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Fine-grained visual classification is fundamental for medical image applications because it detects 
minor lesions. Diabetic retinopathy (DR) is a preventable cause of blindness, which requires exact and 
timely diagnosis to prevent vision damage. The challenges automated DR classification systems face 
include irregular lesions, uneven distributions between image classes, and inconsistent image quality 
that reduces diagnostic accuracy during early detection stages. Our solution to these problems includes 
MSCAS-Net (Multi-Scale Cross and Self-Attention Network), which uses the Swin Transformer as the 
backbone. It extracts features at three different resolutions (12 × 12, 24 × 24, 48 × 48), allowing it to 
detect subtle local features and global elements. This model uses self-attention mechanics to improve 
spatial connections between single scales and cross-attention to automatically match feature patterns 
across multiple scales, thereby developing a comprehensive information structure. The model becomes 
better at detecting significant lesions because of its dual mechanism, which focuses on both attention 
points. MSCAS-Net displays the best performance on APTOS and DDR and IDRID benchmarks by 
reaching accuracy levels of 93.8%, 89.80% and 86.70%, respectively. Through its algorithm, the 
model solves problems with imbalanced datasets and inconsistent image quality without needing 
data augmentation because it learns stable features. MSCAS-Net demonstrates a breakthrough in 
automated DR diagnostics since it combines high diagnostic precision with interpretable abilities to 
become an efficient AI-powered clinical decision support system. The presented research demonstrates 
how fine-grained visual classification methods benefit detecting and treating DR during its early 
stages.
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DR is a progressive eye disease that develops due to long-standing diabetes, affecting the blood vessels of the 
retina. Thus, it is a leading cause of preventable blindness worldwide, including non-proliferative to proliferative 
retinopathy stages of different severity1,2. Since vision loss is prevented by early diagnosis and treatment, 
automated classification systems are critical to help healthcare professionals diagnose. The classification of DR 
has several difficulties. The variability in lesion appearances, like microaneurysms, hemorrhages, and exudates, 
can vary quite a bit between patients, which is one of the significant problems faced. Additionally, comorbidities, 
including cataracts, can hinder the evaluation of retinal images due to obscuration3. There is, in fact, class 
imbalance in datasets, and DR is in the advanced stages of that condition, which means we have too few of them 
in the dataset and thus also in the machine learning model training4.

Moreover, for accurate diagnosis, pictures of high-resolution fundus images are necessary, which require 
large amounts of computational resources5. Since it is necessary to make clinical decisions, the biggest challenge 
related to the use of automated systems in healthcare is to provide explainability and trustworthiness of the 
model predictions to healthcare professionals to validate clinical decisions that are based on the model’s 
predictions6. Nonetheless, it is crucial to acknowledge the complexities faced when working on DR classification 
systems, including the competition’s large-scale dataset and the need for better data augmentation, deep learning 
methods, and synthetic oversampling methods to enhance the DR classification models’ performance7.
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However, the general methods for detecting subtle features in medical images suffer from losses in their 
diagnosis due to anatomical variations, obscured abnormalities (e.g., microaneurysm or faint lesions), or noise, 
making it not easy to detect early-stage diagnosis. In most deep learning approaches, details are ignored, and only 
essential patterns are captured. Simultaneous model training is tricky, as different equipment and conditions will 
inevitably bring about different image qualities and imbalances in the dataset. In addition, clinicians’ trust in the 
predictions is impaired when dealing with minute abnormalities because the predictions lack interpretability.

To deal with these issues, we use attention mechanisms that increase sensitivity by focusing models on 
important image regions and data generation (e.g., GANs) as well as those that introduce data heterogeneity 
(i.e., diverse datasets) that can mitigate class imbalance8. CNN, together with the transformer, can work robustly 
and embed global context and local details9. In contrast, fine-grained classification techniques based on self-
attention mechanisms aim to classify within subclasses by fine features without being limited by the use of single-
scale outputs, background interference, and texture similarities10. Since these limitations have been identified, 
advancements in multi-scale feature extraction and improved attention mechanisms are needed to overcome 
them11. These strategies improve the accuracy and confidence of both medical image processing systems and the 
valuable detection of subtle but clinically essential features in, for example, diabetic retinopathy and oncologic 
imaging.

To solve these problems, the MSCAS-Net model introduces a multistage feature extraction model that builds 
the patches of different scales (12 × 12, 24 × 24, 48 × 48) to have both fine and coarse-grained information of DR 
images. This method solves the feature extraction problem in complex datasets such as APTOS 2019 and DDR 
using a self-attention mechanism to capture local dependencies and a cross-attention mechanism to integrate 
global context for effective feature combination at various scales. The model tackles the dataset imbalance for 
APTOS 2019 and IDRID by focusing on subtle lesions that are often missed in such cases. Cross-attention 
alleviates the overfitting of the dominant classes and makes a balanced representation across all the DR severity 
levels. Furthermore, the model naturally has inherent robustness to dataset variations due to the multi-scale 
architecture of the model and thus requires minimal augmentation. MSCAS-Net learns more invariant features 
and is less sensitive to variations in orientation, size, and quality by processing images at multiple scales. Self-
attention takes care of allowing relevant features that exist in the limited dataset. The model also deals with the 
variability in image quality by the convolutional layer adjustments, i.e., 1 × 1, 2 × 2, 4 × 4, and the multi-scale 
processing, which allows the model to cope with the different resolution and quality levels. The proposed two 
models demonstrate robust performance in low-quality cases by employing cross-attention for maintaining 
global context and self-attention for attention focused on relevant features for low-quality cases. With such a 
comprehensive approach, MSCAS-Net is highly effective for DR classification and outperforms state-of-the-art 
on various datasets.

Therefore, we have performed a detailed study on three data sets, APTOS, DDR, & IDRID, and demonstrated 
high performance. In conclusion, the paper has the following key contributions:

•	 Novel MSCAS-Net Architecture: Introduces a Multi-Scale Cross and Self-Attention Network tailored for DR 
classification, integrating multi-scale feature extraction and advanced attention mechanisms to handle com-
plex medical image analysis challenges like irregular lesions and variable image quality.

•	 Hierarchical Feature Extraction: Utilizes a Swin Transformer backbone to extract features at three resolutions 
(12 × 12, 24 × 24, 48 × 48), capturing both fine local details (e.g., microaneurysms) and global retinal struc-
tures for effective early-stage DR detection.

•	 Dual Attention Mechanism: Combines self-attention to enhance local dependencies within each scale and 
cross-attention to align and fuse features across scales, improving diagnostic precision by capturing hierar-
chical relationships.

•	 Robustness to Dataset Issues: Addresses DR dataset challenges like class imbalance and inconsistent image 
quality without heavy reliance on data augmentation, leveraging its multi-scale and attention mechanisms for 
stable feature learning.

•	 High Performance and Interpretability: Achieves top accuracy on benchmark datasets (APTOS: 93.8%, DDR: 
89.80%, IDRID: 86.70%) and provides interpretable heatmaps to highlight lesion regions, aiding clinical de-
cision-making and trust in AI diagnostics.

•	 Efficiency and Generalization: Employs efficient shifted window-based self-attention for reduced computa-
tional overhead and demonstrates strong cross-dataset generalization across diverse datasets, making it ad-
aptable for resource-constrained clinical settings.

Related work
Traditional image classification approaches
Convolutional Neural Networks (CNNs) are a type of neural network designed to work on spatial or temporal 
hierarchical data. They can perform tasks such as image classification, object detection, medical image analysis, 
etc. Convolutional layers extract spatial features, the dimensions of the space are reduced by pooling layers, 
and activation functions are used, e.g., ReLU. Solutions to vanishing gradients and scaling have transformed 
computer vision with the introduction of transformations to scale models and further architectures such as 
AlexNet12, VGGNet13, ResNet14 and EfficientNet5. Both RNNs and transformers can handle sequential data, and 
transformers excel in language and vision tasks with computational cost. However, beyond CNNs, both RNNs 
and transformers have limitations in long dependency3.

Interestingly, however, GANs can produce truly realistic samples8Autoencoders can be helpful for 
dimensionality reduction in anomaly detection, and GNNs can be employed to handle graph data in molecular 
modeling. Each architecture has strengths and weaknesses, so the architecture selection is problem-dependent 
on the domain, data type, and computational constraints5. The biomedical field is utilizing text mining to extract 
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insights from clinic reports, research papers, and lab tests, focusing on protein-protein interactions and entity-
relationship detection, enabling drug discovery and personalized treatment15. Integration of IoMT and IoT in 
healthcare, focusing on security threats and performance enhancement, highlighting limitations in Industry 
5.0 and healthcare institutions16. Wireless body area networks integrate cloud computing for real-time patient 
monitoring, but new data privacy and security threats arise. A six-step framework for PPPs privacy and security 
is provided17.

Mondal et al. introduced EDLDR, combining DenseNet101 and ResNeXt architectures in an ensemble 
with GAN-based data augmentation. The method achieved 86.08% accuracy for severity diagnosis and 96.98% 
for DR identification but faced challenges with data imbalance across categories7. These works demonstrate 
advances in DR classification using attention mechanisms, transfer learning, and ensemble techniques. The 
cross-disease attention network (CANet) is used to diagnose diabetic retinopathy and macular edema using 
individual attention mechanisms for feature selection. The model achieved 92.6% accuracy on the Messidor 
dataset and 65.1% on the IDRiD dataset6. Blockchain technology offers a Blockchain-Based Access Control 
Model (BBACM) for managing authorization rights for accessing patient physiological parameters and PHI, 
improving access control, security, privacy, scalability, and PHI availability in healthcare data management18.

Capsule network-based approach, employing CLAHE preprocessing and a sigmoid classifier, resulting in 
99.1% accuracy on the Messidor dataset13. EfficientNet-B0 with preprocessing to normalize illumination variance, 
achieving 86.2% accuracy on the APTOS dataset and 84.8% on DDR, though the results were limited by dataset 
dependency19. Similarly, Islam et al. applied CLAHE preprocessing with a transfer learning-based Xception 
model, attaining 98.36% and 84.36% accuracy for DR identification and severity detection, respectively20. Deep 
learning architectures for analyzing digital social media data, addressing challenges like scalability, heterogeneity, 
and multimodality, and predicting future trends in social media analytics21–23.

Recent transformer-based models
Initially developed for natural language processing, transformer-based models are now widely used in medical 
image processing due to their ability to model long-range dependencies and capture global context via self-
attention mechanisms. Vision Transformers (ViT) adapt transformers for image tasks by segmenting images 
into patches, enabling efficient feature extraction without convolutions. Hybrid models integrating CNNs and 
transformers combine local and global features, excelling in classification and segmentation tasks despite high 
computational demands and extensive dataset requirements24,25. Zhao et al.9 introduced CoT-XNet, integrating 
a contextual transformer with Xception, achieving promising results on DR datasets like DDR, APTOS, and 
EyePACS. Similarly, Ali Dihin et al.10 and Yang et al.26 demonstrated the Swin Transformer’s effectiveness in DR 
grading, emphasizing its efficient attention mechanisms. Yan Y27. proposed AlexViT, blending AlexNet with ViT 
for DR classification, achieving 88.23% accuracy and notable efficiency. Attention mechanisms enhance feature 
extraction by focusing on critical regions in images, improving interpretability, and highlighting pathological 
areas. Madarapu et al.11 developed a deep integrative model for DR classification combining residual blocks, 
channel-spatial attention mechanisms, and non-local blocks for robust feature representation. Furthermore, 
Li et al.28 utilized ConvNeXt-base with attention mechanisms for DR detection, achieving high diagnostic 
accuracy and interpretability and demonstrating significant advancements in attention-based medical imaging 
approaches.

Fine-grained classification
Fine-graining in image processing29 involves the detailed categorization of objects within a broader category, 
often requiring advanced methodologies due to the subtle differences between classes. Techniques such as 
attention mechanisms and deep learning architectures have enhanced fine-grained recognition. The use of region 
grouping for interpretable and accurate recognition30 focuses on identifying the most discriminative regions 
within images. Self-supervised structure modeling, as seen in Look-into-Object31 enables object recognition by 
focusing on internal structures. Deep Convolutional Neural Networks (DCNN) in diagnosing and classifying 
lung cancer using medical imaging, highlighting their significant contributions to early detection and treatment, 
focusing on 2015–202432.

Dual cross-attention mechanisms33 and recurrent attention with multi-scale transformers34 offer robust 
solutions for refining classification through interrelated feature extraction. Salient mask-guided vision 
transformers35 and channel interaction networks36 emphasize interaction and region-specific attention for 
improved accuracy. Moreover, counterfactual attention learning37 and Gaussian mixture models38 address 
weak supervision, enabling enhanced discrimination without exhaustive labeling. These approaches collectively 
advance fine-grained image recognition, ensuring precise categorization.

Table 1 provides a comprehensive comparison of state-of-the-art CNN-based methods and techniques, and 
Table 2 highlights advancements in Transformer-based approaches, showcasing their effectiveness in medical 
image analysis, specifically for DR detection and classification.

Methodology
The diagram shows that MSCAS-Net (Multi-Scale Cross and Self-Attention network) is made to extract more 
features from an input image for classification tasks ranging from convolution processing to advanced attention 
mechanisms. So, we split up the input image into specific sizes of patches using a Swin Transformer. However, 
this transformer splits the image at 3 scales (12 × 12 × 1024, 24 × 24 × 512, 48 × 48 × 256) to capture features of 
different granularities. This multi-scale feature extraction provides fine and coarse details to be used further. 
Complementary information is given in each scale to improve feature richness. The features are then processed 
with three convolutions: 1 × 1, 3 × 3, and 4 × 3, and each is a fixed size of 1 × 1, 3 × 3, and 4 × 3, respectively — as 
a way of adjusting the spatial dimension of the features whilst improving their representation and maintaining 
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scale consistency. With this step, the model is able to process and refine the extracted features better so that the 
most critical spatial relations within the image are preserved.

The features are then processed through self-attention blocks, which will help the model focus on key areas 
of the image by learning internal dependency within the features. The self-attention mechanism guarantees that 
the model does not have to rely on the global pattern of the image but can capture locally relevant patterns in 
the feature maps. Via a cross-attention block, the output from the self-attention layers is merged. By utilizing 
the integrated local and global contexts through the cross-attention block, the model will enhance its ability 
to understand the overall structure and the crucial parts in the image. Instead of cross-attention, it takes the 
queries, keys, and values from the outputs of self-attention and then focuses on the most important and relevant 
parts between the different scales. Finally, the result of the cross-attention block is combined into a single feature 
vector that contains the local and global feature information in one comprehensive representation. The image 
is fed to the classification layer with the extracted and processed feature and is then classified according to this 
vector. It is a good model to improve classification performance while exploiting a comprehensive combination 
of multi-scale feature extraction, convolutional processing, self-attention, and cross-attention mechanisms that 
are also highly efficient for image classification tasks.

Multi-scale feature extraction
The input image I ∈ RH× W × C  be passed through the Swin Transformer backbone fSwin for multi-scale 
feature extraction. The image is split into patches at three distinct scales, resulting in feature maps at three 
different levels:

	 Flevel1 = fSwin (I, scale = 12 × 12) ∈ RH1× W1× C1 � (1)

	 Flevel2 = fSwin (I, scale = 24 × 24) ∈ RH2× W2× C2 � (2)

	 Flevel3 = fSwin (I, scale = 48 × 48) ∈ RH3× W3× C3 � (3)

.
Where Flevel1 represents global features extracted using large patches of 12 × 12 × 1024, Flevel2 

captures mid-level features using 24 × 24 × 512 patches and Flevel3 extracts fine-grained local details using 
smaller 48 × 48 × 256 patches.

After that, each feature map is convolved with differing kernel sizes via convolutional layers that would 
preserve the basic characteristics while maintaining the same spatial size for feature levels.:

	 Flevel1, conv = Conv1× 1 (Flevel1) ∈ RH1× W1× C1 � (4)

Study Model Dataset Classes Accuracy

Ali Dihin10 Dhin Window Transformer APTOS 5 85.3%

Yaoming Yang26 Swin Transformer APTOS 5 85.3%,

Yan27 AlexVit APTOS 5 88.23%

Mohammed Oulhadj40 Vision Transformer APTOS 5 88.18%

Dihin10 Wavelet-Attention Swin APTOS 5 86%

Table 2.  Transformer-based state-of-the-art DR detection and Classification.

 

Approaches Dataset DR grading (classes) Accuracy (%)

Mondal et al.7 APTOS 5 86.08

Zhao et al.9 DDR, APTOS, EyePACS 5 83.10, 84.18, 84.10

Vijayan et al.19 APTOS, DDR 5 86.20, 84.80

Islam et al.20 APTOS 2, 5 98.36, 84.36

Oulhadj et al.39 APTOS 5 85.28

Oulhadj et al.40 APTOS 5 86.54

Bodapati et al.41 APTOS, IDRiD 5 84.17, 63.24

Fan et al.42 APTOS 5 85.32

Sugeno et al.43 APTOS 5 84.20

Shaik and Cherukuri44 APTOS, IDRiD 5 85.54, 66.41

Al-Antary and Arafa45 APTOS, EyePACS 2, 5 98.10, M:84.60
87.50, M:79.90

Abbasi et al.46 Messidor, EyePACS 5 82.32, 76.84

 Badar22 APTOS 3 92.73

Table 1.  CNN-based state-of-the-art DR detection and Classification.
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	 Flevel2, conv = Conv2× 2 (Flevel2) ∈ RH2× W2× C2 � (5)

	 Flevel3, conv = Conv4× 4 (Flevel3) ∈ RH3× W3× C3 � (6)

.
Simplifying the integration and comparison of features is a matter of spatial size uniformity, and thus reduces 

computational time. Once the spatial dimensions are aligned, appropriate fusion strategies can be employed, 
e.g., concatenation or attention-based, to simultaneously obtain global context and local context for the model. 
After applying the convolution operations with different kernels, all feature maps (global, mid-level, and local) 
are transformed to a consistent size of 12 × 12 but still retain their unique characteristics.

	 Flevel1, conv ∈ R12× 12× 1024� (7)

	 Flevel2, conv ∈ R12× 12× 1024� (8)

	 Flevel3, conv ∈ R12× 12× 1024� (9)

.
Once the features are transformed to a uniform spatial size of 12 × 12 the feature maps are passed to 

subsequent processing layers for further feature refinement.
Figure 1 illustrates the Architecture of MSCAS-Net (Multi-Scale Cross and Self-Attention Network) for 

diabetic retinopathy classification. The model divides input images into multi-scale patches for hierarchical 
feature extraction. Self-attention refines local dependencies within each scale, while cross-attention integrates 
global context by aligning features across scales. Convolutional layers adjust spatial dimensions, and the unified 
feature vector combines local and global information for final classification.

Hierarchical feature refinement via self-attention
After transforming the multi-scale feature maps to a consistent spatial size 12 × 12 while retaining their unique 
characteristics, the feature maps F level1, conv, F level2, conv, and F level3, conv are processed independently 
through self-attention layers to refine their discriminative capabilities. Each feature map is projected into query 
Qi, key Ki, and value V i embeddings using learnable weight matrices:

	 Qi = Wq,i · Fleveli,conv � (10)

	 Ki = Wk,i · Fleveli,conv � (11)

	 Vi = Wv,i · Fleveli,conv � (12)

.
Where i ∈ {1, 2, 3} denotes the level index, and Wq,i, Wk,i, and Wv,i are learnable matrices. These 

embeddings enable the model to compute level-specific attention using the scaled dot-product mechanism:

	
Ai = Softmax

(
Qi · K⊤

i√
dk

+ Epos,i

)
� (13)

Fig. 1.  MSCAS-Net (multi-scale cross and self-attention network) architecture.
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.
Where Epos,i preserves positional information, and 

√
dk  stabilizes gradients during training. The refined 

feature representation for each level is then calculated as:

	 Frefined,i = Ai · Vi� (14)

.
This process allows the self-attention layers to emphasize relevant spatial features and suppress redundant 

information. Global features Frefined,1 capture broad contextual patterns, mid-level features Frefined,2 focus on 
intermediate structures, and local features Frefined,3 highlight fine-grained details.

By leveraging self-attention, the model captures long-range dependencies across spatial locations, enhances 
important features, and integrates hierarchical positional information. This mechanism ensures robust feature 
refinement and improves the performance of downstream tasks by adaptively balancing global and local 
information as illustrated in Fig. 2.

Hierarchical feature fusion via cross-attention
After refining the multi-scale feature maps Frefined,1, Frefined,2 and Frefined,3 Using self-attention, the next 
step is to fuse these hierarchical features into a single, unified representation. Cross-attention facilitates this 
fusion by dynamically aligning and integrating complementary information across different levels of abstraction. 
This mechanism’s key point is to ensure that the fused feature map contains the global context, intermediate 
structures, and fine-grained details needed for good image classification.

To achieve this, the global feature map Frefined,1 is utilized as the query, while the mid-level Frefined,2 and 
local Frefined,3 feature maps serve as the keys and values. Each feature map is projected into query Q, key K , 
and value V  embeddings using learnable weight matrices:

	 Q = Wq · Frefined,1, i {2,3}� (15)

	 Ki = Wk,i · Frefined,i,� (16)

	 V i = Wv,i · Frefined,i,� (17)

.
The cross-attention mechanism calculates the relevance between the global features and lower-scale features 

using scaled dot-product attention:

	
Ai = Softmax

(
Q · K⊤

i√
dk

+ Epos,i

)
� (18)

.
This process allows the global features to selectively emphasize the most relevant regions within the mid-level 

and local feature maps. The refined contributions from each scale are then computed as:

	 Ffusion,i = Ai · Vi, i ∈ {2,3}� (19)

Fig. 2.  Self-attention block.
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.
Finally, the fused representation is obtained by aggregating the global features and the refined outputs:

	 Ffused = Frefined,1 + Ffusion,2 + Ffusion,3� (20)

.
This unified feature map balances global and local information, ensuring a comprehensive understanding 

of the input image. Cross attention augments the model’s capability in capturing all the detail at a small scale 
without being concerned with the large pattern, with the help of adaptively aligned features across scale. Not 
only this, but this fusion strategy has the best classification accuracy and robustness for situations with different 
feature hierarchies as illustrated in Fig. 3.

Unified feature representation and multi-class classification
The hierarchical features are first refined with self-attention feature and combined with the cross-attention 
feature, then a Global Average Pooling (GAP) is used to simplify the multi-scale feature map Ffused to a unified 
feature vector Funified. The spatial average of each feature channel is done by GAP, which effectively condenses 
the global and local contextual information to a compact and fixed-sized representation:

	
Funified [c] = 1

H · W

∑ H

h=1

∑ W

w=1
Ffused [c, h, w]� (21)

.
Where c signifies the channel index, H  signify the height and W  signify width of the feature map.
Then, the final class probabilities are obtained from the fully connected layer with softmax activation given 

the unified feature vector Funified:

	 ŷi = Softmax (Wcls · Funified + bcls)� (22)

.
Thus, in the above, ŷi represents the predicted probability for class i corresponding to the learnable weights 

and biases of the classification layer Wcls and bcls, respectively.
Then the categorical cross-entropy loss, a robust loss for multi class classification is used to optimize the 

model:

	
LCCE = −

∑ C

i=1
yilog (ŷi)� (23)

.
Where yi is the ground truth label for the class i, ŷi is the predicted probability for the class i, and c is the 

total number of classes.
Where yi is the ground truth label for the class i, ŷi is the predicted probability for the class i, and c is the 

total number of classes.
This unified approach guarantees that the model will be able to balance global and local information and 

elaborate hierarchical information while maintaining high discriminative power for many classes. GAP also 

Fig. 3.  Cross attention block.
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contributes to reducing overfitting while maintaining spatial interpretability, which makes the model very 
suitable for complex tasks like medical imaging or fine-grained classification.

Experimental setup
Datasets
We assess the efficacy of our method using three publicly available datasets: APTOS, DDR, and IDRID. This 
subsection provides further information and details regarding these three datasets.

APTOS 2019 dataset47

The APTOS 2019 dataset, also known as the APTOS blindness detection dataset, was created by the Asia Pacific 
Tele-Ophthalmic Society (APTOS). It contains 3,662 retinal fundus images annotated according to the ICDR 
and the ETDRS scales. It separates the images into five severity levels reflecting No DR (categorised as 0), Mild 
(categorised as 1), Moderate (categorised as 2), Severe (categorised as 3), and Proliferative DR (categorised 
as 4). In the dataset, 1805 images belong to class 0, 370 images to class 1, 999 images to class 2, 193 images 
to class 3, 295 images to class 4. Image Resolutions of the images ranges from 640 × 480 to 2896 × 1944. The 
APTOS 2019 dataset was chosen for its diverse, real-world retinal fundus images with varying resolutions and 
quality, reflecting clinical scenarios. Its five DR severity levels and class imbalance, Image Noise and Inconsistent 
Illumination challenge model robustness, requiring robust preprocessing techniques like resizing, noise 
removal, and contrast enhancement. This clinically relevant benchmark validates MSCAS-Net’s performance 
and supports the development of deep learning-based DR diagnosis systems.

IDRID48

It is a dataset based on the Indian diabetic retinopathy Image Dataset (IDRID), which contains images annotated 
for diabetic retinopathy severity at levels ranging from 0 (no retinopathy) to 4 (proliferative retinopathy). The 
data in this dataset can help develop and validate machine learning models and computer vision algorithms. 
This dataset IDRID is composed of 516 high-resolution retinal images in JPEG format and is used for training 
and evaluation. In the dataset, 134 images belong to class 0, 20 images to class 136 images to class 2, 74 images 
to class 3, 49 images to class 4. Image dimensions are 4288 × 2848, which provide high-quality visual data for 
detailed analysis. This small dataset is selected for its high-resolution and having detailed annotations for five 
DR severity levels. Its class imbalance and high-quality visuals test the model’s ability to detect subtle lesions, 
ensuring precise fine-grained classification.

DDR49

The DDR Dataset is created for diabetic retinopathy classification and segmentation and serves as an essential 
tool for machine learning and deep learning research. High-resolution retinal fundus images are provided that 
include diabetic retinopathy severity levels ranging from 0 (healthy) to 4 (proliferative retinopathy). The dataset 
has about 12,522 images varying in representation of various stages of the disease. Among these images, 6266 
images belong to class 0, 630 images to class 1, 4477 images to class 2, 236 images to class 3, 913 images to class 
4. Image dimensions ranges from 512 × 512 to 5184 × 3456. The DDR dataset, annotated for DR classification and 
lesion segmentation, is selected for being a very large dataset with high variation in image quality and presence 
of noise, diverse image quality and class distribution. This versatility enables it to effectively evaluate MSCAS-
Net’s robustness and generalization, ensuring reliable performance across complex, real-world medical imaging 
challenges, making it an ideal benchmark for advanced diagnostic systems. In revolutionizing the diagnosis 
and treatment planning of human diseases, the DDR dataset provides a benchmark for the improvement of the 
automated diagnosis and treatment planning systems. Table 3 shows the data distribution for the purpose of 
Training, Validation, and Testing on three publicly available datasets.

Implementation details
In the experiments, we use the Swin Transformer for multiscale feature extraction for scales of 12 × 12, 24 × 24, 
48 × 48 and generate feature maps. In each scale we do feature refinement with self-attention and try to fuse the 
multi scale features via cross attention. Given the enhanced feature map, the channel attention layer generates 
the attention maps. On the dataset, the number of training epoch is dependent, namely for DDR the number of 
training epoch was 40, IDRID was 40 and also APTOS was also 40. The batch size is set to 32. Initial learning rate 
is set to 0.0001, then an exponential decay with factor of 0.9 after specified epochs; and the weighting factors in 
Categorical cross entropy loss function is used to keep classification accuracy balanced. The experiments were 
carried out on an NVIDIA RTX 4060ti GPU using PyTorch. In the near future, the code will be available for 
download.

Purpose APTOS IDRID DDR

Total images 3662 516 12,522

Training, validation 80% (2930) 80% (413) 80% (10018)

Testing 20% (732) 20% (103) 20% (2504)

Table 3.  Data distribution for training, validation, and testing across APTOS, IDRID, and DDR datasets.
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Research questions
RQ1:How can advanced feature extraction methods address the complexity of lesions in fundus images from the 
APTOS 2019 and DDR datasets?

RQ2: How can models be effectively trained on the APTOS 2019 and IDRID datasets despite class imbalance?
RQ3: What augmentation techniques can improve model generalization on the APTOS 2019 and IDRID 

datasets?
RQ4: How can models be made robust to the diverse dimensions and quality of images in the APTOS 2019 

and DDR datasets?

Challenges in feature extraction
Punctual and circumscribed lesions in the APTOS 2019 and DDR datasets are somewhat difficult to extract 
from fundus images. To this aim, the MSCAS-Net model proposed in this paper uses the multi-scale feature 
extraction where images are divided into patches of 1 × 1, 2 × 2, 4 × 4. This enables the model to learn the subtle 
details of the lesions as well as broad features of the images. The spatial variant of attention applied to each 
feature map is dedicated to capturing local dependencies. In contrast, the cross-variant of attention focuses on 
global context by using queries, keys, and values derived from the self-attention outputs. This enables the model 
to obtain different scale features and strengthen their interaction, while testing on the DR image data leads to 
consideration of multiplex lesion features.

Dataset imbalance
The datasets of APTOS 2019 and IDRID have imbalanced classes; that is, during training, the model may be 
inclined to predict the majority class rather than the actual incidence since it is more frequent. Through the 
multi-scale features extraction coupled with attention mechanism, MSCAS-Net addresses this problem by 
improving the net’s capacity to learn from minority classes. In this way, extracting features at different scales 
may help the model to concentrate on tiny lesions that are generally dissimilar and not very distinguishable in 
imbalanced datasets. On the same note, the cross-attention helps to keep a track of the global context and hence, 
does not easily overspecialize for the most frequent classes. It is also worth emphasizing that the proposed model 
takes both local and global features into account and combines them into the cultivable feature vector, thus, 
enhancing classification accuracy in all the severity levels of DR.

Need for dataset augmentation
Augmentation is needed for the APTOS 2019 and IDRID datasets so that model generalization can be improved. 
An inherent robustness to dataset variations is introduced into MSCAS-Net by the multi-scale feature extraction. 
The model learns invariant features that are less sensitive to image orientation, size, and quality variations by 
processing images at multiple scales (12 × 12, 3 × 4, 4 × 4). It also enables the model to concentrate on the good 
things in the data no matter how small it is. Somehow, the model can generalize from the data at hand, as its 
multi-scale and attention-based architecture decreases the reliance on the heavy augmentation techniques.

Variability in image quality
The APTOS 2019 and DDR datasets consist of images of varying sizes and image quality, which makes it 
difficult to reach the optimum performance of the model. To address this issue, MSCAS-Net features a multi-
scale feature extraction and 1 × 1, 2 × 2, 4 × 4 layer adjustment in its convolutional layers. The model processes 
the images in multiple scales, allowing it to work with varying resolutions and quality. In addition, the self-
attention mechanism further helps us concentrate on correct features in low-quality images. The cross-attention 
mechanism also adds the global context compensation to deal with the disparity in image quality characteristics. 
Therefore, providing robust performance at both multi-scale and attention scales, the model shows a high level 
of effectiveness for DR classification.

Ablation study
Effect of Swin transformer as backbone
MSCAS-Net implements Swin Transformer as its core component because this architecture utilizes self-attention 
models to extract both local and global image characteristics needed to diagnose DR conditions. The network 
divides images into multi-scale patches (12 × 12, 24 × 24, 48 × 48) to extract different-level features needed for 
detecting delicate lesions. The framework maintains simultaneous visibility of both small features (48 × 48) and 
sizeable contextual information. The model utilizes shifted window-based self-attention to detect dependencies 
between distant elements, which is essential for medical image analysis, particularly when studying lesions with 
different size placements. High-resolution fundus image analysis becomes possible with the Swin Transformer 
because of its efficient computation. MSCAS-Net integration delivers exceptional performance results on both 
APTOS and IDRID database examinations.

Effect of self-attention for multiscale feature enhancement
Self-attention operates on each scale independently to define spatial patterns for detecting discriminative 
elements (for example, hemorrhages) and minimizing noise in the process. Within the 12 × 12 pixel grid, Self-
attention analyzes broader context patterns related to edema, and in the 48 × 48 scale, it detects weak lesions 
in the image. Primary texture similarity and background interference problems are solved by the hierarchical 
refinement method that yields robust features in variations in resolution.
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Effect of cross-attention for feature fusion
Through cross-attention, the system merges details from various feature scales by connecting small-scale lesion 
boundary detection with large-scale disease severity assessment. By using global features as queries, together 
with mid/local features as keys/values, the model detects relationships between different scales where faint lesions 
find connections to broader pathological contexts. The integration of different data levels minimizes unbalanced 
scenarios in the dataset and eliminates useless data by identifying only relevant medical information. Because 
of this integration, the system obtains superior resistance against changes in image quality while simultaneously 
achieving higher diagnosis precision.

The Table  4 presents the accuracy achieved by the Swin Transformer model with varying attention 
mechanisms—Self Attention and Cross Attention—across three datasets: APTOS, IDRID, and DDR. The results 
indicate that the combination of both attention types yields the highest classification accuracy for each dataset.

Evaluation metric
Accuracy
Accuracy measures the proportion of correct predictions (both true positives and true negatives) to the total 
predictions. It is useful when the dataset is balanced.

	
Accuracy = T P + T N

T P + F P + T N + F N
� (24)

.
Where:
TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives.

Experimental results
Thus, this section regards the explanation, evaluation, and analysis of our newly proposed approach via a couple 
of metrics on four datasets (APTOS, DDR, IDRID). Moreover, the usefulness of the pre-processing step towards 
improving the achieved accuracy is shown. Additionally, our results are compared with the current state-of-
the-art approaches for label grading based on DR severity. We applied our approach using the TensorFlow 
framework, with the Adam optimizer used to train the model with a learning rate of 1e-4. Moreover, we set the 
batch size to be 16 in order to train our model shown in Figs. 4, 5, 6, 7, 8 and 9, and 10; Table 4.

Table  5 compares the proposed MSCAS model against state-of-the-art (SOTA) methods for DR grading 
across three datasets: APTOS 2019, DDR, and IDRID. The results demonstrate that the MSCAS model achieves 
impressive accuracy rates of 93.8% for APTOS 2019, 89.80% for DDR, and 86.70% for IDRID. These findings 
highlight the effectiveness of the MSCAS model in outperforming several established studies, such as those by 
Mondal et al. and Bodapati et al. The significant improvements in accuracy underscore the model’s potential 
contributions to enhancing DR classification strategies and its applicability in clinical settings.

Discussion
MSCAS-Net shows exceptional performance for the DR classification because of its effective operations. This 
model integrates multilevel feature extraction methods combined with advanced attention techniques to achieve 
better results, that is, retaining the details within its local information while processing global elements. MSCAS-
Net delivers top performance across different benchmark datasets, which include APTOS, DDR, and IDRID. 
The model achieves exceptional outcomes when it deals with unbalanced datasets and variable image quality. 
The system faces multiple hurdles even after its advancements have been made. The feature weight balance across 
different scales extracted through self-attention and cross-attention mechanisms needs better optimization in 
the model construction process. The model has lower dependence on data augmentation yet requires additional 
improvements to maintain robustness, particularly for real-world image issues which present extreme quality 
problems. The clinical use of this model depends heavily on its clear interpretation capabilities. Additional 
research should concentrate on improving model understanding for better assistance of medical choices. The 
model has a computational cost of 9.2 GFLOPs and contains ~ 31 million parameters when processing standard 
224 × 224 input images. These metrics ensure efficient real-time performance on modern GPUs, making MSCAS-
Net suitable for clinical deployment. MSCAS-Net represents a dependable automated DR diagnostic solution 
while establishing groundwork for study regarding multi-scale features and attention mechanism development.

Swin transformer Self attention Cross attention

Accuracy achieved

APTOS (%) IDRID (%) DDR (%)

✔ – – 75.50 69.20 71.30

✔ ✔ – 86.20 81.01 83.66

✔ – ✔ 89.52 84.6 87.53

✔ ✔ ✔ 93.80 86.70 89.80

Table 4.  Accuracy achieved by different attention mechanisms in the ablation study for various datasets 
(APTOS, IDRID, DDR).
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Conclusion
We present the Multi-Scale Cross and Self-Attention Network (MSCAS-Net) in this work for the fine-grained 
diabetic retinopathy (DR) classification, which, being a challenging problem in fine grained visual classification, 
leads to mitigate important issues. MSCAS-Net enhances its capability to recognize subtle lesions of high 
importance for accurate diagnosis by capturing local and global features of retinal images using advanced 
multi scale feature extraction and attention mechanisms. Extensive experiments on the APTOS, DDR, and 
IDRID datasets show that MSCAS-Net achieves the best performance in classification accuracy and leads to 
good per-class performance with effectiveness in both dataset imbalance and image variability problems. By 
integrating complementary information across the scales, through the combination of self-attention and cross-
attention mechanisms in the model architecture, it is possible to focus on the relevant features and achieve a 

Fig. 5.  Training and validation loss curves for APTOS dataset.

 

Fig. 4.  Training and validation accuracy curves for APTOS dataset.
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Fig. 7.  Training and validation loss curves for DDR dataset.

 

Fig. 6.  Training and validation accuracy curves for DDR dataset.
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robust feature representation. Also, the multi-scale approach is less sensitive to image orientation and quality, 
thus, the performance is less sensitive to variation in image orientation and quality for different datasets. The 
potential application of the model in real-world clinical settings is one burden of future work aimed at increasing 
model interpretability. The promising results of this research provide the basis for using advanced deep learning 
techniques in medical imaging to enhance image-based automated diagnostic systems for diabetes retinopathy 
and other ophthalmological diseases. However, MSCAS-Net stands as a significant leap from existing work of 
accurate and efficient trustworthy AI healthcare solutions.

Fig. 9.  Training and validation loss curves for IDRID dataset.

 

Fig. 8.  Training and validation accuracy curves for IDRID dataset.
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Data availability
Availability data and MaterialThis paper contains all the data in the links given below.APTOShttps://www.kag-
gle.com/datasets/mariaherrerot/aptos2019IDRIDhttps://www.kaggle.com/datasets/mariaherrerot/idrid-dataset 
DDR•	 Dataset Link: https://www.​kaggle.com/d​atasets/mari​aherrerot/d​drdataset.
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