeated washes with 
a washing solution. After the washing steps, 50 µL of enzyme-labeled reagent was added to each well (except 
for the blank wells). The plate was incubated at 37 °C for 30 min and then washed again. Subsequently, 50 µL 
of chromogenic reagent A and 50 µL of chromogenic reagent B were added to each well. The plate was gently 
shaken to mix the contents, and then incubated at 37 °C in the dark for 10 min. Finally, 50 µL of stop solution was 
added to each well to terminate the reaction. The absorbance (OD value) of each well was measured sequentially 
at a wavelength of 450 nm, with the blank well serving as the reference. A standard curve was established using 
the concentrations and OD values of the standard samples. After determining the linear regression equation of 
the standard curve, the concentrations of the analytes in the detection samples were calculated (averaged from 
triplicates).

Statistics and reproducibility
Statistical significance was calculated with R project (https://www.r-project.org/). Multiple comparisons were 
performed using a one-way ANOVA test with post hoc Tukey test, unless stated otherwise. The correlation 
between parameters was analyzed using a correlation t test. Values of p < 0.05 were considered statistically 
significant.
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Results
General changes in the ending
We successfully gathered complete data from 25 rats, divided into three groups: 7 in the Control group (fed with 
a normal diet), 8 in the CDD group (fed with a choline-deficient diet), and 10 in the MI group (choline-deficient 
diet with metformin intervention). Compared to the control group, the two experimental groups exhibited 
significant changes in their liver appearance and liver weight ratio (LWR) (Fig. 1B and D). The liver-to-body 
weight ratio in rats from the CDD group showed significant differences compared to both the MI group and the 
Control group. However, there were no statistically significant differences between the MI group and the Control 
group. The Lee’s index among the three groups of rats did not show any significant statistical differences (Fig. 1C). 
Representative images of liver Masson’s trichrome staining and Oil Red O staining are shown in Fig. 1E.
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Analysis of blood samples from the rats indicated the presence of liver damage and chronic inflammation 
in both the MI and CDD groups (Fig. 1F). The levels of AST (Aspartate Aminotransferase) and ALT (Alanine 
Aminotransferase) were higher in rats from both the CDD and MI groups compared to the Control group. 
However, no differences were observed between the CDD and MI groups. In the blood sample tests for total 
bilirubin (TBIL), the levels in rats from the CDD group were significantly higher than those in the Control 
group, while the MI group did not show abnormal TBIL levels. The test results for ALP (Alkaline Phosphatase) 
also showed a similar trend. The data suggest that metformin may have a protective effect on the liver, but this 
effect may not be pronounced. We have discerned that metformin can play a role in delaying liver fibrosis. 
Pathological results indicate that, although the rats in the metformin group also showed a tendency towards 
liver fibrosis, the degree of liver damage and the severity of fibrosis were lower than those in the CDD group. 
Serum levels of ALT and AST also revealed that the liver function impairment in the metformin-treated rats 
did not significantly differ from that in the untreated MAFLD rats. This could be due to the severity of liver 
damage induced by the MAFLD modeling, suggesting that even if metformin has some therapeutic effect, it 
might not be sufficient to create a significant difference at the biochemical marker level. Hence, we can observe 
that metformin has a certain capacity to maintain normal liver function and slow the progression of fibrosis 
related to MAFLD. However, our findings diverge from those of other researchers regarding metformin’s ability 
to reduce liver damage, indicating that further clarification is needed to fully ascertain its efficacy.

Fecal microbiome composition analysis
The raw sequencing data were analyzed using QIIME2, and Venn diagrams were utilized to display the overlaps 
and uniqueness of Operational Taxonomic Units (OTUs) among the three groups. The data were clustered 
into OTUs based on 97% similarity. The Venn diagram in Fig.  2A illustrates that 606 OTUs were identified 
across all groups. The unique number of OTUs in the Control, CDD, and MI groups were 1985, 1714, and 1332, 
respectively. Additionally, 140 OTUs were identified in both the Control and CDD groups, 189 OTUs in both 
the Control and MI groups, and 563 OTUs in both the CDD and MI groups. These findings suggest that the 
diversity of the gastrointestinal microbiota in MAFLD rats is lower than in normal rats, and the intervention 
with metformin appears to further reduce the diversity of the gastrointestinal microbiota.

Beta diversity was utilized to measure the phylogenetic distance between bacterial communities in each 
sample (Fig. 2B). The figure displays a Principal Coordinates Analysis (PCoA) of the 16 S rRNA dataset. Each 
point on the graph represents the entire bacterial community within a sample. Samples that are closer together 
have similar microbial community compositions, while those further apart are less alike. We observed that each 
group in the collected fecal samples displayed distinct bacterial taxa, indicating that both MAFLD induced by a 
choline-deficient diet and metformin intervention lead to alterations in the composition of the gut microbiome. 
The top 30 most abundant phyla are enumerated and illustrated using a heatmap (Fig. 2C). A stacked bar chart 
lists these 30 most abundant phyla (Fig. 2D), and the top 30 phyla and genera are presented in the form of 
heatmaps (Fig. 2E and F). The heatmap displays the 30 most abundant phyla in the samples. The abundance 
of each phylum is typically represented by the intensity of the color; a darker color signifies a higher relative 
abundance of that phylum in a specific sample.

To characterize the gut microbiota of MAFLD rats, we examined the taxonomic composition and relative 
abundance of microbial communities in feces at different taxonomic levels. At the phylum level, the three 
groups generally displayed similar dominant phyla, with “Firmicutes,” “Bacteroidota,” and “Verrucomicrobiota” 
being predominant in the gut microbiota of all sampling groups. This is consistent with previous studies on gut 
microbial composition. Although the composition of the dominant phyla in the gut of rats from different groups 
was similar, differences in relative abundance were observed among the three phyla. Specifically, we noted 
that the relative abundance of Firmicutes was similar in the Control and CDD groups of rats, but significantly 
decreased in the intestines of rats subjected to metformin intervention. Conversely, the relative abundance of 
“Bacteroidota” significantly increased in the intestines of rats with MAFLD (Fig. 2D). In the intestines of the 
control group and rats treated with metformin, the abundance of “Verrucomicrobiota” was similar, while in 
rats with MAFLD not subjected to drug intervention, the abundance of “Verrucomicrobiota” was significantly 
decreased.

In our study, we observed a progressive increase in the abundance of “Alistipes”, “Desulfovibrionaceae”, 
“Tyzzerella”, “Peptococcaceae” across the spectrum from healthy rats to MAFLD rats treated with metformin, and 
then to untreated MAFLD rats. In contrast, the levels of “Akkermansia”, “Ligilactobacillus”, “Lactobacillus”, “UCG-
005”, “HT002”, “Clostridia-UCG-014”, and the “Christensenellaceae-R-7” group significantly decreased in the gut 

Fig. 2.  Comparative analysis of gut microbial diversity and expression abundance in rats. (A) Number of 
shared or unique Operational Taxonomic Units (OTUs) across different groups; (B) Unweighted Unifrac PCoA 
plot illustrating the gut microbial composition in various rat groups; (C) The top 30 most abundant phyla in 
the gut microbiota of different rat groups; (D) Comparison of sample abundance and dominant species in 
the top 20 most abundant phyla in rat gut microbiota; (E) Normalized comparison of microbial abundance 
expression at the phylum level in rats; (F) Normalized comparison of microbial abundance expression at the 
genus level in rats; (G) STAMP analysis of the expression abundance of rat microbial abundance based on 
PICRUSt2 functional predictions; (H) Cluster analysis of gut microbial groups in rats at the phylum level; 
(I) Cluster analysis of gut microbiota per sample in rats at the genus level. Con/Control: control group with 
standard diet; CDD: choline-deficient high-fat diet group; MI: metformin-treated choline-deficient high-fat 
diet group; OTU: Operational Taxonomic Units; p-values obtained via two-tailed unpaired Student’s t-tests; 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance.
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microbiota of MAFLD rats compared to healthy rats. Notably, in the intestines of rats treated with metformin, 
some specific microbial classes, including “Alistipes”, “Firmicutes”, “Tannerellaceae”, and “Ruminococcus”, 
exhibited a unique declining trend.

Based on the PICRUSt2 functional prediction outcomes, the STAMP analysis focused on the top 30 pathways 
with significant differences (p < 0.05) in the t-test comparisons between groups, with these differences visually 
represented in images (Fig. 2G). These results displayed functions with statistically significant differences (95% 
confidence interval). In MAFLD rats, certain pathways like the ‘superpathway of polyamine biosynthesis,’ 
‘acetylene degradation,’ ‘superpathway of adenosine nucleotides de novo biosynthesis II,’ ‘guanosine 
deoxyribonucleotides de novo biosynthesis II,’ and ‘adenosine deoxyribonucleotides de novo biosynthesis II’ 
exhibited a notable decrease. In contrast, pathways such as ‘biotin biosynthesis II,’ ‘1,4-dihydroxy-6-naphthoate 
biosynthesis II,’ ‘superpathway of menaquinol-8 biosynthesis II,’ ‘tRNA processing,’ ‘ADP-L-glycero-β-D-manno-
heptose biosynthesis,’ ‘superpathway of thiamin diphosphate biosynthesis II,’ ‘superpathway of sulfur oxidation 
(Acidianus ambivalens),’ and ‘glutaryl-CoA degradation’ in MI group were significantly more active.

In the analysis using the KEGG dataset (http://www.KEGG.jp/KEGG/kegg1.html) (Supplementary 
Fig. 1A, Supplementary Fig. 1A), it was observed that in MAFLD rats, pathways such as ‘Pertussis,’ ‘Meiosis 
- yeast,’ ‘Biosynthesis and biodegradation of secondary metabolites,’ ‘Phenylalanine metabolism,’ ‘Novobiocin 
biosynthesis,’ ‘Tropane, piperidine, and pyridine alkaloid biosynthesis,’ ‘Isoquinoline alkaloid biosynthesis,’ and 
‘Histidine metabolism’ showed a significant increase. Conversely, pathways like ‘Biosynthesis of unsaturated 
fatty acids,’ ‘Tuberculosis,’ ‘Signal transduction mechanisms,’ ‘Base excision repair,’ ‘Photosynthesis,’ and 
‘Photosynthesis proteins’ exhibited a notable decrease.

In the analysis using the Clusters of Orthologous Groups (COG) dataset (Supplementary Fig. 1B), it was 
observed that in MAFLD rats compared to the control group, the expression of ‘Xanthine/uracil/vitamin C 
permease, AzgA family’ was significantly reduced. On the other hand, several other genes showed increased 
activity. These include ‘Antirestriction protein ArdC,’ ‘Methylaspartate ammonia-lyase,’ ‘DNA-binding 
transcriptional response regulator, NtrC family, containing REC, AAA-type ATPase, and Fis-type DNA-
binding domains,’ ‘tRNA C32,U32 (ribose-2’-O)-methylase TrmJ or a related methyltransferase,’ ‘Predicted 
dienelactone hydrolase,’ ‘Dissimilatory sulfite reductase (desulfoviridin), alpha and beta subunits,’ ‘Mg2 + and 
Co2 + transporter CorB, containing DUF21, CBS pair, and CorC-HlyC domains,’ and ‘Sensor histidine kinase 
regulating citrate/malate metabolism.’ These changes in gene activity suggest alterations in various metabolic 
and regulatory pathways in the gut microbiome of MAFLD rats, highlighting the potential impacts of the disease 
on different biological processes. This information is vital for understanding the pathophysiology of MAFLD 
and could guide future research into therapeutic strategies.

Then, we used the Bray-Curtis distance for clustering analysis of the microbiota at the genus level. The 
results (as shown in Fig. 2H and Supplementary Fig. 1C) revealed similarities within the microbial communities 
of MAFLD rats, and notably, these communities were significantly different from those in normal rats. The 
Bray-Curtis distance, a measure used to quantify the compositional dissimilarity between two different sites or 
conditions based on counts at each site, effectively highlighted the differences in microbial composition between 
the MAFLD and normal rats. This analysis is crucial for understanding how MAFLD affects gut microbiota 
composition, which could have implications for the disease’s pathogenesis and potential treatment strategies. 
It is noteworthy that in both groups of MAFLD rats, there was a significant increase in the presence of the 
Desulfobacterota phylum, whereas this phylum was not observed in the intestines of normal rats. The presence 
and increase of Desulfobacterota in MAFLD rats suggest a potential association between this phylum and 
the pathophysiology of MAFLD. Desulfobacterota, known for its involvement in sulfate reduction and other 
metabolic processes, could play a role in the altered gut microbiome environment seen in MAFLD. This finding 
provides valuable insights into the gut microbiota’s alterations in MAFLD and its potential impact on disease 
progression, offering possible avenues for further research and therapeutic intervention.

In the genus-level clustering analysis results (Fig. 2I), an intriguing observation was the significant increase 
in the presence of genera such as ‘Akkermansia’, ‘Alloprevotella’, ‘Alistipes’, ‘Bacteroides’, ‘Tyzzerella’, and 
‘Colidextribacter’ in the intestines of MAFLD rats. The increased abundance of these genera in MAFLD rats 
indicates significant changes in the gut microbial community that could be linked to the pathogenesis or effects 
of MAFLD.

The significant barplot difference analysis involved a differential analysis of all microbial species across all 
samples (Fig.  3A). This analysis filtered out the top 30 most abundant microbes (at the genus level) with a 
p-value < 0.05 and displayed them in a bar chart. In this chart, the horizontal axis represents the different species, 
arranged from left to right based on their abundance, while the vertical axis indicates their relative abundance. 
In MAFLD rats, there was a notable increase in the abundance of several genera, including ‘g__Bacteroides,’ 
‘g__Firmicutes_unclassified,’ ‘g__Colidextribacter,’ ‘g__Alloprevotella,’ ‘g__Desulfovibrionaceae_unclassified,’ 
‘g__Clostridiales_unclassified,’ ‘g__Tyzzerella,’ and ‘g__Tannerellaceae_unclassified.’ In MAFLD rats, there was 
a significant decrease in the abundance of several genera, including ‘g__Clostridia_UCG-014_unclassified,’ 
‘g__UCG-005,’ ‘g__Lactobacillus,’ ‘g__HT002,’ ‘g__Christensenellaceae_R-7_group,’ ‘g__[Eubacterium]
coprostanoligenes_group_unclassified,’ ‘g__Muribaculum,’ ‘g__Prevotellaceae_UCG-001,’ ‘g__Prevotellaceae_
NK3B31_group,’ and ‘g__[Eubacterium]_siraeum_group’.

Figure 3B illustrates the species annotation information at the genus level and their relative abundance 
(indicated by the size of circles) across different sample groups. Additionally, the figure also displays the species 
annotation information corresponding to their phylum (indicated by the color of the circles). In MAFLD rats, 
genera such as ‘Bacteroides,’ ‘Colidextribacter,’ ‘Streptococcus,’ and ‘Tyzzerella’ showed increased activity, whereas 
‘UCG-005,’ ‘Akkermansia,’ ‘HT002,’ ‘Lactobacillus,’ and ‘Ligilactobacillus’ exhibited a decrease in their presence. 
Interestingly, in MAFLD rats treated with metformin, the genera ‘Alistipes’ and ‘Akkermansia’ demonstrated 
expression levels similar to those in normal rats.
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Fig. 3.  Changes in gut microbial species and expression abundance in rats. (A) Significant differences in the 
top 20 most abundant species across groups at the genus level; (B) Species annotation information and relative 
abundance at the genus level in different sample groups; (C) Top 5 phyla in microbial abundance and their 
corresponding abundance information; (D) Relative abundance of microbial communities at phylum (middle) 
and genus (right) levels for different group samples (left); (E) Evolutionary tree of top 50 genus-level species in 
microbial expression abundance; (F) Comparison of sqrtIVt values for microbial indicator value at the genus 
level; (G) Evolutionary branching diagram for seven taxonomic levels (kingdom, phylum, class, order, family, 
genus, species), with each node representing a species classification. Larger nodes indicate higher species 
abundance. Yellow nodes indicate no significant difference in species between comparison groups, red nodes 
indicate significant differences with higher abundance in the red group, and so on. Significant differences 
in phyla are directly labeled in the diagram, and other levels are indicated by letters; (H) Bar chart showing 
biomarkers with significant differences (LDA score > 3.0), where the color of the bars represents which group 
the species is more abundant in, and the length indicates the LDA score, reflecting the extent of difference 
between groups. Con/Control: control group with standard diet; CDD: choline-deficient high-fat diet group; 
MI: metformin-treated choline-deficient high-fat diet group; p-values obtained via two-tailed unpaired 
Student’s t-tests; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no significance.
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The top five most abundant phyla in the gut microbiota of different rat models, along with their corresponding 
abundance information, are depicted in Fig. 3C. The width of each segment reflects the abundance level: wider 
segments indicate higher abundance, while narrower segments signify lower abundance. Notably, ‘Akkermansia’ 
constitutes the highest proportion (usually around 50%) in the intestines of normal rats and those treated 
with metformin. However, this proportion significantly declines in the intestines of untreated MAFLD rats. 
In contrast, ‘Clostridia_UCG-014_unclassified’ shows a marked decrease in the intestines of MAFLD rats, 
with a severe reduction in abundance compared to normal rats, regardless of drug intervention. Conversely, 
‘Firmicutes_unclassified’ significantly increases in the intestines of MAFLD rats. While metformin intervention 
reduces its abundance to some extent, it still exhibits an unusually high trend compared to normal rats. This 
visual representation underscores the significant shifts in gut microbiota composition associated with MAFLD 
and its modulation by metformin treatment.

We also employed Fig. 3D to render the compositional differences of the microbiota in each group more 
pronounced. We have defaulted to selecting the top 50 genera based on abundance for constructing the Fig. 3E 
plot. Within this plot, distinct branches represent different genera-level classifications. Genera of different types 
but sharing the same color indicate that they belong to the same phylum. The closer the proximity between any 
two species, the more closely related they are evolutionarily. This allows for an intuitive understanding of the 
phylogenetic relationships and biological significance of the species under focused study.

The square root of the indicator value (sqrtIVt) is utilized to compare the magnitude of association between 
microbes and each group under different treatment strategies, thereby revealing potential gut microbiota 
biomarkers for the progression of MAFLD and metformin intervention. The computational results indicate 
significant differences between MAFLD and non-MAFLD rats in genera such as ‘Tyzzerella’, ‘Tannerellaceae’, 
‘Desulfovibrionaceae’, ‘Eubacterium’, ‘Colidextribacter’, ‘Clostridiaceae’, ‘Clostridiales’, ‘Butyricimonas’, ‘Bacteroides’, 
and ‘Alloprevotella’. In the MAFLD rat model, ‘Akkermansia’, ‘HT002’, ‘Clostridiales’, and ‘Alloprevotella’ 
demonstrated dominance in the feces of rats not treated with metformin, whereas their expression dominance was 
somewhat suppressed post-metformin intervention (Fig. 3F). ‘Akkermansia’, ‘Clostridiales’, and ‘Alloprevotella’ 
exhibited similar expression levels in the control non-MAFLD rat model and under the influence of metformin 
in the MAFLD rat model. Notably, they showed a clear advantage in the intestines of severely MAFLD-affected 
rats without intervention, suggesting their potential as biomarkers.

The phylogenetic branching diagram obtained from the LEfSe differential analysis corroborates the results of 
the prior analyses from an additional perspective. Notably, a significant divergence is observed in the MAFLD rat 
post-pharmacological intervention, where ‘g_Clostridium_sensu_stricto_1’, ‘f_Bacteroidaceae’, ‘f_Marinifilaceae’, 
‘p_Deferribacterota’, and ‘p_Desulfobacterota’ demonstrate a predominance in species abundance within the 
intestinal tract of these rats (Fig. 3G). This suggests that Metformin may exert a discernible impact on these 
microbial taxa. Figure 3H indicates microbial species abundances surpassing the anticipated LDA scores, with ‘f_
Bacteroidaceae’ and ‘g_Bacteroides’ exhibiting substantial alterations following drug intervention. Together with 
‘g_Alloprevotella’, they may serve as significant biomarkers for Metformin’s intervention in MAFLD. Conversely, 
in untreated MAFLD rats, the computational outcomes seem to favor Clostridiales and Firmicutes as biomarkers 
for the progression of MAFLD to severe liver fibrosis. For the pairwise comparative groups, differential analysis 
of ASV abundance was conducted. In Figs. 4A–C, ‘enriched’ (upper triangle) denotes a significant upregulation, 
‘depleted’ (lower triangle) signifies a significant downregulation, and ‘nosig’ (dot) indicates no significant 
difference. Different colors are used to distinguish the phylum-level taxa to which each ASV belongs.

By calculating the abundance of the top 30 genera, we obtained the correlations and significant p-values 
between each pair of dominant microbial communities. Subsequently, a network diagram (Supplementary 
Fig. 1D) was constructed using Spearman’s correlation results for relationships where |rho| > 0.8. In our study, 
a pronounced symbiotic relationship was evident between ‘Colidextribacter’ and ‘Tyzzerella’, as well as between 
‘Firmicutes_unclassified’ and ‘Lachnospiraceae_unclassified’. The heatmap in Fig. 4D illustrates the interrelations 
among various microorganisms.

Mapping the functional predictions from PICRUSt2 to the analysis obtained from the GEO database 
reveals significant functional discrepancies among normal rats, metformin-treated MAFLD rats, and untreated 
MAFLD rats. Key proteins and systems, including ‘Antirestriction protein ArdC’, ‘Dissimilatory sulfite reductase 
(desulfoviridin), alpha and beta subunits’, ‘Site-specific recombinase XerC’, ‘ABC-type uncharacterized transport 
system involved in gliding motility, auxiliary component’, ‘Mg2 + and Co2 + transporter CorB, containing 
DUF21, CBS pair, and CorC-HlyC domains’, and ‘Sensor histidine kinase regulating citrate/malate metabolism,’ 
exhibited marked functional variations, demonstrating a distinct and progressive upward trend (Fig. 4E). This 
trend underscores the nuanced shifts in metabolic and regulatory pathways induced by metformin treatment 
and disease progression in MAFLD rats. Corresponding with the aforementioned analysis, in MAFLD rats 
treated with metformin, there was a notable increase in the expression of ‘DNA-binding transcriptional 
response regulator, NtrC family, contains REC, AAA-type ATPase, and a Fis-type DNA-binding domains’, 
‘Methylaspartate ammonia-lyase’, ‘tRNA C32,U32 (ribose-2’-O)-methylase TrmJ or a related methyltransferase’, 
‘Predicted dienelactone hydrolase’, ‘Intracellular sulfur oxidation protein, DsrE/DsrF family’, ‘23S rRNA U2552 
(ribose-2’-O)-methylase RlmE/FtsJ’, and ‘3-oxoacyl-[acyl-carrier-protein] synthase III’ compared to normal rats 
and untreated MAFLD rats. These alterations might be intricately linked to the potential role of metformin in 
decelerating the progression of MAFLD and liver fibrosis. The observed elevations in these specific metabolic 
and regulatory pathways highlight the possible mechanistic connections between metformin treatment and its 
therapeutic effects in mitigating MAFLD and its associated pathologies. Finally, in the control group of healthy 
rats, a significantly higher expression of ‘Xanthine/uracil/vitamin C permease, AzgA family’ was observed 
compared to all MAFLD rats, whether treated or not. This suggests a potential inhibitory role associated with 
the progression of MAFLD. The marked distinction in expression levels indicates that this permease could 
be intricately linked to mechanisms that mitigate or resist the advancement of MAFLD. The ‘AzgA family’ of 
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Fig. 4.  Comparative Analysis of Gut Microbial Diversity and Expression Abundance in Rats. (A) ASV 
abundance differences between CDD and MI groups, with enriched (upward triangle) indicating significant 
upregulation, depleted (downward triangle) indicating significant downregulation, and nosig (dot) for 
no significant difference, differentiated by colors representing phylum-level species; (B) ASV abundance 
differences between CDD and control groups, with enriched, depleted, and nosig symbols, and color 
differentiation at the phylum level; (C) ASV abundance differences between MI and control groups, similarly 
indicated and color-coded; (D) Top 30 genus-level microbial abundance Spearman correlation analysis, 
showing correlations and significant p-values between dominant microbial groups; (E) Functional prediction 
STAMP difference analysis (annotated using COG database); (F) Column stacked chart showing relative 
abundance of species with different phenotypes (Facultatively Anaerobic, Forms Biofilms, Gram Negative) 
in various groups; (G) Spearman correlation coefficients between microbiota and environmental indicators, 
displayed as a cluster heatmap, with red indicating positive correlation and blue indicating negative correlation. 
Deeper colors signify stronger correlations. Con/Control: control group with standard diet; CDD: choline-
deficient high-fat diet group; MI: metformin-treated choline-deficient high-fat diet group; ASV: Amplicon 
Sequence Variants; p-values obtained via two-tailed unpaired Student’s t-tests; *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001; ns: no significance.
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proteins, by regulating the transport of nucleotides and vitamin C, may impact cellular energy balance and redox 
status. These factors are critical regulators of fatty acid synthesis and degradation. By modulating the availability 
and metabolism of nucleotides and ascorbic acid, ‘AzgA proteins’ potentially influence key biochemical pathways 
that dictate the synthesis and breakdown of fatty acids, pivotal processes in maintaining cellular health and 
metabolic homeostasis.

Subsequently, we employed BugBase to predict nine potential phenotypes, including Aerobic, Anaerobic, 
Contains Mobile Elements, Facultatively Anaerobic, Forms Biofilms, Gram Negative, Gram Positive, Potentially 
Pathogenic, and Stress Tolerant. This predictive analysis allows for a comprehensive understanding of the 
microbial community’s functional capabilities and potential impacts on the host environment. By characterizing 
these phenotypes, we can infer important aspects of microbial behavior, interaction, and overall impact on the 
ecosystem or host. Through meticulous analysis and screening of our results, we have chosen to present only 
the most significant outcomes from three analyses: Facultatively Anaerobic, Forms Biofilms, and Gram Negative 
(Fig. 4F). In the analysis of Facultatively Anaerobic, we observed a stark contrast in the expression of Tenericutes 
in the gut of rats with severe MAFLD, where it dropped to zero, while maintaining an abundance of over 0.05 in 
both the control group and the treated MAFLD rats. In the cases of Forms Biofilms and Gram Negative, there 
was a notable increase in the abundance of Proteobacteria expression in MAFLD rats, while no expression was 
detected in the control group for Proteobacteria. These findings highlight the distinct microbial shifts associated 
with the condition and potentially offer insights into the pathophysiological mechanisms underlying MAFLD.

To ascertain the specific effects of metformin on the gut microbiota, we once again utilized the Spearman 
Correlation Coefficient to compute the correlation between metformin and various gut microorganisms. The 
relationships were then depicted in the form of a clustering heatmap (Fig. 4G), allowing us to visualize and discern 
the intricate interactions between metformin and the gut microbiome. In the correlational cluster analysis, it is 
evident that metformin has influenced the abundance of certain microbes in the rat gut, displaying a significant 
positive or negative correlation with the usage of the drug. This observation highlights the discernible impact of 
metformin on the gut microbial composition, suggesting a direct or indirect interaction between the medication 
and the microbial community. After the administration of metformin, there was a notable decrease in the relative 
abundance of ‘g__Desulfovibrionaceae_unclassified’, ‘g__Alloprevotella’, ‘g_Bilophila’, ‘g_Blautia’, ‘g_Romboutsia’, 
and ‘g_Rhodococcus’. Conversely, ‘g_Eubacterium_coprostanoligenes_group’, ‘g__Prevotellaceae_UCG_001’, and 
‘g_Parabacteroides’ exhibited a significant increase in abundance under the influence of the drug. These shifts 
in microbial populations reflect the substantial impact of metformin on the gut microbiome’s composition and 
dynamics.

Untargeted metabolomic analysis
Supplementary Fig. 3 and Supplementary Table 1 presents the Total Ion Chromatogram (TIC) and the distribution 
of metabolites in terms of m/z-retention time (rt) for metabolomics. By comparing the liver samples of two 
groups of MAFLD rats, it is evident that metformin effectively inhibits abnormal fat deposition in the liver (see 
Fig. 5A). Following the administration of metformin, over a thousand alterations were observed in the hepatic 
metabolites of MAFLD rats, suggesting that the liver metabolic patterns have also shifted in response to the 
drug’s influence. Notably, the number of metabolic ions both upregulated and downregulated after metformin 
treatment is considerably substantial. This suggests that both the progression of MAFLD and the treatment with 
metformin significantly impact the local metabolic patterns in the rat liver. A total of 56,471 metabolites have been 
positively identified in the liver samples, primarily involved in lipids and lipid-like molecules, organoheterocyclic 
compounds, organic oxygen compounds, and organic acids and derivatives (Supplementary Fig. 4A, Table 1). 
The metabolic analysis results, mapped onto the KEGG pathway classification chart (Supplementary Fig. 4B), 
indicate a significant correlation between the metabolites and the pathways involved in the onset and progression 
of human tumors. Furthermore, these metabolites are predominantly associated with the pathways of the 
digestive and endocrine systems. Specifically, within these metabolic pathways, the metabolites demonstrate 
substantial relevance to Global and overview maps, Amino acid metabolism, Carbohydrate metabolism, Lipid 
metabolism, and the Metabolism of cofactors and vitamins.

PCA (Principal Component Analysis) of the identified metabolic ions reveals each point in the graph as 
a representation of an individual sample, with the similarities and differences among all samples manifested 
through the separation and clustering trends observed in the plot. The aggregation of points indicates a high 
degree of similarity among the observed variables. Quality Control (QC) results demonstrate good consistency 
throughout the sample analysis process. The PCA results show distinct separation among the three groups 
under both positive and negative ion modes (Fig. 5B). These findings suggest a biochemical dysregulation in the 
serum of MAFLD rats, with a marked alteration in metabolic patterns. PLS-DA indicates significant metabolic 
differences between the three groups, signifying that metformin has a substantial impact on the hepatic 
metabolism of rats (Fig. 5C). Figures 5D-F present the PLS-DA score plots for pairwise comparisons among the 
three groups, along with permutation tests and volcano plots of differential metabolites. From the permutation 
plots, it can be observed that all three comparison models exhibit no overfitting, as indicated by all Q2 values 
being less than 0. This suggests that the models are robust and the identified differences in metabolites between 
the groups are statistically valid and not a result of model overfitting.

Comparative analysis of the differential substances’ expression across samples from different groups is 
visualized using a heatmap, where the intensity values of each metabolite have been normalized. The group 
clustering analysis results (Supplementary Fig.  2) reveal significant differences in untargeted metabolism 
pathways between the three groups of rats, indicating changes in metabolic patterns among them. From the 
overview provided in Fig. 5G, it is evident that there are classifiable changes in metabolite substances among 
the three groups, and these alterations are statistically significant. Figure 5H presents a pathway map involving 
secondary identified metabolites, with the top 20 pathways represented on the horizontal axis and the number of 
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Comparison pos_all pos_up pos_down neg_all neg_up neg_down all_regulate

MI/CDD 968 375 593 363 170 193 1331

Control/CDD 3151 1568 1583 2145 1227 918 5296

MI/Control 3210 1479 1731 2117 905 1212 5327

Table 1.  Statistical comparison of metabolic ion differences among groups. Comparison: Comparative groups 
A/B, with B as the control; ALL: Total number of high-quality features used for quantification; Up: Number of 
features upregulated in sample A; Down: Number of features downregulated in sample A; pos: positive; neg: 
negative.

 

Fig. 5.  Untargeted Metabolomics of Rat Liver. (A) Comparison of fat deposition in rat livers stained with Oil 
Red O between CDD and MI groups; (B) PCA analysis of metabolic ions from liver samples of all three rat 
groups and quality control samples; (C) PLS-DA analysis based on liver metabolites for comparison groups; 
(D) PLS-DA score plots for CDD and MI groups, permutation test plots based on PLS-DA, and volcano 
plots of metabolic changes; (E) PLS-DA score plots for MI and control groups, permutation test plots based 
on PLS-DA, and volcano plots of metabolic changes; (F) PLS-DA score plots for CDD and control groups, 
permutation test plots based on PLS-DA, and volcano plots of metabolic changes; (G) Heatmap displaying 
normalized detection intensities of metabolites after clustering of different samples; (H) Top 20 pathways 
involving secondary identified metabolites and their quantities. Con/Control: control group with standard 
diet; CDD: choline-deficient high-fat diet group; MI: metformin-treated choline-deficient high-fat diet group; 
p-values obtained via two-tailed unpaired Student’s t-tests; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: 
no significance.
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metabolites corresponding to each entry on the vertical axis. The illustration reveals that the pathways with the 
highest number of metabolites include ‘metabolic pathways’, ‘ABC transporters’, and the ‘biosynthesis of amino 
acids’.

Figure 6A displays a heatmap showcasing the overall metabolic differences, normalized and categorized 
by groups and Fig. 7 presents a comparative analysis of metabolic ions between two groups, filtered based on 
Variable Importance in Projection (VIP) values and p-values ≤ 0.05. This is followed by standard normalization 
and logarithmic scaling (log10d), with annotations using MS2Metabolite. Figure 6B employs a bubble chart to 
demonstrate the enrichment levels of overall KEGG differential metabolites. Figures 6C-E depict comparative 
results of KEGG enrichment obtained from pairwise comparisons between groups. The Rich Factor denotes 
the number of differential metabolites in a given KEGG pathway divided by the total number of metabolites in 
that pathway, with smaller p-values indicating higher KEGG enrichment. Overall, metabolic changes appear to 
have a strong correlation with ‘central carbon metabolism in cancer.’ In terms of metabolic pathways, significant 
impacts are observed on the ‘pentose phosphate pathway,’ ‘steroid hormone biosynthesis,’ ‘arachidonic acid 
metabolism,’ ‘linoleic acid metabolism,’ and the biosynthesis of ‘valine, leucine, and isoleucine.’ Notable effects 
are also evident on the ‘PPAR signaling pathway,’ the ‘intestinal immune network for IgA production,’ and the 
‘serotonergic synapse.’

In the group comparisons, MAFLD rats exhibited enriched expression in the ‘pentose phosphate pathway,’ 
‘steroid hormone biosynthesis,’ ‘arachidonic acid metabolism,’ and ‘linoleic acid metabolism’ relative to the 
control group rats. Post-treatment with metformin, MAFLD rats demonstrated lesser enrichment in ‘endocrine 
resistance’ compared to untreated MAFLD rats. In terms of lipid metabolism, the enrichment level of ‘arachidonic 
acid metabolism’ in the livers of drug-treated rats appeared surprisingly positive. Additionally, the enrichment 
in ‘linoleic acid metabolism’ and ‘alpha-linolenic acid metabolism’ was also superior in the treated MAFLD rats 
compared to the untreated ones. After drug treatment in MAFLD rats, there was a decrease in the enrichment 
of ‘Retinol metabolism.’ These pathway alterations may contribute to the reduced fat accumulation. Similarly, 
treated MAFLD rats displayed differences in enrichment levels in the ‘PPAR signaling pathway,’ the ‘intestinal 
immune network for IgA production,’ and the ‘serotonergic synapse’ compared to untreated rats. Specifically, the 
enrichment of the ‘PPAR signaling pathway’ decreased post-treatment, while the ‘intestinal immune network for 
IgA production’ and the ‘serotonergic synapse’ showed an increase.

The heatmap in Supplementary Fig. 8 highlights the clear metabolic differences between rats. The most notable 
changes include increased expression of ‘Warfarin,’ ‘LysoPE 22:5,’ ‘Formiminoglutamic,’ ‘2,5-Dimethoxy-4-
isopropylthiophenethylamine,’ and ‘4-hydroxy-2H-chromen-2-one,’ along with decreased expression of ‘1-(beta-
D-Ribofuranosyl)-1,4-dihydronicotinamide,’ ‘Daidzein,’ ‘Apigenin,’ ‘Enterolactone,’ ‘Glu-Leu,’ ‘Ethoxyquin,’ and 
‘LysoPS 20:5’. Regarding the effects of metformin intervention, we focused on the treated MAFLD rats, where an 
evident increase in the expression of ‘1-(beta-D-Ribofuranosyl)-1,4-dihydronicotinamide,’ ‘DL-Norleucinamide,’ 
and ‘Nudifloramide’ was observed, while expressions of ‘D-Alloisoleucine,’ ‘3-[3-(Sulfooxy)phenyl] propanoic 
acid,’ ‘2-Methylbenzothiazole,’ ‘4-Heptenal diethyl acetal,’ ‘3alpha,7alpha,12alpha,25-Tetrahydroxy-5beta-
cholestane-24-one,’ and ‘Thioarginine’ decreased significantly. Therefore, leveraging the significant differences in 
metabolites between the two groups (VIP > 1 and P < 0.05), further analysis was conducted on related metabolic 
pathways (Supplementary Fig. 9). The data indicates that in MAFLD and liver fibrosis rats, the primary affected 
pathways were ‘Pantothenate and CoA biosynthesis,’ ‘Glutathione metabolism,’ and ‘Purine metabolism.’ Post-
metformin treatment, ‘Nicotinate and nicotinamide metabolism,’ ‘Pyrimidine metabolism,’ ‘Pentose phosphate 
pathway,’ ‘Glutathione metabolism,’ and ‘Histidine metabolism’ in MAFLD rats were significantly impacted.

In summary, these results suggest substantial alterations in the metabolic patterns of MAFLD rats, with 
metformin playing a role in reversing these changes.

Lipid metabolism analysis
Supplementary Fig. 5 and Supplementary Table 2 presents the TIC and the distribution of metabolites in terms 
of m/z-retention time (rt) for lipidomic studies. Supplementary Fig. 6 and Table 2 illustrate the variations in 
lipid metabolism, with 29,799 positive metabolites and 26,656 negative metabolites identified within the lipid 
metabolism category of the HMDB Super class.

Figure 7A’s KEGG pathway classification chart demonstrates that lipid metabolism and the metabolism of 
cofactors and vitamins have the highest number of metabolites. Figure 7B lists the top 40 pathway entries in the 
secondary identification of metabolite differences, highlighting the metabolic pathways in which 17 metabolites 
undergo changes. Table  2 and Supplementary Fig.  7 display the number of upregulated and downregulated 
metabolites between different groups. There are significant differences, amounting to thousands of metabolites, 
in the lipid metabolism between normal and MAFLD rats. However, the difference in lipid metabolism between 
metformin-treated and untreated MAFLD rats is smaller, with a total of 158 metabolic ions showing significant 
changes. PCA and PLS-DA score plots in Figs. 7C and D illustrate significant differences in lipid metabolites 
between MAFLD and control rats, and between medicated and unmedicated rats. Detailed comparisons between 
these groups are presented in Fig. 8.

The cluster analysis heatmap in Fig.  7E reveals distinct differences in lipid metabolites between groups, 
with the expression levels in the QC group indicating effective quality control. The chart clearly demonstrates 
significant disparities in lipid metabolism among the groups.

Figure 8 presents the PLS-DA score plots for pairwise comparisons among three groups, along with 
permutation tests and volcano plots for differential metabolites. The permutation plots reveal that all three 
comparison models exhibit no overfitting, as evidenced by all Q2 values being less than 0. This indicates that 
the models are robust and that the differences in metabolites between the groups are statistically significant, not 
merely a result of overfitting in the model.
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Fig. 6.  Comparison of untargeted metabolomics in rat livers. (A) Overall metabolic differences normalized 
and categorized by groups. (B) Results of KEGG enrichment analysis represented by the Rich Factor ​(​​​h​t​t​p​:​/​/​w​
w​w​.​K​E​G​G​.​j​p​/​K​E​G​G​/​k​e​g​g​1​.​h​t​m​l​​​​​)​, indicating the number of differential metabolites in a given KEGG pathway 
relative to the total number of metabolites in that pathway, visualized using ggplot2. (C) Differences in KEGG 
enrichment of differential metabolites between the MI group and the control group in rats. (D) Differences 
in KEGG enrichment of differential metabolites between the MI group and the CDD group in rats. (E) 
Differences in KEGG enrichment of differential metabolites between the CDD group and the control group 
in rats. Con/Control refers to the control group with a standard diet; CDD denotes the group with a choline-
deficient, high-fat diet; MI indicates the group treated with metformin on a choline-deficient, high-fat diet. 
Kanehisa, M.; “Post-genome Informatics”, Oxford University Press (2000).
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Supplementary Fig. 8A depicts a KEGG bubble chart for differential metabolites using ggplot2, illustrating 
the KEGG enrichment analysis results through a scatter plot. The Rich Factor represents the number of 
differential metabolites in a given KEGG pathway divided by the total number of metabolites in that pathway. 
It is evident from the chart that lipid metabolism plays a significant role in NAFLD and small-cell lung 
cancer. In terms of metabolic pathways, there are noticeable enrichments in ‘Galactose metabolism,’ ‘Steroid 

Comparison pos_all pos_up pos_down neg_all neg_up neg_down all_regulate

MI/CDD 90 17 73 68 4 64 158

Control/CDD 2935 1110 1825 1651 601 1050 4586

MI/Control 2963 1813 1150 1460 973 487 4423

Table 2.  Statistical comparison of lipid metabolic ion differences among Groups. Comparison: Comparative 
groups A/B, with B as the control; ALL: Total number of high-quality features used for quantification; Up: 
Number of features upregulated in sample A; Down: Number of features downregulated in sample A; pos: 
positive; neg: negative.

 

Fig. 7.  Comparison of lipid metabolite differences in rat livers across groups. (A) KEGG pathway classification 
chart. (B) The top 40 pathway entries involving metabolites identified at the secondary level of metabolic 
differences. (C) PCA analysis of lipid metabolism ions from liver samples of all three groups of rats and quality 
control samples. (D) PLS-DA analysis based on liver lipid metabolites in the control group. (E) Grouped 
display of the detection intensity information of each metabolite in different samples (after normalization of 
intensity values). Con/Control refers to the control group with a standard diet; CDD denotes the group with a 
choline-deficient high-fat diet; MI indicates the group treated with metformin on a choline-deficient high-fat 
diet.
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biosynthesis,’ ‘Primary bile acid biosynthesis,’ ‘Arachidonic acid metabolism,’ ‘Linoleic acid metabolism,’ and 
‘Retinol metabolism.’ The ‘PPAR signaling pathway,’ ‘Longevity regulating pathway-worm,’ ‘Intestinal immune 
network for IgA production,’ ‘Serotonergic synapse,’ and ‘Phototransduction-fly’ also show changes. Notably, 
the unusual enrichment of ‘Ovarian steroidogenesis’ in all-male rats suggests a potential resistance to MAFLD 
progression, as estrogen inhibits abnormal fat deposition and appears to resist fibrosis. The group clustering 
analysis results (Supplementary Fig. 10B) reveal significant differences in lipid metabolism pathways between 
the three groups of rats, indicating changes in metabolic patterns among them. These changes are further 
compared in Supplementary Fig. 7.

Although the differences are not as pronounced as those between the MAFLD model and the normal rat 
model, there are still noticeable changes in the lipid metabolites of the rat liver after metformin treatment. 
Supplementary Fig. 10C-E display KEGG bubble charts depicting differential metabolites associated with hepatic 
lipid metabolism across three groups of rats. Relative to the control group, untreated MAFLD rats exhibited 
pronounced aberrant enrichment in pathways such as ‘Galactose metabolism,’ ‘Steroid biosynthesis,’ ‘Primary bile 
acid biosynthesis,’ ‘Arachidonic acid metabolism,’ ‘Linoleic acid metabolism,’ ‘Alpha-linolenic acid metabolism,’ 

Fig. 8.  Inter-group differences in lipid metabolites in rat livers. (A) PLS-DA score plots for the MI and CDD 
groups, including permutation test plots based on PLS-DA and volcano plots of metabolic changes. (B) PLS-
DA score plots for the MI and control groups, featuring permutation test plots based on PLS-DA and volcano 
plots of metabolic changes. (C) PLS-DA score plots for the CDD and control groups, with permutation test 
plots based on PLS-DA and volcano plots of metabolic changes. Con/Control refers to the control group with 
a standard diet; CDD denotes the group with a choline-deficient, high-fat diet; MI indicates the group treated 
with metformin on a choline-deficient, high-fat diet.
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‘Retinol metabolism,’ and ‘Biosynthesis of unsaturated fatty acids.’ These alterations suggest a broad disruption 
of metabolic processes, encompassing carbohydrate metabolism, steroid biosynthesis, bile acid synthesis, and 
the metabolism of various fatty acids and vitamin A. In contrast, rats treated with metformin did not display this 
aberrant enrichment in ‘Galactose metabolism’ and ‘Primary bile acid biosynthesis,’ indicating that metformin 
may exert a regulatory effect on these specific metabolic pathways, potentially aiding in the restoration of 
normal metabolic function or at least mitigating metabolic dysregulation. Post-metformin treatment, MAFLD 
rats showed a marked reduction in the number of aberrant metabolites. Compared to untreated MAFLD 
counterparts, several lipid metabolism-related signaling pathways and functional networks were aberrantly 
enriched, including ‘PPAR signaling pathway,’ ‘Vascular smooth muscle contraction,’ ‘Regulation of lipolysis 
in adipocytes,’ ‘Aldosterone synthesis and secretion,’ ‘Fat digestion and absorption,’ and ‘Vitamin digestion and 
absorption.’ Notably, ‘Regulation of lipolysis in adipocytes,’ ‘Fat digestion and absorption,’ and ‘Vitamin digestion 
and absorption’ are closely linked to the processes of lipid metabolism and deposition, while ‘Vascular smooth 
muscle contraction’ and ‘Aldosterone synthesis and secretion’ may be related to the development of hepatic 
fibrosis. These pathways could be critical in the metformin-mediated delay of abnormal fat deposition and 
fibrosis in MAFLD. Our findings underscore the potential of metformin to decelerate the progression of MAFLD 
by modulating multiple mechanisms, including direct effects on lipid metabolic pathways and improvements in 
the digestion and absorption of fatty acids and vitamins.

It is noteworthy that rats treated with metformin displayed metabolic alterations in the ‘Sphingolipid 
signaling pathway’ when compared to untreated MAFLD rats, as shown in Supplementary Fig.  10C. The 
sphingolipid signaling pathway is implicated in the regulation of a multitude of cellular functions, including 
cell survival, proliferation, and apoptosis. These processes play a crucial role in the development of hepatic 
lipid accumulation. Metabolites of sphingolipid metabolism, such as ceramides, have been implicated in the 
accumulation of fat in the liver, with studies confirming that ceramides are involved in the promotion of fatty 
acid synthesis and storage.

Furthermore, disease-relevance analysis has confirmed an abnormal enrichment in conditions related to 
human NAFLD in MAFLD rats, regardless of metformin intervention, validating the accuracy of the model 
used in this study.

Quality evaluation of metabolomics data
In tissue metabolomics, the QC samples exhibiting good clustering in the PCA score plot indicate that the 
sample preprocessing and experimental conditions are reliable, ensuring the accuracy of the data obtained. This 
clustering demonstrates consistency and stability in the metabolic profiles across the QC samples, reflecting the 
robustness of the analytical method and the reliability of the subsequent results.

Discussion
MAFLD is a chronic liver condition characterized by fat accumulation in the liver, often associated with metabolic 
dysregulation, and is increasingly prevalent worldwide. Current research suggests a crucial role of gut microbiota 
dysbiosis in MAFLD, particularly in liver metabolism and inflammatory processes33–35. The gut microbiome, a 
complex ecosystem, interacts with the host to influence the health of various organs, including the liver36,37. 
In MAFLD, imbalances in gut microbiota may impair intestinal barrier functions, potentially increasing the 
entry of enterogenic toxins into the bloodstream, which can directly or indirectly affect liver metabolism and 
inflammation38,39. Furthermore, alterations in the gut microbiome are linked to liver lipid metabolism disorders. 
Changes in microbial composition, such as a decrease in Firmicutes and an increase in Bacteroidota, have been 
closely associated with dysregulated fat metabolism40–42. These alterations could contribute to the development 
of MAFLD. Conversely, an increase in bacteria like Shigella and Enterococcus in MAFLD patients may relate 
to liver inflammation and fibrosis43,44. Our study observed specific changes in the abundance of gut microbial 
groups in MAFLD rats, such as increased Alistipes, Desulfovibrionaceae, Tyzzerella, and Peptococcaceae, and 
a significant decrease in Akkermansia, Ligilactobacillus, and Lactobacillus. Additionally, major phyla such as 
Firmicutes, Bacteroidota, and Verrucomicrobiota showed relative abundance variations across different groups.

Dietary choline deprivation serves as a classical experimental model for studying the pathophysiology of 
MAFLD. Its central mechanism lies in disrupting hepatic phosphatidylcholine (PC) synthesis and very-low-
density lipoprotein (VLDL) secretion. Under choline-deficient dietary conditions, insufficient methyl donors 
impair hepatic PC synthesis, leading to defective lipid assembly into VLDL particles and their subsequent 
secretion into the bloodstream. This blockade triggers abnormal intracellular triglyceride (TG) accumulation, 
directly driving steatosis. Notably, the choline deprivation model not only recapitulates the fatty liver phenotype 
in rodents but also demonstrates high pathophysiological relevance to human lean MAFLD, as it bypasses 
confounding metabolic factors like obesity and insulin resistance. This underscores the conserved role of the PC/
VLDL pathway as a core mechanism for hepatocyte lipid export across species. Recent studies further reveal that 
prolonged choline deprivation activates hepatic stellate cells, driving collagen deposition and fibrotic progression 
via oxidative stress and mitochondrial dysfunction (like CPT1A-mediated inhibition of fatty acid oxidation), 
thereby establishing a pathological cascade from simple steatosis to steatohepatitis and fibrosis. This choline-
deficient model provides a unique tool for dissecting obesity-independent drivers of lean MAFLD, particularly 
in metabolic disturbances dominated by mitochondrial lipid dysmetabolism or ER stress-related lipotoxicity. Its 
translational value lies in identifying impaired PC synthesis and VLDL secretion defects as potential therapeutic 
targets for lean MAFLD patients, while offering a standardized platform for screening weight-loss-independent 
therapeutic strategies targeting these pathways.

The results demonstrate that metformin significantly alters the abundance of specific microorganisms, 
with certain microbial populations showing a marked decrease, while others increase, indicating a profound 
impact of metformin on the gut microbiome. Notably, after the administration of metformin, there was a 
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significant reduction in the relative abundance of microorganisms such as ‘g__Desulfovibrionaceae_unclassified’, 
‘g__Alloprevotella’, ‘g_Bilophila’, ‘g_Blautia’, ‘g_Romboutsia’, and ‘g_Rhodococcus’, while ‘g_Eubacterium_
coprostanoligenes_group’, ‘g__Prevotellaceae_UCG_001’, and ‘g_Parabacteroides’ saw a considerable increase. 
This underscores the significant influence of metformin on the composition and dynamics of the intestinal 
microbiota. The alterations in these microbial communities indicate the inhibitory effect of metformin on chronic 
inflammatory responses caused by MAFLD45. At the same time, the changes in the microbial communities 
assist in converting cholesterol within the body into coprostanol, a form less readily absorbed46,47. This process 
potentially aids in reducing cholesterol levels in the blood, subsequently influencing the deposition of lipids in 
the liver.

Furthermore, an analysis of hepatic metabolites in MAFLD rats revealed that over a thousand changes 
occurred under the influence of metformin, involving 56,471 identified metabolites, including lipids, organic 
oxygen compounds, and organic acids. These alterations are associated with aspects such as the onset and 
progression of human tumors, as well as digestive and endocrine systems. Significant differences in metabolic 
patterns were confirmed among the control, MAFLD, and metformin-treated groups. Overall, these findings, 
as shown in Supplementary Fig. 11, highlight the dual impact of metformin on the gut microbiota and liver 
metabolism in rats, particularly its prominent role in the regulation of lipid metabolism. This provides crucial 
insights for further research into the potential mechanisms of metformin in the treatment of metabolic diseases.

Dysbiosis of the gut microbiome, or an imbalance in the intestinal microbial community, and alterations in 
liver metabolism play crucial roles in the pathogenesis of MAFLD. The gut microbiota interacts with the host’s 
metabolism through various mechanisms. Specifically, in the MAFLD rat model, dysbiosis of the gut microbiota 
can lead to impaired intestinal barrier function48–50. This impairment increases the translocation of endotoxins 
and other inflammatory inducers, which, via the portal vein, enter the liver and cause local alterations in hepatic 
metabolic patterns. Additionally, the gut microbiome is capable of regulating bile acid metabolism, thereby 
influencing hepatic lipid metabolism and energy balance51–53. The liver, as the center of metabolic activity, 
is responsible for the synthesis and breakdown of lipids. In the realm of liver lipid metabolism, research has 
uncovered that butyrate treatment reduces triglyceride accumulation and impacts the expression of genes 
associated with lipid and glucose metabolism54–56. Furthermore, butyrate enhances the clearance and oxidation 
of fatty acids, and influences the expression of genes linked to inflammation and tissue remodeling57,58. These 
findings highlight the crucial role of butyrate and its producing bacteria in liver lipid metabolism, suggesting 
their potential in alleviating MAFLD.

In the pathological analysis of liver tissue sections, we found that metformin plays a certain role in delaying 
liver fibrosis. Pathological results indicate that, although the metformin group also exhibited a tendency towards 
liver fibrosis, the degree of liver damage and the severity of fibrosis were lower compared to the HFD group. 
Therefore, we can deduce that metformin possesses the capacity to maintain normal liver function and slow 
down the progression of fibrosis. Recent studies have increasingly focused on the potential therapeutic role of 
metformin in liver fibrosis59–61. Metformin has shown promise in modulating pathways associated with hepatic 
fibrosis. Its mechanism of action is multifaceted, involving the activation of AMPK, a crucial regulator of cellular 
energy homeostasis62–64. Activation of AMPK by metformin leads to the inhibition of hepatic stellate cells (HSCs), 
the key effector cells in the development of liver fibrosis65,66. Additionally, metformin exerts anti-inflammatory 
and anti-oxidative effects, which are beneficial in alleviating chronic liver inflammation and oxidative stress, 
thereby potentially impeding the progression of fibrosis67. These studies suggest that metformin’s potential role 
extends beyond glucose regulation, indicating its capability to attenuate liver fibrosis through the modulation 
of lipid metabolism and cellular stress responses. However, further research is needed to fully understand 
metformin’s therapeutic mechanisms. Before definitive clinical evidence and safety assessments are established, 
the use of this drug should be approached with caution.

The interaction between the gut microbiome and liver metabolism forms what is known as the “gut-liver 
axis,” which plays a central role in the development of MAFLD68. Dysbiosis in the gut microbiota, leading to an 
increase in endotoxins and the production of inflammatory mediators, can directly impact liver metabolism, 
exacerbating liver cell damage and fibrosis. At the same time, changes in liver metabolism can reciprocally affect 
the composition and function of the gut microbiota. Therefore, research on the gut-liver axis in MAFLD patients 
is not only necessary but also holds potential for clinical translation. It is noteworthy that in MAFLD rats, there 
is a significant increase in the presence of the Desulfobacterota phylum, which is not observed in the intestines 
of normal rats. Research has confirmed that changes in the Desulfobacterota phylum are associated with certain 
disease states, such as MAFLD, inflammatory bowel disease, and colorectal cancer69,70. In these diseases, an 
abnormal increase in Desulfobacterota may be related to the onset and progression of the disease. Our study 
findings further corroborate the correlation between this type of microorganism and MAFLD.

In MAFLD rats undergoing metformin treatment, significant changes were observed in the gut microbial 
community, particularly a notable decline in specific microbial categories compared to untreated MAFLD 
rats. These include the Alistipes genus, Firmicutes phylum, Tannerellaceae family, and Ruminococcus genus. 
These alterations suggest that metformin may exert its therapeutic effects by modifying the composition of 
gut microbiota, impacting the abundance and diversity of these microbial communities. Such shifts in the 
microbiome could be related to metformin’s role in regulating metabolism, enhancing insulin sensitivity, and 
other potential health benefits. This discovery provides crucial insights into understanding the mechanisms of 
action of metformin and the complex interactions between gut microbiota and host health.

After treatment with metformin, significant alterations were observed in the metabolic aspects of MAFLD 
rats. There was a heightened enrichment in lipid metabolism pathways like “arachidonic acid metabolism,” 
“linoleic acid metabolism,” and “alpha-linolenic acid metabolism,” while there was a reduction in the enrichment 
of “retinol metabolism,” potentially linked to decreased fat accumulation. In signaling pathways, post-treatment 
showed a decrease in the enrichment of the “PPAR signaling pathway,” but an increase in the “intestinal immune 
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network for IgA production” and the “serotonergic synapse.” Moreover, changes were noticed in the expression 
of specific metabolites; “1-(beta-D-Ribofuranosyl)-1,4-dihydronicotinamide,” “DL-Norleucinamide,” and 
“Nudifloramide” saw an increase, whereas “D-Alloisoleucine” and “Thioarginine” experienced a significant 
decrease. The treatment with metformin also profoundly impacted “nicotinate and nicotinamide metabolism,” 
“pyrimidine metabolism,” “pentose phosphate pathway,” “glutathione metabolism,” and “histidine metabolism.” 
These findings indicate that metformin’s effects extend beyond specific metabolic pathways, influencing lipid 
metabolism, signaling processes, and mechanisms related to intestinal immunity and neuro-transmission. 
Currently, the role of metformin in regulating lipid metabolism disorders has also garnered interest among 
researchers. In mouse experiments, metformin has been proven to effectively reduce metabolic disorders and 
kidney damage caused by a high-fat diet71. It lowers the expression of fat-induced factors, reduces macrophage 
infiltration, and decreases triglyceride levels in the liver. Combined use of metformin with pioglitazone 
significantly reduces elevated levels of free fatty acids (FFA), diacylglycerol, and triglycerides72. It also diminishes 
the expression of genes associated with FFA uptake and de novo lipogenesis, including Cd36, Fads1, Fads2, and 
Pklr73.

Lipid metabolism, along with cofactor and vitamin metabolism, plays a significant role in NAFLD. Notably, 
significant abnormalities are observed in pathways such as ‘galactose metabolism,’ ‘steroid biosynthesis,’ and 
‘bile acid biosynthesis.’ Post-treatment with metformin, MAFLD rats demonstrated notable changes in certain 
metabolic pathways, particularly in ‘PPAR signaling’ and ‘fat digestion and absorption.’ This suggests that 
metformin may regulate these specific metabolic pathways, aiding in restoring normal metabolic functions or 
at least alleviating metabolic dysregulation. Compared to untreated MAFLD rats, those treated with metformin 
exhibited metabolic changes in the ‘phosphatidylinositol signaling pathway’, which plays a critical role in 
regulating various cellular functions, including cell survival, proliferation, and apoptosis, and is crucial for the 
development of hepatic fat accumulation74. After metformin treatment, MAFLD rats showed a relative decrease 
in the enrichment of ‘endocrine resistance.’ In terms of lipid metabolism, there was an unexpected positive 
change in the enrichment of ‘arachidonic acid metabolism’ in the livers of the treated rats. Furthermore, ‘linoleic 
acid metabolism’ and ‘alpha-linolenic acid metabolism’ were also superior in the treated MAFLD rats compared 
to the untreated ones. Post-treatment, there was a decrease in the enrichment of ‘retinol metabolism’ in MAFLD 
rats, suggesting a potential link between metformin and the activation of HSCs. Notably, metformin treatment 
showed significant regulatory effects on certain pathways, such as ‘regulation of lipolysis in adipocytes,’ ‘fat 
digestion and absorption,’ and ‘vitamin digestion and absorption,’ which are closely related to the process of lipid 
metabolism and deposition. Pathways like ‘vascular smooth muscle contraction’ and ‘aldosterone synthesis and 
secretion’ may be linked to the development of liver fibrosis. These pathways could be key to metformin’s role in 
delaying abnormal fat deposition and fibrosis in MAFLD.

The choline-deficient, high-fat diet model in rodents, while valuable for studying hepatic VLDL synthesis 
defects and steatosis progression, exhibits some divergences from human lean MAFLD pathophysiology that 
warrant caution in translational interpretations. A key distinction lies in the accelerated fibrosis timeline in 
rodent models, where advanced collagen deposition can occur within weeks of dietary intervention, contrasting 
sharply with the years-long, multifactorial fibrotic progression observed in humans. This discrepancy arises 
from the absence of human-relevant genetic and environmental variabilities in controlled rodent settings—
such as polygenic risk factors, microbiome diversity, or lifestyle heterogeneity—which collectively modulate 
disease severity and therapeutic responses in human populations. Furthermore, the rat model bypasses obesity-
independent but clinically relevant drivers of lean MAFLD (such as mitochondrial dysfunction, hormonal 
influences, or epigenetic modifications) by mechanistically overemphasizing acute lipid-export blockade. These 
artificial constraints limit the model’s capacity to replicate the stochasticity of human disease, particularly in 
non-obese individuals with heterogeneous metabolic etiologies. Importantly, environmental factors like chronic 
low-grade endotoxemia, circadian disruption, or intermittent nutrient stressors—common in human MAFLD—
are absent in standardized rodent protocols. Researchers must explicitly avoid overgeneralizing findings from 
such accelerated, reductionist models to all MAFLD subtypes without rigorous validation in human cohorts. 
To bridge these translational gaps, future studies should prioritize human microbiota-transplanted gnotobiotic 
models to recapitulate host-microbe crosstalk, coupled with longitudinal dietary interventions mimicking real-
world metabolic variability. This approach would better align preclinical data with the complex, multifactorial 
nature of lean MAFLD while preserving the mechanistic insights provided by the rat model.

In summary, our study has confirmed changes in the gut microbiome and liver metabolic patterns during the 
liver fibrosis process in lean MAFLD rats. The use of metformin can, to some extent, slow the progression of liver 
fibrosis by influencing both gut microbiota and hepatic metabolic patterns.

Data availability
The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive (Genomics, 
Proteomics & Bioinformatics 2021) in National Genomics Data Center (Nucleic Acids Res 2022), China Nation-
al Center for Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: CRA014724) 
that are publicly accessible at https://ngdc.cncb.ac.cn/gsa75,76. We show our full respect and gratitude to all the 
participants in the study. The mechanism illustrations were created by Figdraw (http://www.figdraw.com).The 
datasets used and/or analyzed during the current study are available from the corresponding author on reason-
able request.
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