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Reliability modeling framework
of satellite constellation based
on three-parameter interval grey
number Lz transformation

Ruirui Shao'*“, Weiqing You? & Yuanyuan Nie?

The performance of in-orbit communication satellites generally degrades over time due to depletion
mechanisms, rendering them multistate systems with varying output performance levels. This paper
applies grey system theory to the reliability assessment of multistate systems, specifically addressing
the performance degradation and data scarcity characteristics inherent in communication satellites.

A grey multi-state system model is developed to capture these dynamics. Considering the satellite’s
structural characteristics, the reliability solution algorithm incorporates the potential for performance
levels exceeding required thresholds. This integration is achieved by combining the grey universal
generation function with the grey Markov process, using the three-parameter interval grey number

as an intermediary function. Through the Lz transformation based on three-parameter interval grey
numbers, the proposed dynamic reliability assessment model for multi-state communication satellites
effectively mitigates challenges associated with high-dimensional state spaces in satellite systems. The
developed model provides robust methodological support for reliability assessment of complex grey
multistate systems.

The communication satellite network constitutes a critical component of the national information infrastructure,
holding significant economic and social implications. As pivotal elements within these networks, communication
satellites exhibit high technical complexity, lengthy development cycles, challenging maintenance requirements,
and substantial investment costs, necessitating rigorous reliability assessments. During operation, satellites
endure wear and tear, failure mechanisms, and diverse operational environments, where subsystem component
failures may degrade satellite performance levels. Conventional reliability theory, grounded in the “two-state
assumption” of binary operational states (full functionality vs. complete failure), simplifies practical problem-
solving but fails to address performance degradation-induced multistate system characteristics. The multistate
system reliability theory offers a novel resolution to this challenge"2

Since its inception, multistate system reliability theory has yielded substantial research outcomes and
found extensive applications across power systems, transportation networks, aerospace engineering, and
related domains®~. Among multistate reliability assessment methodologies, Monte Carlo simulations demand
extensive data support, while decision diagrams (BDD), Bayesian networks, and Petri nets encounter state-space
explosion in complex systems. The Universal Generating Function (UGF) method combines discrete random
variables through polynomial representations, defines system-specific operators via logical relationships, and
derives system-level performance polynomials through multilayer recursion, effectively capturing multistate
characteristics. Originally proposed by Ushakov® in 1986 and subsequently refined by Gregory’, UGF has
gained prominence for its computational efficiency and low complexity in multistate system reliability analysis®.
However, UGF focuses on steady-state performance and probabilities, overlooking temporal dynamics and
limiting applicability to discrete variables with static probability distributions. To address this, scholars developed
the Lz-transform—a specialized operator integrating stochastic processes with UGE, analogous to Lz-transform
for discrete variables—which ensures uniqueness in dynamic reliability analysis®!°.

Multistate reliability analysis of communication satellites via UGF requires subsystem state performance
data and corresponding probabilities. However, satellite structural complexity, low component failure rates, and
information scarcity hinder precise determination of subsystem state transition rates and performance levels.
Grey system theory, pioneered by Deng Julong for small-sample, information-deficient scenarios!!, provides
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an effective analytical framework. The interval grey number—a fundamental grey system element—facilitates
multi-attribute uncertainty decision-making'>!*>. While conventional interval grey numbers assume uniform
value probabilities, practical applications often involve non-uniform distributions. Furthermore, complex
system operations amplify uncertainty propagation in interval grey number computations, increasing decision
errors. To mitigate these limitations, Luo'*!> introduced three-parameter interval grey numbers, which have
enabled advancements in sustainable transport evaluation'®, grey target decision-making!’, and prospect
theory-based group decisions!'®. Despite progress, existing methods exhibit shortcomings: geometric distance-
based dominance metrics in'® disregard distribution characteristics, subjective weighting persists, and distance
measures in'? inadequately reflect parameter distributions. This paper contributes through:

(1) Defining system performance-demand relationships via three-parameter interval grey number possibility
functions, overcoming geometric distance limitations in distribution characterization.

(2) Implementing computational algorithms for satellite state probabilities and dynamic reliability, resolving
the state-space explosion in complex multistate systems.

(3) Establishing a theoretical framework integrating three-parameter interval grey numbers with possibility
functions, grey Markov processes, and Lz-transform for transient multistate satellite reliability analysis.

Preliminarie

Definitions

Definition 1 In real-world systems, beyond binary operational states (perfect functionality and complete fail-
ure), there typically exist multiple degraded states. Such systems are formally defined as multi-state systems
(MSS)2%21, When system performance rates and corresponding state probabilities are represented by grey num-
bers, the system is termed a grey multi-state system (GMSS).

Definition 2 Let {X,,n €T} denote a stochastic process. If for any inte-
ger n and states 80,81, ying1 € 1, the conditional probability satisfies:
P(Xn+1 :in+1|X0 :io,Xl =41, ,Xn :Zn) = (Xn+1 :in+1|Xn :’in), then {Xn,V’LGT}

known as a Markov chain. For any n € T and state i, j € I,P;j (n) = P (Xn+1 = j| Xn = ©) is as the transi-
tion probability of the Markov chain. If the transition probability P;; (n) s grey element ,then {X,,,n € T} is
called a grey Markov chain?.

Definition 3 A grey number (denoted by ®) represents an uncertain quantity whose exact value is unknown
but bounded within a specific interval or set?*.

Definition 4 An interval grey number is defined as a (®) = [al7a“] where a' < a" and @',a" € R. If

a' = a*, the interval grey number reduces to a real number??.

Definition 5 A three-parameter interval grey number extends the interval grey number by incorporating a
l *
central tendency parameter: @ (®) = [a a, au] , where a™ denotes the center of gravity (most probable value).

When a* is unspecified, the three-parameter form degenerates to a standard interval grey number*%,
Definition 6 Let a(®) = [a',a*,a*] and b(®) = [b', b*, b*]. The arithmetic operations are defined as?*:
Addition: a(®) + b(®) = [a' +b',a* +b",a" + b"]
Subtraction: a(®) — b(®) = [a' — b*,a* — b",a" — b']
b(@) _ [min{albl, albu7 ambl7 aubu}7 a*b*, max{albl, albu7 aubl7 aubu}]
Minimum Operation: min{a(®),b(®)} = [min{al7 '}, min{a*,b*}, min{a", b“}]
Scalar Multiplication (k > 0) : k- a(®) = [ka', ka*, ka"]
Scalar Multiplication (k < 0): k- a(®) = [ka*, ka*, ka']
Power Operation (k > 0): [a(®)]" = [(a")*, (a")*, (a")"]

Multiplication: a(®) x

Acronym and notation
To ensure methodological consistency, all acronyms and mathematical notations adopted in this framework are
systematically documented in Table 1.

Dynamic reliability assessment model for grey multi-state communication satellites

Structure analysis

A communication satellite comprises five principal unit systems: power, communication, control, telemetry
command, and antenna. The power unit system integrates solar cells and batteries in a parallel configuration.
During sunlit periods, the batteries are charged, while during eclipses, they provide stable power to onboard
equipment. The communication unit system consists of two key subsystems: transponders and antennas.
Functioning as relay stations, transponders receive, process, and retransmit signals—essentially operating as
broadband transceivers. The control unit system incorporates various electromechanical adjustment devices,
including thrusters, actuators, thermal regulation units, and switching mechanisms, which maintain satellite
attitude, orbital positioning, and antenna orientation under telemetry command. The telemetry command unit
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MSS Multi-state system

GMSS Grey multi-state system

UGF Universal generating function

T-PIGN-Lz Three-parameter interval grey number Lz transform

G-Markov Grey Markov

n Number of subsystems

N Number of unit systems

i Subsystemi, ¢ = 1,2,...,n

ki Number of states for subsystem i

j Unit systemj, j = 1,2,..., N

K; Number of states for unit system j

K, The total number of the combinations states of system

g%q The j;-th performance level of subsystem i

p?}i (t) The probability corresponding to the j; - th performance level of subsystem i
91®;1 The j;-th performance level of subsystem i

p;-e;j (t) The probability corresponding to the i ; -th performance level of unit system j
GJ@ The performance level of unit system j

G?® Performance level of the system

p% (t) Probability of state occurrence for each performance level of the system
Ps Structure-function for GMSS with subsystems connected in series

Pp Structure-function for GMSS with subsystems connected in parallel
Qe Arbitrary structure functions

Lz { g? (t)} Lz transformation of subsystem i

Lz {Gf9 (t)} Lz transformation of unit system j

Lz {G? (t) } Lz transformation of the system

Weg System task requirement performance
f (T?) The possibility function for r®
D (Wg,t) Reliability of meeting system task requirements W at time ¢

)\;@ (kirki_1) Degradation probability for subsystem i to move from performance level k; to k; — 1

/Li®( ki —1,k;) Repair probability of subsystem i from performance level k; — 1 to k;

Table 1. List of Acronyms and Notations.

system collects operational parameters (voltage, current, frequency, temperature) and attitude data through
sensors, transmitting them to ground stations while receiving control commands. The antenna unit system
employs dedicated telemetry/command and communication antennas for directional signal transmission.
Figure 1 illustrates the satellite’s structural configuration.

In operational terms, the satellite serves as a wireless relay through the coordinated operation of these
unit systems. Critical components employ redundancy strategies: transponder receivers and power amplifiers
typically use cold standby configurations, while telemetry processors adopt hot redundancy. As any unit system
failure would result in satellite failure, reliability analysis models the satellite as a series combination of five unit
systems. When considering internal subsystem redundancy within each unit system as parallel configurations,
the reliability structure appears as shown in Fig. 2.

During the service life of a communication satellite system, the effects of radiation, alternating temperatures,
and vacuum environments can cause random system failures in local subsystem components. These failures
may occur when the system does not need to be completely taken offline and its output performance is in a
derated operation mode. Let each subsystem have k; 4 1 performance levels, that is,0,1,2--- , k;. As can be
seen from Fig.2, a communication satellite system composed of grey multi-state subsystems forms a multi-layer
grey multi-state system. Let the performance levels of the power subsystem My, - - - , M1,,, communication
subsystem Moy, -+, Mayn,, control subsystem Mgy, -, M3n,, telemetry command subsystem
My, -+, M4n, and antenna subsystem Msi, - - - , M5y, at time t be represented by the random variables
g (t) € {g% t),95 @), - ,ggi (t)} ,i=1,2,---,5. The performance of the power supply system,

communication system, control system, telemetry and command system, and antenna system, which are
composed of the aforementioned subsystems, is denoted as G¥ () ,j = 1,2, - - - 5, and the performance of the
single communication satellite system is represented as G (ti

Scientific Reports |

(2025) 15:21022 | https://doi.org/10.1038/s41598-025-07789-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

—Solar cell Battery

Power unit system |

Communication unit .

+ Telemetry command
unit system 1 system |

| Control unit system |

Sensor

Attitude || Antenna | I* H Telemetry <
control control [ I['| decoder ‘
A I i I
Orbit I I Telemetry [[ Comman I‘TRansmitter Receiver |
control | /1 | transmitter || d receiver | |

A

Controlled components

Telemetry ~ Antenna unit  Communication !
“command antenna | _SYSIe™_ | _antenna——" I

Fig. 1. Block diagram of the reliability of the communication satellite system.

Structure of a Communication Satellite System
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Fig. 2. Structural block diagram of a communications satellite.

Lz-transform integration with UGF and Markov processes

For a discrete random variable G representing system performance levels with states G = {g1, g2, -+ ,gn } and
corresponding probabilities P = {p1, -+ , pn },where p; = Pr{G = ¢;}, the Universal Generating Function
(UGF) is defined as®:

u(z) =Y pi- 2%, (1)

where z is a formal algebraic operator with no numerical interpretation, serving solely to pair performance levels
with their probabilities.
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While UGF effectively models steady-state performance, it lacks temporal resolution for transient analysis.
To address this limitation, the Lz-transform was subsequently developed by integrating stochastic processes with
UGFE

Let G (t) = {g1, 92, - - , gn } denote a continuous-time Markov process with:

« State transition rate matrix D = ||d;; ()]
« Time-dependent state probabilities p; (t) = P (G (t) = g:)
« Initial probability distribution:

Py = [p1(0) = Pr(G(0) = g1), p2(0) =Pr(G(0) =g2), ..., pn~n(0)=Pr(G(0) = gn)]. (2)
The Markov process is formally expressed as:

G(t) = <97D7P0>’ (3)

The Lz-transform of this process is given by:

N

L2G(t) = u(z,t, P)) = Y _pilt) - 27, (4)

i=1

where p; (t) represents the transient probability of state i at time ¢ > 0. The operator z retains its abstract
algebraic role—it does not represent a numerical variable but rather a symbolic separator between performance
levels and their associated probabilities. This formalism ensures a bijective mapping between the transform and
the system’s stochastic behavior under given Py.

G-Markov model for repairable subsystems
The reliability analysis of communication satellite systems relies on subsystem performance levels and their
transient probabilities. However, the structural complexity and limited test samples make precise parameter
determination challenging. When performance levels and associated parameters are expressed as three-
parameter interval grey numbers, the corresponding Lz transformation is termed Three-Parameter Interval
Grey Number Lz Transformation (T-PIGN-Lz).

A grey multi-state repairable subsystem must satisfy the following conditions:

(1) Performance Space : Subsystem i has a discrete performance space {0, 1, - - - , k; } where states are non-neg-
ative integers..

(2) Grey Performance : The performance level g (t) is a three-parameter interval grey number.

(3) Grey Transition Rates : State transition rates between performance levels are three-parameter interval grey
numbers.

The performance level set & (t) = { a5 (), 95 (), , gfii (t)} s modeled through discrete Markov states,

forming a G-Markov chain with grey transition probabilities, as shown in Fig.3. Here, k; denotes the optimal
performance state while 0 represents complete failure.
Subsystem state probabilities are governed by the Kolmogorov differential equations:

Ai(k,.0)

Fig. 3. G-Markov model for multi-state subsystem i performance states.
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dp k;i—1 k;—1
'Lk
Z 1tk Pin (£) = P, Z iy
dpi'( ) . (5)
T = Ntk i (8) = 1G5k P (), 0 <5 <K,
dp (t)
L;t >‘z(k 0)pzk (t) - .U?Eo,ki)pz@o(t)'

Assuming the process initiates from the optimal state k; with performance level gfii, the initial conditions are:
P, (0) =1, p5(0)=0 forj=0,1,... k — 1 (6)

Applying Laplace-Stieltjes transformation to (5) yields:
ki—1 ki—1
szk -1= Z l%(h ks )pzh p%@ (s) A?ki,hy
h=0 @)
SDij (s) = )‘i(ki,j)piki (s) — #Z(J ki ng( s), 0<j <k,
spf%(s) = Af?ki,o)p?ci(s) /‘1(0 k; )sz s).

Here, L [-] denotes the Laplace-Stieltjes operator. Inverse transformation yields time-domain probabilities:

Pt =L [p5(s)] = fis (A2, uf 1), ®)

where )\? = {)\fz(’k fim1) " 7/\;851,0)} and ,ul@ = {“Skﬁl,ki)’ e ’“ﬁO,ki)} represent degradation and

repair rate vectors, respectively.

T-PIGN-Lz transform for communication satellite system

T-PIGN-Lz transform for subsystems

The T-PIGN-Lz transform aggregates the performance levels and transient probabilities of a subsystem into a
grey function. For subsystem i, this transform combines®2°:

o k; + 1 discrete performance levels gZ S, (where ]Z =0,1,..., ki)
« Corresponding time-dependent probabilities p17 (t)
o A placeholder variable z (with no numerical value) to separate performance terms

Lz{gf (t)} = uf (2,1, PF) = me )

Ji=0
where gf?i represents the performance level gf?i , weighted by its probability p%i (®).

Generic combinatorial operator 22
This operator combines the T-PIGN-Lz transforms of subsystems or unit systems according to their structural
relationships (e.g., series, parallel). The operator applies a structure function ¢ to map subsystem performances
to the system-level performance.

For a unit system j composed of # subsystems:

Lz{G;@(t)}:Qg’ (Lz{gi@(t)},...,Lz{gf?(t)}), (10)
Expanded form:
k1 kn n ® ®
Z Z (Hp% (t) - S PLIT gmn>> ‘ (11)
Jj1=0 Jn=0 \i=1
Structure functions

« Series Systems (p;): The system performance equals the minimum subsystem performance?”?3:

s (97, ogn) =min (g7, g7) - (12)

« Parallel Systems (¢;,): The system performance equals the sum of subsystem performances?”%:
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op (97, 0%) Zgz~ (13)

System-level T-PIGN-Lz transform
For a communication satellite system composed of N unit systems:

Lz{G2(t)} =QF (Lz{GF ()} ,...,.Lz{GR (1) }) , (14)
Expanded form:
K1 Ky [ N
® ®
Z Z Hp?;j(t)‘Zw(glil""’gNiN) 7 (15)
i1=0  iy=0 \j=1
where K is the number of states for unit system j.

State space mapping
The system’s performance levels arise from the Cartesian product of unit system states®”:

{9107"'791K1} >< o >< {gN()?""gNKN} %{gl""7ng}’ (16)

where K = vazl K represents the total system states.

Dynamic reliability calculation

The system reliability D(Wg), t) computes the probability that the system meets mission requirements Wg2>3:

D(We,t) Zps GP > Wg). (17)

The term p (G? > W®) is evaluated using the possibility function f(x)

0 z ¢ la',a",
z—al I %
7  z€la,a"),
_ - 18
f(z) Y e (18)
4%, z€(a",a"]

Usually, the possibility of taking the value of a(®) = [al, a”, a“] decreases from the center of gravity point a*

to the upper bound a* and the lower bound a'. From Fig.4 it can be seen that when the system performance
demand is W1 g, the system is unreliable, that is p (G’;@ > W1®) = 0; when the system performance demand

is Wag, the system is reliable, that is p (G? > W2®) = 1; when the user demand is W3g or Wyg, there is
uncertainty as to whether the system is reliable or not, that is 0 < p (G? > W3(4)®) < 1. Therefore, it is

necessary to analyze which performance state satisfies the task demand.
Letr® = ¢® — W, p (G® > W®) denote the probability that G¥ > W and f ( ) be the possibility

function for r,. The probability of G® > Wy is defined as

f f (r?) dr®
® r®>0
14 (rs > 0) — e (19)

J1(%)drs

Anillustrative example

Consider a multi-state communication satellite system comprising five unit systems and six performance
degradation subsystems, whose structure is illustrated in Fig. 5. Unit system 1 contains the power system
(subsystem 1). Unit system 2 incorporates two homogeneous and isomorphic communication systems
(subsystems 2 and 3). Unit system 3 encompasses the control system (subsystem 4). Unit system 4 includes the
telemetry command system (subsystem 5), while unit system 5 comprises the antenna system (subsystem 6). The
communication system primarily facilitates control command transmission, establishes space-ground links, and
ensures reliable inter-satellite connectivity, which critically determines the operational success of the satellite
communication system. Redundancy strategies such as cold standby configurations for receivers and high-
power amplifiers in satellite transponders are implemented to maintain operational stability. Parallel structures
represent the component redundancy. Each subsystem’s performance levels and state transition rates are defined
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Fig. 4. Relationship between system performance levels and task demand performance.
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Fig. 5. Architecture diagram of a communication satellite system.

as three-parameter interval grey numbers, as detailed in Table 2. Subsystem 2 exhibits identical state transition
rates and performance characteristics to Subsystem 3. Given the mission-required performance threshold of the
communication satellite system Wg = (0.4,0.5,0.6), evaluate the system reliability at ¢ = 1 year.

Solving for dynamic reliability of communication satellites

G-Markov state probability solution for each subsystem

The probabilities of subsystems 1 to 6 operating at each performance level can be derived from the established
G-Markov model, as presented in Table 3.

T-PIGN-Lz transformation functions for subsystems
The T-PIGN-Lz transformation for each subsystem at t=1 can be directly derived from the performance levels in
Table 2 and their corresponding probability distributions in Table 3 using Equation (20).

Scientific Reports|  (2025) 15:21022 | https://doi.org/10.1038/s41598-025-07789-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Subsystem | State | State transition rate (year — 1) Performance level
2 | A8 = (0.034,0.053,0.072) 955 = (0.928,0.95,0.965)
1 AZ9® — (0.008,0.013,0.035) 9% = (0.5,0.55,0.7)
Subsystem 1
0 u{t2® = (0.182,0.308, 0.46) g5 =(0,0,0)
p{&P® — (0.032,0.146,0.185)
3 AP = (0.009,0.0145, 0.026) g%, = (0.6996,0.8223, 0.939)
2 | A8 — (0.0269,0.0284,0.087) | 9% = (0.1754,0.387,0.4234)
1 AL O® — (0.005,0.019, 0.027) g5 = (0.2792,0.3329, 0.3821)
Subsystem 2
0 pS®® = (0.124,0.135,0.177) 95 =(0,0,0)
pP® = (0.217,0.236, 0.29)
H;m)@ = (0.1,0.156, 0.193)
3 | A% = (0.044,0.0475, 0.0528) 9%, = (0.7736,0.8836, 0.9665)
2 | AP = (0.03,0.034,0.04) 95 = (0.5418,0.6209, 0.665)
1 AGO® — (0.0154,0.0172,0.022) 9% = (0.396,0.4209, 0.48)
Subsystem 4
0 | p®PE = (0.538,0.5425,0.5807) 95, =(0,0,0)
p{P® = (0.08,0.105,0.134)
1$0P® = (0.1952,0.2063, 0.224)
2 AZD® — (0.02774,0.03196, 0.0354) | g = (0.795,0.835,0.942)
5 = . s U ) Y. 952 = : 7 )
1 AP 9® = (0.0246,0.0281,0.0325) | g% = (0.452,0.523,0.597)
Subsystem 5
0 pitP® = (0.208,0.24, 0.286) g% =(0,0,0)
"% = (0.186,0.235,0.26)
2 AP P® = (0.0322,0.0357,0.0369) | 95, = (0.88,0.9,0.915)
Subsystem 6 | 1 AP 9% = (0.0041,0.0132, 0.024) 9% = (0.3736,0.441, 0.565)
0 pl®P® = (0.038,0.09,0.162) 9§ = (0,0,0)

Table 2. Performance parameters of the subsystems.

Subsystem 1

Subsystem 2

Subsystem 4

0 | (0.0077,0.0117,0.0304)

(0.0047,0.0171,0.0235)

(0.0134,0.0149,0.0187)

1 1(0.0305,0.0442,0.0549)

(0.0237,0.0245,0.0308)

(0.0277,0.0309,0.0355)

2 | (0.9147,0.9441,0.9618)

(0.0083,0.0132,0.0228)

(0.0326,0.0349,0.0379)

30/

(0.9229,0.9452,0.9633)

(0.9079,0.9193,0.9263)

Subsystem 5

Subsystem 6

0 | (0.0219,0.0243,0.0277)

(0.004,0.0123,0.0215)

1 | (0.0244,0.0276,0.0298)

(0.0289,0.0315,0.0316)

(0.9425,0.9481,0.9537)

(0.9469,0.9561,0.9672)

[SSHIN S

/

/

Table 3. The probability that each subsystem is at each performance level.
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2 ®
Lz {g? 1)} = > p (1) 2715 = (0.0077,0.0117,0.0304) - 2> + (0.0305, 0.0442,0.0549) - z(-:0-55-0-7)
j=0

(0928,0'95,0'965)
)

Lz{g¥ )} =Lz {¢§ (1)} = szj (1) 2% = (0.0047,0.0171,0.0235) - 200

+(0.9147,0.9441,0.9618) - =

+(0.0237,0.0245,0.0308) - 2(*- b7 03920, 3521 + (0.0083,0.0132,0.0228) - z(01754,0-387,0.4254)
+(0.9229,0.9452,0. 9633) 2(0-6996,0.8223,0.939)

Lz {gf (1)} = Zm] 29 = (0.0134,0.0149,0.0187) - 2(%%9 4 (0.0277,0.0309, 0.0355) - »(0-396.0-4209.0.48) (7))
+(0.0326, 0. 0349 0. 0379) - 2(0-418,0:6209.0-669) 1 (0.9079,0.9193,0.9263) - z(07756.0-5536.0.9665),
Lz{gf (1)} = Ep” ) 2957 = (0.0219,0.0243,0.0277) - 200 4 (0.0244,0.0276,0.0208) - z(0-452:0-523.0.597)
+(0.9425,0. 9481 0 9537) - 2(0-795,0.835,0.942)
Lz{g§ (1} = Zpﬁj (1) 296 = (0.004,0.0123, 0.0215) - 2(%%9 4 (0.0289,0.0315, 0.0316) - z(0-3736:0-441,0.565)
=0

+(0.9469, 0.9561, 0.9672) . z(0-88:0-9,0.915)

T-PIGN-Lz transformation functions for unit systems
As shown in Fig.5, the performance level of subsystem 1 corresponds directly to unit system 1, expressed as
GP = g%. Similarly, the relationships hold: G3 =¢9,G% = 9?7 G? = gg@.

®

p2 {63 (0} = = {o? (0} = X0, (1275,

L2{GF (1)} =Lz {g? (1)} = 23: P (1) 2%,

J:20 ® (21)
Lz {G% (1)} =Lz {gé8 (1)} = Z p% (1)2,95»]'7
Lz {G® } Lz {g6 } = i:p;?} (1)29?}_

Unit system 2 contains two parallel subsystems with identical performance characteristics, where
G5 = e (95.95)

L {65, (0} =0 (12 a5 ) L (o 1) =95 (£ 55,05, 55,025 ) = 5 3 (T )70

J=0 J=04=0

_ (p% (1)) L 20,00) 4 2p§®0 1) p (1) - (0-2792,0.3320,0.3821) 2p20 1) p% (1) - ,(0.1754,0.387,0.4234)
906 3,0.038 5 ‘ 546,0.7109,0.8055 22
) . 2(0.6996,0.8223,0.939) |_ (le (1)) . 2(0.5584,0.6658,0.7642) | QP?} (1)p2®2 1)- (0.4546,0.7199,0.8055) ( )

+2p§®0 (1)p2®3 1 ,
+2p8 (;)p% 1)- ,(0.9788,1.1552,1.3211) (p% (1)) . 5(0:3508,0.774,0.8468) 28, (1) p%, (1) - ,(0.875,1.2003,1.3624)
+(p§®3) . 5(1.3992,1.6446,1.878)

Reliability analysis of communication satellite systems
The integrated communication satellite system consists of five serially connected unit systems, expressed as:

Lz{G? (21)}:@( Lz (G?(l)a),Lz (G;@(U)B,Lz (G§ (1), Lz (GS (1)), Lz (G®(1)) ) .
—¢,S<Zp%<1>zg??, b <Zp?§<1)zgiyzp%<1 ) Zpi%u Zp5 (1)z%% Zp?;u)zgé?) 23
5SS (o))

j=0j=035=03j =0

w

The system exhibits K ;=3x10x4x3x3=1080 distinct performance levels, with its T-PIGN-Lz transformation
formulated as:

1080

Lz{G¥ ()} =3 p% (1) x 2% (24)
s=1

System reliability at ¢ =1 year given mission requirement Wg = (0.4,0.5,0.6) is computed through
comparative analysis of performance levels:

1080
D(We,t) Z p2(t) - P(G2 > W) = (0.7467,0.8736,0.9991). (25)
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Reliability of the communication satellite system
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Communications satellite system reliability analysis

Sensitivity analysis

Communication satellite systems require varying performance levels for different missions, necessitating
reliability analysis under diverse performance requirements. As the system’s mission demands performance
ranges from 0 to 0.9, the reliability of the communication satellite system decreases with increasing demand.
Fig.6 demonstrates that when the mission demand performance is 0, the reliability of the system asymptotically
approaches 1 at ¢ = 1. For mission demand performance between 0.1 and 0.4, the impact on system reliability is
minimal. However, when the demand increases to 0.5-0.9, the reliability declines sharply, eventually approaching
zero. This indicates an inverse relationship between task demand performance and system reliability.

To analyze the combined effects of time and performance requirements on system reliability, a three-
dimensional bar chart (Fig.7) illustrates the most probable reliability values across time (1-10 years) and task
demand performance (0-0.9). Fig.7 reveals that system reliability decreases with higher demand, particularly
when Wg > 0.4. Over time, reliability diminishes for fixed demand levels, with larger demands exacerbating
this trend. At low task demand performance, reliability primarily depends on time; as demand increases, task
performance requirements dominate reliability variations.
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Weakness analysis

The reliability-based vulnerability assessment evaluates the impact of individual unit system failures on
overall system reliability. The critical vulnerability is identified as the component demonstrating the most
substantial influence. Initial system reliability is calculated under nominal operating conditions. Subsequent
fault simulations employ exhaustive traversal methodology, systematically evaluating each unit failure scenario
(excluding T-PIGN-Lz transformations for failed units). Significant deviation from baseline reliability identifies
vulnerable components. Fig. 8 demonstrates comparative reliability metrics for failures in Unit Systems 1-5,
with nominal operation as reference. The analysis reveals Unit System 1 as the primary reliability bottleneck,
followed by Unit System 2.

Further, Parametric sensitivity analysis examines /\‘13’(2, o) and )\?(271) effects on system reliability within Unit

System 1. Figures 9 and 10 quantify reliability variations when scaling these parameters under constant mission

requirements. The results demonstrate greater sensitivity to )\?(2 1) perturbations, identifying it as the critical
®

vulnerability. Mitigation strategies include either enhancing M?(l o) Or reducing Ay, .
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Comparative analysis

Under the mission requirement Wg = (0.4,0.5,0.6), Fig. 11 compares the reliability predictions between
the proposed method and the traditional reliability assessment method. The results show high consistency
between the two approaches, which empirically validates the accuracy of the proposed model to a certain extent.
However, it is worth noting that traditional reliability assessment methods have limitations when evaluating
systems with a large number of states. For instance, in the case study presented in this paper, the total number
of system states reaches 1,080. Traditional methods struggle to effectively handle reliability evaluation at such
a large scale of states, whereas the proposed method demonstrates the capability to rapidly assess reliability
for systems with extensive state configurations (as exemplified by the 1,080-state system in this study). This
highlights the significant advantage of the proposed method over traditional approaches in handling reliability
assessment for complex systems.

As shown in Fig. 12, when the system state performance takes the most probable value, the proposed method
exhibits strong agreement with the Monte Carlo simulation results, validating the mathematical rigor of our
approach. Notably, by introducing a confidence interval prediction mechanism, the proposed method fully
encapsulates all Monte Carlo simulation results within its prediction bounds, demonstrating superior capability
in uncertainty quantification. In terms of computational efficiency, the Monte Carlo simulation requires 8,520
seconds to complete due to exhaustive state-space sampling, while the proposed method achieves equivalent
accuracy in only 50 seconds through state-space dimensionality reduction—a 170x speedup. This highlights the
synergistic optimization of accuracy and efficiency in the proposed method, making it particularly suitable for
real-time reliability assessment of large-scale multi-state systems.
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Fig. 12. Comparison of system reliability between Monte Carlo and proposed methods.

Conclusion

This paper applies the three-parameter interval grey number to characterize the performance of grey multi-
state systems, establishing a novel framework for reliability assessment of communication satellites through
the integration of Lz-transformation and grey Markov processes. Our methodology defines the performance-
demand relationship using possibility functions of three-parameter interval grey numbers, effectively addressing
interval expansion challenges in reliability computation. The proposed approach reduces computational
complexity in determining state probabilities through algorithmic optimization and computer-assisted solutions,
while demonstrating superior performance in handling transient states compared to traditional methods. Future
research should focus on: (1) extending the framework to multi-satellite constellation reliability modeling with
inter-satellite dependencies; (2) developing hybrid models combining T-PIGN-Lz with Bayesian networks for
complex failure propagation analysis; and (3) investigating time-varying mission requirement patterns and their
reliability implications.

Data availability
The data (source code) supporting this study’s findings are available in the supplementary material of this article.
The latest source code is available at https://github.com/shaorr311/reliability-assessment.
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