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Adaptation is a form of short-term plasticity triggered by prolonged stimulus exposure, altering 
perceptual sensitivity to stimulus features through reduced neuronal firing rates. Our previous studies 
investigated adaptation to bistable stimuli, specifically inward-moving gratings perceived either as a 
plaid moving coherently downward or two gratings moving incoherently. Using functional magnetic 
resonance imaging (fMRI), we have consistently observed a stronger response to incoherent rather 
than coherent motion. Possible mechanisms include stronger adaptation to coherent motion, 
greater neural involvement for the representation of incoherent motion or both. Here, we employ 
a computational model of visual neurons with and without firing rate adaptation to test these two 
hypotheses. By simulating the mean activity of thirty-two columnar populations of visual area MT, we 
investigate the impact of adaptation on the blood-oxygen-level-dependent (BOLD) signal. Our results 
replicate experimental findings only when the model includes adaptation. The simulated response to 
incoherent motion is larger for a variety of stimulus parameters and adaptation regimes, suggesting 
that the reduced response to coherent stimuli is due to smaller neuronal population activation. 
The model also explains differential motion after-effect responses. The joint role of adaptation 
and differential neuronal recruitment in bistable perception sheds light on mechanisms underlying 
experimental data.

Firing rate adaptation is a well-established feature of sensory neurons, involving short-term reduction in 
spiking activity and changes in sensitivity to the features of a repeatedly presented stimulus1,2. This process is 
an important resource to achieve code efficiency in the brain as it ensures heightened sensitivity to unexpected 
or unusual stimuli3,4. However, adaptation also leads to visual illusions such as the motion after-effect (MAE): 
the perception of motion in a stationary image following prolonged exposure to a moving stimulus5. This 
phenomenon is also known as the waterfall effect, coined after its notable observation in a natural setting.

In neuroscience research, visual adaptation has been documented through psychophysical experiments6,7 
and electrophysiological recordings8,9. In functional imaging, adaptation serves as a signature of region-specific 
encoding, with regions responsive to a specific feature displaying reduced activity10–13. Conversely, historical 
experiments searched for a neural correlate of the MAE by examining increased activity in non-adapted neuron 
populations14,15. Nevertheless, isolating the effects of adaptation is challenging, since functional magnetic 
resonance imaging (fMRI) shows the activity of entire voxels, likely containing diverse neuron populations 
coding for different features.

Adaptation is believed to play an important role in the perception of ambiguous stimuli by driving switches 
between the various available interpretations16,17. A notable bistable stimulus is the plaid stimulus, consisting of 
inward-moving gratings that can be perceived either as a plaid moving coherently downward or as two gratings 
moving incoherently through each other (Fig. 1). In an fMRI study from our group, Sousa et al.18 manipulated 
plaid stimuli to induce either coherent or incoherent perception, observing distinct levels of brain activation 
in the middle temporal (MT) visual area for each type of perception (Fig. 2). Specifically, they noted that the 
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initial response to coherent motion was weaker compared to the response to incoherent motion. There are 
two potential explanations for the underlying neural mechanisms (Fig.  3): a weaker coherent response may 
result from stronger adaptation-mediated reduction during coherent versus incoherent motion, or a stronger 
incoherent response could stem from the involvement of more neural populations to represent motion in more 

Fig. 2.  Experimental blood-oxygen-level-dependent (BOLD) signal measured in our previous study (Sousa et 
al.18) in area MT in response to disambiguated plaid stimuli. Each curve corresponds to the average response 
across twenty participants to each type of condition: 30-second adaptation to coherent motion, 30-second 
adaptation to incoherent motion and 30-second visualization of non-adapting motion (see Methods for 
details). After exposure to the moving stimuli, a static plaid was displayed for 12 s. Shaded area around curves 
represents standard error of the mean.

 

Fig. 1.  Bistable plaid stimulus: two superimposed gratings moving in opposite directions can be perceived as 
either one plaid moving downward (coherent motion) or as two gratings moving past each other (incoherent 
motion).
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directions. While Sousa et al.18 also demonstrate a time-dependent change in the relationship between responses 
to different conditions, this falls outside the scope of the present study.

Here, we aim to explain the distinct response levels reported by Sousa et al. (Fig. 2) by employing a firing rate 
model and the Balloon-Windkessel model to simulate the activity and resulting blood-oxygen-level-dependent 
(BOLD) signal of a network of thirty-two neurons, each tuned to one direction of motion. By varying the levels 
of neuronal adaptation, we determine that strong adaptation is necessary to replicate the experimental curves, 
both during and after stimulus presentation. However, increasing neuronal adaptation does not affect the relative 
order of the levels of the coherent and incoherent response curves, suggesting that differences in neuronal 
recruitment contribute to the lower response to coherent motion.

Methods
To simulate the activity of area MT, we used a firing rate model with 32 neuronal units (Fig.  4). Each unit 
represents a neuron or a population of identical neurons tuned to motion in one direction. The dynamics of 
each neuron is described by two differential equations: one for the evolution of the firing rate as a function of the 
synaptic current and one for the accumulation of adaptation as a function of the firing rate. Firing rate activity is 
then transformed into a BOLD signal using the Balloon-Windkessel model19.

Receptive field
Each neuron responds maximally to a preferred direction of motion according to the following receptive f﻿ield6,20:

Fig. 4.  Visual representation of the simulated model of 32 neurons tuned to 32 directions of motion. The 
receptive field for the MT neuronal unit tuned to motion in the top right diagonal direction (45 degrees) is 
shown on the right (see Eq. 1 below).

 

Fig. 3.  Two hypotheses to explain lower response to coherent motion. The first hypothesis proposes that 
incoherent and coherent stimuli elicit the same response, but the coherent representation undergoes a 
more pronounced reduction during prolonged exposure through adaptation. The second complementary 
hypothesis proposes that the coherent stimulus elicits a smaller response because it recruits a smaller neural 
representation, due to motion in only one direction.
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	 Si = cjek(cos(θ j−θ i)−1),� (1)

where Si is the response of neuron i, with a preferred direction θ i, to a stimulus moving with intensity cj in the 
direction θ j, and k is a measure of the bandwidth of the receptive field, with higher k corresponding to narrower 
tuning. For 32 neurons with equidistant preferred directions, θ i = 0◦ , 11.25◦ , 12.5◦ , 23.75◦ , 35◦ , . . . ( 
Fig. 4).

Differential equations
The synaptic current I entering each neuron is:

	 I = Si + Ib ,� (2)

with Si the sensory input, given by Eq. (1), and Ib the baseline activity. The synaptic process is assumed to be 
quasi-instantaneous compared to the firing rate process21, which is described by:

	
τ

dF
dt

= −F +
[I]2+

s2 + [I]2+
,� (3)

where F is the firing rate, τ  is the time constant of the low-pass filtering process defined by the equation, s 
is the saturation constant of the non-linear activation function defined by the ratio on the right-hand side and 
[. . . ]+ denotes half-wave rectification.

Firing rate adaptation is modeled as an exponential process2,22:

	
τ A

dA
dt

= −A + F ,� (4)

where A is the adaptation level of a given neuron, which accumulates with the firing rate F and decays with time 
constant τA. Adaptation acts divisively on the activation function of each neuron, thereby modifying Eq. (3) to:

	
τ

dF
dt

= −F +
[I]2+

s2 + wAA + [I]2+
,� (5)

with wA the adaptation strength. The activity of each neuron is thus calculated by integrating two differential 
equations, Eqs. (4) and (5).

BOLD signal
Neuronal activity gives rise to the blood-oxygen-level-dependent signal detected in fMRI through a 
hemodynamic process that is well-described by the Balloon-Windkessel model19, comprised of four dynamical 
variables: vasodilatory signal s (t), blood inflow f (t), blood volume v (t) and deoxyhemoglobin content q (t). 
The system of differential equations is:

	





ds
dt

= −κ s − γ (f − 1) + z
df
dt

= s

τ B
dv
dt

= −v1/α + f

τ B
dq
dt

= −v1/α −1q +
(
1 − (1 − ρ )1/f) f/ρ

where z (t) is the neuronal activity, given by the sum of the neuronal firing rates calculated through Eq. (5), and 
κ , γ , τ B, α  and ρ  are parameters describing the rate of signal decay, rate of flow-dependent elimination, 
hemodynamic transit time, Grubb’s exponent of blood outflow and resting oxygen extraction fraction, 
respectively. The BOLD signal, B (t), is then a volume-weighted sum of intra- and extravascular contributions 
to blood volume and deoxyhemoglobin content:

	 B = V0 (7ρ (1 − q) + 2 (1 − q/v) + (2ρ − 0.2) (1 − v))

with V0 the resting blood volume fraction.

Stimuli and experimental parameters
The bistable plaid stimulus is composed of two inward-moving gratings with two possible interpretations: a plaid 
moving downward (coherent percept) or two gratings moving through each other (incoherent percept) (Fig. 1). 
In our previous study18, Sousa et al. added a field of moving dots to the bistable plaid stimulus to induce the 
disambiguated perception of either coherent or incoherent motion. A non-adapting control stimulus was used, 
consisting of alternating coherent and incoherent motion in eight different directions, each with a duration of 
1.5 s. After 6 s of a static plaid display, the manipulated moving stimulus was presented for 30 s, followed by 12 s 
of a static plaid display. The gratings make a 60 ◦  static angle with the horizontal and move in the horizontal 
direction (left grating moves to the right, 0 ◦ , and right grating moves to the left, 180 ◦ ).

Besides the oriented lines that comprise each grating, the background rhombi between the lines constitute an 
extra component of the stimulus. As such, the stimuli have motion energy in a maximum of three directions. The 
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coherent stimulus is dominated by downward motion, while the incoherent stimulus includes motion in all three 
directions (see Supplementary Videos). Assuming the same total intensity for both coherent and incoherent 
conditions, the coherent stimulus may be defined as having intensity 1 in the downward direction (270 ◦ ) and 0 
in all other directions, while the incoherent stimulus can be defined as having intensity 1/3 in the 0 ◦ , 270 ◦  and 
180 ◦  directions, and 0 in all other directions. These can be written as sc = (0,1, 0) for the coherent stimulus 
and si = (1/3, 1/3, 1/3) for the incoherent stimulus. The parametrization of the stimulus constitutes one of 
the main aspects of the model. These parameter values are summarized in Table 1.

Simulation details
The neuronal circuit was defined in PyRates23,24, where the differential equations were solved via scipy’s Runge-
Kutta(4,5) integration scheme25. Parameter values are presented in Tables 2–4. To match the experimental trial 
structure18, the activity of the circuit was simulated for a total of 48 s: 6 s of initial static stimulus followed by 30 s 

Parameter Description Value

T Total integration time (ms) 48000

dt Integration time step (ms) 0.1

dts Sampling time step (ms) 50
Tinit Initialization period (ms) 6000

Table 4.  Simulation parameters.

 

Parameter Description Value Reference

κ Rate of vasodilatory signal decay (s− 1) 0.65 19,29,30

γ Rate of flow-dependent elimination (s− 1) 0.41 Ibid.

τ B Hemodynamic transit time (s) 0.98 Ibid.

α Grubb’s exponent of blood outflow 0.32 Ibid.

ρ Resting oxygen extraction fraction 0.34 Ibid.

V0 Resting blood volume fraction 0.02 Ibid.

Table 3.  Hemodynamic parameters.

 

Parameter Description Value Reference

k Bandwidth of neuronal receptive field 180 –

Ib Baseline synaptic current 0.1 –

τ Firing rate time constant (ms) 50 22,26

s Saturation of neuronal activation function 0.5 22,26

τ A Adaptation time constant (ms) 2000 22,27,28

wA Adaptation strength 0, 2, 4 22,27

Table 2.  Neuronal circuit parameters.

 

Parameter Value Reference

Direction of plaid movement ( ◦ ) 270 18

Direction of grating 1 movement ( ◦ ) 0 Ibid.

Direction of grating 2 movement ( ◦ ) 180 Ibid.

Onset of adapting stimulus (ms) 6000 Ibid.

Onset of testing stimulus (ms) 36000 Ibid.

Alternation duration in non-adapting condition (ms) 1500 Ibid.

Coherent stimulus intensity in plaid direction 1 –

Coherent stimulus intensity in grating directions 0 –

Incoherent stimulus intensity in plaid direction 1/3 –

Incoherent stimulus intensity in grating directions 1/3 –

Table 1.  Stimulus parameters.
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of motion stimulus and 12 s of static stimulus. the initial static period was used to calculate the mean baseline 
BOLD signal and is not shown in the plots. Mean baseline signal was subtracted from the calculated BOLD 
response and used as a normalization factor to yield the BOLD signal variation presented in Figs. 5 and 6.

Results
To elucidate the neuronal mechanisms probed by our fMRI experiment (Sousa et al.18), we simulate the activity of 
thirty-two neuron populations, each with a preferred motion direction and an independent adaptation process. 
The total activity of the system is obtained by summing the firing rate of all units and the corresponding BOLD 
signal is calculated through the Balloon-Windkessel equations. We vary the strength of neuronal adaptation, 
wA, and the intensity of the coherent and incoherent stimuli in each of the relevant directions ( 0◦ , 270◦ , 
180◦ ) to test the two hypotheses: stronger adaptation-mediated reduction during coherent motion vs. weaker 

neuronal recruitment in response to coherent stimuli. The first hypothesis predicts that coherent response 
should be lower than incoherent response only when adaptation is introduced. The second hypothesis predicts 
that coherent response should be lower than incoherent response regardless of adaptation levels.

Adaptation is required to replicate our experimental order of response curves during 
stimulus presentation
By varying the adaptation strength parameter (Fig. 5), we observe that increasing neuronal adaptation reduces 
the activity for all conditions during stimulus presentation (0 to 30 s) and inverts the order of the incoherent and 
non-adapting responses, yielding the observed experimental order of the curves: coherent < incoherent < non-
adapting.

Importantly, the relative order of the coherent and incoherent curves is conserved as neuronal adaptation 
strength increases, suggesting that the lower response to coherent motion stems from the mechanism of lower 
neuronal recruitment, which is not overcome by increasing neuronal adaptation.

The model with adaptation also replicates our experimental order of response curves during 
the motion after-affect
After the stimulus is turned off at 30 s, the order of the curves is reversed relative to stimulus presentation, with 
the coherent condition eliciting the strongest response (Fig. 6). This agrees with the experimental BOLD signal, 
as well as the observation of a more vivid MAE following the coherent stimulus, compared to the incoherent 
condition18.

Coherent response is lower than incoherent response across stimulus parametrization and 
adaptation strength
The definition of the stimulus through the input in each of the three relevant directions ( 0◦ , 270◦ , 180◦ ) is 
one of the main degrees of freedom of the model. By varying the parametrization of the stimulus (Fig. 7), we 

Fig. 5.  Effect of neuronal adaptation strength on the simulated BOLD signal, for each of the experimental 
conditions (Adapt Coherent, Adapt Incoherent, Non-adapting). Stimulus parameters were sc = (0,1, 0) for 
coherent motion and si = (1/6, 2/3, 1/6) for incoherent motion. The motion stimulus starts at t = 0 s and 
stops at t = 30 s.
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can investigate whether it is general that neuronal adaptation strength does not affect the relative order of the 
coherent and incoherent curves, as found in Fig. 5.

The first five parametrizations assume that the total stimulus intensity is the same for both coherent and 
incoherent stimuli and is equal to 1, with variations in the relative weights of the lateral and down directions 
in the incoherent stimulus. The next three parametrizations assume equal weight of the three directions in 
the incoherent stimulus but scale down the total intensity in both stimuli. The last three parameter choices do 
not equalize total intensity between the two stimuli, with the last parametrization chosen so that the coherent 
stimulus is stronger than the incoherent one.

In general, coherent response is lower than incoherent response regardless of adaptation strength, with 
three exceptions. When stimulus parameters are chosen with a large motion energy imbalance so that coherent 
response is stronger than incoherent response in the absence of adaptation (last column: sc =( 0, 1, 0) and si =( 
0.2, 0, 0.2)), introducing adaptation is not enough to invert the order of the coherent and incoherent activations. 
Similarly, when the total intensity of the stimuli is equal but scaled down to 0.25 (middle column: sc =( 0, 1/4, 
0) and si =( 1/12, 1/12, 1/12)), coherent response is larger than incoherent response regardless of adaptation 
strength. Finally, when total intensity is scaled down to 0.5 ( sc =( 0, 1/2, 0) and si =( 1/6, 1/6, 1/6)), coherent 
response is approximately equal to incoherent response in the absence of adaptation and becomes lower with 
increasing adaptation. This is the only case where adaptation strength alone modulates the response levels in 
a way that is congruent with the experimental results and with the first hypothesis. However, this constitutes 
a very specific stimulus parametrization, chosen so that total stimulus intensity is 0.5, which coincides with 
the inflection point of the neuronal non-linear response function (Eq. 3). It is thus unlikely that this finely-
tuned parametrization is biologically representative. Therefore, for all plausible stimulus parameters, neuronal 
adaptation does not modulate the relative order of the coherent and incoherent response levels.

Discussion
Visual perception of bistable stimuli has long puzzled scientists and while several mechanisms have been 
proposed to explain how different interpretations coexist, specific mechanisms have remained elusive. In this 
work, we focused on the results of our neuroimaging experiments of a bistable plaid stimulus and employed 
a computational model to study the neural substrate of coherent and incoherent motion perception. Our 
simulations of motion-sensitive neurons allowed us to reveal the contributions of evoked neural response and 
adaptation, and how they interact with each other to explain neural responses at a columnar level. Particularly, 
we tested two alternative hypotheses to explain the lower response to adapting coherent stimuli.

The first hypothesis proposes that coherent stimuli elicit a neural response that matches or surpasses the 
response to incoherent stimuli in the absence of habituation, but it is adaptation, or repetition suppression, 
that subsequently diminishes coherent response below incoherent response. This pattern would be evident in 
simulations with and without neuronal adaptation: in the absence of adaptation, coherent response would be 
equal to or stronger than incoherent response, whereas with adaptation, coherent response would be lower than 
incoherent response. Conversely, the second hypothesis states that coherent stimuli elicit a neural response lower 

Fig. 6.  Effect of neuronal adaptation strength on the simulated BOLD signal after motion stimulus 
presentation, for each of the experimental conditions (Adapt Coherent, Adapt Incoherent, Non-adapting). 
Stimulus parameters were sc = (0,1, 0) for coherent motion and si = (1/6, 2/3, 1/6) for incoherent motion.
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than the response to incoherent stimuli, because coherent motion only stimulates neurons tuned to one motion 
direction, while incoherent motion stimulates at least two neural populations tuned to opposite directions of 
motion31. Simulations would thus show lower coherent response regardless of adaptation levels.

Our results show that only with adaptation can the experimental order of the response curves be replicated, 
both during stimulus presentation (Fig. 5) and during the motion after-effect (Fig. 6). However, the level of 
response to coherent motion is generally lower than the response to incoherent motion, irrespective of adaptation 
strength (Fig. 7), suggesting that differential neuron population recruitment is responsible for the relative order 
of the coherent and incoherent activations. Hence, the hemodynamic response observed by Sousa et al.18 arises 
due to a combination of neuronal adaptation and differences in columnar recruitment.

Our simulations exhibit an important signature of the motion after-effect that occurs after adaptation to a 
moving stimulus. When the stimulus is turned off, the activity after coherent and incoherent motion is larger 
than the activity after the non-adapting condition, with adaptation to coherent motion eliciting a stronger after-
effect than incoherent motion. It is significant that we replicate the MAE and its neuroimaging signal with our 
parsimonious model, containing only non-interacting neurons that undergo adaptation. While the perception 
of the MAE relies on a higher-level mechanism that detects imbalanced responses across different neuronal 
populations, our model focuses only on the BOLD signal.

A noteworthy limitation of our model is its inability to replicate the second half of the BOLD signal recorded 
by Sousa et al., where the adapting responses increase beyond the non-adapting response (Fig. 2). This suggests 

Fig. 7.  Effect of adaptation strength and different stimulus parametrizations on the relative distance between 
the curves during stimulus presentation. The metrics were obtained by averaging the point-by-point difference 
between curves from 6 to 30 s. Marked with * is the simulation presented in Figs. 5 and 6. (A) Positive values 
(green) denote simulations where the maximum activity is obtained in response to the non-adapting condition. 
(B) Positive values (green) correspond to simulations where the response to the coherent condition is weaker 
than to the incoherent condition. Positive values (green) on both heatmaps represent simulations that replicate 
the experimental order of the curves.
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that other computational motifs may be involved, namely network interactions through inhibition or adapted 
inhibition32.

In conclusion, our computational model of motion-sensitive adapting neurons replicates important features 
of the neural responses to coherent, incoherent, and non-adapting motion observed in an fMRI experiment by 
Sousa et al.18, but only when adaptation is present. Furthermore, we tested two competing hypotheses regarding 
the mechanisms involved in coherent and incoherent motion perception: stronger adaptation to coherent 
motion vs. stronger neuronal recruitment by incoherent stimuli. By simulating the response of the network 
to stimuli with various parametrizations and in different adaptation regimes, we determined that the second 
hypothesis is more likely. Finally, our results also reproduce the neural activity after stimulus exposure, which is 
congruent with the observed motion after-effect. In sum, this computational work establishes the involvement 
of both adaptation and differential neuronal recruitment as pivotal mechanisms in the hemodynamic response 
to the plaid stimulus, enriching our understanding of bistable motion perception.

Data availability
All data and code used for running simulations, analysis, and plotting are available on Zenodo at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​
g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​0​7​5​3​2​6​5​​​​​.​​
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