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for fine grained medical image
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Fine-grained visual classification is fundamental for medical image applications because it detects
minor lesions. Diabetic retinopathy (DR) is a preventable cause of blindness, which requires exact and
timely diagnosis to prevent vision damage. The challenges automated DR classification systems face
include irregular lesions, uneven distributions between image classes, and inconsistent image quality
that reduces diagnostic accuracy during early detection stages. Our solution to these problems includes
MSCAS-Net (Multi-Scale Cross and Self-Attention Network), which uses the Swin Transformer as the
backbone. It extracts features at three different resolutions (12 x 12, 24 x 24, 48 x 48), allowing it to
detect subtle local features and global elements. This model uses self-attention mechanics to improve
spatial connections between single scales and cross-attention to automatically match feature patterns
across multiple scales, thereby developing a comprehensive information structure. The model becomes
better at detecting significant lesions because of its dual mechanism, which focuses on both attention
points. MSCAS-Net displays the best performance on APTOS and DDR and IDRID benchmarks by
reaching accuracy levels of 93.8%, 89.80% and 86.70%, respectively. Through its algorithm, the

model solves problems with imbalanced datasets and inconsistent image quality without needing

data augmentation because it learns stable features. MSCAS-Net demonstrates a breakthrough in
automated DR diagnostics since it combines high diagnostic precision with interpretable abilities to
become an efficient Al-powered clinical decision support system. The presented research demonstrates
how fine-grained visual classification methods benefit detecting and treating DR during its early
stages.

Keywords Fine-grained visual classification, Multi-scale feature extraction, Attention mechanism, Deep
learning, Medical images, Diabetic retinopathy classification

DR is a progressive eye disease that develops due to long-standing diabetes, affecting the blood vessels of the
retina. Thus, it is a leading cause of preventable blindness worldwide, including non-proliferative to proliferative
retinopathy stages of different severity2. Since vision loss is prevented by early diagnosis and treatment,
automated classification systems are critical to help healthcare professionals diagnose. The classification of DR
has several difficulties. The variability in lesion appearances, like microaneurysms, hemorrhages, and exudates,
can vary quite a bit between patients, which is one of the significant problems faced. Additionally, comorbidities,
including cataracts, can hinder the evaluation of retinal images due to obscuration®. There is, in fact, class
imbalance in datasets, and DR is in the advanced stages of that condition, which means we have too few of them
in the dataset and thus also in the machine learning model training®.

Moreover, for accurate diagnosis, pictures of high-resolution fundus images are necessary, which require
large amounts of computational resources’. Since it is necessary to make clinical decisions, the biggest challenge
related to the use of automated systems in healthcare is to provide explainability and trustworthiness of the
model predictions to healthcare professionals to validate clinical decisions that are based on the model’s
predictions®. Nonetheless, it is crucial to acknowledge the complexities faced when working on DR classification
systems, including the competition’s large-scale dataset and the need for better data augmentation, deep learning
methods, and synthetic oversampling methods to enhance the DR classification models’ performance’.
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However, the general methods for detecting subtle features in medical images suffer from losses in their
diagnosis due to anatomical variations, obscured abnormalities (e.g., microaneurysm or faint lesions), or noise,
making it not easy to detect early-stage diagnosis. In most deep learning approaches, details are ignored, and only
essential patterns are captured. Simultaneous model training is tricky, as different equipment and conditions will
inevitably bring about different image qualities and imbalances in the dataset. In addition, clinicians’ trust in the
predictions is impaired when dealing with minute abnormalities because the predictions lack interpretability.

To deal with these issues, we use attention mechanisms that increase sensitivity by focusing models on
important image regions and data generation (e.g., GANs) as well as those that introduce data heterogeneity
(i.e., diverse datasets) that can mitigate class imbalance®. CNN, together with the transformer, can work robustly
and embed global context and local details’. In contrast, fine-grained classification techniques based on self-
attention mechanisms aim to classify within subclasses by fine features without being limited by the use of single-
scale outputs, background interference, and texture similarities'?. Since these limitations have been identified,
advancements in multi-scale feature extraction and improved attention mechanisms are needed to overcome
them!!. These strategies improve the accuracy and confidence of both medical image processing systems and the
valuable detection of subtle but clinically essential features in, for example, diabetic retinopathy and oncologic
imaging.

To solve these problems, the MSCAS-Net model introduces a multistage feature extraction model that builds
the patches of different scales (12 x 12, 24 x 24, 48 x 48) to have both fine and coarse-grained information of DR
images. This method solves the feature extraction problem in complex datasets such as APTOS 2019 and DDR
using a self-attention mechanism to capture local dependencies and a cross-attention mechanism to integrate
global context for effective feature combination at various scales. The model tackles the dataset imbalance for
APTOS 2019 and IDRID by focusing on subtle lesions that are often missed in such cases. Cross-attention
alleviates the overfitting of the dominant classes and makes a balanced representation across all the DR severity
levels. Furthermore, the model naturally has inherent robustness to dataset variations due to the multi-scale
architecture of the model and thus requires minimal augmentation. MSCAS-Net learns more invariant features
and is less sensitive to variations in orientation, size, and quality by processing images at multiple scales. Self-
attention takes care of allowing relevant features that exist in the limited dataset. The model also deals with the
variability in image quality by the convolutional layer adjustments, i.e., 1x1, 2x2, 4x4, and the multi-scale
processing, which allows the model to cope with the different resolution and quality levels. The proposed two
models demonstrate robust performance in low-quality cases by employing cross-attention for maintaining
global context and self-attention for attention focused on relevant features for low-quality cases. With such a
comprehensive approach, MSCAS-Net is highly effective for DR classification and outperforms state-of-the-art
on various datasets.

Therefore, we have performed a detailed study on three data sets, APTOS, DDR, & IDRID, and demonstrated
high performance. In conclusion, the paper has the following key contributions:

o Novel MSCAS-Net Architecture: Introduces a Multi-Scale Cross and Self-Attention Network tailored for DR
classification, integrating multi-scale feature extraction and advanced attention mechanisms to handle com-
plex medical image analysis challenges like irregular lesions and variable image quality.

« Hierarchical Feature Extraction: Utilizes a Swin Transformer backbone to extract features at three resolutions
(12x12, 24 x 24, 48 x48), capturing both fine local details (e.g., microaneurysms) and global retinal struc-
tures for effective early-stage DR detection.

o Dual Attention Mechanism: Combines self-attention to enhance local dependencies within each scale and
cross-attention to align and fuse features across scales, improving diagnostic precision by capturing hierar-
chical relationships.

« Robustness to Dataset Issues: Addresses DR dataset challenges like class imbalance and inconsistent image
quality without heavy reliance on data augmentation, leveraging its multi-scale and attention mechanisms for
stable feature learning.

« High Performance and Interpretability: Achieves top accuracy on benchmark datasets (APTOS: 93.8%, DDR:
89.80%, IDRID: 86.70%) and provides interpretable heatmaps to highlight lesion regions, aiding clinical de-
cision-making and trust in AI diagnostics.

« Efficiency and Generalization: Employs efficient shifted window-based self-attention for reduced computa-
tional overhead and demonstrates strong cross-dataset generalization across diverse datasets, making it ad-
aptable for resource-constrained clinical settings.

Related work

Traditional image classification approaches

Convolutional Neural Networks (CNNs) are a type of neural network designed to work on spatial or temporal
hierarchical data. They can perform tasks such as image classification, object detection, medical image analysis,
etc. Convolutional layers extract spatial features, the dimensions of the space are reduced by pooling layers,
and activation functions are used, e.g., ReLU. Solutions to vanishing gradients and scaling have transformed
computer vision with the introduction of transformations to scale models and further architectures such as
AlexNet!'?, VGGNet'?, ResNet!* and EfficientNet’. Both RNNs and transformers can handle sequential data, and
transformers excel in language and vision tasks with computational cost. However, beyond CNNs, both RNNs
and transformers have limitations in long dependency’.

Interestingly, however, GANs can produce truly realistic samples®Autoencoders can be helpful for
dimensionality reduction in anomaly detection, and GNNs can be employed to handle graph data in molecular
modeling. Each architecture has strengths and weaknesses, so the architecture selection is problem-dependent
on the domain, data type, and computational constraints®. The biomedical field is utilizing text mining to extract
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insights from clinic reports, research papers, and lab tests, focusing on protein-protein interactions and entity-
relationship detection, enabling drug discovery and personalized treatment!®. Integration of IoMT and IoT in
healthcare, focusing on security threats and performance enhancement, highlighting limitations in Industry
5.0 and healthcare institutions!®. Wireless body area networks integrate cloud computing for real-time patient
monitoring, but new data privacy and security threats arise. A six-step framework for PPPs privacy and security
is provided!’.

Mondal et al. introduced EDLDR, combining DenseNet101 and ResNeXt architectures in an ensemble
with GAN-based data augmentation. The method achieved 86.08% accuracy for severity diagnosis and 96.98%
for DR identification but faced challenges with data imbalance across categories’. These works demonstrate
advances in DR classification using attention mechanisms, transfer learning, and ensemble techniques. The
cross-disease attention network (CANet) is used to diagnose diabetic retinopathy and macular edema using
individual attention mechanisms for feature selection. The model achieved 92.6% accuracy on the Messidor
dataset and 65.1% on the IDRiD datasetS. Blockchain technology offers a Blockchain-Based Access Control
Model (BBACM) for managing authorization rights for accessing patient physiological parameters and PHI,
improving access control, security, privacy, scalability, and PHI availability in healthcare data management'®.

Capsule network-based approach, employing CLAHE preprocessing and a sigmoid classifier, resulting in
99.1% accuracy on the Messidor dataset'®. EfficientNet-B0 with preprocessing to normalize illumination variance,
achieving 86.2% accuracy on the APTOS dataset and 84.8% on DDR, though the results were limited by dataset
dependency!. Similarly, Islam et al. applied CLAHE preprocessing with a transfer learning-based Xception
model, attaining 98.36% and 84.36% accuracy for DR identification and severity detection, respectively?’. Deep
learning architectures for analyzing digital social media data, addressing challenges like scalability, heterogeneity,
and multimodality, and predicting future trends in social media analytics?!-23.

Recent transformer-based models

Initially developed for natural language processing, transformer-based models are now widely used in medical
image processing due to their ability to model long-range dependencies and capture global context via self-
attention mechanisms. Vision Transformers (ViT) adapt transformers for image tasks by segmenting images
into patches, enabling efficient feature extraction without convolutions. Hybrid models integrating CNNs and
transformers combine local and global features, excelling in classification and segmentation tasks despite high
computational demands and extensive dataset requirements**?*. Zhao et al.” introduced CoT-XNet, integrating
a contextual transformer with Xception, achieving promising results on DR datasets like DDR, APTOS, and
EyePACS. Similarly, Ali Dihin et al.!” and Yang et al.?® demonstrated the Swin Transformer’s effectiveness in DR
grading, emphasizing its efficient attention mechanisms. Yan Y?’. proposed AlexViT, blending AlexNet with ViT
for DR classification, achieving 88.23% accuracy and notable efficiency. Attention mechanisms enhance feature
extraction by focusing on critical regions in images, improving interpretability, and highlighting pathological
areas. Madarapu et al.!! developed a deep integrative model for DR classification combining residual blocks,
channel-spatial attention mechanisms, and non-local blocks for robust feature representation. Furthermore,
Li et al.”® utilized ConvNeXt-base with attention mechanisms for DR detection, achieving high diagnostic
accuracy and interpretability and demonstrating significant advancements in attention-based medical imaging
approaches.

Fine-grained classification

Fine-graining in image processing® involves the detailed categorization of objects within a broader category,
often requiring advanced methodologies due to the subtle differences between classes. Techniques such as
attention mechanisms and deep learning architectures have enhanced fine-grained recognition. The use of region
grouping for interpretable and accurate recognition®® focuses on identifying the most discriminative regions
within images. Self-supervised structure modeling, as seen in Look-into-Object®! enables object recognition by
focusing on internal structures. Deep Convolutional Neural Networks (DCNN) in diagnosing and classifying
lung cancer using medical imaging, highlighting their significant contributions to early detection and treatment,
focusing on 2015-2024%2,

Dual cross-attention mechanisms®® and recurrent attention with multi-scale transformers* offer robust
solutions for refining classification through interrelated feature extraction. Salient mask-guided vision
transformers® and channel interaction networks®® emphasize interaction and region-specific attention for
improved accuracy. Moreover, counterfactual attention learning®” and Gaussian mixture models® address
weak supervision, enabling enhanced discrimination without exhaustive labeling. These approaches collectively
advance fine-grained image recognition, ensuring precise categorization.

Table 1 provides a comprehensive comparison of state-of-the-art CNN-based methods and techniques, and
Table 2 highlights advancements in Transformer-based approaches, showcasing their effectiveness in medical
image analysis, specifically for DR detection and classification.

Methodology

The diagram shows that MSCAS-Net (Multi-Scale Cross and Self-Attention network) is made to extract more
features from an input image for classification tasks ranging from convolution processing to advanced attention
mechanisms. So, we split up the input image into specific sizes of patches using a Swin Transformer. However,
this transformer splits the image at 3 scales (12x12x 1024, 24 x24x 512, 48 x48 x 256) to capture features of
different granularities. This multi-scale feature extraction provides fine and coarse details to be used further.
Complementary information is given in each scale to improve feature richness. The features are then processed
with three convolutions: 1x 1, 3x 3, and 4 3, and each is a fixed size of 1 x 1, 3x 3, and 4 x 3, respectively — as
a way of adjusting the spatial dimension of the features whilst improving their representation and maintaining
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Approaches Dataset DR grading (classes) | Accuracy (%)
Mondal et al.” APTOS 5 86.08

Zhao et al.? DDR, APTOS, EyePACS | 5 83.10, 84.18, 84.10
Vijayan et al.!? APTOS, DDR 5 86.20, 84.80
Islam et al.2° APTOS 2,5 98.36, 84.36
Oulhadj et al.** APTOS 5 85.28

Oulhadj et al.*° APTOS 5 86.54
Bodapati et al.*! APTOS, IDRID 5 84.17, 63.24
Fan et al.*? APTOS 5 85.32

Sugeno et al.*? APTOS 5 84.20

Shaik and Cherukuri** | APTOS, IDRiD 5 85.54, 66.41
Al-Antary and Arafa® | APTOS, EyePACS 2,5 §§ ég: ﬁ;%:gg
Abbasi et al.* Messidor, EyePACS 5 82.32,76.84
Badar? APTOS 3 92.73

Table 1. CNN-based state-of-the-art DR detection and Classification.

Study Model Dataset | Classes | Accuracy
Ali Dihin!® Dhin Window Transformer | APTOS | 5 85.3%
Yaoming Yang?®® Swin Transformer APTOS |5 85.3%,
Yan?’ AlexVit APTOS |5 88.23%
Mohammed Oulhadj® | Vision Transformer APTOS |5 88.18%
Dihin!? Wavelet-Attention Swin APTOS |5 86%

Table 2. Transformer-based state-of-the-art DR detection and Classification.

scale consistency. With this step, the model is able to process and refine the extracted features better so that the
most critical spatial relations within the image are preserved.

The features are then processed through self-attention blocks, which will help the model focus on key areas
of the image by learning internal dependency within the features. The self-attention mechanism guarantees that
the model does not have to rely on the global pattern of the image but can capture locally relevant patterns in
the feature maps. Via a cross-attention block, the output from the self-attention layers is merged. By utilizing
the integrated local and global contexts through the cross-attention block, the model will enhance its ability
to understand the overall structure and the crucial parts in the image. Instead of cross-attention, it takes the
queries, keys, and values from the outputs of self-attention and then focuses on the most important and relevant
parts between the different scales. Finally, the result of the cross-attention block is combined into a single feature
vector that contains the local and global feature information in one comprehensive representation. The image
is fed to the classification layer with the extracted and processed feature and is then classified according to this
vector. It is a good model to improve classification performance while exploiting a comprehensive combination
of multi-scale feature extraction, convolutional processing, self-attention, and cross-attention mechanisms that
are also highly efficient for image classification tasks.

Multi-scale feature extraction

The input image I € R¥* W ¢ be passed through the Swin Transformer backbone fswin for multi-scale
feature extraction. The image is split into patches at three distinct scales, resulting in feature maps at three
different levels:

Flevel = fowin (I,scale = 12 x 12) ¢ RF*W1x (1)
Flovelz = fowin (I,scale = 24 x 24) ¢ RH2x W2x C2 )
Flevels = fowin (I, scale = 48 x 48) ¢ RH3x Wsx Cs 3)

Where Flevelr represents global features extracted using large patches of 12 x 12 x 1024, Flevel2
captures mid-level features using 24 x 24 x 512 patches and Fievel3 extracts fine-grained local details using
smaller 48 x 48 x 256 patches.

After that, each feature map is convolved with differing kernel sizes via convolutional layers that would
preserve the basic characteristics while maintaining the same spatial size for feature levels.:

Hyix Wi x C
Flevell,conv = CODVlX 1 (Eevell) c R" 1 1 (4)
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Hax Wax C
Fleve12, conv — CODVQX 2 (Eevelz) c R"? 2 2 (5)

H3zx W3x C,
EevelS, conv — COIlV4>< 4 (EevelS) c R7S 3 3 (6)

Simplifying the integration and comparison of features is a matter of spatial size uniformity, and thus reduces
computational time. Once the spatial dimensions are aligned, appropriate fusion strategies can be employed,
e.g., concatenation or attention-based, to simultaneously obtain global context and local context for the model.
After applying the convolution operations with different kernels, all feature maps (global, mid-level, and local)
are transformed to a consistent size of 12 x 12 but still retain their unique characteristics.

12x 12x 1024

Eevell, conv € R (7)
12x 12x 1024

EevelQ, conv € R (8)
12x 12x 1024

EevelS, conv € R (9)

Once the features are transformed to a uniform spatial size of 12 x 12 the feature maps are passed to
subsequent processing layers for further feature refinement.

Figure 1 illustrates the Architecture of MSCAS-Net (Multi-Scale Cross and Self-Attention Network) for
diabetic retinopathy classification. The model divides input images into multi-scale patches for hierarchical
feature extraction. Self-attention refines local dependencies within each scale, while cross-attention integrates
global context by aligning features across scales. Convolutional layers adjust spatial dimensions, and the unified
feature vector combines local and global information for final classification.

Hierarchical feature refinement via self-attention

After transforming the multi-scale feature maps to a consistent spatial size 12 x 12 while retaining their unique
characteristics, the feature maps Flevel1, convs Flevel2, conv> ad Fllevel3, conv are processed independently
through self-attention layers to refine their discriminative capabilities. Each feature map is projected into query
Q;, key K, and value V; embeddings using learnable weight matrices:

Qi = Wq,i . Eeveli,conv (10)
K»L' = Wk,z‘ . -Fleveli,conv (11)
‘/1' = Wv,i . F‘leveli,conv (12)

Where i € {1, 2, 3} denotes the level index, and Wy, ;, Wy ;, and W, ; are learnable matrices. These
embeddings enable the model to compute level-specific attention using the scaled dot-product mechanism:

KT
A; = Softmax (% + Epos,'i) (13)
&

MSCAS-Net 1
I Multi-Scale Cross and Self-Attention Network

Self Attention | Fusesfeatures fromselfattentionblocks | |
i t© global, 1

Self Attention - i attenton,

Pre-Processing

Self Attention

| Combine bocaland globalfemwainton | 1
4 vector. 1

] ! Represmtstheimageina compactform |
i for clasification in the form of ]
12x12x024

Fig. 1. MSCAS-Net (multi-scale cross and self-attention network) architecture.
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Where Ejos,; preserves positional information, and +/dy stabilizes gradients during training. The refined
feature representation for each level is then calculated as:

Freﬁned,i = A’L . ‘/1 (14)

This process allows the self-attention layers to emphasize relevant spatial features and suppress redundant
information. Global features Frefined,1 capture broad contextual patterns, mid-level features Frefined,2 focus on
intermediate structures, and local features Frefined,3 highlight fine-grained details.

By leveraging self-attention, the model captures long-range dependencies across spatial locations, enhances
important features, and integrates hierarchical positional information. This mechanism ensures robust feature
refinement and improves the performance of downstream tasks by adaptively balancing global and local
information as illustrated in Fig. 2.

Hierarchical feature fusion via cross-attention
After refining the multi-scale feature maps Frefined,1, Frefined,2 and Frefined,3 Using self-attention, the next
step is to fuse these hierarchical features into a single, unified representation. Cross-attention facilitates this
fusion by dynamically aligning and integrating complementary information across different levels of abstraction.
This mechanism’s key point is to ensure that the fused feature map contains the global context, intermediate
structures, and fine-grained details needed for good image classification.

To achieve this, the global feature map Frefined,1 is utilized as the query, while the mid-level Frcfined,2 and
local Fiefined,3 feature maps serve as the keys and values. Each feature map is projected into query Q, key K,
and value V embeddings using learnable weight matrices:

Q = Wq N Frefined,l;i {2,3} (15)
Ki = Wk,i . Freﬁned,i, (16)
Vi= Wv,i . Freﬁned,i: (17)

The cross-attention mechanism calculates the relevance between the global features and lower-scale features
using scaled dot-product attention:

KT
A; = Softmax (M + Epos,i>

Vi (%)

This process allows the global features to selectively emphasize the most relevant regions within the mid-level
and local feature maps. The refined contributions from each scale are then computed as:

Frusion,i = Ai - Vi, i€ {2,3} (19)

Qi =Wy Fieveticonv

310
I | A; = Softmax (Q:/ECI + Epos ,)
| 03
Ki =Wy Fleveticonv X
- S ) ' 0
. . ' I T Frefined: = 4" Vi
1L HEEN
L o EEEE
Vi =Wy, Flevelicon AV ¥ - - . -
Feature Maps ) ' 0
' I Refine Feature Maps
03

| MSCAS-Net: Feature Refinement via Self-Attention :

Fig. 2. Self-attention block.
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Finally, the fused representation is obtained by aggregating the global features and the refined outputs:

Ffused = Freﬁned,l + -Ffusion,Q + Ffusion,3 (20)

This unified feature map balances global and local information, ensuring a comprehensive understanding
of the input image. Cross attention augments the model’s capability in capturing all the detail at a small scale
without being concerned with the large pattern, with the help of adaptively aligned features across scale. Not
only this, but this fusion strategy has the best classification accuracy and robustness for situations with different
feature hierarchies as illustrated in Fig. 3.

Unified feature representation and multi-class classification

The hierarchical features are first refined with self-attention feature and combined with the cross-attention
feature, then a Global Average Pooling (GAP) is used to simplify the multi-scale feature map Ftysca to a unified
feature vector Funised. The spatial average of each feature channel is done by GAP, which effectively condenses
the global and local contextual information to a compact and fixed-sized representation:

Funiﬁed [C - WZ he 12 Eused C h w] (21)

Where c signifies the channel index, H signify the height and W signify width of the feature map.
Then, the final class probabilities are obtained from the fully connected layer with softmax activation given
the unified feature vector Funified:

1/];' = Softmax (Wcls . Funiﬁed + bcls) (22)

Thus, in the above, ¥; represents the predicted probability for class i corresponding to the learnable weights
and biases of the classification layer W5 and bcis, respectively.

Then the categorical cross-entropy loss, a robust loss for multi class classification is used to optimize the
model:

Leer = —Z yzlog (73) (23)

Where y; is the ground truth label for the class 4, y; is the predicted probability for the class 4, and c is the
total number of classes.

Where y; is the ground truth label for the class 4, g; is the predicted probability for the class 4, and c is the
total number of classes.

This unified approach guarantees that the model will be able to balance global and local information and
elaborate hierarchical information while maintaining high discriminative power for many classes. GAP also

Feature map is projected Frusiony = A~ Vi, L € 2.3}
into query Q, key K, and
value V

Vi=Wyi- Frefined;

11100
nom|l v,
10110
ololl

Ki =Wy Frefined:

11100

Feature Maps Hnoii T
10110
ololl -
><__,. -—» Softmax =—>
Q=W Frefineds .
Ay -Soﬂmax

Lt bposl

Feature Maps
Fusea = Frefineds * Ffusionz + Ffusiona

Fig. 3. Cross attention block.
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contributes to reducing overfitting while maintaining spatial interpretability, which makes the model very
suitable for complex tasks like medical imaging or fine-grained classification.

Experimental setup

Datasets

We assess the efficacy of our method using three publicly available datasets: APTOS, DDR, and IDRID. This
subsection provides further information and details regarding these three datasets.

APTOS 2019 dataset”

The APTOS 2019 dataset, also known as the APTOS blindness detection dataset, was created by the Asia Pacific
Tele-Ophthalmic Society (APTOS). It contains 3,662 retinal fundus images annotated according to the ICDR
and the ETDRS scales. It separates the images into five severity levels reflecting No DR (categorised as 0), Mild
(categorised as 1), Moderate (categorised as 2), Severe (categorised as 3), and Proliferative DR (categorised
as 4). In the dataset, 1805 images belong to class 0, 370 images to class 1, 999 images to class 2, 193 images
to class 3, 295 images to class 4. Image Resolutions of the images ranges from 640 x 480 to 2896 x 1944. The
APTOS 2019 dataset was chosen for its diverse, real-world retinal fundus images with varying resolutions and
quality, reflecting clinical scenarios. Its five DR severity levels and class imbalance, Image Noise and Inconsistent
Mlumination challenge model robustness, requiring robust preprocessing techniques like resizing, noise
removal, and contrast enhancement. This clinically relevant benchmark validates MSCAS-Net’s performance
and supports the development of deep learning-based DR diagnosis systems.

IDRID*

It is a dataset based on the Indian diabetic retinopathy Image Dataset (IDRID), which contains images annotated
for diabetic retinopathy severity at levels ranging from 0 (no retinopathy) to 4 (proliferative retinopathy). The
data in this dataset can help develop and validate machine learning models and computer vision algorithms.
This dataset IDRID is composed of 516 high-resolution retinal images in JPEG format and is used for training
and evaluation. In the dataset, 134 images belong to class 0, 20 images to class 136 images to class 2, 74 images
to class 3, 49 images to class 4. Image dimensions are 4288 x 2848, which provide high-quality visual data for
detailed analysis. This small dataset is selected for its high-resolution and having detailed annotations for five
DR severity levels. Its class imbalance and high-quality visuals test the model’s ability to detect subtle lesions,
ensuring precise fine-grained classification.

DDR¥

The DDR Dataset is created for diabetic retinopathy classification and segmentation and serves as an essential
tool for machine learning and deep learning research. High-resolution retinal fundus images are provided that
include diabetic retinopathy severity levels ranging from 0 (healthy) to 4 (proliferative retinopathy). The dataset
has about 12,522 images varying in representation of various stages of the disease. Among these images, 6266
images belong to class 0, 630 images to class 1, 4477 images to class 2, 236 images to class 3, 913 images to class
4. Image dimensions ranges from 512 x 512 to 5184 x 3456. The DDR dataset, annotated for DR classification and
lesion segmentation, is selected for being a very large dataset with high variation in image quality and presence
of noise, diverse image quality and class distribution. This versatility enables it to effectively evaluate MSCAS-
Net’s robustness and generalization, ensuring reliable performance across complex, real-world medical imaging
challenges, making it an ideal benchmark for advanced diagnostic systems. In revolutionizing the diagnosis
and treatment planning of human diseases, the DDR dataset provides a benchmark for the improvement of the
automated diagnosis and treatment planning systems. Table 3 shows the data distribution for the purpose of
Training, Validation, and Testing on three publicly available datasets.

Implementation details

In the experiments, we use the Swin Transformer for multiscale feature extraction for scales of 12x 12, 24 x 24,
48x 48 and generate feature maps. In each scale we do feature refinement with self-attention and try to fuse the
multi scale features via cross attention. Given the enhanced feature map, the channel attention layer generates
the attention maps. On the dataset, the number of training epoch is dependent, namely for DDR the number of
training epoch was 40, IDRID was 40 and also APTOS was also 40. The batch size is set to 32. Initial learning rate
is set to 0.0001, then an exponential decay with factor of 0.9 after specified epochs; and the weighting factors in
Categorical cross entropy loss function is used to keep classification accuracy balanced. The experiments were
carried out on an NVIDIA RTX 4060ti GPU using PyTorch. In the near future, the code will be available for
download.

Purpose APTOS IDRID DDR

Total images 3662 516 12,522
Training, validation | 80% (2930) | 80% (413) | 80% (10018)
Testing 20% (732) | 20% (103) | 20% (2504)

Table 3. Data distribution for training, validation, and testing across APTOS, IDRID, and DDR datasets.
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Research questions
RQI:How can advanced feature extraction methods address the complexity of lesions in fundus images from the
APTOS 2019 and DDR datasets?
RQ2: How can models be effectively trained on the APTOS 2019 and IDRID datasets despite class imbalance?
RQ3: What augmentation techniques can improve model generalization on the APTOS 2019 and IDRID
datasets?
RQ4: How can models be made robust to the diverse dimensions and quality of images in the APTOS 2019
and DDR datasets?

Challenges in feature extraction

Punctual and circumscribed lesions in the APTOS 2019 and DDR datasets are somewhat difficult to extract
from fundus images. To this aim, the MSCAS-Net model proposed in this paper uses the multi-scale feature
extraction where images are divided into patches of 1 x 1, 2x 2, 4 x 4. This enables the model to learn the subtle
details of the lesions as well as broad features of the images. The spatial variant of attention applied to each
feature map is dedicated to capturing local dependencies. In contrast, the cross-variant of attention focuses on
global context by using queries, keys, and values derived from the self-attention outputs. This enables the model
to obtain different scale features and strengthen their interaction, while testing on the DR image data leads to
consideration of multiplex lesion features.

Dataset imbalance

The datasets of APTOS 2019 and IDRID have imbalanced classes; that is, during training, the model may be
inclined to predict the majority class rather than the actual incidence since it is more frequent. Through the
multi-scale features extraction coupled with attention mechanism, MSCAS-Net addresses this problem by
improving the net’s capacity to learn from minority classes. In this way, extracting features at different scales
may help the model to concentrate on tiny lesions that are generally dissimilar and not very distinguishable in
imbalanced datasets. On the same note, the cross-attention helps to keep a track of the global context and hence,
does not easily overspecialize for the most frequent classes. It is also worth emphasizing that the proposed model
takes both local and global features into account and combines them into the cultivable feature vector, thus,
enhancing classification accuracy in all the severity levels of DR.

Need for dataset augmentation

Augmentation is needed for the APTOS 2019 and IDRID datasets so that model generalization can be improved.
An inherent robustness to dataset variations is introduced into MSCAS-Net by the multi-scale feature extraction.
The model learns invariant features that are less sensitive to image orientation, size, and quality variations by
processing images at multiple scales (12x 12, 3 x4, 4x4). It also enables the model to concentrate on the good
things in the data no matter how small it is. Somehow, the model can generalize from the data at hand, as its
multi-scale and attention-based architecture decreases the reliance on the heavy augmentation techniques.

Variability in image quality

The APTOS 2019 and DDR datasets consist of images of varying sizes and image quality, which makes it
difficult to reach the optimum performance of the model. To address this issue, MSCAS-Net features a multi-
scale feature extraction and 1x 1, 2x2, 4 x4 layer adjustment in its convolutional layers. The model processes
the images in multiple scales, allowing it to work with varying resolutions and quality. In addition, the self-
attention mechanism further helps us concentrate on correct features in low-quality images. The cross-attention
mechanism also adds the global context compensation to deal with the disparity in image quality characteristics.
Therefore, providing robust performance at both multi-scale and attention scales, the model shows a high level
of effectiveness for DR classification.

Ablation study

Effect of Swin transformer as backbone

MSCAS-Net implements Swin Transformer as its core component because this architecture utilizes self-attention
models to extract both local and global image characteristics needed to diagnose DR conditions. The network
divides images into multi-scale patches (12x12, 24 x24, 48 x48) to extract different-level features needed for
detecting delicate lesions. The framework maintains simultaneous visibility of both small features (48 x48) and
sizeable contextual information. The model utilizes shifted window-based self-attention to detect dependencies
between distant elements, which is essential for medical image analysis, particularly when studying lesions with
different size placements. High-resolution fundus image analysis becomes possible with the Swin Transformer
because of its efficient computation. MSCAS-Net integration delivers exceptional performance results on both
APTOS and IDRID database examinations.

Effect of self-attention for multiscale feature enhancement

Self-attention operates on each scale independently to define spatial patterns for detecting discriminative
elements (for example, hemorrhages) and minimizing noise in the process. Within the 12 x 12 pixel grid, Self-
attention analyzes broader context patterns related to edema, and in the 48 x48 scale, it detects weak lesions
in the image. Primary texture similarity and background interference problems are solved by the hierarchical
refinement method that yields robust features in variations in resolution.
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Effect of cross-attention for feature fusion
Through cross-attention, the system merges details from various feature scales by connecting small-scale lesion
boundary detection with large-scale disease severity assessment. By using global features as queries, together
with mid/local features as keys/values, the model detects relationships between different scales where faint lesions
find connections to broader pathological contexts. The integration of different data levels minimizes unbalanced
scenarios in the dataset and eliminates useless data by identifying only relevant medical information. Because
of this integration, the system obtains superior resistance against changes in image quality while simultaneously
achieving higher diagnosis precision.

The Table 4 presents the accuracy achieved by the Swin Transformer model with varying attention
mechanisms—Self Attention and Cross Attention—across three datasets: APTOS, IDRID, and DDR. The results
indicate that the combination of both attention types yields the highest classification accuracy for each dataset.

Evaluation metric

Accuracy

Accuracy measures the proportion of correct predictions (both true positives and true negatives) to the total
predictions. It is useful when the dataset is balanced.

TP+ TN

24
TP+ FP+TN+FN @4

Accuracy =

Where:
TP =True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives.

Experimental results

Thus, this section regards the explanation, evaluation, and analysis of our newly proposed approach via a couple
of metrics on four datasets (APTOS, DDR, IDRID). Moreover, the usefulness of the pre-processing step towards
improving the achieved accuracy is shown. Additionally, our results are compared with the current state-of-
the-art approaches for label grading based on DR severity. We applied our approach using the TensorFlow
framework, with the Adam optimizer used to train the model with a learning rate of 1e-4. Moreover, we set the
batch size to be 16 in order to train our model shown in Figs. 4, 5, 6, 7, 8 and 9, and 10; Table 4.

Table 5 compares the proposed MSCAS model against state-of-the-art (SOTA) methods for DR grading
across three datasets: APTOS 2019, DDR, and IDRID. The results demonstrate that the MSCAS model achieves
impressive accuracy rates of 93.8% for APTOS 2019, 89.80% for DDR, and 86.70% for IDRID. These findings
highlight the effectiveness of the MSCAS model in outperforming several established studies, such as those by
Mondal et al. and Bodapati et al. The significant improvements in accuracy underscore the model’s potential
contributions to enhancing DR classification strategies and its applicability in clinical settings.

Discussion

MSCAS-Net shows exceptional performance for the DR classification because of its effective operations. This
model integrates multilevel feature extraction methods combined with advanced attention techniques to achieve
better results, that is, retaining the details within its local information while processing global elements. MSCAS-
Net delivers top performance across different benchmark datasets, which include APTOS, DDR, and IDRID.
The model achieves exceptional outcomes when it deals with unbalanced datasets and variable image quality.
The system faces multiple hurdles even after its advancements have been made. The feature weight balance across
different scales extracted through self-attention and cross-attention mechanisms needs better optimization in
the model construction process. The model has lower dependence on data augmentation yet requires additional
improvements to maintain robustness, particularly for real-world image issues which present extreme quality
problems. The clinical use of this model depends heavily on its clear interpretation capabilities. Additional
research should concentrate on improving model understanding for better assistance of medical choices. The
model has a computational cost of 9.2 GFLOPs and contains ~ 31 million parameters when processing standard
224 x 224 input images. These metrics ensure efficient real-time performance on modern GPUs, making MSCAS-
Net suitable for clinical deployment. MSCAS-Net represents a dependable automated DR diagnostic solution
while establishing groundwork for study regarding multi-scale features and attention mechanism development.

Accuracy achieved
Swin transformer | Self attention | Cross attention | APTOS (%) | IDRID (%) | DDR (%)
v - - 75.50 69.20 71.30
v v - 86.20 81.01 83.66
v - v 89.52 84.6 87.53
v v v 93.80 86.70 89.80

Table 4. Accuracy achieved by different attention mechanisms in the ablation study for various datasets
(APTOS, IDRID, DDR).
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Fig. 4. Training and validation accuracy curves for APTOS dataset.
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Fig. 5. Training and validation loss curves for APTOS dataset.

Conclusion

We present the Multi-Scale Cross and Self-Attention Network (MSCAS-Net) in this work for the fine-grained
diabetic retinopathy (DR) classification, which, being a challenging problem in fine grained visual classification,
leads to mitigate important issues. MSCAS-Net enhances its capability to recognize subtle lesions of high
importance for accurate diagnosis by capturing local and global features of retinal images using advanced
multi scale feature extraction and attention mechanisms. Extensive experiments on the APTOS, DDR, and
IDRID datasets show that MSCAS-Net achieves the best performance in classification accuracy and leads to
good per-class performance with effectiveness in both dataset imbalance and image variability problems. By
integrating complementary information across the scales, through the combination of self-attention and cross-
attention mechanisms in the model architecture, it is possible to focus on the relevant features and achieve a
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Fig. 7. Training and validation loss curves for DDR dataset.
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Fig. 9. Training and validation loss curves for IDRID dataset.

robust feature representation. Also, the multi-scale approach is less sensitive to image orientation and quality,
thus, the performance is less sensitive to variation in image orientation and quality for different datasets. The
potential application of the model in real-world clinical settings is one burden of future work aimed at increasing
model interpretability. The promising results of this research provide the basis for using advanced deep learning
techniques in medical imaging to enhance image-based automated diagnostic systems for diabetes retinopathy
and other ophthalmological diseases. However, MSCAS-Net stands as a significant leap from existing work of
accurate and efficient trustworthy AI healthcare solutions.
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Fig. 10. A visual example of heatmaps generated using this model on three datasets (a) APTOS (b) DDR and

(c) IDRID.

Dataset Study DR grading (classes) | Accuracy %
Mondal et al.” 86.08
Vijayan et al.'® 86.20

APTOS 2019 | Bodapati et al.* 5 84.17
Shaik and Cherukuri® 85.54
Proposed 93.8
Zhao et al.’ 83.10
Vijayan et al.'® 84.80

DDR Mubashra®® 5 89.29
Oulhadj* 80.36
Proposed 89.80
Bodapati et al.>® 63.24
Shaik and Cherukuri®® 66.41

IDRID Jiwani®? 5 77.60
Santos et al.>! 77.50
Proposed 86.70

Table 5. Comparison with SOTA methods with proposed MSCAS model.

Data availability
Availability data and MaterialThis paper contains all the data in the links given below. APTOShttps://www.kag-
gle.com/datasets/mariaherrerot/aptos2019IDRIDhttps://www.kaggle.com/datasets/mariaherrerot/idrid-dataset

DDRe  Dataset Link: https://www.kaggle.com/datasets/mariaherrerot/ddrdataset.
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