

OPEN

Phytochemical profiling and evaluation of antioxidant, anticancer, antimicrobial and antibiofilm activities of endophytic fungi isolated from *Lavandula stricta*

Samy Selim¹✉, Mohamed H. Moustafa², Mohammed S. Almuhayawi³, Hattan S. Gattan^{4,5}, Mohammed H. Alruhaili^{3,5}, Mohanned Talal Alharbi⁶, Soad K. Al Jaouni⁷, Hanan M. Alharbi⁸, Fayza Kouadri⁹ & Amer M. Abdelaziz¹⁰✉

The emergence of multidrug-resistant pathogens underscores the urgent need for novel antimicrobial agents. In this study, ten endophytic fungal isolates (Ls1–Ls10) were isolated for the first time from *Lavandula stricta* and evaluated for their antimicrobial activity against *Staphylococcus aureus*, *Bacillus subtilis*, *Escherichia coli*, *Klebsiella oxytoca*, and *Candida albicans*. The most potent fungal isolate Ls1 was identified as *Sarocladium kiliense* using morphological and molecular techniques. Phytochemical analysis indicated that the *S. kiliense* extract is abundant in bioactive compounds, including phenolics, tannins, flavonoids, and alkaloids. The GC mass analysis proved the presence of 41 active compounds in the *S. kiliense*. Extract including; Benzene, (1-propynyl) (9.87%), Hexadecanoic acid (8.05%), Prostaglandin A1-biotin (6.77%), Docosene (6.69%), Octadecenoic acid (5.55%), and 1-Nonadecene (5.16%). The crude extract of *S. kiliense* showed outstanding anticancer activity against cancerous Hep-G2 and MCF-7 cell lines with IC₅₀ of 31.7 and 49.8 µg/ml, respectively. This isolate exhibited significant antimicrobial activity, with inhibition zones ranging from 16.1±0.1 mm to 35.5 mm. MICs varied between 62.5 and 250 µg/mL. *S. kiliense* exhibited antioxidant activity and antibiofilm activities. The *S. kiliense* extract demonstrated concentration-dependent antibiofilm activity. In conclusion, *S. kiliense* as a hopeful home of bioactive combinations with potent antimicrobial, antioxidant, anticancer, and antibiofilm activities, offering the potential for combating multidrug-resistant pathogens and therapeutic applications.

Keywords *Sarocladium*, Antibiofilm, Antioxidant, Antimicrobial, Anticancer, Diseases, Infected, Phytochemical analysis, Endophytes

¹Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka , Saudi Arabia. ²College of Pharmacy, Al-Farahidi University, Baghdad, Iraq. ³Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia. ⁴Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.

⁵Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia. ⁶Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia.

⁷Department of Hematology/Oncology, Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia. ⁸Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia. ⁹Department of Medical and Clinical laboratory Technology, Faculty of Applied Medical Sciences, Applied Science Private University, Amman 11937, Jordan. ¹⁰Botany and Microbiology Department, Faculty of Science, Al-Azhar University, P.O. Box 11884, Cairo, Egypt. ✉email: sabdulsalam@ju.edu.sa; amermorsy@azhar.edu.eg

The rapid extent of multidrug-resistant microorganisms (MDROs) presents a serious global public health challenge, diminishing the effectiveness of conventional antibiotics and contributing to rising morbidity and mortality rates. Consequently, infections that were once easily treatable are becoming increasingly difficult to manage, leading to prolonged illness, higher healthcare costs, and increased mortality¹. This alarming trend underscores the urgent need for novel effective antimicrobial agents derived from alternative sources². Biofilm formation by pathogenic microorganisms further complicates treatment strategies, as biofilms confer resistance to antimicrobial agents and host immune responses³. The structure of biofilms is a complex, multi-step process involving initial attachment, micro colony formation, maturation, and eventual dispersion of cells to colonize new niches⁴. This mode of growth offers microorganisms several advantages, such as enhanced resistance to antimicrobial agents. The development of agents capable of inhibiting biofilm formation or disrupting established biofilms is a critical area of research⁵.

Endophytes, residing asymptotically within plant tissues, engage in symbiotic relationships and synthesize compounds that can confer protection to their host plants against pathogens. These metabolites exhibit antimicrobial, antioxidant, and antibiofilm potency, positioning endophytic fungi as promising candidates in the search for new therapeutic agents. Endophytic fungi exhibit multiple mechanisms to combat MDROs. One primary approach involves the production of diverse secondary metabolites with potent antimicrobial properties, such as alkaloids, terpenoids, and polyketides, which can inhibit or kill resistant pathogens⁶. Moreover, endophytic fungi may outcompete pathogens within the host environment, effectively suppressing pathogen growth⁷. They can also produce enzymes that degrade pathogenic structures or disrupting biofilm formation and virulence factor expression in MDROs. Fungal endophytes play a significant role in combating cancer by producing bioactive metabolites that induce apoptosis, inhibit tumor cell proliferation, and suppress angiogenesis⁸. These compounds often target cancer cells selectively, minimizing damage to healthy tissues⁹. Endophytes also enhance the production of antioxidants, reducing oxidative stress linked to cancer development¹⁰. Their ability to modulate immune responses further contributes to their anticancer potential. Research continues to explore these natural sources for novel and effective cancer therapies¹¹.

Lavandula stricta, a species within the lavender genus (*Lavandula*), is native to arid and semi-arid regions of North Africa, including Egypt¹². Although specific traditional medicinal uses of *L. stricta* are not extensively recorded, related species within the *Lavandula* genus have a rich history in herbal medicine. *L. stricta* was considered as a promising source of natural antioxidants and bioactive compounds. The essential oil of *L. stricta* was rich in α -pinene, linalool, and other bioactive monoterpenes, while the methanolic extracts showed considerable phenolic content¹³. Isolating and studying endophytes from *L. stricta* could lead to the explore of novel compounds due to the unique environmental adaptations and photochemistry of *L. stricta*, its fungal endophytes may harbor distinct bioactive metabolites worthy of exploration¹⁴.

The objective of our study was to isolate and identify endophytic fungi from *L. stricta*, with a specific focus on characterizing the antimicrobial, antibiofilm, antioxidant and anticancer properties of the most potent isolate. By evaluating its bioactive compounds and assessing its efficacy against multidrug-resistant pathogens, this research aims to explore the potential of endophytic fungi as a novel and alternative source of therapeutic agents.

Materials and methods

Isolation and characterization of endophytic fungi

Lavandula stricta (Ls) plants were collected from Ain Sokhna, the Red Sea, the Suez Governorate in Egypt (29.530865, 32.375677). Experimental research and field studies on plants, including the collection of plants and identification, comply with relevant institutional, national, and international guidelines and legislation by Prof. Dr. Abdou Marie Hamed at the Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt. The plant was kept in the Faculty of Science herbarium, Al-Azhar University (Voucher no. 725).

Healthy plant parts rinsed twice with sterilized distilled water (SDH₂O) and then disinfected using 70% CH₃CH₂OH for 60 S, followed by treatment with 4% NaOCl for another 60 S, finally rinsed with SDH₂O. The Ls sections were placed in sterile Petri dishes (9 cm in diameter) containing sterilized PDA medium. For control, sterile Petri dishes (9 cm in diameter) containing sterilized PDA medium inoculated with the solution of sterilized sections to ensure that fungi are endophytes. The plates were incubated in the dark at 28 °C for 21 days and monitored daily¹⁵. Emerging mycelium was carefully collected and subcultured. The isolated fungi were then assessed for their antimicrobial activity against pathogenic microorganisms, and the most effective strain was identified based on colony variations, morphological characteristics, and genetic analysis. Finally, the purified fungal isolates were stored at 4 °C for further studies. The molecular identification of the endophytic fungus was conducted by amplifying the internal transcribed spacer (ITS) region. Genomic DNA was extracted and purified using the Quick-DNA Fungal Microprep Kit (Zymo Research, D6007). PCR amplification was performed using ITS-specific primers: ITS1-F (5'-TCCGTAGGTGAACTGCGG-3') and ITS2-R (5'-TCCTCCGCTTATTG ATATGC-3'). The amplified products were then purified using the Gene JET PCR Purification Kit (Thermo Scientific, K0701). The purified sequences were analyzed through the BLAST tool from NCBI to determine the closest genetic matches. Verified sequences were subsequently submitted to the Gen Bank database, each assigned a unique accession number for global accessibility. To evaluate evolutionary relationships, a phylogenetic tree was constructed using the neighbor-joining method with MEGA software version 5.0¹⁶.

Extraction of active metabolites

The secondary metabolites of *S. kiliense* were extracted by culturing the fungus in 500 mL of PD broth within a 1 L flask, followed by incubation at 28 °C for 15 days. Following incubation, the culture was filtered, and the resulting supernatant was combined with CH₃COOC₂H₅ in a 1:1 V/V and stored at 4 °C overnight. The metabolites were subsequently separated, and the extract was evaporated at 40 °C to yield the ethyl acetate crude extract (EACE) and stored at 4 °C for subsequent experimental use¹⁷.

Antimicrobial activity

Muller Hinton agar (MHA, India) was employed to assess the antibacterial activity of *S. kiliense* against bacteria, while PDA was employed to evaluate its antifungal activity against *C. albicans*. The surface of the prepared MHA and PDA was cultured with 24-hour-old cultures of clinical isolates of *S. aureus*, *K. oxytoca*, *B. subtilis*, and *E. coli*, *C. albicans* ATCC10231. All clinical isolates of *S. aureus*, *K. oxytoca*, *B. subtilis*, and *E. coli* were obtained from bacteriology laboratory at Microbiology Department, faculty of science, Al Azhar University, Cairo, Egypt and were identified using standard microbiological methods in previous study¹⁸. 100 µl of each compound was transferred to each well (6 mm) individually and left at 4 °C for 2 h. Amikacin 30 µg was used as a control for bacteria and fluconazole 25 µg for CA. Plates were incubated for 24 h, 48 h at 37 °C, and 28 °C for bacteria and CA. After incubation, inhibitory zones were measured and reported¹⁹.

Determination of MIC

The MIC of *S. kiliense* EACE against *S. aureus*, *K. oxytoca*, *B. subtilis*, and *E. coli*, *C. albicans* ATCC10231 were determined using a broth microdilution assay. Serial dilutions of *S. kiliense* EACE (100 µl) were supplementary to microtiter plate wells inoculated with 100 µl of double-strength MHB, achieving final concentrations of 1000: 31.25 µg/ml. 50 µl bacterial suspension was inoculated to all wells except the -Ve control (SDH₂O + MHB) and + Ve control (The first row used as + Ve control (using MHB + microorganisms) while second row used as -Ve control (using SDH₂O + MHB only without any microorganisms). + Ve control ensured broth adequacy, incubated at 37 °C for 24 h, then addition of 30 µl resazurin (0.02% wt/v) and re-incubation. Color modification from blue to purple indicated bacterial growth. Sterile controls remained unchanged, confirming no contamination. Experiments were performed in duplicate, and mean values were calculated²⁰.

Anti-biofilm ability

The anti-biofilm activity was assessed using 96-well microtiter plates²¹. Each well of a sterile microtiter plate was filled with 100 µL of MHB for bacteria Sabouraud Dextrose Broth for *Candida* and inoculated with 10 µL of an overnight bacterial and *Candida* culture suspension (OD620 0.05 ± 0.02). The EACE was then added at concentrations of 1/2, 1/4, and 1/8 × MIC, and incubated at 37 °C for 48 h. Then, biofilms were fixed using absolute alcohol, stained with 0.1% (w/v) crystal violet, and incubated for 30 min. After drying, 200 µL of 33% acetic acid was added, and the OD of the stained biofilms was measured at 630 nm. The control used in this experiment involved the growth of microorganisms without any treatment, and the optical density was read. The results were then used in the following equation to calculate the percentage of biofilm inhibition.

$$\text{Biofilm inhibition (\%)} = 1 - \frac{\text{OD630 of cells treated with different concentration of } S. \text{ kiliense}}{\text{OD630 of non treated control}} \times 100$$

Cytotoxicity and anticancer activity of *S. kiliense* EACE

The cytotoxicity experiment was performed according to the MTT procedure established by Van de Loosdrecht, et al.²². The MCF-7 and Wi-38, sourced from ATCC, were utilized to evaluate the cytotoxic or anticancer effects of *S. kiliense* EACE, respectively. The measured OD of the cells at 560 nm was utilized to calculate cell viability and inhibition %²³, following Eqs. (1) and (2), respectively:

$$\text{Viability \%} = \frac{\text{Test OD}}{\text{Control OD}} \times 100 \quad (1)$$

$$\text{Inhibition \%} = 100 - \text{Viability \%} \quad (2)$$

Anti-oxidant activity

The evaluation of the anti-oxidant activity of *S. kiliense* was conducted through the DPPH radical scavenging assay, which was adapted to assess the extract's ability to scavenge free radicals²¹. In the experiment, 100 µL of the DPPH solution was mixed with 100 µL of the sample in a 96-well microplate and allowed to incubate at 25° C for 0.5 h. Ascorbic acid used as + Ve control for comparison. Absorbance was recorded at 490 nm with 100% methanol serving as the control. The DPPH scavenging activity was assessed using the subsequent formula:

$$\text{DPPH scavenging activity} = \frac{\text{control absorbance} - \text{S. kiliense absorbance}}{\text{control absorbance}} \times 100$$

To evaluate the anti-oxidant potential, different concentrations of *S. kiliense* EACE (1000: 7.81 µg/mL) were tested. The results were expressed as DPPH scavenging activity (%), and the IC₅₀ value was determined, providing insight into the extract's antioxidant strength. In addition, the ABTS assay used to assess the anti-oxidant activity of *S. kiliense*. This method was conducted following the protocol described by Lee et al.,²³ offering an alternative approach to evaluate the *S. kiliense* EACE ability to neutralize free radicals.

Phytochemical analysis of *S. kiliense*

The phytochemical analysis of *S. kiliense* was conducted following the methodology.

Determination of *S. kiliense* total flavonoid content (SKTFC)

SKTFC was determined using the AlCl_3 method. One mL of *S. kiliense* extract was dissolved in 2 mL methanol. Separate 5% solutions of NaNO_3 , NaOH , and AlCl_3 were prepared. For analysis, 200 μL of the extract was mixed with 75 μL of 5% NaNO_3 , incubated for 5 min, followed by the addition of 1.25 mL AlCl_3 and 0.5 mL NaOH . The mixture was sonicated, incubated for another 5 min, and absorbance was measured at 510 nm²⁴.

Determination of *S. kiliense* total phenolic content (SKTPC)

SKTPC of the *S. kiliense* extracts was evaluated using a colorimetric assay with Folin-Ciocalteu reagent. One mL of the extract was dissolved in 2 mL of CH_3OH , and then 500 μL was mixed with 2.5 mL of Folin-Ciocalteu reagent and 2.5 mL of a 75 g/L Na_2CO_3 . Absorbance was measured at 765 nm after incubated at 25 °C for 2 h²⁵.

Determination of *S. kiliense* total tannin content (SKTTC)

SKTTC was assayed by the vanillin-HCl (VHCl) method, with tannic acid as the standard. A 400 μL aliquot of *S. kiliense* extract was combined with 3 mL vanillin 4% and 1.5 mL of HCl concentrated. Then absorbance measured at 500 nm after incubated at 25 °C for 15 min²⁵.

Total alkaloid content (TAC) determination

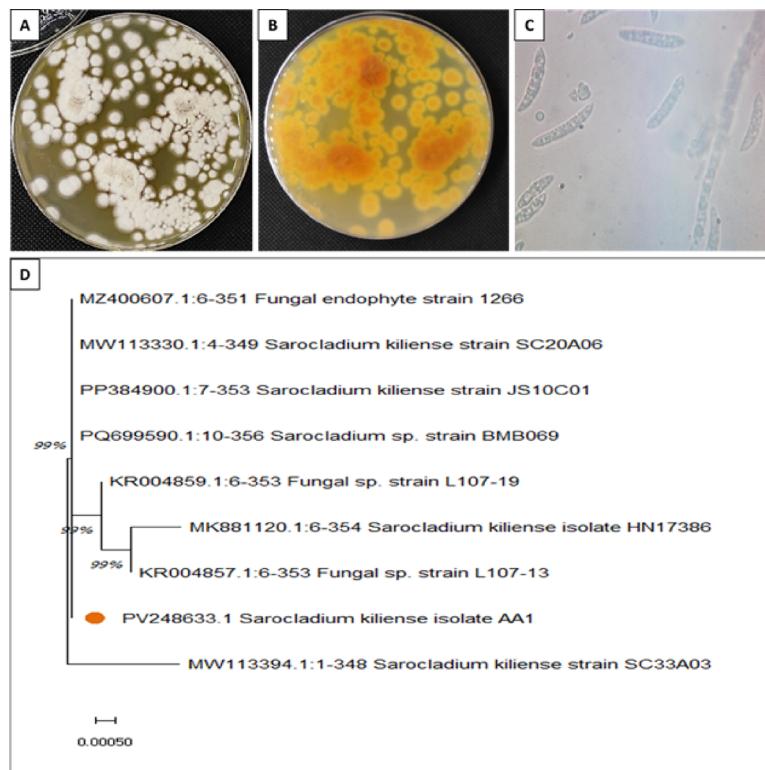
One mL of *S. kiliense* extract was washed three times with chloroform. The pH was adjusted to 7 using 0.1 N NaOH , after which 5 mL of Bromocresol Green solution and 5 mL of phosphate buffer (pH 4.7) were added and shaken vigorously to form a complex, which was then extracted using chloroform. TAC was quantified by measuring absorbance at 470 nm²⁵.

Gas chromatography-mass spectrometry

Metabolites in *S. kiliense* EACE were analyzed using GC-MS (Trace GC1310-ISQ, Thermo Scientific) with a TG-5MS column (30 m × 0.25 mm × 0.25 μm). The oven temperature started at 50 °C, increasing at 5 °C/min to 230 °C (held for 2 min) and then to 290 °C (held for 2 min). The injector and MS transfer line were set at 250 °C and 260 °C. A 1 μL sample was injected at 250 °C using helium as the carrier gas (split ratio 1:30). The MS operated in EI mode (70 eV, 200 °C) with a 40–1000 m/z scan range. Identification used WILEY 09 and NIST 11 libraries²¹.

Statistical analysis

All statistical analyses were performed using Minitab 18.3 with three replicates. Descriptive analysis, including mean and standard error, was conducted.


Results and discussion**Isolation and characterization of endophytic fungi**

In the current study, ten fungal isolates were isolated and purified fungal isolates (Ls1 to Ls10), then screened against *S. aureus*, *K. oxytoca*, *B. subtilis*, and *E. coli*, *C. albicans* ATCC10231. The highest effective fungal isolate was Ls1, thus identified as *Sarocladium* sp. *Sarocladium* sp colonies on PDA appear white to cream-colored initially, turning pale yellow with age (Fig. 1A). The texture was cottony, with a dense mycelial growth pattern. The reverse side of the colony is pale yellow to dark (Fig. 1B). Mycelium was septate and hyaline; conidiophores are slender. Conidia were unicellular, ellipsoidal to cylindrical, and typically formed in. Conidia appear smooth-walled and may form in chains or clusters (Fig. 1C). To validate the morphological identification, molecular analysis was conducted for the fungal isolate Ls1. Results revealed that fungal isolate Ls1 was similar to *Sarocladium kiliense* with 99% according to BLAST on gene bank. Then, the sequence of *S. kiliense* was deposited in gene bank with accession number PV248633.1. and phylogenetic tree was created in Fig. 1D.

By isolating these fungi from *L. stricta*, researchers can better understand their ecological roles, interactions with the host plant, and potential use in medicine, agriculture, and biotechnology. The first isolation of endophytic fungi from *L. stricta* marks a significant step in exploring the plant's hidden microbial diversity and its potential applications. *S. kiliense* was reported as an endophytic fungus isolated from a healthy *Aloe dhufarensis Lavranos* desert-adapted plant, highlighting its potential role in plant health and secondary metabolite production. As an endophyte, *S. kiliense* resides within the plant tissues without causing disease, possibly contributing to host defense mechanisms, growth enhancement²⁶. The isolation and identification of the fungal strain Ls1 as *S. kiliense* underscore its potential as a prolific source of antimicrobial agents. The morphological characteristics observed white to cream-colored colonies transitioning to pale yellow, cottony texture with dense mycelial growth, and septate, hyaline mycelium were consistent with descriptions in existing literature²⁷. The isolation and study of endophytic fungi from stress-resilient plants present a promising avenue for the discovery of novel bioactive compounds with significant medical applications due to the endophytic fungi are shaped by a wide range of factors such as environmental conditions, the type of host tissue, plant evolutionary lineage, geographic region, seasonal variations, and agricultural practices (organic vs. conventional). Additionally, surrounding vegetation and soil characteristics play a significant role²⁸.

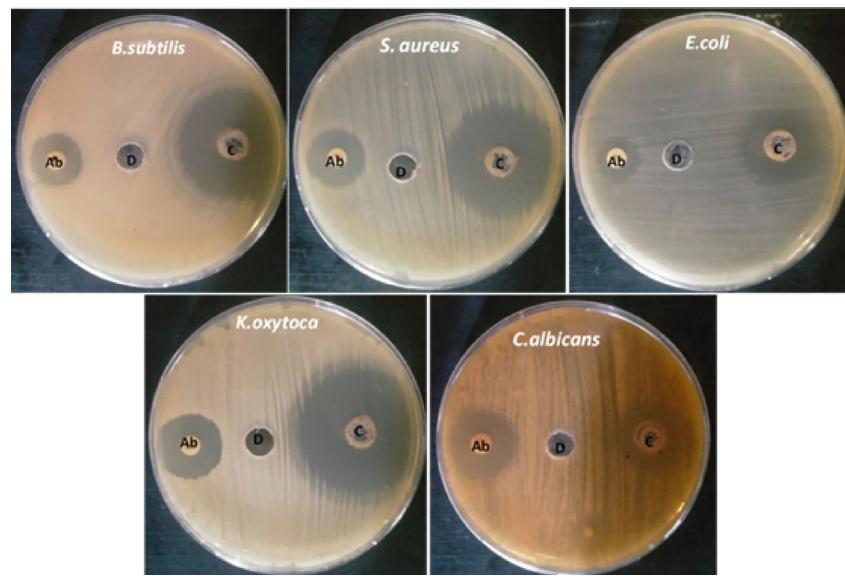
Antimicrobial activity

The Table 1 presents data on the antimicrobial activity of *S. kiliense* EACE against various microbial strains, highlighting its effectiveness. *S. kiliense* EACE exhibits highly activity against both G+ve, G-ve, and *C. albicans*, with varying inhibition zone diameters, as shown in Table 1; Fig. 2. Notably, the inhibition zones for *K. oxytoca*, *S. aureus*, *B. subtilis*, *E. coli*, and *C. albicans* were 35.5 mm, 32.3 mm, 30.1 mm, 21 mm, and 16.1 ± 0.1 mm, respectively. The antibacterial activity of *S. kiliense* can be supported the previous study that demonstrated that

Fig. 1. Morphological identification of *S. kiliense* (A–D) were Colony surface, Reverse, Conidia, and Phylogenetic tree respectively.

Microbial strain	Inhibition zone (mm) of <i>S. kiliense</i>	DMSO	Amikacin / fluconazole
<i>Staphylococcus aureus</i>	32.3±0.3	0	18±0.5
<i>Klebsiella oxytoca</i>	35.5±0.2	0	19.6±0.3
<i>Bacillus subtilis</i>	30.1±0.7	0	15.8±0.4
<i>Escherichia coli</i>	21±0.5	0	12.3±0.3
<i>Candida albicans</i> ATCC10231	16.1±0.1	0	19±0.5

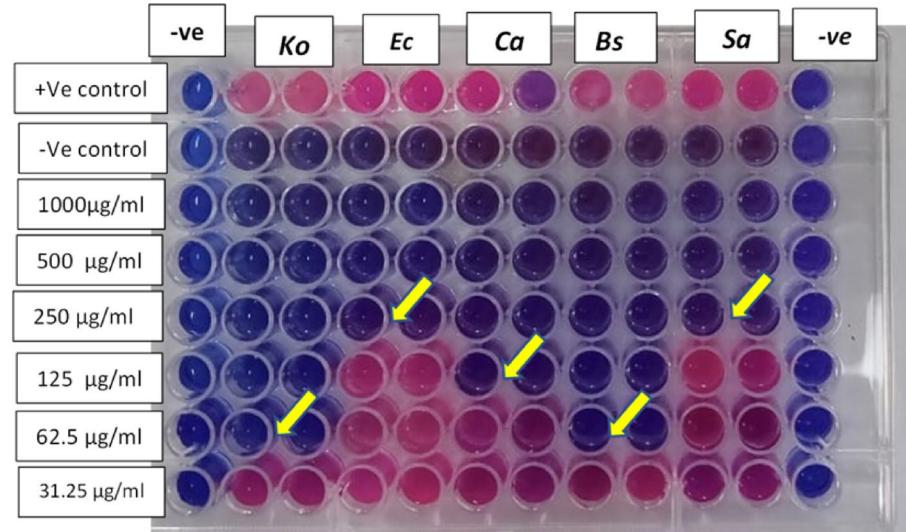
Table 1. Antimicrobial activity of *S. kiliense* EACE.

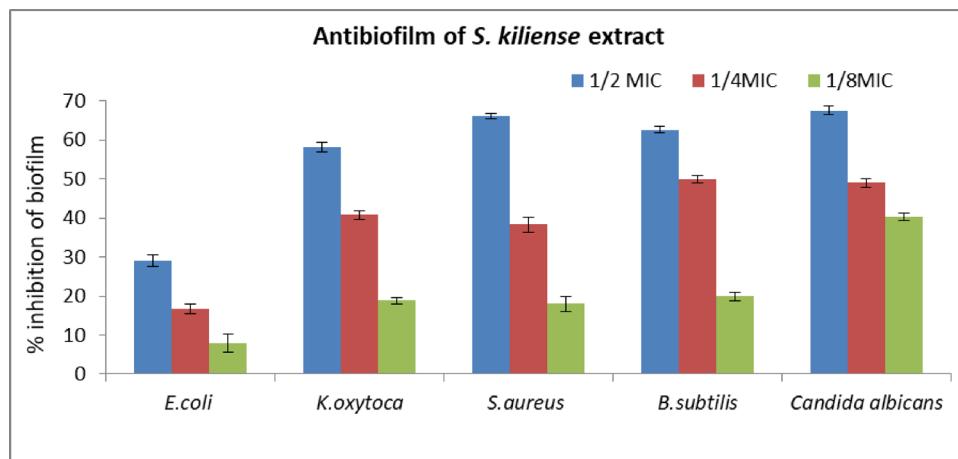

antibacterial activity of *L. stricta* essential oil was evaluated against a range of Gram-positive and Gram-negative bacteria including *Salmonella typhi*, *Pseudomonas aeruginosa*, *Listeria innocua*, *S. aureus*, and *E. coli*²⁹.

Determination of MIC

Table 2 presents the MIC of *S. kiliense* EACE against tested microorganisms. The MIC values ranging from 62.5 to 250 µg/mL, as illustrated in Table 2; Fig. 3. The *S. kiliense* EACE exhibited notable activity, with MICs of 62.5 µg/ml against *B. subtilis* and *K. oxytoca*, 125 µg/ml against *C. albicans* (ATCC10231), and 250 µg/ml against both *S. aureus* and *E. coli*. This broad-spectrum activity may be due to *S. kiliense* EACE-derived bioactive compounds. This is also consistent with many previous studies that have proven the presence of biologically active substances in extracts of endophytic fungi³⁰. The MICs further elucidate the potency of *S. kiliense* EACE. MIC values ranging from 62.5 µg/mL to 250 µg/mL against pathogens like *B. subtilis*, *K. oxytoca*, and *C. albicans* demonstrate the extract's efficacy at relatively low concentrations. The mechanism of antimicrobial activity of *S. kiliense* EACE may be due to the disruption of antibiofilm properties. The anti-biofilm activity of *S. kiliense* extract adds another dimension to its antimicrobial profile. The antimicrobial activity could be confirmed by the presence of antimicrobial compounds as Heptacosane, Cyclohexanecarboxylic acid, 2-phenylethyl ester, Dodecanoic acid, Hexadecane, 1-Nonadecene, Octadecane^{11,28}.

Anti-biofilm ability


The in vitro evaluation of the anti-biofilm activity of *S. kiliense* EACE against the tested pathogens (Fig. 4) revealed a concentration-dependent reduction in biofilm formation across all species. *C. albicans* exhibited the highest inhibition, with biofilm reduction ranging from 67.55±1.13% at ½ MIC to 40.29±0.89% at 1/8 MIC.


Fig. 2. Antimicrobial activity of *S. kiliense* against microbial pathogens, Ab = Amikacin/Fluconazole (Amikacin 30 μ g was used as a control for bacteria and fluconazole for *candida*), D = DMSO.

Microbial strain	MIC of <i>S. kiliense</i> (μ g/ml)
<i>S. aureus</i>	250 μ g/ml
<i>B. subtilis</i>	62.5 μ g/ml
<i>K. oxytoca</i>	62.5 μ g/ml
<i>E. coli</i>	250 μ g/ml
<i>C. albicans</i> (ATCC10231)	125 μ g/ml

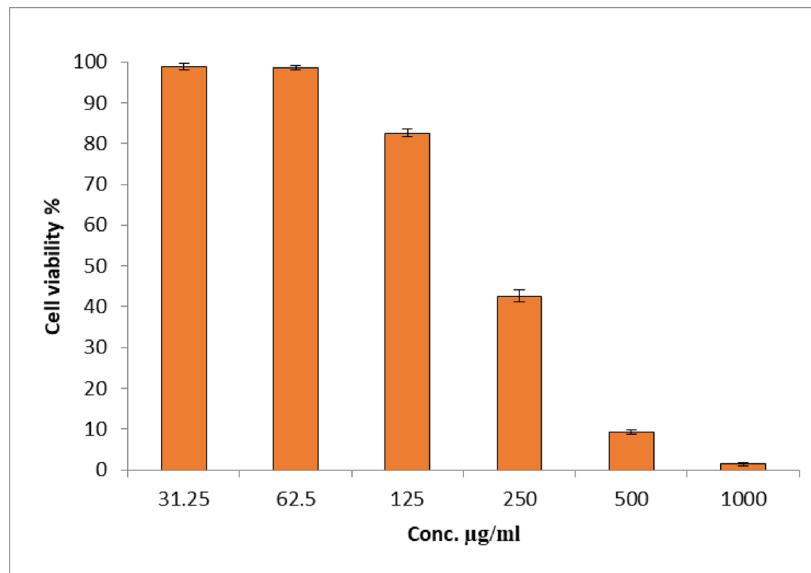

Table 2. MIC of *S. kiliense* EACE.

Fig. 3. MIC of *S. kiliense* against *E. coli*, *K. oxytoca*, *S. aureus*, *B. subtilis*, and *C. albicans*. The first row was used as +Ve control (using MHB + microorganisms) while second row used as -Ve control (using SDH_2O + MHB only without any microorganisms).

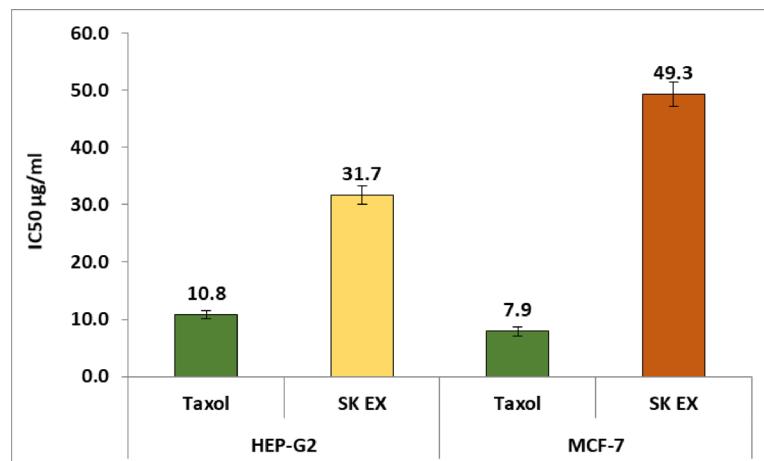
Fig. 4. Antibiofilm activity of *S. kiliense* EACE. The control used in this experiment involved the growth of microorganisms without any treatment.

Fig. 5. Cytotoxicity of *S. kiliense* EACE toward Wi 38 normal cell line at different concentrations.

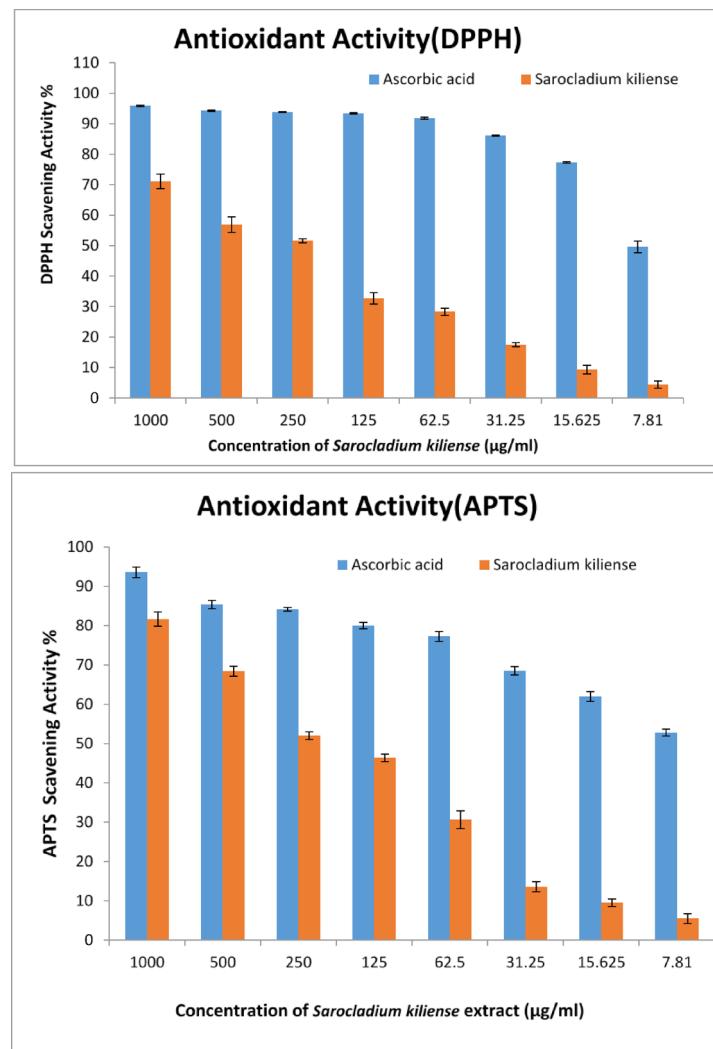
In contrast, *E. coli* showed the lowest reduction, with inhibition percentages varying from 28.99% at 1/2 MIC to 7.99% at 1/8 MIC. The antibiofilm activity was confirmed by antibiofilm components in *S. kiliense* EACE such as Prostaglandin A1-biotin, Octacosanol, Penta tri acontene, Behenic alcohol, and Eicosane. *Lavandula* essential oil demonstrated potent biofilm degradation activity, effectively reducing bacterial adhesion. The ability of *Lavandula* EACE to significantly impair *Campylobacter jejuni* motility further underscores their impact on biofilm inhibition by downregulating key genes involved in adhesion and biofilm formation³¹.

Cytotoxicity and anti-cancer activity

In our study, the EACE of *S. kiliense* was emulated for cytotoxicity toward Wi 38 normal cell line at different concentrations as illustrated in Fig. 5. Results revealed that, IC₅₀ of *S. kiliense* EACE was 226.5 $\mu\text{g/ml}$. This indicates that at this concentration, *S. kiliense* EACE reduces cell viability by 50%, highlighting its potency in inducing cytotoxicity. Therefore, the *S. kiliense* EACE is considered safe to use. Therefore, the safe and maximum non-toxic concentrations of the EACE were determined and evaluated for their anticancer potential. Evaluating the cytotoxicity of compounds toward normal cell lines involves assessing their effects on cell viability, proliferation, and morphology. This evaluation is crucial for determining the safety profile of potential therapeutic agents before clinical application¹⁶. Materials with an IC₅₀ value of $>90 \mu\text{g/mL}$ are often categorized as non-cytotoxic³². The safe and optimal non-toxic concentrations of the extract were assessed for anticancer efficacy.


The highest non-toxic concentrations of *S. kiliense* EACE were evaluated for their anticancer effects on Hep-G2 and MCF-7 cancer cell lines (Fig. 6). The results showed that the IC50 values of *S. kiliense* EACE were 31.7 $\mu\text{g}/\text{ml}$ for Hep-G2 and 49.8 $\mu\text{g}/\text{ml}$ for MCF-7. In comparison, Taxol, a standard anticancer agent, exhibited IC50 values of 10.8 $\mu\text{g}/\text{ml}$ for Hep-G2 and 7.9 $\mu\text{g}/\text{ml}$ for MCF-7. Our results demonstrate the anticancer potential of *S. kiliense* EACE, an endophytic fungal extract, against Hep-G2 (liver cancer) and MCF-7 (breast cancer) cell lines, with IC50 values of 31.7 $\mu\text{g}/\text{ml}$ and 49.8 $\mu\text{g}/\text{ml}$, respectively. These findings indicate that *S. kiliense* EACE is more effective against Hep-G2 cells compared to MCF-7 cells, suggesting a possible selectivity in its mechanism of action toward liver cancer. In comparison, Taxol, a well-established anticancer drug showed significantly lower IC50 values of 10.8 $\mu\text{g}/\text{ml}$ for Hep-G2 and 7.9 $\mu\text{g}/\text{ml}$ for MCF-7, reflecting its potent and broad-spectrum anticancer activity. These results illustrated the selective toxicity of *S. kiliense* EACE against cancer cells; thus, it may be used as an anticancer agents³³. Our findings align with a recent study highlighting the anticancer potential of *Lavandula*, which showed notable cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer cell lines and achieved a 43.29% reduction in tumor size in vivo, with complete tumor regression observed in 12.5% of treated mice³⁴.

Antioxidant activity


In our investigation, we assessed the antioxidant potential of *S. kiliense* EACE across a concentration range of 1000 to 7.81 $\mu\text{g}/\text{mL}$ utilizing both DPPH and ABTS assays, as depicted in Fig. 7. The findings indicated that the EACE exhibited an IC50 value of 202.08 $\mu\text{g}/\text{mL}$ in the DPPH assay, in contrast to the IC50 of 8.9 $\mu\text{g}/\text{mL}$ for ascorbic acid. Similarly, in the ABTS assay, the EACE demonstrated an IC50 of 169.79 $\mu\text{g}/\text{mL}$, whereas ascorbic acid presented an IC50 of 7.61 $\mu\text{g}/\text{mL}$. The antioxidant activity of *S. kiliense* EACE can be explained by the phytochemical analysis that revealing high levels of phenolics, alkaloids, flavonoids, and tannins. The antioxidant activity of *S. kiliense* EACE also proved by the presence of antioxidant compounds that achieved by GC mass analysis as the following; Prostaglandin A1-biotin, Linoleic acid ethyl ester³⁵. Our results can be explained by the study reported that *Lavandula* showed the moderate DPPH and ABTS radical scavenging and metal ion-reducing activities, likely due to its high content of oxygenated sesquiterpenes, particularly α -bisabolol and due to synergistic effects of its monoterpenic-rich composition³⁶.

Phytochemical analysis of *S. kiliense* EACE

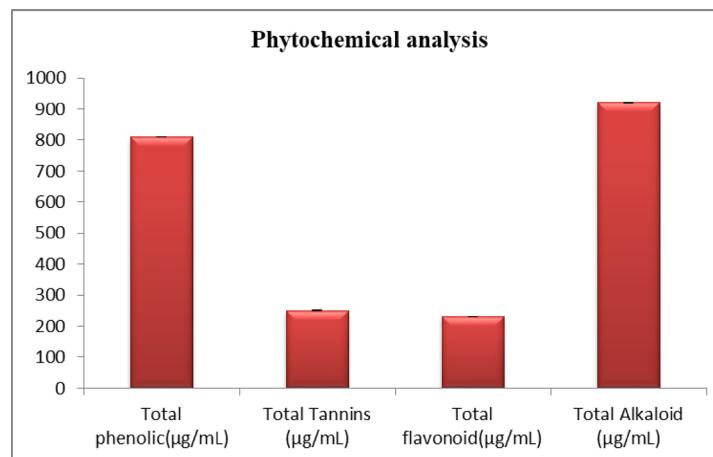
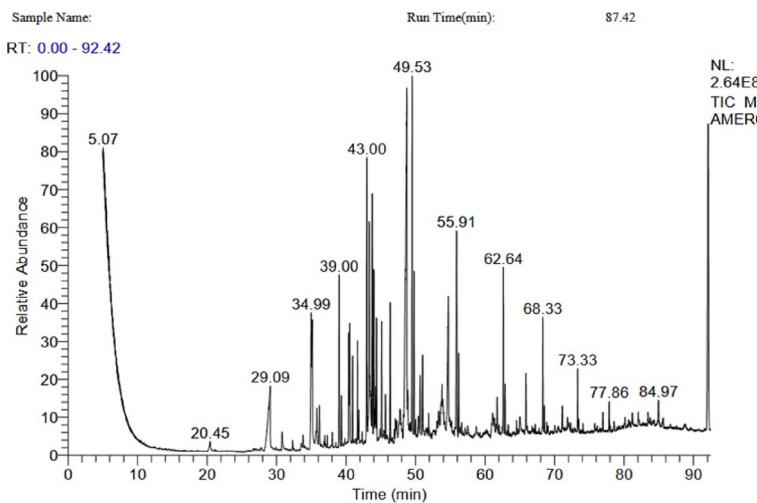

Total phenolics, alkaloids, flavonoids, and tannins was quantified for *S. kiliense* EACE as shown in (Fig. 8). Results revealed that presence high levels of phenolics, alkaloids, flavonoids, and tannins in the *S. kiliense* EACE. A high phenolic content (809.83 $\mu\text{g}/\text{mL}$) in the *S. kiliense* EACE may exhibit strong antioxidant, antimicrobial, and anti-inflammatory activities. Also playing a crucial role in protecting cells from oxidative damage and free radicals. Tannins are polyphenolic compounds known for their astringent biological properties. The presence of tannins (250.2 $\mu\text{g}/\text{mL}$) indicates that the EACE may contribute to antimicrobial, antifungal, and anti-inflammatory effects. The moderate flavonoid content of 232.23 $\mu\text{g}/\text{mL}$ in the *S. kiliense* EACE suggests a potential role in neutralizing free radicals, inhibiting bacterial growth, and modulating immune responses. Alkaloids are bioactive secondary metabolites known for their antimicrobial, antifungal, and medicinal properties. The high alkaloid content (920.5 $\mu\text{g}/\text{mL}$) in this EACE suggests strong antimicrobial potential and possible pharmacological applications, such as anti-bacterial, anti-fungal, and anti-cancer activities. Phenolic compounds are renowned for their anti-oxidant properties, playing a crucial role in neutralizing free radicals and mitigating oxidative stress³⁷. The presence of these active components supports the symbiotic relationship between *S. kiliense* and *L. stricta* and explains the *L. stricta* ability to adapt to this difficult environment. It also explains the presence of these substances in the plant when it is analyzed, as previous studies have proven the presence of these compounds in the plant extract³⁸.

Fig. 6. Anticancer activity of *S. kiliense* EACE.

Fig. 7. Antioxidant activity of *S. kiliense* EACE. Ascorbic acid used as + Ve control for comparison.


Fig. 8. Determination of total phenolics, alkaloids, flavonoids, and tannins of *S. kiliense* EACE.

GC-MS analysis

Our findings, as presented in Table 3; Fig. 9, identified 41 bioactive compounds in the *S. kiliense* EACE. This EACE contains a diverse mixture of fatty acids, hydrocarbons, and aromatic benzene derivatives, each contributing to distinct biological activities. A significant number of these compounds demonstrate antibacterial and antbiofilm properties, making the EACE highly relevant for pharmaceutical and medical applications. Among the most abundant compounds were Benzene, (1-propylmethyl) (9.87%), Hexadecanoic acid (8.05%), Prostaglandin A1-biotin (6.77%), Docosene (6.69%), Octadecenoic acid (5.55%), and 1-Nonadecene (5.16%). Most of the active compounds present in the EACE belong to the antimicrobial category, which includes Dodecanoic acid, Hexadecane, Oleic Acid, and Eicosane. Several compounds exhibit antibacterial and antbiofilm activity, which is crucial for combating biofilm-related infections that are often resistant to conventional treatments. Notable examples include Linoleic acid ethyl ester, Behenic alcohol, and Octacosanol, which play a vital role in preventing bacterial colonization and persistence. Beyond antimicrobial activity, the EACE contains

No.	Compound	RT (min)	Peak area %	activity	References
1	Trans-2-Decenoic acid	29.08	0.89	Antibiofilm and decreasing bacterial resistance	41
2	Cyclohexanecarboxylic acid,2-phenylethyl ester	30.81	0.38	Antibacterial and anti-candida	42
3	Diethyltoluamide	33.82	0.20	Antibacterial	43
4	Dodecanoic acid	34.98	1.95	Antimicrobial	44
5	4-Hydroxyvalproic acid	35.16	3.40	Anticonvulsant	45
6	Hexadecane	36.19	0.62	Antimicrobial	25
7	Dodecyl acrylate	39.00	2.52	Antibacterial	46
8	Benfluorex	39.33	0.77	Anti-inflammatory, treat hyperlipidemia and type II diabetes	47
9	Benzene, (1-pentylheptyl)	40.38	1.95	Anticancer; Antiviral	48
10	Benzene, (1-butyloctyl)	40.53	1.76	Anticancer; Antiviral	48
11	Benzene, (1-propylmethyl)	40.93	9.87	Anticancer; Antiviral	48
12	Dotriacontane	41.44	0.12	Anticancer; antibacterial, and antbiofilm	49
13	Benzene, (1-ethyldecyl)	41.65	1.48	Anticancer; Antiviral	48
14	Tetradecanoic acid	41.84	0.54	Anti-insect	50
15	1-Nonadecene	43.0	5.16	Antifungal, antibacterial	51
16	Octadecane	43.33	4.06	Antimicrobial	52
17	Benzene, (1-pentyloctyl)	43.78	4.17	Anticancer; Antiviral	48
18	Benzene, (1-butylmethyl)	43.99	2.41	Anticancer; Antiviral	48
19	Pentadecanoic acid	44.27	0.70	Antimicrobial	53
20	Benzene, (1-propyldecyl)	44.40	1.64	Anticancer; Antiviral	48
21	8,11-Elemadiol	44.90	0.22	Antibacterial	54
22	Benzene, (1-ethylundecyl)	45.12	1.70	Anticancer; Antiviral	48
23	Hexadecanol,2-methyl	45.48	0.22	Antibacterial	55
24	Benzene, (1-methylundecyl)	46.37	2.06	Anticancer; Antiviral	48
25	Monobutyl phthalate	47.10	0.28	Antibacterial	56
26	Hexadecanoic acid	47.26	8.05	Antibacterial, anti-inflammatory	57
27	2-Hexadecanol	48.90	0.30	Antibacterial	58
28	Oleic Acid	49.17	1.85	Antimicrobial	17
29	Docosene	49.53	6.69	Antimicrobial	17
30	Eicosane	49.80	2.34	Antibacterial, antbiofilm	59
31	Heptadecenoic acid	50.40	1.53	Antimicrobial	17
32	Octadecenoic acid	51.01	5.55	Antibacterial, antbiofilm	49
33	Linoleic acid ethyl ester	53.32	0.42	Antibacterial, antbiofilm, antioxidant	36b
34	Behenic alcohol	55.19	3.85	Antibacterial, antbiofilm	60
35	Penta tri aconitene	58.75	0.14	Antibacterial, antbiofilm	61
36	Octyl palmitoleate	61.10	0.82	Antibacterial	62
37	Octacosanol	62.64	3.61	Antibacterial, antbiofilm	63
38	Heptacosane	62.88	1.52	Antimicrobial	64
39	1,2-benzenedicarboxylic acid	65.85	1.01	Antibacterial	65
40	Flavone (4'-oh,5-oh,7-di-o-) glucoside	85.63	0.21	Antibacterial	66
41	Prostaglandin A1-biotin	92.09	6.77	Antibacterial, antbiofilm, antioxidant	36a

Table 3. The compounds identified by GC-MS of *S. kiliense* EACE.

Fig. 9. GC-mass analysis of *S. kiliense* EACE.

anticancer and antiviral compounds, particularly benzene derivatives such as (1-pentylheptyl, 1-butyloctyl, and 1-propylnonyl). Additionally, anti-inflammatory compounds like Hexadecanoic acid and Benfluorex contribute to reducing inflammation, making them beneficial for conditions involving immune responses. The presence of 4-Hydroxyvalproic acid, a known anticonvulsant, further expands the therapeutic potential of this EACE. The identified of 41 bioactive compounds within the *S. kiliense* EACE, including fatty acids such as Hexadecanoic acid and oleic acid have been documented for their antibacterial properties³⁹. The detection of compounds with known antibiofilm activity, such as linoleic acid ethyl ester and octacosanol, is particularly significant. The ability of *S. kiliense* EACE to disrupt biofilm formation suggests a potential therapeutic avenue for combating persistent infections⁴⁰. GC-MS analysis results align with previous studies reporting a rich composition of bioactive compounds in *L. stricta*, mainly monoterpenes and sesquiterpenes, which are linked to its pharmacological potential and may be associated with the endophytic fungus *S. kiliense*. Key constituents such as 1,8-cineole, camphor, borneol, and linalool have been identified¹³.

Conclusion

This study highlights *S. kiliense* as a highly promising endophytic fungus isolated from *L. stricta*, demonstrating significant potential in addressing the global challenge of multidrug-resistant pathogens. The phytochemical analysis discovered a rich profile of bioactive compounds, including phenolics, tannins, flavonoids, and alkaloids, which contribute to its potent antimicrobial, antioxidant, anticancer, and antibiofilm activities. The EACE exhibited remarkable antimicrobial efficacy against a range of pathogens, along with concentration-dependent antibiofilm properties, making it a strong candidate for developing novel therapeutic agents. Furthermore, the outstanding anticancer activity of *S. kiliense* against Hep-G2 and MCF-7 cell lines, coupled with its antioxidant potential, underscores its multifaceted therapeutic applications. The presence of 41 active compounds, as identified by GC-MS analysis, further validates its pharmacological potential. These findings position *S. kiliense* as a valuable natural resource for combating drug-resistant infections and cancer, paving the way for future research into its clinical applications and developing new bioactive formulations.

Data availability

All data underlying the findings described in our manuscript were inserted in the manuscript.

Received: 28 March 2025; Accepted: 16 June 2025

Published online: 03 July 2025

References

1. Abdelmotaleb, M. M., Elshik, H. H., Abdel-Aziz, M. M., Elaasser, M. M. & Yosri, M. Evaluation of antibacterial efficacy and phytochemical analysis of *Echinacea purpurea* towards MDR strains with clinical origins. *Al-Azhar Bull. Sci.* **34**, 3. <https://doi.org/10.58675/2636-3305.1643> (2023).
2. Elsharkawy, M. M., Eid, A. M., ATTIA, N. M. & Fouada, A. Bacterial coinfections and antibiogram profiles among ICU COVID-19 patients. *Al-Azhar Bull. Sci.* **34** <https://doi.org/10.58675/2636-3305.1656> (2023).
3. Elshabrawy, M. M., Labena, A. I., Desouky, S. E., Barghouth, M. G. & Azab, M. S. Detoxification of hexavalent chromium using biofilm-forming *Paenochroabactrum pullorum* isolated from tannery wastewater effluents. *Al-Azhar Bull. Sci.* **34**, 2. <https://doi.org/10.58675/2636-3305.1642> (2023).
4. Shehabeldine, A. M. et al. Antimicrobial, antibiofilm, and anticancer activities of *syzygium aromaticum* essential oil nanoemulsion. *Molecules* **28**, 5812. <https://doi.org/10.3390/molecules28155812> (2023).
5. Fareid, M. A. et al. Impeding Biofilm-Forming mediated Methicillin-Resistant *Staphylococcus aureus* and virulence genes using a biosynthesized silver Nanoparticles–Antibiotic combination. *Biomolecules* **15**, 266. <https://doi.org/10.3390/biom15020266> (2025).

6. Elghaffar, R. Y. A., Amin, B. H., Hashem, A. H. & Sehim, A. E. Promising endophytic *Alternaria alternata* from leaves of *Ziziphus spina-christi*: phytochemical analyses, antimicrobial and antioxidant activities. *Appl. Biochem. Biotechnol.* **194**, 3984–4001. <https://doi.org/10.1007/s12010-022-03959-9> (2022).
7. Abd-Elsalam, K. A. & Hashem, A. H. Enhancing Agroecosystem Productivity with Endophytic Fungi: Unveiling Their Role in *Fungal Endophytes Volume II: Applications in Agroecosystems and Plant Protection* 3–32. Springer, (2025).
8. Abd-Elsalam, K. A., Almoammar, H., Hashem, A. H. & AbuQamar, S. F. Endophytic Fungi: Exploring Biodiversity and Bioactive Potential. *Fungal Endophytes Volume I: Biodiversity and Bioactive Materials*, 1–42. Springer, (2025).
9. Varghese, S. et al. Endophytic fungi: A future prospect for breast cancer therapeutics and drug development. *Helijon* **10**, e33995 (2024).
10. Khalil, A. M. A., Hassan, S. E. D., Alsharif, S. M., Eid, A. M., Ewais, E. E. D., Azab, E., Fouda, A. Isolation and characterization of fungal endophytes isolated from medicinal plant *Ephedra pachyclada* as plant growth-promoting. *Biomolecules* **11**, 140, (2021).
11. Abdelaziz, A. M., Attia, M. S., Doghish, A. S. & Hashem, A. H. Endophytic Fungi as a Promising Source for Sulfur-Containing Compounds. In: *Fungal Endophytes Volume I: Biodivers. Bioact. Mater.* 365–383, Springer, (2025).
12. Rabei, S. & Elgamal, I. A. Floristic study of saint Katherine protectorate, sinai: with one new record to flora of Egypt. *Taeckholmia* **41**, 32–55. <https://doi.org/10.21608/taec.2021.190777> (2021).
13. Alizadeh, A. & Aghaee, Z. Essential oil constituents, phenolic content and antioxidant activity of *Lavandula stricta* delile growing wild in Southern Iran. *Nat. Prod. Res.* **30**, 2253–2257. <https://doi.org/10.1080/14786419.2016.1155578> (2016).
14. Habán, M., Korczyk-Szabó, J., Čerteková, S. & Ražná, K. *Lavandula* species, their bioactive phytochemicals, and their biosynthetic regulation. *Int. J. Mol. Sci.* **24**, 8831. <https://doi.org/10.3390/ijms24108831> (2023).
15. Abdelaziz, A. M. et al. Efficient role of endophytic *Aspergillus terreus* in biocontrol of *Rhizoctonia solani* causing damping-off disease of *Phaseolus vulgaris* and *Vicia faba*. *Microorganisms* **11**, 1487 (2023). <https://doi.org/10.3390/microorganisms11061487>
16. Khalil, A., Abdelaziz, A., Khaleil, M. & Hashem, A. Fungal endophytes from leaves of *Avicennia marina* growing in semi-arid environment as a promising source for bioactive compounds. *Lett. Appl. Microbiol.* **72**, 263–274. <https://doi.org/10.1111/lam.13414> (2021).
17. Hashem, A. H., Al-Askar, A. A., Abd Elgawad, H. & Abdelaziz, A. M. Bacterial endophytes from *Moringa oleifera* leaves as a promising source for bioactive compounds. *Separations* **10**, 395. <https://doi.org/10.3390/separations10070395> (2023).
18. El-Sayed, M. H., Alshammary, F. A. & Sharaf, M. H. Antagonistic potentiality of actinomycete-derived extract with anti-biofilm, antioxidant, and cytotoxic capabilities as a natural combating strategy for multidrug-resistant ESKAPE pathogens. *J. Microbiol. Biotechnol.* **33**, 61. <https://doi.org/10.4014/jmb.2211.11026> (2022).
19. Alghazzaly, A. M., El-Sherbiny, G. M., Moghannem, S. A. & Sharaf, M. H. Antibacterial, antibiofilm, antioxidants and phytochemical profiling of *Syzygium aromaticum* extract. *Egypt. J. Aquat. Biology Fisheries*. <https://doi.org/2610.21608/ejabf.2022.260398> (2022).
20. Sharaf, M. H. et al. New combination approaches to combat methicillin-resistant *Staphylococcus aureus* (MRSA). *Sci. Rep.* **11**, 4240. <https://doi.org/10.1038/s41598-021-82550-4> (2021).
21. Sharaf, M. H. Evaluation of the antivirulence activity of Ethyl acetate extract of (Desf) against. *Egypt. Pharm. J.* **19**, 188–196. https://doi.org/10.4103/epj.epj_10_20 (2020).
22. Van de Loosdrecht, A., Beelen, R., Ossenkoppele, Broekhoven, M. & Langenhuijsen, M. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. *J. Immunol. Methods* **174**, 311–320. [https://doi.org/10.1016/0022-1759\(94\)90034-5](https://doi.org/10.1016/0022-1759(94)90034-5) (1994).
23. Lee, K. J., Oh, Y. C., Cho, W. K. & Ma, J. Y. Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay. *Evidence-Based Compl. Altern. Med.* **165457**. <https://doi.org/10.1155/2015/165457> (2015).
24. ME, S., El-Sherbiny, G. M., Sharaf, M. H., Kalaba, M. H. & Shaban, A. S. Phytochemical analysis, antimicrobial, antioxidant, and cytotoxicity activities of *Schinus molle* (L.) extracts. *Biomass Convers. Biorefinery* **15**, 3753–3770. <https://doi.org/10.1007/s13399-024-05301-1> (2025).
25. Abdelaziz, A. M. et al. *Anabasis setifera* leaf extract from arid habitat: A treasure trove of bioactive phytochemicals with potent antimicrobial, anticancer, and antioxidant properties. *Plos One* **19**, e0310298. <https://doi.org/10.1371/journal.pone.0310298> (2024).
26. Al-Rashdi, F. K. H. et al. Endophytic fungi from the medicinal plant *Aloe dhufarensis* Lavranos exhibit antagonistic potential against phytopathogenic fungi. *South. Afr. J. Bot.* **147**, 1078–1085. <https://doi.org/10.1016/j.sajb.2020.05.022> (2022).
27. Eskander, D. M., Atalla, S. M., Hamed, A. A. & El-Khrisy, E. D. A. Investigation of secondary metabolites and its bioactivity from *sarocladium kiliense* SDA20 using shrimp shell wastes. *Pharmacognosy J.* <https://doi.org/10.5530/pj.2020.12.95> (2020).
28. Abdelaziz, A. M., Hashem, A. H., Abd-Elsalam, K. A. & Attia, M. S. Biodiversity of Fungal Endophytes. In: *Fungal Endophytes Volume I: Biodiversity and Bioactive Materials* 43–61, (Springer, 2025).
29. Mehrnia, M. A. & Barzegar, H. Investigation of functional groups, phenolic and flavonoid compounds, antioxidant and antimicrobial activity of *Lavandula stricta* essential oil: an in vitro study. *J. Food Sci. Technol. (Iran)* **18**, 61–76. <https://doi.org/10.52547/fsct.18.119.61> (2021).
30. Hashem, A. H., Abdelaziz, A. M., Attia, M. S. & Abd-Elsalam, K. A. Biocontrol potential of endophytic Fungi against postharvest grape pathogens. In: *Fungal Endophytes Volume II: Applications in Agroecosystems and Plant Protection*, 509–530, (Springer, 2025).
31. Attia, M. S., Hashem, A. H. & Abdelaziz, A. M. Biocontrol of blight diseases using endophytic Fungi. In: *Fungal Endophytes Volume II: Applications in Agroecosystems and Plant Protection* 383–403 (Springer, 2025).
32. Ramic, D. et al. Antibiofilm potential of *Lavandula* preparations against *Campylobacter jejuni*. *Appl. Environ. Microbiol.* **87**, e01099–e01021. <https://doi.org/10.1128/AEM.01099-21> (2021).
33. Ioset, J. R., Brun, R., Wenzler, T., Kaiser, M. & Yardley, V. Drug screening for kinetoplastids diseases. *A Training Manual for Screening in Neglected Diseases* (2009).
34. Bashar, M. A. et al. Anticancer, antimicrobial, insecticidal and molecular Docking of Sarcotrocheliol and cholesterol from the marine soft coral sarcophyton trocheliophorum. *Sci. Rep.* **14**, 28028. <https://doi.org/10.1038/s41598-024-75446-6> (2024).
35. Aboalhaija, N. H. et al. Chemical evaluation, in vitro and in vivo anticancer activity of *Lavandula angustifolia* grown in Jordan. *Molecules* **27**, 5910. <https://doi.org/10.3390/molecules27185910> (2022).
36. Nagat, S., Eissa, S. & Hoda, A. K. Preventive effects of dill oil on potassium bromate-induced oxidative DNA damage on Garlic root tips. (2024) Sultan Qaboos University Journal for Science
37. Jalalvand, A. R. et al. Chemical characterization and antioxidant, cytotoxic, antibacterial, and antifungal properties of ethanolic extract of *Allium sativum* RM Fritsch leaves rich in linolenic acid, Methyl ester. *J. Photochem. Photobiol. B* **192**, 103–112. <https://doi.org/10.1016/j.jphphotobiol.2019.01.017> (2019).
38. Eltayeb, L. M., Yagi, S., Mohamed, H. M., Zengin, G., Shariati, M. A., Rebezov, M., Lorenzo, J. M. Essential oils composition and biological activity of *Chamaecyparis obtusa*, *Chrysopogon nigritanus* and *Lavandula coronopifolia* grown wild in Sudan. *Molecules* **28**, 1005, (2023).
39. Attia, M. S., Soliman, E. A., El Dorry, M. A. & Abdelaziz, A. Fungal endophytes as promising antibacterial agents against *ralstonia solanacearum*, the cause of wilt disease in potato plants. *Egypt. J. Bot.* **65**, 120–131. <https://doi.org/10.21608/ejbo.2024.279261.2777> (2025).

40. Dobros, N., Zawada, K. & Paradowska, K. Phytochemical profile and antioxidant activity of *Lavandula angustifolia* and *Lavandula x intermedia* cultivars extracted with different methods. *Antioxidants* **11**, 711. <https://doi.org/10.3390/antiox11040711> (2022).
41. Ghavam, M., Afzali, A. & Manca, M. L. Chemotype of Damask Rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. *Sci. Rep.* **11**, 8027. <https://doi.org/10.1038/s41598-021-87604-1> (2021).
42. Abdelhamid, A. G. & Yousef, A. E. Combating bacterial biofilms: current and emerging antibiofilm strategies for treating persistent infections. *Antibiotics* **12**, 1005. <https://doi.org/10.3390/antibiotics12061005> (2023).
43. Marques, C. N., Morozov, A., Planzos, P. & Zelaya, H. M. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. *Appl. Environ. Microbiol.* **80**, 6976–6991. <https://doi.org/10.1128/AEM.01576-14> (2014).
44. Hameed, R. H., Abbas, F. M. & Hameed, I. H. Bioactive chemical analysis of *Enterobacter aerogenes* and test of its Anti-fungal and Anti-bacterial activity and determination. *Indian J. Public. Health Res. Dev.* **9**, 442–448. <https://doi.org/10.5958/0976-5506.2018.0484.9> (2018).
45. Roza, D., Sinaga, N. B. & Ambarita, C. Isolation of secondary metabolite compounds of coffee Benalu leaves (*Loranthus parasiticus* (L.) Merr.) and its antibacterial activity test. *J. Pendidikan Kimia.* **14**, 111–119. <https://doi.org/10.24114/jpkim.v14i2.33706> (2022).
46. Reddy, G. S., Srinivasulu, K., Mahendran, B. & Reddy, R. S. Biochemical characterization of anti-microbial activity and purification of glycolipids produced by dodecanoic acid-undecyl ester. *Res. J. Pharm. Technol.* **11**, 4066–4073. <https://doi.org/10.5958/0974-360X.2018.00748.5> (2018).
47. Löscher, W. & Nau, H. Pharmacological evaluation of various metabolites and analogues of valproic acid: anticonvulsant and toxic potencies in mice. *Neuropharmacology* **24**, 427–435. [https://doi.org/10.1016/0028-3908\(85\)90028-0](https://doi.org/10.1016/0028-3908(85)90028-0) (1985).
48. Fahem, N., Djellouli, A. S. & Bahri, S. Cytotoxic activity assessment and GC-MS screening of two codium species extracts. *Pharm. Chem. J.* **54**, 755–760. <https://doi.org/10.1007/s11094-020-02266-z> (2020).
49. Lee, S. H., Athavankar, S., Cohen, T., Kiselyuk, A. & Levine, F. Reversal of lipotoxic effects on the insulin promoter by Alverine and benfluorex: identification as HNF4α activators. *ACS Chem. Biol.* **8**, 1730. <https://doi.org/10.1021/cb4000986> (2013).
50. El-Alem, W. A. et al. Antiviral activities and phytochemical studies on *Cleome Drosierifolia* (Forssk.) delile in Nabq protectorate, South sinai, Egypt. *Egypt. J. Bot.* **64**, 369–380. <https://doi.org/10.21608/ejbo.2024.292645.2863> (2024).
51. Elkady, F. M., Badr, B. M., Hashem, A. H., Abdulrahman, M. S., Abdelaziz, A. M., Al-Askar, A. A., Hashem, H. R. Unveiling the *Launaea nudicaulis* (L.) Hook medicinal bioactivities: phytochemical analysis, antibacterial, antbiofilm, and anticancer activities. *Frontiers in Microbiology* **15**, 1454623. <https://doi.org/10.3389/fmicb.2024.1454623> (2024).
52. Sivakumar, R., Jebanesan, A., Govindarajan, M. & Rajasekar, P. Larvical and repellent activity of tetradecanoic acid against *Aedes aegypti* (Linn.) and *Culex quinquefasciatus* (Say), (Diptera: Culicidae). *Asian Pac. J. Trop. Med.* **4**, 706–710. [https://doi.org/10.1016/S1995-7645\(11\)60178-8](https://doi.org/10.1016/S1995-7645(11)60178-8) (2011).
53. Khan, I. H. & Javaid, A. Antifungal, antibacterial and antioxidant components of Ethyl acetate extract of Quinoa stem. *Plant. Prot.* **3**, 125–130. <https://doi.org/10.33804/pp.003.03.0150> (2019).
54. Octarya, Z., Novianty, R., Suraya, N. & SARYONO, S. Antimicrobial activity and GC-MS analysis of bioactive constituents of *Aspergillus fumigatus* 269 isolated from Sungai Pinang hot spring, riau, Indonesia. *Biodiversitas J. Biol. Diversity* **22** (2021).
55. Al-Shammari, L. A., Hassan, W. H. & Al-Youssef, H. M. Chemical composition and antimicrobial activity of the essential oil and lipid content of *Carduus pycnocephalus* L. growing in Saudi Arabia. *J. Chem. Pharm. Res.* **4**, 1281–1287 (2012).
56. Suekaew, N. Chemical constituents and antibacterial activity of rhizomes from *Globba schomburgkii* Hook. (2019).
57. Abdel-Hady, H., Abdel-Warith, M. T. A., El-Wakil, E. A. & Helmy, E. A. Identification and evaluation of antimicrobial and cytotoxic activities of *penicillium Islandicum* and *Aspergillus tamarii* Ethyle acetate extracts. *Pharmaceuticals* **6**, 2021–2039 (2016).
58. Khatiwora, E., Adsul, V. B., Kulkarni, M., Deshpande, N. & Kashalkar, R. Antibacterial activity of dibutyl phthalate: A secondary metabolite isolated from *Ipomoea carnea* stem. *J. Pharm. Res.* **5**, 150–152 (2012).
59. Aparna, V. et al. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. *Chem. Biol. Drug Des.* **80**, 434–439. <https://doi.org/10.1111/j.1747-0285.2012.01418.x> (2012).
60. de Rodríguez, D. J., García-Hernández, L. C., Rocha-Guzmán, N. E., Moreno-Jiménez, M. R., Rodríguez-García, R., Díaz-Jiménez, M. L. V., ... Carrillo-Lomelí, D. A. *Psacalium paucicapitatum* has in vitro antibacterial activity. *Industrial Crops Products* **107**, 489–498 <https://doi.org/10.1016/j.indcrop.2017.05.025> (2017).
61. Beema Shaforeen, R. M., Seema, S., Alagu Lakshmi, S., Srivathsan, A., Tamilmuhilan, K., Shrestha, A., Muthupandian, S. In vitro and in vivo antibiofilm potential of eicosane against *Candida albicans*. *Appl. Biochem. Biotechnol.* **194**, 4800–4816, <https://doi.org/10.1007/s12010-022-03984-8>, (2022).
62. Kim, S. & Kim, T. J. Inhibitory effect of *Moringa oleifera* seed extract and its Behenic acid component on *Staphylococcus aureus* biofilm formation. *Antibiotics* **14**, 19. <https://doi.org/10.3390/antibiotics14010019> (2024).
63. Salih, L., Eid, F., Elhaw, M. & Hamed, A. In vitro cytotoxic, antioxidant, antimicrobial activity and volatile constituents of *Coccocloba peltata* Schott cultivated in Egypt. *Egypt. J. Chem.* **64**, 7157–7163. <https://doi.org/10.21608/ejchem.2021.87688.4229> (2021).
64. Bailey, A., De Lucca, A. & Moreau, J. Antimicrobial properties of some erucic acid-glycolic acid derivatives. *J. Am. Oil Chemists' Soc.* **66**, 932–934. <https://doi.org/10.1007/BF02682611> (1989).
65. Umoh, R. A. et al. Isolation of a Lauryl alcohol (1-Dodecanol) from the antioxidant bioactive fractions of *Justicia insularis* (Acanthaceae) leaves. *Nat. Prod. Commun.* **20**, 1934578X241297510. <https://doi.org/10.1177/1934578X241297510> (2025).
66. Witkowska-Banaszczak, E. & Dlugaszewska, J. Essential oils And hydrophilic extracts from the leaves And flowers of *Succisa pratensis* moench. And their biological activity. *J. Pharm. Pharmacol.* **69**, 1531–1539. <https://doi.org/10.1111/jph.12784> (2017).

Acknowledgements

The author thanks Al-Azhar University, Faculty of Science, Botany and Microbiology Department for supporting this study. The author also thanks Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R454), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia, The author also thanks College of Pharmacy, Al-Farahidi University, Baghdad, Iraq for supporting this study.

Author contributions

Conceptualization, A.M.A; methodology, M.H.M., and A.M.A.; software, S.S., M.H.M., and A.M.A; validation, M.T.A., S.K. A., H.M.A., F.M.A., M.H.M., and A.M.A.; formal analysis M.H.M., and A.M.A.; investigation, M.S.A., H.S.G., M.H. A., M.H.M., and A.M.A.; resources, S.S., M.T.A., S.K. A., H.M.A., F.M.A., M.H.M., and A.M.A.; data curation, M.H.M., and A.M.A.; writing—original draft, M.S.A., H.S.G., M.H. A., M.T.A., S.K. A., H.M.A., F.M.A., M.H.M., and A.M.A.; writing—review & editing, S.S., M.H.M., and A.M.A.; supervision, M.H.M., and A.M.A.; project administration, M.H.M., and A.M.A. All authors have read and agreed to the published version of the manuscript.

Funding

The author also thanks Princess Nourah bint Abdulrahman University Researchers Supporting Project number

(PNURSP2025R454), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Declarations

Competing interests

The authors declare no competing interests.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Correspondence and requests for materials should be addressed to S.S. or A.M.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025