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Biological wastewater treatment processes, such as activated sludge (AS) and aerobic granular sludge 
(AGS), have proven to be crucial systems for achieving both efficient waste purification and the 
recovery of valuable resources like poly-hydroxy-alkanoates. Gaining a deeper understanding of the 
microbial communities underpinning these technologies would enable their optimization, ultimately 
reducing costs and increasing efficiency. To support this research, we quantitatively compared 
classification methods differing in read length (raw reads, contigs and MAGs), overall search approach 
(Kaiju, Kraken2, RiboFrame and kMetaShot), as well as source databases to assess the classification 
performances at both the genus and species levels using an in silico-generated mock community 
designed to provide a simplified yet comprehensive representation of the complex microbial 
ecosystems found in AS and AGS. Particular attention was given to the misclassification of eukaryotes 
as bacteria and vice versa, as well as the occurrence of false negatives. Notably, Kaiju emerged as the 
most accurate classifier at both the genus and species levels, followed by RiboFrame and kMetaShot. 
However, our findings highlight the substantial risk of misclassification across all classifiers and 
databases, which could significantly hinder the advancement of these technologies by introducing 
noises and mistakes for key microbial clades.
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The benefits derived from the industrial revolutions have fundamentally shaped modern lifestyles, enabling 
advancements nowadays as fundamental as the ease of reading this very paper. However, a significant downside 
of industrialization is the increased demand for the removal of carbon (C), nitrogen (N) and phosphorus (P) 
from municipal and industrial wastewaters1. To counterbalance the excessive production of pollutants by 
industrialized societies, environmental engineering has developed both artificial and biological strategies to 
restore ecological equilibrium. Among these, the activated sludge (AS) system and its technological evolution, 
the aerobic granular sludge (AGS) system, are two biological wastewater treatment methods that accelerate 
processes that would naturally occur over longer timescales2. Both AS and AGS rely on the collective metabolic 
activities of complex microbial communities, primarily composed of prokaryotes. Bacteria such as Candidatus 
Accumulibacter and Candidatus Competibacter, the most studied phosphate-accumulating organisms (PAOs) 
and glycogen-accumulating organisms (GAOs), have long been considered the primary components of AGS 
systems2. However, metagenomic insights have revealed that other PAOs may be better adapted to specific 
conditions. For instance, Tetrasphaera relies on a broad metabolic repertoire, allowing it to thrive in environments 
with low concentrations of readily biodegradable carbon3.

Other bacterial genera frequently identified in metagenomic surveys include Zoogloea, Pseudomonas, 
Thauera and Flavobacterium4. These bacteria are essential for secreting polysaccharidic matrices that embed 
PAO and GAO populations4 and harbor strains capable of denitrification5–7. Furthermore, the AGS granular 
biomass enable the co-existence of nitrifying bacteria such as Nitrosomonas and denitrifiers in different layers 
of the same granule2. Beyond bacteria, viruses, protozoa, and lower metazoans such as nematodes and rotifers 
play crucial roles in these microbial communities, as they act as bacterivores, horizontal gene transfer vectors 
(viruses), or contribute to biomass structuring through their movements and secretions (animals)8.

Given this complexity, a comprehensive understanding of AGS microbial communities is essential for 
optimizing reactor performance, accelerating maturation through targeted microbial augmentation, improving 
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depuration efficiency, and even recovering valuable resources from waste streams4,9. For instance, various 
studies aim to enhance the production of poly-hydroxy-alkanoates (PHA), useful for bioplastics production, 
by adjusting reactor conditions to selectively enrich specific PHA-producing bacterial genera (e.g., Candidatus 
Accumulibacter, Thaurea and Azoarcus)4,10. However, achieving such optimization first requires a comprehensive 
understanding of the microbial communities involved, followed by a deeper exploration of their metabolic 
interactions. Total DNA sequencing is a widely used approach for comprehensive community characterization, 
involving the sequencing of bulk DNA extracted from reactor biomass followed by bioinformatics ecological 
analyses. Currently, short-read sequencing technologies dominate the market due to their high throughput, 
cost-effectiveness, and low error rates11. While long-read sequencing is steadily improving in both precision and 
throughput11, nowadays the short-read sequencing remains the most suitable method for accurately profiling 
the complexity of these environmental communities.

Whether that case, this approach always relies on bioinformatics classification methods the are currently 
known to be prone to misclassification errors12,13, particularly when analysing complex environmental 
samples. Moreover, most of the benchmark studies provided so far are highly biased against homo sapiens 
related microbiota that, although valuable in clinical research, lacks specificity in environmental settings. 
To support AS and AGS microbial communities researches, we evaluated various classification strategies for 
short-read sequencing (150 bp), including read, assembled contig and MAG based approaches. To explore 
different algorithmic approaches, this analysis employed four taxonomic classifiers, namely Kaiju14, Kraken215, 
RiboFrame16 and kMetaShot17, using multiple settings and databases. These classifiers were chosen for their 
proven effectiveness in their correspondent classification methodologies:

•	 Kaiju translates nucleotide sequences into all six possible open reading frame (ORF) amino acid sequences 
and performs protein level matching using the Burrows-Wheeler transform14;

•	 Kraken2 classifies sequences by analysing the frequency of distinctive k-mer patterns (sequences portions of 
length “k”)15;

•	 RiboFrame extracts estimated 16S reads from whole-genome sequencing data and applies k-mer-based 
bayesian classification specifically to these reads using a dedicated 16S database16;

•	 kMetaShot is a k-mer-based classifier tailored for MAGs, utilizing a custom-built database incorporating 
reference coding sequences, 16S rRNA and tRNA sequences from NCBI17.

The evaluation was conducted using a mock community, that, while not fully representative of the microbial 
complexity of AS and AGS systems, included a selection of key taxa commonly found in these environments. 
This design aimed to balance ecological relevance with interpretability, enabling clearer assessment of classifier 
performance. The mock was purposely generated in silico to control the exact clade relative abundances and 
avoid kitome contaminants18. The comparison considered the lack of certain taxa classification due to database 
limitations and, where possible, also tested custom databases ensuring the presence of relevant AS and AGS 
associated clades. Additionally, we assessed the risk of misclassifying higher metazoans as bacteria (and vice 
versa) and evaluated their removal before classification using two widely used decontamination tools, Kraken2 
and Bowtie212,19.

Results
Mock processing stats
After BBDuk filtering, 46,315,875 out of 50,001,759 paired reads (92.6%) remained available for analysis. Kaiju 
classified between 94% (E-value 0.01 and minimal alignment length “m” = 11) and 76% of these sequences 
(m = 42) using either its databases, with no significant variation depending on the E-value when the m parameter 
was set to 30 or 42. However, between 16% (E-value 0.0001 m = 42) and 20% (E-value 0.01 and m = 11) of the 
additional sequences were classified as “cannot be assigned to a (non-viral) genus” by Kaiju in every setting, 
which did not add significant insights. Kraken2, when using the nt_core database, exhibited a strong dependency 
on confidence thresholds: at 0.05 confidence, it classified 51% of the reads, whereas at the highest confidence 
threshold tested, the classified read proportion dropped to 5%. Kraken2 with the SILVA database significantly 
reduced classification rates, with less than 2% of reads classified even at the most lenient thresholds. Despite 
using the same SILVA database, RiboFrame classified between 3000 (V3-V4 16S, confidence 0.9) and 70,000 
(full length 16S, confidence 0.8) paired reads across tested settings. MetaBat2 produced 46 MAGs with the 
“custom” setting, 47 with the “default” setting and 48 with the “metalarge” setting. Subsequently, kMetaShot 
classified almost all MAGs (e.g., 41 out of 46 in case of “custom” MetaBat2 setting) when no confidence threshold 
was applied. However, classification decreased as the confidence threshold increased: with confidence set to 0.2 
kMetaShot classified more than half of the MAGs for each setting (e.g., 24 out of 46 MAGs in case of “custom” 
MetaBat2 setting) while with confidence 0.4 it classified approximately a third of the MAGs (e.g., 17 out of 46 
MAGs in case of “custom” MetaBat2 setting). Further details about the unclassified proportions for each tool 
and setting are available in the files available at the GitHub link reported in Data Availability section. Among 
the classifiers, RiboFrame was the least demanding in terms of RAM usage, requiring approximately 20 GB. In 
contrast, Kaiju and Kraken2 each required over 200 GB of RAM. The most memory-intensive approach was 
kMetaShot, which, when run in a multithreaded mode on MAGs, consumed 24 GB per thread.

Comparison at genus-level classification
Notably, the only classifier that did not produce erroneous classifications at the genus level was kMetaShot on 
MAGs, regardless of the confidence levels and MEGAHIT settings (Fig. 1 and Supplementary Table 2). However, 
the same performance was not observed at the contig level, where many erroneous classifications and missed 
true genera were observed. Approximately 25% of the classifications from Kaiju and Kraken2 (using the nt 
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core database) were erroneous, with Kaiju showing less dependence on the settings employed, while Kraken2 
was strongly influenced by the confidence level (Fig. 1 and Supplementary Table 2). In fact, the percentage of 
misclassifications with Kraken2 increased at a confidence level of 0.99, indicating that false negative classifications 
(missed true genera) were more frequent than correct ones. Increasing the Kraken2 confidence level from 0.05 to 
0.15 slightly reduced misclassification percentages, although fewer reads from Candidatus Accumulibacter were 
identified. It is noteworthy that Candidatus Competibacter was detected by Kraken2 at the lower confidence 
levels although just as traces. The true genus abundances inferred by Kaiju closely mirrored the actual mock 
proportions with both nr euk and nr euk + databases, although a few clades were missing with nr euk (Fig. 1 
and Supplementary Table 2). In particular, the ratio between the relative abundances of the four most abundant 
genera were successfully captured by Kaiju. Both Kraken2 and Kaiju performed better on reads than on contigs. 
Kraken2 completely missed the true genus abundances when using the SILVA database. On the other hand, 
RiboFrame demonstrated the lowest percentage of misclassifications (after kMetaShot on MAGs) and captured 
most of the mock true abundances (after Kaiju) using the same SILVA database, although overestimating the 
abundance of Flavobacterium (Fig. 1 and Supplementary Table 2).

Subsequently, the overall profiling performance of the classifiers was compared (Fig. 2). Kraken2 classifications 
using the SILVA database were excluded from the analysis, as their estimated profiles exhibited the greatest 
deviation from the mock community which dominated the overall variability while obscuring differences among 
the other samples. When Kraken2 was applied with the nt core database, its estimated profile improved but 
remained different from the mock, particularly when the confidence threshold was increased or when analysis 
was performed at contigs level. The pipelines that most closely resembled the mock were kMetaShot on MAGs 
(especially with the MEGAHIT setting “metalarge”), RiboFrame on full 16S reads (with a confidence level of 
0.8) and Kaiju (regardless of settings and database). As expected, RiboFrame exhibited superior performance 
when applied to the full 16S rRNA gene compared to a single 16S hypervariable region, although the overall 
classification results remained comparable. Overall, the classifications exhibited greater divergence from the 
mock profile as classification confidence levels increased. These results were also confirmed when the Bray–
Curtis dissimilarity index was applied (Supplementary Figure S1).

Fig. 1.  Bar plots depicting the relative abundances of the genera present in the mock community as estimated 
by various programs and parameter settings. The column “T” displays the true abundances of the clades in 
the mock. Genera inferred but not actually included in the mock are categorized as “misclassified”. The x-axis 
represents the classification types: “E” denotes the E-value threshold, “m” indicates the coverage threshold, and 
“c” represents the confidence level of the classification, depending on the classifier available options. The prefix 
“contigs” specifies classifications based on contigs rather than individual reads in case of Kaiju and Kraken2. 
The prefixes “default”, “metalarge” and “custom” refer to the different MEGAHIT assembly settings.
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Additionally, the most frequent misclassifications for each pipeline were inspected (Fig. 3).
Most of the misclassifications in Kaiju were due to observations labelled as “cannot be assigned to a (non-

viral) genus” by the software, summarized as “As generic virus” in Fig. 3. Excluding these, less than 4% of the reads 
were misclassified by Kaiju. Bradyrhizobium, Pseudomonas, Acinetobacter, Sphingomonas, Stenotrophomonas 
and Chlamydia were among the most abundant genera incorrectly inferred by Kaiju but absent in the mock. 
The total amount of these misclassified genera by Kaiju, reduced to about 2% when the minimal query coverage 
threshold (“m”) was set to 42 (Fig.  3 and Supplementary figure S2). Moreover, increasing the stringency of 
Kaiju did not result in any loss of genera true positive identifications. No significant differences were observed 
between the overall amount of misclassifications of Kaiju on nr euk and nr euk +. Kraken2 when applied with 
the SILVA database erroneously assigned many reads to Pseudomonas, while Kraken2 with the nt core database 
continued to misclassify reads as Mycobacterium, even at higher classification confidence levels. Additionally, 
the misclassifications of Kraken2 on the nt core database were significantly reduced when applied at contigs 
level, albeit this improvement came at the expense of true positive identifications. On the other hand, kMetaShot 
applied at the contigs level exhibited the highest frequency of misclassifications after Kraken2 on SILVA. In 
contrast, RiboFrame and kMetaShot were the classifiers with the fewest misclassifications, with kMetaShot on 
MAGs showing no misclassified genera.

Comparison at species-level classifications
The species distribution estimated by Kaiju closely resembled that of the mock community with both nr euk 
and nr euk + databases, achieving even greater precision than kMetaShot at this taxonomic level (Fig. 4 and 
Supplementary table 3). However, Kaiju still underestimated the relative abundances of few abundant clades, such 
as Tetrasphaera vanveenii, Thauera sinica and Delftia spp. In contrast, Kraken2 exhibited substantial deviations 
from the true mock abundances, with the lower confidence threshold increasing sensitivity but leading to almost 

Fig. 2.  PCoA plot illustrating the similarity between classification profiles based on Hellinger distance. Colors 
indicate the program, database, and classification level (read level by default, with additional specifications for 
contigs or MAGs level classifications where applicable). Labels on each point denote the specific settings used 
for the corresponding classification. In detail: “E” denotes the E-value threshold, “m” indicates the coverage 
threshold, and “c” represents the confidence level of the classification, depending on the classifier available 
options. The prefix “contigs” specifies classifications based on contigs rather than individual reads in case of 
Kaiju and Kraken2. The prefixes “default”, “large” (metalarge) and “custom” refer to the different MEGAHIT 
assembly settings. Labels for a few points have been omitted to avoid clutter from overlapping texts and thus to 
preserve the overall readability.
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50% of misclassified species, while the higher threshold effectively reduced misclassifications but missed reads 
from Candidatus Accumulibacter and Candidatus Competibacter (Fig. 4 and Supplementary table 3).

Thauera spp., Novosphingobium spp. and Flavobacterium johnsoniae were among the most frequently 
misclassified taxa across all settings. When disregarding relative abundances, kMetaShot at the MAGs level 
proved to be the most precise method for taxonomic identification within the community (Fig. 5A). This result 
is particularly notable when compared to Kaiju on nr euk +, which reported nearly 1600 erroneous species, and 
Kraken2 (with confidence threshold set at 0.99) which reported approximately 600 erroneous species (Fig. 5B). 
However, it is important to emphasize that most of Kaiju’s misclassifications occurred at very low relative 
abundances (less than 0.1%), with the exclusion of Thauera sp. and Tetrasphaera sp., with relative abundances 
of 1% and 1.5%, respectively. Notably, these species misclassifications still belong to clade actually featured in 
the mock.

Furthermore, Fig. 5 highlights the varying sensitivities of the classifier in detecting the true mock species. 
Kaiju missed only 15 species, followed by Kraken2 with 157 missed species, and lastly, kMetaShot on MAGs. In 
particular, kMetaShot on MAGs exhibited the lowest sensitivity, missing nearly all of the true species. The 14 
taxa featured in the mock but not detected by either of the classifications were species belonging to Halomonas, 
Novosphingobium, Thauera and Paramecium genera, although other species of the same genera were identified.

Classification performances of phage T4 and lower metazoan
The eukaryote-specific classifier, EukDetect, accurately identified 23 reads of Diploscapter spp. and did not report 
any misclassifications after applying its default filtering procedures. However, this high precision came at the 
cost of a substantial loss in sensitivity, as the majority of eukaryotic sequences remained unclassified. Notably, 
approximately 300 Novosphingobium aureum sequences were initially misclassified as the fungus Wolfiporia 
cocos by the first step of EukDetect, which relies on Bowtie2 alignment against the EukDetect database. 
Furthermore, Kaiju performed on the custom database constructed exclusively with lower metazoan sequences 

Fig. 3.  Bar plots illustrating the relative abundances of the most abundant misclassified genera across 
classifications obtained using various programs and parameter settings. The displayed relative abundances 
account for the correct classification counts (not shown in this plot), thereby representing the total extent 
of misclassifications. The x-axis represents the classification types: “E” denotes the E-value threshold, “m” 
indicates the coverage threshold, and “c” represents the confidence level of the classification, depending on the 
classifier available options. The prefix “contigs” specifies classifications based on contigs rather than individual 
reads in case of Kaiju and Kraken2. The prefixes “default”, “metalarge” and “custom” refer to the different 
MEGAHIT assembly settings.
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led to excessive false positives. In fact, when Kaiju was used with such focused database, despite successfully 
identified Paramecium and Diploscapter, it also erroneously classified many other nematodes and rotifers from 
bacterial and human-derived reads. For instance, reads from nearly every bacterial clade included in this mock 
were misclassified as Steinernema, and a substantial number of Homo sapiens reads were mistakenly assigned 
to nematodes. Although applying high-stringency settings significantly reduced these false positives, Kaiju’s 
precision on the lower metazoan database remained relatively low. On the other hand, Kaiju and Kraken2 with 
complete databases performed better in terms of overall sensitivity (supplementary figure S3). In fact, Kaiju with 
nr euk + was able to identify Diploscapter and Homo, maintaining the overall proportions between the clades 
despite underestimating their relative abundance (supplementary figure S3). Moreover, using Kaiju with nr euk 
+ avoided the misclassification of Diploscapter reads as bacteria (observed with nr euk) while conversely only 137 
reads of bacterial genera where incorrectly identified as Diploscapter with the most stringent settings. However, 
also other eukaryotic misclassifications were observed with Kaiju using the nr euk + database. For instance, a 
small fraction of Novosphingobium and Propionivibrio-derived reads were misclassified as Trichinella (0.003%). 
Similarly, bacterial and Plasmodium reads were misidentified as fungi (Termitomyces 0.003%, Wolfiporia 
0.001%). Kraken2 with nt core detected Homo and Diploscapter, with only trace amounts of Diploscapter 
(0.009%) at the most permissive settings. However, Kraken2’s high sensitivity came at the cost of increased 
noise, as it misclassified Novosphingobium and Dechloromonas spp. as Wolfiporia (0.02%) and Gallus gallus 
(0.1%), respectively, even under the most stringent settings. Both Kraken2 and Kaiju (using either the nr_euk 
or nr_euk + databases) detected the T4 phage within the mock community, although with varying degrees of 
efficiency. Specifically, Kaiju successfully classified approximately 38% of the T4 phage reads using both m = 11 
and m = 30 settings, irrespective of the E-value threshold applied. However, this proportion decreased to 34% 
when the m parameter was increased to 42. It is noteworthy that Kaiju would not have reported the T4 phage 
classification when using the nr_euk and nr_euk + databases with default settings unless the -e flag was included 
in the kaiju2table command, potentially leading to misleading conclusions. Furthermore, Kaiju successfully 
identified approximately half of the T4 phage reads when executed using the database containing only viral 

Fig. 4.  Bar plots depicting the relative abundances of the species present in the mock community as estimated 
by various programs and parameter settings. The column “True” displays the correct abundances of the clades 
in the mock. The less abundant true species are clustered as a unique observation defined “Others”. Species 
inferred but not actually included in the mock are categorized as “misclassified”. The x-axis represents the 
classification types: “E” denotes the E-value threshold, “m” indicates the coverage threshold and “c” represents 
the confidence level of the classification, depending on the classifier available options. The prefix “contigs” 
specifies classifications based on contigs rather than individual reads in case of Kaiju and Kraken2. The prefixes 
“default”, “metalarge” and “custom” refer to the different MEGAHIT assembly settings.
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sequences. However, even under the most stringent settings, over 46 million sequences were misclassified as 
viruses within this focused database. On the other hand, Kraken2 correctly classified 67% of the T4 phage reads 
when the confidence threshold was set to 0.05. This proportion decreased to 38% with a threshold of 0.3 and 
dropped markedly at higher confidence levels as, for instance, only 0.7% of the T4 reads were identified when 
the highest threshold was applied.

Homo sapiens reads misclassifications as bacteria and decontamination test
Kraken2 on nt core database correctly identified about half of the Homo sapiens reads when performed on low 
confidence thresholds. Moreover, Kraken2 did not misclassify them as bacteria, correctly recognizing at least the 
correct clade (e.g., Hominidae, Bilateraria, etc.) or, at worst, it misclassified some as monkey-derived reads (e.g., 
Catarrhini spp.). In contrast, Kaiju, which performed well overall in the current benchmark, misclassified H. 
sapiens reads as bacteria (e.g. Enterococcus, Staphylococcus, Pseudomonas, Klebsiella pneumoniae, Acinetobacter 
baumannii and Escherichia coli) when used with the nr euk database. Using nr euk +, which includes Homo 
sapiens reads, allowed Kaiju to correctly identify few Homo reads (less than 10%) but, more importantly, to not 
mistaken them as bacteria. However, Kaiju frequently misidentified H. sapiens reads as Plasmodium ovale with 
both its databases. These misclassifications were consistent across the different Kaiju settings, although they 
were significantly reduced with the most stringent parameters (“E = 0.0001 and m = 42”) and when using the 
nr euk + database. While the total number of H. sapiens reads misclassified by Kaiju was relatively low (10,543 
read pairs with nr euk and only 75 with nr euk +, under the most stringent parameters), such errors could 
lead to incorrect assumptions regarding the presence of certain rare taxa in the community. To address this 
issue, various decontamination methods for H. sapiens reads, as well as other likely eukaryotic DNA residuals 
originating from real wastewater, were tested before microbial community classification (Fig. 6).

Among the tested methods, Bowtie2 demonstrated the highest sensitivity in identifying H. sapiens reads while 
also reporting a relatively low number of false positives (i.e., microbial reads misclassified as Homo sapiens), 
particularly when used with end-to-end alignments which captured about 5000 paired reads misidentified as 
Homo. Specifically, Bowtie2’s false positives primarily consisted of misclassified Propionivibrio, Novosphingobium, 
Paramecium and Dechloromonas reads. Although slightly less effective, Kraken2 on the GRCh38 human database 
with a confidence threshold of 0.45 showed comparable performance. Kraken2 surpassed Bowtie2 in precision 
when the confidence threshold was increased. In fact, Kraken2 misclassified only around 200 reads, mainly from 
Novosphingobium and Dechloromonas, as H. sapiens at a confidence level of 0.99. However, this improvement 
in precision came at the expense of a significant reduction in sensitivity, as only about one-third of the true 
H. sapiens reads (approximately 70,000 out of 240,000) were correctly identified. Moreover, when Kraken2 
decontamination was performed using a broader eukaryotic database, the total number of misclassifications 

Fig. 5.  Venn diagrams illustrating the species present in the mock dataset (“True” observation group) and 
those identified by Kaiju (E = 0.00001 and m = 42, nr euk + database), Kraken2 (confidence level = 0.99, nt 
core database), and kMetaShot (confidence = 0.2, executed on MAGs assembled from contigs generated by 
MEGAHIT with the “metalarge” option). Panel A highlights the comparison between the mock, Kaiju, and 
kMetaShot observations, while Panel B focuses on the comparison between the mock, Kaiju, and Kraken2 
observations.
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increased substantially, resulting in nearly equal numbers of false positives and true positives. Specifically, a large 
proportion of reads originating from Flavobacterium were misclassified as Ostrinia furnacalis (a hexapod, i.e. an 
insect), while many Novosphingobium derived reads were incorrectly identified as belonging to the plant genus 
Elaeis, regardless of the confidence threshold employed.

Discussion
Current research efforts continue to investigate microbiomes using available sequencing technologies and 
bioinformatics workflows, however, many of these tools have been validated primarily for human-associated 
microbiota. Accordingly, this study aimed at systematically evaluate the advantages and limitations of commonly 
used taxonomic classification approaches following short-read DNA sequencing.

A considerable proportion of sequencing reads remained unclassified, even though the genomes composing 
the mock community were sourced from public databases, highlighting intrinsic classification limitations. The 
proportion of both unclassified and misclassified reads is expected to increase in real samples, given the higher 
complexity of real microbial communities and the presence of bacteria not represented in current databases.

Among the classifiers tested, Kaiju with either nr euk and nr euk + demonstrated the best performance, 
capturing the relative abundance ratios of the most prevalent genera and species. However, approximately 25% 
of its classifications were incorrect, with the majority assigned as “cannot be assigned to a non-generic virus”. 
Such classifications provide limited taxonomic resolution and are nearly as uninformative as the “unclassified” 
reads. While numerous misclassifications occurred with Kaiju, they were predominantly at very low relative 
abundances. Most of the species misclassified by Kaiju belonged to genera actually featured in the mock 
community, meaning that the misclassifications were taxonomically close to the expected assignment (i.e., 
accurate classification of the related reads was maintained till the genus level). The advantages conferred by 
Kaiju may stem from its in silico translation approach, which mitigates the impact of single nucleotide errors 

Fig. 6.  Bar plots illustrating the number of false positives (“Microbes as Homo”) and true positives (“Homo 
as Homo”) in the identification of Homo sapiens reads by various programs and parameter settings. The 
observation labelled “Total misclassific” represents the erroneous classification of microbial reads into any 
eukaryotic clade when the employed database includes taxa beyond Homo sapiens alone. The row labelled 
“Mock” indicates the actual number of H. sapiens paired reads present in the mock dataset. The program 
names, employed databases, and settings are displayed on the left side of the plot, while the X-axis represents 
the number of paired reads for each observation. The X-axis is magnified at lower values to improve readability.
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or mutations on the taxonomic classifications. Although protein databases lack non-coding genomic regions, 
Kaiju is expected to be relatively effective on bacterial and viral genomes as they predominantly consist of coding 
sequences14,17.

kMetaShot ranked as the second-best classifier in terms of overall efficiency. However, it primarily identified 
only the most abundant taxa while maintaining a high degree of accuracy, meaning that it obtained a high 
precision at cost of sensitivity. Its lack of sensitivity may be attributed to its database construction methodology, 
as it was primarily tested on human-associated environments rather than environmental microbiomes17. It is 
noteworthy that kMetaShot performed on MAGs assembled from short reads, hence both its sensitivity and 
precision are expected to significantly increase in case of long read sequencing.

RiboFrame’s estimation of the mock community was almost precise as Kaiju, but exhibited few 
misclassifications and overestimated Flavobacterium relative abundance, may due to the higher copy number of 
the 16S rRNA gene in its genome compared to other bacteria such as Candidatus Accumulibacter20. Kraken2, 
when used with the SILVA database, produced unreliable results, while RiboFrame successfully utilized the same 
database with minimal noise. Notably, RiboFrame had the lowest RAM requirements, confirming its suitability 
for short-read DNA sequencing analysis when high-performance computers are not available.

Kraken2 used on nt core database pictured a community similar to the mock, but its performance was inferior 
to the other tested classifiers. This outcome was unexpected, given that Kraken2 is frequently reported as one 
of the top-performing classifiers in human and soil microbiome studies21. Nevertheless, Kraken2 effectiveness 
was still confirmed as it managed to obtain unique insights, being the only classifier that successfully detected 
all the true genera. In detail, at a confidence threshold of 0.05 with the nt core database, Kraken2 exhibited 
over 25% misclassifications but still managed to identify all clades present in the mock, albeit with incorrect 
abundance estimations for Candidatus Accumulibacter, Zoogloea, and Candidatus Competibacter (Fig. 1).The 
high sensitivity of Kraken2 was also evident in its true positive rate for T4 phage derived reads, which markedly 
exceeded that of Kaiju when Kraken2 was employed with the lowest confidence thresholds. The observed 
inaccuracies are likely attributable to the database rather than the classifier itself, as many microbes associated 
with AS and AGS systems lack reliable reference genomes. In fact, inspecting the Kraken2 nt core highlights 
the under representations of many Candidatus Accumulibacter and Candidatus Competibacter species. This 
limitation was already reported for other Kraken 2 official databases, for example Calderón-Franco et al. found 
that many AGS related taxa are poorly annotated in Kraken2 standard database22.

All classifiers performed poorly when applied to contigs, suggesting suboptimal assembly. Specifically, 
contig-based classifications resulted in significant underestimation of many clades among which Candidatus 
Accumulibacter and Candidatus Competibacter, while overestimating others as Novosphingobium. Nevertheless, 
the contigs served as the basis for generating MAGs, which were classified with high accuracy using kMetaShot. 
Such contrasting outcomes suggests that the potential information obtained by assembling MAGs was greater 
than the noise obtained from the assembling in contigs. The most accurate MEGAHIT assembly setting resulted 
to be the “metalarge” mode, albeit with a marginal improvement.

As anticipated, lowering the confidence threshold increased the error rate with every classifier. However, the 
trade-off between reducing noise and losing valuable information was not favourable. For instance, at higher 
confidence thresholds, Kraken2 began to miss key species, suggesting that an optimal range its classification 
lies between 0.05 and 0.3 for AS and AGS related environments. Similar trends were observed for RiboFrame 
and kMetaShot. Conversely, Kaiju exhibited minimal changes when increasing stringency (Fig. 2) while further 
reducing its already low false positive rate (supplementary figure S2). Thus, increasing the minimal alignment 
length threshold (“m”) beyond 30 in Kaiju is suggested to further reduce its misclassifications without major 
losses in sensitivity when analysing 150 bp reads. However, this may result also in minimal loss of sensitivity 
regards certain taxa such as Rotifera, as more than 15.000 proteins known in this clade are shorter than 40 
amino-acids according to the actual UniRef database23. Accordingly, such threshold should be selected based 
on the characteristics of the community under investigation and only after assessing the resulting unclassified 
reads proportion.

The classifier EukDetect2 exhibited perfect precision but suffered from extremely low sensitivity, as only few 
reads were recognised as Diploscapter. Similarly, Kaiju when used with the nr euk + database effectively detected 
eukaryotic sequences with good accuracy, albeit missing many. The inclusion of eukaryotic sequences in the 
classification pipeline was beneficial for every tested classifier. For example, a Kaiju-specific database containing 
only viral or eukaryotic sequences enhanced the classifier sensitivity but mostly increased its false positive ratios, 
even classifying many bacteria as eukaryotes. In contrast, Kaiju on nr euk rarely classified Homo or Diploscapter 
sequences as bacterial or vice versa, and was even more precise when using the nr euk +. Similarly, Kraken2 
misclassified nearly all human-derived reads into the correct broad clade when using its complete database. 
Conversely, a comprehensive yet incomplete or unfocused database may result in a significant loss of information, 
as classifiers are more likely to assign reads to clades that are not actually present in the sampled environment. 
Such limit was observed when Kraken2 was used on the eukaryote custom database leading to numerous false 
positives, such as misclassifications of bacteria as insects. It is important to emphasize that the list of eukaryotes 
included such custom database should not be considered to be exhaustive of possible eukaryotic contaminants 
in wastewater, but rather as a benchmark for potential misclassifications of microbial sequences.

On the other hand, Kraken2 demonstrated superior accuracy in distinguishing human reads from bacterial 
sequences when using only the GRCh38 database at maximum confidence. Despite Bowtie2 achieved a 
significantly greater sensitivity in identify Homo reads in our simulations, also mistaken more microbial reads 
as human compared to Kraken2 used with 0.99 confidence. The decontamination prior to the classification 
would further reduce false positive classifications, as the Homo sapiens sourced reads are often mistaken for 
Plasmodium ovale in our simulated scenario. The likelihood of Homo sapiens DNA misclassifications were 
already reported in literature, for example Marcelino, Holmes and Sorrell highlighted the illogic inferring of 
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reptiles from human gut DNA samples13. However, given the low misclassification rate of Homo sapiens reads 
with Kaiju (nr euk + database, stringent settings), decontamination should be carefully considered to avoid losing 
valuable microbial reads due to rare false positives Homo reads. Consequently, the optimal strategy may depend 
on sequencing depth (as bacterial reads are typically more abundant than animal or plant derived contaminants) 
and the nature of the influent feeding the reactor (i.e. real or synthetic wastewater). In real wastewater influent 
scenarios, particularly those originating from domestic sources, in silico decontamination of human reads using 
Kraken2 with a focused database at a high confidence threshold may be a viable strategy.

Overall, the results highlighted the risks of placing blind trust in classification outputs, particularly when 
interpreting low-abundance taxa. For instance, rare Dechloromonas reads were erroneously classified as Gallus 
gallus despite the application of high stringency thresholds, and fungal taxa were inferred despite their absence 
from the simulated community. While the former misclassification might be reasonably disregarded in practical 
scenarios due to its implausibility, the latter could misleadingly suggest the presence of fungi in the reactor.

Although we consider the reported observations essential for interpreting analyses of AS and AGS microbiota, 
the manuscript still presents unavoidable limitations that readers should carefully take into account:

•	 Due to the intentionally simplified design of the simulated mock community, it is not possible to define abun-
dance thresholds. Nonetheless, the application of filtering thresholds previously proposed in the literature, 
such as 0.005% at species level21,24 (calculated including unclassified reads in the total) is still suggested.

•	 The mock community, for the same reason outlined above, could not encompass the numerous key taxa rep-
resentative of AS and AGS systems;

•	 Benchmarking all the classifiers available in the literature is clearly unfeasible, hence focused our tests on one 
representative classifier per major classification strategy.

Methods
Mock generation
Reference genomes of 14 bacterial genera frequently observed in AGS and activated sludge microbial 
communities were downloaded from NCBI RefSeq using NCBI Datasets v16.22.0. Additionally, genomes of 
Candidatus Moranbacteria and Solirubrobacter bacterium 67–1425,26, which have also been reported in AGS 
and activated sludge studies, were retrieved from GenBank, as these genera lack official reference genomes. To 
incorporate microbial eukaryotes and bacteriophages, the reference genomes of Diploscapter spp., Paramecium 
spp. and a T4 bacteriophage species were also included. Notably, Paramecium spp. were selected as they are 
the only ciliates with reference genomes available in the NCBI RefSeq database as well as members of the 
Vorticellaceae family that currently lack genomic data in both RefSeq and GenBank. Furthermore, the reference 
genome of Homo sapiens was downloaded to account for potential traces of eukaryotic DNA originating from 
reactor influents. In total, genomes from 20 taxa (16 bacteria, 3 eukaryotes, and 1 virus) were collected. The full 
list of selected genera is provided in Table 1.

Simulated untargeted sequencing of these genomes was performed using InSilicoSeq (ISS) v2.0127, emulating 
sequencing via Illumina NovaSeq. This resulted in 150 bp paired-end reads at a total depth of 50 million paired 
reads. The seed 1994 was employed to ensure the full reproducibility of the results (see data availability). The 
sequencing simulation was designed to generate precise relative abundances for each taxon, as detailed in Table 1.

Notably, the simulated mock community comprises a few predominant bacterial taxa, with others taxa present 
at lower abundances, thereby reflecting realistic microbial community structures. In particular, Candidatus 
Accumulibacter and Candidatus Competibacter were the most abundant bacteria, leading to an abundance 
distribution r resembling AGS communities more than AS communities2. For sake of reading simplicity, the 
genera featured in the mock will be referred to as “true genera” in this paper.

Processing and classifying the mock reads
The mock reads were filtered through using BBDuk (module of BBTools suit version 39.06)28 to remove reads 
sourced from Illumina adapters or phiX, very-low complexity sequences with entropy value less than 0.01 
(“entropy = 0.01”), 3' ends regions with Q-score lower than 20 (“qtrim = r”, “trimq = 20”) and reads shorter than 
100 bp (“minlen = 100”) while taking into account the in paired-end nature of the sequencing (“tpe”, “tpo”). This 
pre-processing step was intentionally disregarded when comparing the estimated abundances with the known 
original ones, in order to incorporate actual sequencing biases into this benchmark. The filtered reads were 
classified as such or after being assembled into contigs or metagenome-assembled genomes (MAGs). Contigs 
were assembled using MEGAHIT v1.2.929 under three different settings: “default”, “meta-large” and “custom” 
(the latter employing a k-mer list of 35, 57, 79, 99, as used in the kMetaShot study17). MAGs were subsequently 
reconstructed from the contigs for each setting using MetaBat v2.1730. The MAG assembly followed the same 
settings as in the kMetaShot study17 to ensure full compatibility with this classifier, as the MAGs identification 
was tested exclusively with kMetaShot.

The classification was carried out with the widely used Kraken v2.1.215 with various confidence levels, Kaiju 
v1.1014 with different E-value and minimal coverage thresholds, RiboFrame v 1.016 with different confidence 
thresholds applied to both the full-length 16S rDNA and its V3-V4 hypervariable region featured among 
the reads, and kMetaShot v1.017 with multiple confidence levels. Bracken 2.7.031 was used to re-estimate the 
abundances of the Kraken2 identified taxa according to their genome length and sequenced read length. In 
particular, the classification at read level was conducted with RiboFrame, Kaiju, and Kraken2, at contigs level 
with Kaiju, Kraken2, and kMetaShot and at MAG level with kMetaShot. The analysis at the contig level using 
kMetaShot was conducted for each kMetaShot setting described above, whereas classifications with Kaiju 
and Kraken2 (on “nt core” database) were performed exclusively on contigs generated with the MEGAHIT 
‘metalarge’ option to avoid unnecessarily convoluted comparisons between the various settings combinations. 
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Moreover, the confidence thresholds were not used when classifying at contig level with kMetaShot as almost 
every related confidence score was near zero.

Kraken2 was used with both the “nt core” (built on December 28, 2024) and SILVA 138 official databases. 
Kaiju was tested with the “nr euk” and “nr euk plus” (referred to as “nr euk +”) databases. The nr euk database, 
built in October 2023, is the most recent official distribution including bacteria, archaea, viruses, protozoa and 
fungi. In contrast, nr euk + is a customized version of this database, built with the most recent NCBI nr available 
(April 2024) and expanded to incorporate nr sequences from Platyhelminthes, Nematoda, Amoeba, Rotifera, 
Tardigrada and Homo sapiens. In detail, the flag -e was included in the kaiju2table command to ensure that the 
classification of the T4 phage was displayed in Kaiju outputs. RiboFrame relied on the RDP classifier retrained 
on SILVA SSU 138. kMetaShot employed its own database, downloaded in February 2025. Clades without official 
genus name in NCBI (e.g. Candidatus Moranbacteria) were obtained from the species classifications and added 
to the genus level outputs to reduce the database biases in the genus level comparison. A comprehensive list of 
all program, parameter, and database combinations used in this analysis is provided in Supplementary table 1.

Comparison between classifiers outcomes
The estimated microbial abundances in the mock datasets were compared across different settings using R v4.3, 
with the packages vegan v2.6.432 and ecodist v2.1.333. Data visualization was performed using ggplot v3.4.4, 
ggvenn v0.1.10, and ggh4x v0.2.7. Synonymies across the employed databases were manually resolved, at least 
for the known genera included in the mock and the most abundant misclassifications, through accurate searches 
in List of Prokaryotic names with Standing in Nomenclature (LPSN) database34. Importantly, the unclassified 
reads were not included in the percent abundances computation, hence the analysis was focused on the classifier-
specific classifications. Principal Coordinate Analysis (PCoA) was conducted using the Hellinger distance, i.e. the 
Euclidean distance applied to Hellinger-transformed abundances, to account for the sparse and compositional 
nature of the data35. Additionally, the Bray–Curtis dissimilarity index, applied to proportional data, was used as 
an alternative ecological measure to ensure that the PCoA related conclusions were not influenced by the choice 
of ecological distance. The most abundant misclassifications for each setting were identified by computing the 
average abundances of taxa that were incorrectly assigned as not actually present in the mock. All the analyses 
were primarily conducted at the genus level across all described settings, with additional species-level insights 
obtained by comparing Kaiju outputs at the reads level (using both the databases with settings E = 0.00001 and 
m = 42), Kraken2 at the reads level (using the nt core database with confidence thresholds of 0.15 and 0.99) 
and kMetaShot at the MAGs level (after contigs assembly through MEGAHIT with “metalarge” option). These 
programs and settings were specifically chosen for the comparison at species levels as theoretically capable of 
providing such taxonomic detail and due to their generally accurate performances at genus level.

Domain Genus Synonym Reads counts Reads percentages Main role

Bacteria Candidatus Accumulibacter 7,500,159 15 PAO

Bacteria Candidatus Competibacter 7,499,920 15 GAO

Bacteria Thauera 6,000,210 12 Heterotrophic

Bacteria Flavobacterium 4,000,000 8 Heterotrophic

Bacteria Candidatus Moranbacteria Candidatus Moraniibacteriota 3,999,999 8 Heterotrophic

Bacteria Dechloromonas 2,500,038 5 PAO

Bacteria Nitrosomonas 2,500,189 5 Nitrifying

Bacteria Zoogloea 1,999,647 4 Heterotrophic

Bacteria Propionivibrio Candidatus Propionivibrio
(at species level) 1,999,980 4 Autotrophic

Bacteria Novosphingobium 2,000,782 4 Heterotrophic

Bacteria Tetrasphaera Nostocoides 1,999,944 4 PAO

Bacteria Azoarcus 1,999,998 4 Autotrophic

Bacteria Nitrobacter 1,999,951 4 Nitrifying

Bacteria Delftia 1,999,998 4 Nitrifying

Bacteria 67–14 Solirubrobacterales bacterium 67–14 500,004 1 Heterotrophic

Bacteria Halomonas 500,688 1 Halophilic

none Phage T4 Tequatrovirus 250,000 0.5 Predator

Eukaryota Homo 250,275 0.5 –

Eukaryota Diploscapter 249,997 0.5 Predator

Eukaryota Paramecium 249,980 0.5 Predator

Table 1.  List of genera featured in the mock. The column “Synonym” indicates taxon names as listed in the 
NCBI database when they differ from those in other databases (e.g. SILVA). The “Read Counts” column 
presents the raw number of paired reads assigned to each clade in the mock dataset, while “Read Percentages” 
represents their relative abundance. The “Main role” column reports the most known role or characteristic of 
that clade in AS or AGS environments and it is not intended to be a comprehensive summary of the clade’s 
potential functions or characteristics.
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Focus on non-prokaryotes derived reads
In addition to the listed software and parameter combinations used for classifying the bulk community, additional 
analyses were conducted to specifically assess potential misclassifications of non-prokaryotic reads. Read-level 
classification was performed using Kaiju v1.10 with the pre-built viral sequence database from RefSeq to further 
investigate false negative classifications of this clade observed in the full database. Additionally, Kaiju was 
executed with a custom database constructed by selecting only common metazoan sequences found in activated 
sludge (i.e. Rotifers, Platyhelminths, Nematodes, Amoebae and Tardigrades) from the UniRef100 protein 
database. Furthermore, EukDetect v1.336 was applied to unfiltered reads using its default database, EukDetect 
database v9, which has included lower metazoans since recent releases. Finally, an additional attention was spent 
on misclassifications of Homo sapiens reads as bacteria. The identification of Homo sapiens reads (as optional 
decontamination step prior to the actual microbes’ classification) was performed with Kraken2 on both GRCh38 
reference genome37 and a custom database on diverse confidence levels, and with Bowtie219 in paired-end mode 
with the “very-sensitive” option using both local alignment and end-to-end alignment. The custom database 
used in Kraken2 was constructed from the reference genomes of various higher eukaryotes whose residual DNA 
fragments are likely to be present in wastewater feeding AGS and AS reactors, including Hexapoda, Annelida, 
Chlorophyta, plants (Kraken2 reference sequences), Homo sapiens and Mus musculus.

Data availability
The simulated mock community raw FASTQ are publicly available on NCBI SRA with the accession code PRJ-
NA1252002. The resulting counts and classifications for each classifier and parameter, as well as the unclassified 
percentages, the R data containing the feature table ready for the analysis and the scripts, are available at ​h​t​t​p​s​:​​​/​​/​
g​i​t​h​u​​b​.​c​o​​m​/​L​e​a​n​​d​r​o​D​​9​​4​/​P​a​p​e​​​r​s​/​t​​r​​e​e​/​m​​a​​i​n​/​​2​0​​2​5​_​B​e​n​​c​h​​m​a​r​​k​_​D​​N​A​​s​e​q​_​c​l​a​s​s​i​​f​i​e​​r​s​_​A​​G​S​_​a​n​d​_​A​S.
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