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The performance of in-orbit communication satellites generally degrades over time due to depletion 
mechanisms, rendering them multistate systems with varying output performance levels. This paper 
applies grey system theory to the reliability assessment of multistate systems, specifically addressing 
the performance degradation and data scarcity characteristics inherent in communication satellites. 
A grey multi-state system model is developed to capture these dynamics. Considering the satellite’s 
structural characteristics, the reliability solution algorithm incorporates the potential for performance 
levels exceeding required thresholds. This integration is achieved by combining the grey universal 
generation function with the grey Markov process, using the three-parameter interval grey number 
as an intermediary function. Through the Lz transformation based on three-parameter interval grey 
numbers, the proposed dynamic reliability assessment model for multi-state communication satellites 
effectively mitigates challenges associated with high-dimensional state spaces in satellite systems. The 
developed model provides robust methodological support for reliability assessment of complex grey 
multistate systems.

The communication satellite network constitutes a critical component of the national information infrastructure, 
holding significant economic and social implications. As pivotal elements within these networks, communication 
satellites exhibit high technical complexity, lengthy development cycles, challenging maintenance requirements, 
and substantial investment costs, necessitating rigorous reliability assessments. During operation, satellites 
endure wear and tear, failure mechanisms, and diverse operational environments, where subsystem component 
failures may degrade satellite performance levels. Conventional reliability theory, grounded in the “two-state 
assumption” of binary operational states (full functionality vs. complete failure), simplifies practical problem-
solving but fails to address performance degradation-induced multistate system characteristics. The multistate 
system reliability theory offers a novel resolution to this challenge1,2.

Since its inception, multistate system reliability theory has yielded substantial research outcomes and 
found extensive applications across power systems, transportation networks, aerospace engineering, and 
related domains2–5. Among multistate reliability assessment methodologies, Monte Carlo simulations demand 
extensive data support, while decision diagrams (BDD), Bayesian networks, and Petri nets encounter state-space 
explosion in complex systems. The Universal Generating Function (UGF) method combines discrete random 
variables through polynomial representations, defines system-specific operators via logical relationships, and 
derives system-level performance polynomials through multilayer recursion, effectively capturing multistate 
characteristics. Originally proposed by Ushakov6 in 1986 and subsequently refined by Gregory7, UGF has 
gained prominence for its computational efficiency and low complexity in multistate system reliability analysis8. 
However, UGF focuses on steady-state performance and probabilities, overlooking temporal dynamics and 
limiting applicability to discrete variables with static probability distributions. To address this, scholars developed 
the Lz-transform—a specialized operator integrating stochastic processes with UGF, analogous to Lz-transform 
for discrete variables—which ensures uniqueness in dynamic reliability analysis9,10.

Multistate reliability analysis of communication satellites via UGF requires subsystem state performance 
data and corresponding probabilities. However, satellite structural complexity, low component failure rates, and 
information scarcity hinder precise determination of subsystem state transition rates and performance levels. 
Grey system theory, pioneered by Deng Julong for small-sample, information-deficient scenarios11, provides 
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an effective analytical framework. The interval grey number—a fundamental grey system element—facilitates 
multi-attribute uncertainty decision-making12,13. While conventional interval grey numbers assume uniform 
value probabilities, practical applications often involve non-uniform distributions. Furthermore, complex 
system operations amplify uncertainty propagation in interval grey number computations, increasing decision 
errors. To mitigate these limitations, Luo14,15 introduced three-parameter interval grey numbers, which have 
enabled advancements in sustainable transport evaluation16, grey target decision-making17, and prospect 
theory-based group decisions18. Despite progress, existing methods exhibit shortcomings: geometric distance-
based dominance metrics in16 disregard distribution characteristics, subjective weighting persists, and distance 
measures in19 inadequately reflect parameter distributions. This paper contributes through:

	(1)	 Defining system performance-demand relationships via three-parameter interval grey number possibility 
functions, overcoming geometric distance limitations in distribution characterization.

	(2)	 Implementing computational algorithms for satellite state probabilities and dynamic reliability, resolving 
the state-space explosion in complex multistate systems.

	(3)	 Establishing a theoretical framework integrating three-parameter interval grey numbers with possibility 
functions, grey Markov processes, and Lz-transform for transient multistate satellite reliability analysis.

Preliminarie
Definitions
Definition 1  In real-world systems, beyond binary operational states (perfect functionality and complete fail-
ure), there typically exist multiple degraded states. Such systems are formally defined as multi-state systems 
(MSS)20,21. When system performance rates and corresponding state probabilities are represented by grey num-
bers, the system is termed a grey multi-state system (GMSS).

Definition 2  Let {Xn, n ∈ T } denote a stochastic process. If for any inte-
ger n and states i0, i1, · · · , in+1 ∈ I , the conditional probability satisfies: 
P (Xn+1 = in+1|X0 = i0, X1 = i1, · · · , Xn = in) = P (Xn+1 = in+1|Xn = in), then {Xn, n ∈ T } is 
known as a Markov chain. For any n ∈ T  and state i, j ∈ I ,Pij (n) = P (Xn+1 = j| Xn = i) is as the transi-
tion probability of the Markov chain. If the transition probability Pij (n) s grey element ,then {Xn, n ∈ T } is 
called a grey Markov chain22.

Definition 3  A grey number (denoted by ⊗) represents an uncertain quantity whose exact value is unknown 
but bounded within a specific interval or set23.

Definition 4  An interval grey number is defined as a (⊗) =
[
al, au

]
 where al ≤ au and al, au ∈ R. If 

al = au, the interval grey number reduces to a real number23.

Definition 5  A three-parameter interval grey number extends the interval grey number by incorporating a 
central tendency parameter: a (⊗) =

[
al, a∗, au

]
, where a∗ denotes the center of gravity (most probable value). 

When a∗ is unspecified, the three-parameter form degenerates to a standard interval grey number14.

Definition 6  Let a(⊗) = [al, a∗, au] and b(⊗) = [bl, b∗, bu]. The arithmetic operations are defined as24:

	

Addition: a(⊗) + b(⊗) = [al + bl, a∗ + b∗, au + bu]
Subtraction: a(⊗) − b(⊗) = [al − bu, a∗ − b∗, au − bl]

Multiplication: a(⊗) × b(⊗) =
[
min{albl, albu, aubl, aubu}, a∗b∗, max{albl, albu, aubl, aubu}

]

Minimum Operation: min{a(⊗), b(⊗)} =
[
min{al, bl}, min{a∗, b∗}, min{au, bu}

]

Scalar Multiplication (k ≥ 0) : k · a(⊗) = [kal, ka∗, kau]
Scalar Multiplication (k < 0) : k · a(⊗) = [kau, ka∗, kal]

Power Operation (k ≥ 0) : [a(⊗)]k =
[
(al)k, (a∗)k, (au)k

]

Acronym and notation
To ensure methodological consistency, all acronyms and mathematical notations adopted in this framework are 
systematically documented in Table 1.

Dynamic reliability assessment model for grey multi-state communication satellites
Structure analysis
A communication satellite comprises five principal unit systems: power, communication, control, telemetry 
command, and antenna. The power unit system integrates solar cells and batteries in a parallel configuration. 
During sunlit periods, the batteries are charged, while during eclipses, they provide stable power to onboard 
equipment. The communication unit system consists of two key subsystems: transponders and antennas. 
Functioning as relay stations, transponders receive, process, and retransmit signals—essentially operating as 
broadband transceivers. The control unit system incorporates various electromechanical adjustment devices, 
including thrusters, actuators, thermal regulation units, and switching mechanisms, which maintain satellite 
attitude, orbital positioning, and antenna orientation under telemetry command. The telemetry command unit 
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system collects operational parameters (voltage, current, frequency, temperature) and attitude data through 
sensors, transmitting them to ground stations while receiving control commands. The antenna unit system 
employs dedicated telemetry/command and communication antennas for directional signal transmission. 
Figure 1 illustrates the satellite’s structural configuration.

In operational terms, the satellite serves as a wireless relay through the coordinated operation of these 
unit systems. Critical components employ redundancy strategies: transponder receivers and power amplifiers 
typically use cold standby configurations, while telemetry processors adopt hot redundancy. As any unit system 
failure would result in satellite failure, reliability analysis models the satellite as a series combination of five unit 
systems. When considering internal subsystem redundancy within each unit system as parallel configurations, 
the reliability structure appears as shown in Fig. 2.

During the service life of a communication satellite system, the effects of radiation, alternating temperatures, 
and vacuum environments can cause random system failures in local subsystem components. These failures 
may occur when the system does not need to be completely taken offline and its output performance is in a 
derated operation mode. Let each subsystem have ki + 1 performance levels, that is,0, 1, 2 · · · , ki. As can be 
seen from Fig.2, a communication satellite system composed of grey multi-state subsystems forms a multi-layer 
grey multi-state system. Let the performance levels of the power subsystem M11, · · · , M1n1 , communication 
subsystem M21, · · · , M2n2 , control subsystem M31, · · · , M3n3 , telemetry command subsystem 
M41, · · · , M4n4  and antenna subsystem M51, · · · , M5n5  at time t be represented by the random variables 
g⊗

i (t) ∈
{

g⊗
i0 (t) , g⊗

i1 (t) , · · · , g⊗
iki

(t)
}

, i = 1, 2, · · · , 5. The performance of the power supply system, 
communication system, control system, telemetry and command system, and antenna system, which are 
composed of the aforementioned subsystems, is denoted as G⊗

j (t) , j = 1, 2, · · · 5, and the performance of the 
single communication satellite system is represented as G⊗

s (t).

MSS Multi-state system

GMSS Grey multi-state system

UGF Universal generating function

T-PIGN-Lz Three-parameter interval grey number Lz transform

G-Markov Grey Markov

n Number of subsystems

N Number of unit systems

i Subsystem i, i = 1, 2, . . . , n

ki Number of states for subsystem i

j Unit system j, j = 1, 2, . . . , N

Kj Number of states for unit system j

Ks The total number of the combinations states of system

g⊗
iji

The ji-th performance level of subsystem i

p⊗
iji

(t) The probability corresponding to the ji- th performance level of subsystem i

g⊗
iji

The ji-th performance level of subsystem i

p⊗
jij

(t) The probability corresponding to the ij -th performance level of unit system j

G⊗
j

The performance level of unit system j

G⊗
s

Performance level of the system

p⊗
s (t) Probability of state occurrence for each performance level of the system

φs Structure-function for GMSS with subsystems connected in series

φp Structure-function for GMSS with subsystems connected in parallel

Ωφ Arbitrary structure functions

Lz
{

g⊗
i

(t)
}

Lz transformation of subsystem i

Lz
{

G⊗
j

(t)
}

Lz transformation of unit system j

Lz
{

G⊗
s (t)

}
Lz transformation of the system

W⊗ System task requirement performance

f
(

r⊗
s

)
The possibility function for r⊗

s

D (W⊗, t) Reliability of meeting system task requirements W⊗  at time t

λ⊗
i,(ki,ki−1) Degradation probability for subsystem i to move from performance level ki  to ki − 1

µ⊗
i,(ki−1,ki) Repair probability of subsystem i from performance level ki − 1 to ki

Table 1.  List of Acronyms and Notations.
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Lz-transform integration with UGF and Markov processes
For a discrete random variable G representing system performance levels with states G = {g1, g2, · · · , gN } and 
corresponding probabilities P = {p1, · · · , pN },where pi = Pr {G = gi}, the Universal Generating Function 
(UGF) is defined as25:

	
u(z) =

N∑
i=1

pi · zgi ,� (1)

where z is a formal algebraic operator with no numerical interpretation, serving solely to pair performance levels 
with their probabilities.

Fig. 2.  Structural block diagram of a communications satellite.

 

Fig. 1.  Block diagram of the reliability of the communication satellite system.
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While UGF effectively models steady-state performance, it lacks temporal resolution for transient analysis. 
To address this limitation, the Lz-transform was subsequently developed by integrating stochastic processes with 
UGF.

Let G (t) = {g1, g2, · · · , gN } denote a continuous-time Markov process with:

•	 State transition rate matrix D = ∥dij (t)∥
•	 Time-dependent state probabilities pi (t) = Pr (G (t) = gi)
•	 Initial probability distribution: 

	 P0 = [p1(0) = Pr(G(0) = g1), p2(0) = Pr(G(0) = g2), . . . , pN (0) = Pr(G(0) = gN )] .� (2)

The Markov process is formally expressed as:

	 G(t) = ⟨g, D, P0⟩.� (3)

The Lz-transform of this process is given by:

	
LzG(t) = u(z, t, P0) =

N∑
i=1

pi(t) · zgi ,� (4)

where pi (t) represents the transient probability of state i at time t ≥ 0. The operator z retains its abstract 
algebraic role—it does not represent a numerical variable but rather a symbolic separator between performance 
levels and their associated probabilities. This formalism ensures a bijective mapping between the transform and 
the system’s stochastic behavior under given P0.

G-Markov model for repairable subsystems
The reliability analysis of communication satellite systems relies on subsystem performance levels and their 
transient probabilities. However, the structural complexity and limited test samples make precise parameter 
determination challenging. When performance levels and associated parameters are expressed as three-
parameter interval grey numbers, the corresponding Lz transformation is termed Three-Parameter Interval 
Grey Number Lz Transformation (T-PIGN-Lz).

A grey multi-state repairable subsystem must satisfy the following conditions:

	(1)	 Performance Space : Subsystem i has a discrete performance space {0, 1, · · · , ki} where states are non-neg-
ative integers..

	(2)	 Grey Performance : The performance level g⊗
i (t) is a three-parameter interval grey number.

	(3)	 Grey Transition Rates : State transition rates between performance levels are three-parameter interval grey 
numbers.

The performance level set g⊗
i (t) =

{
g⊗

i0 (t) , g⊗
i1 (t) , · · · , g⊗

iki
(t)

}
 s modeled through discrete Markov states, 

forming a G-Markov chain with grey transition probabilities, as shown in Fig.3. Here, ki denotes the optimal 
performance state while 0 represents complete failure.

Subsystem state probabilities are governed by the Kolmogorov differential equations:

Fig. 3.  G-Markov model for multi-state subsystem i performance states.
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dp⊗
iki

(t)
dt

=
ki−1∑
h=0

µ⊗
i(h,ki)p

⊗
ih(t) − p⊗

iki
(t)

ki−1∑
h=0

λ⊗
i(ki,h),

dp⊗
ij(t)
dt

= λ⊗
i(ki,j)p

⊗
iki

(t) − µ⊗
i(j,ki)p

⊗
ij(t), 0 < j < ki,

dp⊗
i0(t)
dt

= λ⊗
i(ki,0)p

⊗
iki

(t) − µ⊗
i(0,ki)p

⊗
i0(t).

� (5)

Assuming the process initiates from the optimal state ki with performance level g⊗
iki

,  the initial conditions are:

	 p⊗
iki

(0) = 1, p⊗
ij(0) = 0 for j = 0, 1, . . . , ki − 1.� (6)

Applying Laplace-Stieltjes transformation to (5) yields:

	

sp⊗
iki

(s) − 1 =
ki−1∑
h=0

µ⊗
i(h,ki)p

⊗
ih(s) − p⊗

iki
(s)

ki−1∑
h=0

λ⊗
i(ki,h),

sp⊗
ij(s) = λ⊗

i(ki,j)p
⊗
iki

(s) − µ⊗
i(j,ki)p

⊗
ij(s), 0 < j < ki,

sp⊗
i0(s) = λ⊗

i(ki,0)p
⊗
iki

(s) − µ⊗
i(0,ki)p

⊗
i0(s).

� (7)

Here, L [·] denotes the Laplace-Stieltjes operator. Inverse transformation yields time-domain probabilities:

	 p⊗
ij(t) = L−1 [

p⊗
ij(s)

]
= fij

(
λ⊗

i , µ⊗
i , t

)
,� (8)

where λ⊗
i =

{
λ⊗

i(ki,ki−1), · · · , λ⊗
i(1,0)

}
 and µ⊗

i =
{

µ⊗
i(ki−1,ki), · · · , µ⊗

i(0,ki)

}
 represent degradation and 

repair rate vectors, respectively.

T-PIGN-Lz transform for communication satellite system
T-PIGN-Lz transform for subsystems
The T-PIGN-Lz transform aggregates the performance levels and transient probabilities of a subsystem into a 
grey function. For subsystem i, this transform combines9,26:

•	 ki + 1 discrete performance levels g⊗
iji

( where ji = 0, 1, . . . , ki)
•	 Corresponding time-dependent probabilities p⊗

iji
(t)

•	 A placeholder variable z (with no numerical value) to separate performance terms

	
Lz

{
g⊗

i (t)
}

= u⊗
i (z, t, P ⊗

i0 ) =
ki∑

ji=0

p⊗
iji

(t) · z
g⊗

iji ,� (9)

where g⊗
iji

 represents the performance level g⊗
iji

, weighted by its probability p⊗
iji

(t).

Generic combinatorial operator Ω⊗
φ

This operator combines the T-PIGN-Lz transforms of subsystems or unit systems according to their structural 
relationships (e.g., series, parallel). The operator applies a structure function φ to map subsystem performances 
to the system-level performance.

For a unit system j composed of n subsystems:

	 Lz
{

G⊗
j (t)

}
= Ω⊗

φ

(
Lz

{
g⊗

1 (t)
}

, . . . , Lz
{

g⊗
n (t)

})
,� (10)

Expanded form:

	

k1∑
j1=0

· · ·
kn∑

jn=0

(
n∏

i=1

p⊗
iji

(t) · z
φ(g⊗

1j1
,...,g⊗

njn
)

)
.� (11)

Structure functions

•	 Series Systems (φs): The system performance equals the minimum subsystem performance27,28: 

	 φs

(
g⊗

1 , . . . , g⊗
n

)
= min

(
g⊗

1 , . . . , g⊗
n

)
.� (12)

•	 Parallel Systems (φp): The system performance equals the sum of subsystem performances27,28: 
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φp

(
g⊗

1 , . . . , g⊗
n

)
=

n∑
i=1

g⊗
i .� (13)

System-level T-PIGN-Lz transform
For a communication satellite system composed of N unit systems:

	 Lz
{

G⊗
s (t)

}
= Ω⊗

φ

(
Lz

{
G⊗

1 (t)
}

, . . . , Lz
{

G⊗
N (t)

})
,� (14)

Expanded form:

	

K1∑
i1=0

· · ·
KN∑

iN =0

(
N∏

j=1

p⊗
jij

(t) · z
φ(g⊗

1i1
,...,g⊗

NiN
)

)
,� (15)

where Kj  is the number of states for unit system j.

State space mapping
The system’s performance levels arise from the Cartesian product of unit system states25:

	 {g10, . . . , g1K1 } × · · · × {gN0, . . . , gNKN } → {g1, . . . , gKs } ,� (16)

where Ks =
∏N

j=1 Kj  represents the total system states.

Dynamic reliability calculation
The system reliability D(W⊗, t) computes the probability that the system meets mission requirements W⊗29,30:

	
D(W⊗, t) =

Ks∑
s=1

p⊗
s (t) · p

(
G⊗

s ≥ W⊗
)

.� (17)

The term p
(
G⊗

s ≥ W⊗
)

 is evaluated using the possibility function f(x):

	

f(x) =





0 x /∈ [al, au],
x−al

a∗−al x ∈ [al, a∗),
1 x = a∗,
au−x

au−a∗ , x ∈ (a∗, au].

� (18)

Usually, the possibility of taking the value of a(⊗) =
[
al, a∗, au

]
 decreases from the center of gravity point a∗ 

to the upper bound au and the lower bound al. From Fig.4 it can be seen that when the system performance 
demand is W1⊗, the system is unreliable, that is p

(
G⊗

s ≥ W1⊗
)

= 0; when the system performance demand 
is W2⊗, the system is reliable, that is p

(
G⊗

s ≥ W2⊗
)

= 1; when the user demand is W3⊗ or W4⊗, there is 
uncertainty as to whether the system is reliable or not, that is 0 < p

(
G⊗

s ≥ W3(4)⊗
)

< 1. Therefore, it is 
necessary to analyze which performance state satisfies the task demand.

Let r⊗
s = g⊗

s − W⊗, p
(
G⊗

s ≥ W⊗
)

 denote the probability that G⊗
s ≥ W⊗ and f

(
r⊗

s

)
 be the possibility 

function for rs. The probability of G⊗
s ≥ W⊗ is defined as

	

p
(
r⊗

s ≥ 0
)

=

∫
r⊗

s ≥0

f
(
r⊗

s

)
dr⊗

s

∫
Ω

f
(
r⊗

s

)
dr⊗

s

.� (19)

An illustrative example
Consider a multi-state communication satellite system comprising five unit systems and six performance 
degradation subsystems, whose structure is illustrated in Fig. 5. Unit system 1 contains the power system 
(subsystem 1). Unit system 2 incorporates two homogeneous and isomorphic communication systems 
(subsystems 2 and 3). Unit system 3 encompasses the control system (subsystem 4). Unit system 4 includes the 
telemetry command system (subsystem 5), while unit system 5 comprises the antenna system (subsystem 6). The 
communication system primarily facilitates control command transmission, establishes space-ground links, and 
ensures reliable inter-satellite connectivity, which critically determines the operational success of the satellite 
communication system. Redundancy strategies such as cold standby configurations for receivers and high-
power amplifiers in satellite transponders are implemented to maintain operational stability. Parallel structures 
represent the component redundancy. Each subsystem’s performance levels and state transition rates are defined 
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as three-parameter interval grey numbers, as detailed in Table 2. Subsystem 2 exhibits identical state transition 
rates and performance characteristics to Subsystem 3. Given the mission-required performance threshold of the 
communication satellite system W⊗ = (0.4, 0.5, 0.6), evaluate the system reliability at t = 1 year.

Solving for dynamic reliability of communication satellites
G-Markov state probability solution for each subsystem
The probabilities of subsystems 1 to 6 operating at each performance level can be derived from the established 
G-Markov model, as presented in Table 3.

T-PIGN-Lz transformation functions for subsystems
The T-PIGN-Lz transformation for each subsystem at t=1 can be directly derived from the performance levels in 
Table 2 and their corresponding probability distributions in Table 3 using Equation (20).

Fig. 5.  Architecture diagram of a communication satellite system.

 

Fig. 4.  Relationship between system performance levels and task demand performance.
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Subsystem 1 Subsystem 2 Subsystem 4

0 (0.0077,0.0117,0.0304) (0.0047,0.0171,0.0235) (0.0134,0.0149,0.0187)

1 (0.0305,0.0442,0.0549) (0.0237,0.0245,0.0308) (0.0277,0.0309,0.0355)

2 (0.9147,0.9441,0.9618) (0.0083,0.0132,0.0228) (0.0326,0.0349,0.0379)

3 / (0.9229,0.9452,0.9633) (0.9079,0.9193,0.9263)

Subsystem 5 Subsystem 6

0 (0.0219,0.0243,0.0277) (0.004,0.0123,0.0215)

1 (0.0244,0.0276,0.0298) (0.0289,0.0315,0.0316)

2 (0.9425,0.9481,0.9537) (0.9469,0.9561,0.9672)

3 / /

Table 3.  The probability that each subsystem is at each performance level.

 

Subsystem State State transition rate (year−1) Performance level

Subsystem 1

2 λ
(2,1)⊗
1 = (0.034, 0.053, 0.072) g⊗

12 = (0.928, 0.95, 0.965)

1 λ
(2,0)⊗
1 = (0.008, 0.013, 0.035) g⊗

11 = (0.5, 0.55, 0.7)

0 µ
(1,2)⊗
1 = (0.182, 0.308, 0.46) g⊗

10 = (0, 0, 0)

µ
(0,2)⊗
1 = (0.032, 0.146, 0.185)

Subsystem 2

3 λ
(3,2)⊗
2 = (0.009, 0.0145, 0.026) g⊗

23 = (0.6996, 0.8223, 0.939)

2 λ
(3,1)⊗
2 = (0.0269, 0.0284, 0.037) g⊗

22 = (0.1754, 0.387, 0.4234)

1 λ
(3,0)⊗
2 = (0.005, 0.019, 0.027) g⊗

21 = (0.2792, 0.3329, 0.3821)

0 µ
(2,3)⊗
2 = (0.124, 0.135, 0.177) g⊗

20 = (0, 0, 0)

µ
(1,3)⊗
2 = (0.217, 0.236, 0.29)

µ
(0,3)⊗
2 = (0.1, 0.156, 0.193)

Subsystem 4

3 λ
(3,2)⊗
4 = (0.044, 0.0475, 0.0528) g⊗

43 = (0.7736, 0.8836, 0.9665)

2 λ
(3,1)⊗
4 = (0.03, 0.034, 0.04) g⊗

42 = (0.5418, 0.6209, 0.665)

1 λ
(3,0)⊗
4 = (0.0154, 0.0172, 0.022) g⊗

41 = (0.396, 0.4209, 0.48)

0 µ
(2,3)⊗
4 = (0.538, 0.5425, 0.5807) g⊗

40 = (0, 0, 0)

µ
(1,3)⊗
4 = (0.08, 0.105, 0.134)

µ
(0,3)⊗
4 = (0.1952, 0.2063, 0.224)

Subsystem 5

2 λ
(2,1)⊗
5 = (0.02774, 0.03196, 0.0354) g⊗

52 = (0.795, 0.835, 0.942)

1 λ
(2,0)⊗
5 = (0.0246, 0.0281, 0.0325) g⊗

51 = (0.452, 0.523, 0.597)

0 µ
(1,2)⊗
5 = (0.208, 0.24, 0.286) g⊗

50 = (0, 0, 0)

µ
(0,2)⊗
5 = (0.186, 0.235, 0.26)

Subsystem 6

2 λ
(2,1)⊗
6 = (0.0322, 0.0357, 0.0369) g⊗

62 = (0.88, 0.9, 0.915)

1 λ
(2,0)⊗
6 = (0.0041, 0.0132, 0.024) g⊗

61 = (0.3736, 0.441, 0.565)

0 µ
(0,2)⊗
6 = (0.038, 0.09, 0.162) g⊗

60 = (0, 0, 0)

Table 2.  Performance parameters of the subsystems.
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g⊗
1 (1)

}
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2∑
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p⊗
1j (1) z

g⊗
1j = (0.0077, 0.0117, 0.0304) · z(0,0,0) + (0.0305, 0.0442, 0.0549) · z(0.5,0.55,0.7)
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,

Lz
{

g⊗
2 (1)

}
= Lz

{
g⊗

3 (1)
}

=
3∑

j=0
p⊗

2j (1) z
g⊗

2j = (0.0047, 0.0171, 0.0235) · z(0,0,0)

+ (0.0237, 0.0245, 0.0308) · z(0.2792,0.3329,0.3821) + (0.0083, 0.0132, 0.0228) · z(0.1754,0.387,0.4234)

+ (0.9229, 0.9452, 0.9633) · z(0.6996,0.8223,0.939),

Lz
{

g⊗
4 (1)

}
=

3∑
j=0

p⊗
4j (1) z

g⊗
4j = (0.0134, 0.0149, 0.0187) · z(0,0,0) + (0.0277, 0.0309, 0.0355) · z(0.396,0.4209,0.48)

+ (0.0326, 0.0349, 0.0379) · z(0.5418,0.6209,0.665) + (0.9079, 0.9193, 0.9263) · z(0.7736,0.8836,0.9665),

Lz
{

g⊗
5 (1)

}
=

2∑
j=0

p⊗
5j (1) z

g⊗
5j = (0.0219, 0.0243, 0.0277) · z(0,0,0) + (0.0244, 0.0276, 0.0298) · z(0.452,0.523,0.597)

+ (0.9425, 0.9481, 0.9537) · z(0.795,0.835,0.942),

Lz
{

g⊗
6 (1)

}
=

2∑
j=0

p⊗
6j (1) z

g⊗
6j = (0.004, 0.0123, 0.0215) · z(0,0,0) + (0.0289, 0.0315, 0.0316) · z(0.3736,0.441,0.565)

+ (0.9469, 0.9561, 0.9672) · z(0.88,0.9,0.915).

� (20)

T-PIGN-Lz transformation functions for unit systems
As shown in Fig.5, the performance level of subsystem 1 corresponds directly to unit system 1, expressed as 
G⊗

1 = g⊗
1 . Similarly, the relationships hold: G⊗

3 = g⊗
4 , G⊗

4 = g⊗
5 , G⊗

5 = g⊗
6 .

	

Lz
{
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1 (1)

}
= Lz

{
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1 (1)
}

=
2∑

j=0
p⊗

1j (1) z
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1j ,

Lz
{

G⊗
3 (1)

}
= Lz

{
g⊗

4 (1)
}

=
3∑

j=0
p⊗

4j (1) z
g⊗

4j ,

Lz
{

G⊗
4 (1)

}
= Lz

{
g⊗

5 (1)
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=
2∑

j=0
p⊗

5j (1) z
g⊗

5j ,

Lz
{

G⊗
5 (1)

}
= Lz

{
g⊗

6 (1)
}

=
2∑

j=0
p⊗

6j (1) z
g⊗

6j .

� (21)

Unit system 2 contains two parallel subsystems with identical performance characteristics, where 
G⊗

2 = φp

(
g⊗

2 , g⊗
3

)
:

	

Lz
{

G⊗
f2

(1)
}
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φ

(
Lz

(
g⊗

2 (1)
)
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(
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3 (1)
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(
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i=2
p⊗

ij (1) · z

∑
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ij

)
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(
p⊗

20 (1)
)2 · z(0,0,0) + 2p⊗

20 (1) p⊗
21 (1) · z(0.2792,0.3329,0.3821) + 2p⊗

20 (1) p⊗
22 (1) · z(0.1754,0.387,0.4234)

+2p⊗
20 (1) p⊗
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(
p⊗

21 (1)
)2 · z(0.5584,0.6658,0.7642) + 2p⊗

21 (1) p⊗
22 (1) · z(0.4546,0.7199,0.8055)

+2p⊗
21 (1) p⊗

23 (1) · z(0.9788,1.1552,1.3211) +
(
p⊗

22 (1)
)2 · z(0.3508,0.774,0.8468) + 2p⊗

22 (1) p⊗
23 (1) · z(0.875,1.2093,1.3624)

+
(
p⊗

23
)2 · z(1.3992,1.6446,1.878).

� (22)

Reliability analysis of communication satellite systems
The integrated communication satellite system consists of five serially connected unit systems, expressed as:
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The system exhibits Ks=3×10×4×3×3=1080 distinct performance levels, with its T-PIGN-Lz transformation 
formulated as:

	
Lz

{
G⊗

s (t)
}

=
1080∑
s=1

p⊗
s (t) ∗ zg⊗

s .� (24)

System reliability at t = 1 year given mission requirement W⊗ = (0.4, 0.5, 0.6) is computed through 
comparative analysis of performance levels:

	
D(W⊗, t) =

1080∑
s=1

p⊗
s (t) · P (G⊗

s ≥ W⊗) = (0.7467, 0.8736, 0.9991).� (25)
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Communications satellite system reliability analysis
Sensitivity analysis
Communication satellite systems require varying performance levels for different missions, necessitating 
reliability analysis under diverse performance requirements. As the system’s mission demands performance 
ranges from 0 to 0.9, the reliability of the communication satellite system decreases with increasing demand. 
Fig.6 demonstrates that when the mission demand performance is 0, the reliability of the system asymptotically 
approaches 1 at t = 1. For mission demand performance between 0.1 and 0.4, the impact on system reliability is 
minimal. However, when the demand increases to 0.5–0.9, the reliability declines sharply, eventually approaching 
zero. This indicates an inverse relationship between task demand performance and system reliability.

To analyze the combined effects of time and performance requirements on system reliability, a three-
dimensional bar chart (Fig.7) illustrates the most probable reliability values across time (1–10 years) and task 
demand performance (0–0.9). Fig.7 reveals that system reliability decreases with higher demand, particularly 
when W⊗ > 0.4. Over time, reliability diminishes for fixed demand levels, with larger demands exacerbating 
this trend. At low task demand performance, reliability primarily depends on time; as demand increases, task 
performance requirements dominate reliability variations.

Fig. 7.  The impact of variations in task demand performance and time on system reliability.

 

Fig. 6.  The impact of changes in mission requirement performance on system reliability.
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Weakness analysis
The reliability-based vulnerability assessment evaluates the impact of individual unit system failures on 
overall system reliability. The critical vulnerability is identified as the component demonstrating the most 
substantial influence. Initial system reliability is calculated under nominal operating conditions. Subsequent 
fault simulations employ exhaustive traversal methodology, systematically evaluating each unit failure scenario 
(excluding T-PIGN-Lz transformations for failed units). Significant deviation from baseline reliability identifies 
vulnerable components. Fig. 8 demonstrates comparative reliability metrics for failures in Unit Systems 1–5, 
with nominal operation as reference. The analysis reveals Unit System 1 as the primary reliability bottleneck, 
followed by Unit System 2.

Further, Parametric sensitivity analysis examines λ⊗
1(2,0) and λ⊗

1(2,1) effects on system reliability within Unit 
System 1. Figures 9 and 10 quantify reliability variations when scaling these parameters under constant mission 
requirements. The results demonstrate greater sensitivity to λ⊗

1(2,1) perturbations, identifying it as the critical 

vulnerability. Mitigation strategies include either enhancing µ⊗
1(1,2) or reducing λ⊗

1(2,1).

Fig. 9.  Impact of λ⊗
1(2,0) changes on system reliability.

 

Fig. 8.  System reliability under normal operation versus unit failure conditions.
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Comparative analysis
Under the mission requirement W⊗ = (0.4, 0.5, 0.6), Fig. 11 compares the reliability predictions between 
the proposed method and the traditional reliability assessment method. The results show high consistency 
between the two approaches, which empirically validates the accuracy of the proposed model to a certain extent. 
However, it is worth noting that traditional reliability assessment methods have limitations when evaluating 
systems with a large number of states. For instance, in the case study presented in this paper, the total number 
of system states reaches 1,080. Traditional methods struggle to effectively handle reliability evaluation at such 
a large scale of states, whereas the proposed method demonstrates the capability to rapidly assess reliability 
for systems with extensive state configurations (as exemplified by the 1,080-state system in this study). This 
highlights the significant advantage of the proposed method over traditional approaches in handling reliability 
assessment for complex systems.

As shown in Fig. 12, when the system state performance takes the most probable value, the proposed method 
exhibits strong agreement with the Monte Carlo simulation results, validating the mathematical rigor of our 
approach. Notably, by introducing a confidence interval prediction mechanism, the proposed method fully 
encapsulates all Monte Carlo simulation results within its prediction bounds, demonstrating superior capability 
in uncertainty quantification. In terms of computational efficiency, the Monte Carlo simulation requires 8,520 
seconds to complete due to exhaustive state-space sampling, while the proposed method achieves equivalent 
accuracy in only 50 seconds through state-space dimensionality reduction—a 170× speedup. This highlights the 
synergistic optimization of accuracy and efficiency in the proposed method, making it particularly suitable for 
real-time reliability assessment of large-scale multi-state systems.

Fig. 11.  Comparison of system reliability between traditional and proposed methods.

 

Fig. 10.  Impact of λ⊗
1(2,1) changes on system reliability.
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Conclusion
This paper applies the three-parameter interval grey number to characterize the performance of grey multi-
state systems, establishing a novel framework for reliability assessment of communication satellites through 
the integration of Lz-transformation and grey Markov processes. Our methodology defines the performance-
demand relationship using possibility functions of three-parameter interval grey numbers, effectively addressing 
interval expansion challenges in reliability computation. The proposed approach reduces computational 
complexity in determining state probabilities through algorithmic optimization and computer-assisted solutions, 
while demonstrating superior performance in handling transient states compared to traditional methods. Future 
research should focus on: (1) extending the framework to multi-satellite constellation reliability modeling with 
inter-satellite dependencies; (2) developing hybrid models combining T-PIGN-Lz with Bayesian networks for 
complex failure propagation analysis; and (3) investigating time-varying mission requirement patterns and their 
reliability implications.

Data availability
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