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Polar codes are making significant progress in error-correcting coding due to their ability to reach 
the limit of the Shannon capacity of communication channels, indicating great advancements in the 
field. Decoding errors are common in real communication channels with noise. The main objective of 
this study is to develop a recurrent neural network decoder for robust polar code construction with 
the Bald Hawk Optimization (RNN-based Decoder with BHO) model that can estimate the error in 
information bits. This research presents a practical and significant innovation by combining recurrent 
neural networks (RNNs) for noise estimation in polar coding with a Bald Hawk optimization approach. 
Moreover, this synthesis of RNN-based noise estimation with Bald Hawk optimization makes 
the polar coding system more flexible and adaptive, allowing for more accurate noise estimation 
during decoding. In terms of frame errors, the Bit Error Rate (BER), Binary Phase Shifting Key-BER 
(BPSK-BER), and Frame Error Rate (FER) achieve the lowest error values of 0.0000087, 0.01519, and 
0.000182, respectively. Similarly, in a 4 dB SNR context, the BER, BPSK-BER, and FER achieve values 
of 0.0000073, 0.02065, and 0.000108, respectively. The results shows that the proposed RNN-based 
decoder with BHO model outperforms the existing decoders.

Keywords  Recurrent neural network (RNN), Polar code construction, Noise estimation, Bit error rate 
(BER), Frame error rate (FER)

Before generating the polar code, one must first calculate the communication channel’s capacity. The maximum 
data rate that a channel can safely transmit depends on its capacity. Understanding channel capacity is crucial to 
creating effective polar codes. The author formulates the design criteria after estimating the channel capacity to 
achieve the desired performance1–5. Design criteria include the desired coding rate, error correction if necessary, 
and special considerations for specific communication requirements. The basic concept behind polar codes is 
based on channel polarization. Channel polarization is a phenomenon that divides several sub-channels into 
more reliable (frozen) and less reliable (information) channels6–9. On the other hand, the bit-channel mapping 
process assigns fixed values to more reliable (frozen) channels, which correspond to the desired coding rate, and 
assigns bits to less reliable information channels. To form a polar codeword, the information bits should merge 
with the frozen bits. Successive cancellation (SC) decoding is one of the polar code’s key features. It is a decoding 
mechanism that accurately determines the transmitted information in the form of a noisy received signal10. You 
can tune polar codes to specific coding rates and block sizes11–14.

For instance, one can either shorten or puncture a polar code to accommodate variable-length messages 
with non-integer coding rates. The author evaluates the generated polar code’s performance using simulated 
operations on a specific communication channel model15. To evaluate the performance of a code, variables such 
as bit error rate (BER) and frame error rate (FER) are used. Iterative refinement can be used during the polar 
code generation process to increase code efficiency16. To achieve high-speed and efficient decoding for practical 
applications, polar codes are frequently implemented in hardware using application-specific integrated circuits 
(ASICs) or field-programmable gate arrays (FPGAs)17,18. Polar codes easily adapt to different coding rates, 
allowing customization for different communication requirements. They are advantageous in many situations 
because they can efficiently support high and low code rates19–21. Polar codes can be effectively used during 
the decoding process to benefit hardware implementations from parallel computing. Parallel decoding allows 
for faster and more efficient data retrieval22,23. Recently, various decoders for polar codes have been developed 
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using deep-learning approaches. They are advantageous in faster communication in polar codes24–26. Belief 
Propagation (BP) decoders had low latency and utilized an early stopping mechanism to reduce the decoding 
complexity. Early Stopping Belief Propagation (ESBP) based model reduces the average number of iterations 
within the decoder to improve the decoding efficiency and performance of the model. The decoding ability of 
the ESBP decoder for polar codes has higher efficiency than the conventional ESBP decoders31.

This research presents an innovative recurrent neural network-based decoder for robust polar code 
construction with Bald Hawk Optimization (RNN-based Decoder with BHO) model that can estimate the error 
in information bits. Bald hawk optimization uses cooperative hunting strategies of Harris hawks with focused 
hunting techniques by bald eagles for tuning with RNN classifiers. This research deals with the effect of noise 
on data transmission as a means of increasing efficiency and reliability for communication systems. The study 
attempts to provide a more reliable and accurate communication model by combining noise estimation through 
RNN and polar coding. This is very important when noise degrades the accuracy of the transmitted data, which 
requires adjustments to the encoding and decoding techniques so as not to degrade this interference. Therefore, 
this hybridization is crucial for effective and adaptive noise estimation in polar coding systems. Using RNNs, 
sequential dependencies in noisy communication channels are captured, and Bald Hawk optimization fine-
tunes the actions of these networks to adequately handle dynamic noise patterns. Furthermore, these two aspects 
will guarantee a more effective polar coding method that provides higher noise estimation accuracy and more 
reliability in the decoding process. The major contributions involved in this research are as follows,

•	 Bald Hwak Optimization (BHO): This hybrid optimization is based on the merge of the Harris Hawk chas-
ing method and bald eagle hunting behavior. A hybrid algorithm will take the form of collaborative exploita-
tion where solutions work together to navigate the solution space in an agile and efficient manner as illustrat-
ed in Hawkes’ trick.

•	 RNN-based decoder with BHO Model: The RNN-based decoder with the BHO model to learn noise pat-
terns enables the prediction of noise properties in the received signal. An optimization using RNN-based 
polar coding calculates the error rate of noisy channels. The proposed decoder makes communication more 
robust and effective by changing encoding or decoding noise levels beyond that threshold. This hybrid ap-
proach combined with RNNs’ adaptability helps effective error correction in the process of polar decoding.

This manuscript outlines the methodology of the study, which is structured as follows: Section 2 discusses 
previous techniques of polar code generation along with their pros and cons. The proposed polar code generation 
model in Section 3 and Section 4 discusses in detail the Bald Hawk optimization model. Finally, Section 5 shows 
the effectiveness of the obtained results and Section 6 presents a comprehensive outline of all obtained results.

Literature review
Marvin Geisel Hart et al.3 proposed an enhanced version of the iterative belief propagation list (BPL) decoding 
algorithm, unlike simple error-detection techniques. This algorithm incorporates CRC for error correction instead 
of simple error detection, resulting in improved accuracy. However, estimating prior channel characteristics can 
be challenging because practical communication situations suffer from noise, and incorrect channel estimation 
can lead to poor performance and poor channel estimation.

In their study, Zheng et al.4 presented a new approach to polar coding for unsourced, uncoordinated Gaussian 
random access channels. This method has shown excellent performance in high-user density regions and also 
demonstrated satisfactory competitiveness in low- and medium-user density regions. Polar codes support 
multiple code rates but it is very challenging to modify the code rate based on the communication conditions 
in real-time.

Instead of using an SC decoding approach that leads to larger decode latency, Ahmed Elkelesh et al.5 designed 
a new polar code construction for arbitrary channels and optimized it specifically for an individual decoder 
algorithm. However, since the rate of spread of polarization is limited among channels, they may decelerate.

Yong Fang et al.6 developed three adaptive algorithms, in which an estimated channel position is initially 
given and improved with each iteration. The result was exceptional accuracy compared to previous models. But, 
especially when there are channel fading or errors in transmission, it is challenging to find the alignment word 
of the polar code at the receiving end.

Xinjin Lu et al.7 developed a hybrid physical-layer encryption and peak-to-average power ratio (PAPR) 
mitigation strategy to solve the PAPR problem, thereby providing high security in transmission systems. 
Moreover, this method has helped to reduce PAPR in OFDM systems. However, it is difficult to construct robust 
polar codes in real-time systems with high latency requirements considering hardware limitations and timing 
constraints.

Moustafa Ebada et al.8 elaborated the method of decoding polar codes using BP decoders in a multiuser 
setting. This has helped to achieve a good error rate of decoding complexity while achieving the highest possible 
rate of flexibility. But at the same time with the addition of feedback mechanisms, generating polar codes can 
become a more challenging and complex process that requires efficient algorithms to set up effective feedback.

Bi He et al.27 designed a machine learning-based multi-flip SC decoding algorithm to simultaneously enhance 
the performance of SCF decoding and provide optimal implementation. However, it is difficult to predict which 
set of frozen bits will achieve performance goals without low decoding complexity.

Md abdul aziz et al.32 designed a Bidirectional long short-term memory (Bi-LSTM) based decoder model, 
which processes sequences in forward and backward directions to progress the polar-coded short packet 
transmission over a flat fading channel. Although this approach performed well with high modulations 
compared with CNN and DNN, lost reliability at higher SNR values for effective decoding. The Bi-LSTM-based 
model failed to decode the polar codes effectively.
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Challenges

•	 Training RNNs to efficiently learn channel properties and reliably decode code words often requires relatively 
large amounts of data. Training with large datasets can be a time-consuming task, especially when there is a 
lack of specific communication environments or useful data2.

•	 RNNs decode bits one after another sequentially, and errors introduced in early bit judgments can propagate 
through the entire decoding process till they influence decision judgment for other remaining bits. This error 
propagation problem may affect the overall decoding performance3.

•	 Most models are prone to over-fitting, especially when the training data is sparse. Over-fitting occurs when a 
model learns a particular data set without generalizing it to new data, which reduces the performance of the 
actual communication channel4.

•	 Standard RNNs may fail to decode the entire codeword due to their memory limitations. As a result, decoding 
accuracy and overall performance may deteriorate, especially under noise and interference conditions6.

•	 The Bi-LSTM-based decoder model struggled to decode the polar codes effectively. The higher-order modu-
lations in the Bi-LSTM-based model affected the generalization and increased complexity32.

The above-mentioned limitations are overcome by the utilization of advanced methods in the proposed model. 
Bald hawk optimization is employed to enhance effective polar code encoding with low latency and robustness in 
communication. The incorporation of Harris Hawk chasing methods and Bald Eagle hunting behavior provides 
a chase strategy and focusing vision with hunting technique. The hybrid optimization combines the polar coding 
technique with RNNs improving the adaptability for effective noise management and better generalization. This 
approach combines the advantages of RNNs in noise estimation with the efficiency and reliability provided by 
polar encoding in communication which is explained in this research below.

Methodology
The primary objective of the research is to develop a high-performance polar code constructor by accurately 
estimating the noise in the information bits. At the beginning, the polar encoder takes the information bits as 
input. Its purpose is to transform a set of input bits into a longer set of encoded bits using a specific encoding 
method called polar encoding. The polar encoder is essential for achieving efficient and reliable communication 
in modern systems. Polar encoding is a robust error-correcting coding technique that effectively reaches the 
capacity limit of binary input symmetric memoryless channels. Once the polar encoding is completed, the 
data will undergo modulation to convert the encoded bits into a format suitable for transmission through the 
communication channel. Modulation is the process that maps the digitally encoded bits to an analog waveform 
that can be transmitted over the channel. The AWGN (Additive White Gaussian Noise) channel will receive the 
modulated output, replicating the noise effects in communication systems. The noisy bits are then transferred 
to demodulation to convert analog waveform into digital form. Subsequently, the polar decoder will retrieve 
the original transmitted information from the encoded bits received in a polar coding system. The decoding 
process plays a vital role in ensuring dependable and precise communication. If the achieved Bit error rate falls 
below the threshold, then the decoded bits will be obtained. However, if the bit error rate exceeds the threshold, 
noise estimation will be carried out using an optimization-enabled recurrent neural network. The utilization 
of an RNN classifier in polar encoding for noise estimation refers to employing an RNN model to forecast 
the noise characteristics, specifically in the context of polar coding. This approach combines the advantages 
of RNNs in noise estimation with the efficiency and reliability provided by polar encoding in communication. 
Figure 1 illustrates the proposed framework, which utilizes the hybridized features of the bald eagle and Harris 
hawk to enable the Bald hawk optimization. This optimization technique effectively tunes the classifier. By 
incorporating a noise estimator, the framework accurately estimates the noise characteristics in the received 
signal. This information is then used to improve the performance of the subsequent decoding process. Finally, 
the hybridized decoding technique is used to obtain the updated information bits and then again the process 
repeats. This process keeps repeating until we get the desired decoded output.

Fig. 1.  Architecture of the proposed polar code construction model.
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Preliminary phase
In the early stages of research, it is necessary to assess the level of loudness regarding bits of information. To 
proceed with the encoding and modulation process, it is critical to determine what level of noise can complicate or 
interfere with the data transmission and decoding. We refer to these random disturbances or oscillations as noise 
when they impact the transmitted data. Noise estimation also involves monitoring channel or received signal 
characteristics to identify potential interference or other disturbances that may affect communication quality. 
This estimate allows for a better understanding of the predicted level of interference and the implementation of 
efficient encoding and decoding strategies that minimize the effects of noise.

Encoding of polar codes
A binary polar code can be described as a specific type of linear block code by using the notation (T, M, δ, cδ). 
Here, T represents the block length which is equal to 2p. M is the number of information bits encoded for each 
code word. The set of indices for the frozen bits positions, denoted by δ, is chosen from {1, 2, ..., T } and cδ  is 
a vector containing the frozen bits. Both the encoder and the decoder know the fixed binary sequence used to 
assign the frozen bits.

A generator matrix is used to perform the encoding operation for a vector of information bits, C, in a 

(T, M, δ) polar code. The generator matrix KT  is expressed as KT = K⊗p
2 , where K2 =

[1 0
1 1

]
 and ⊗ is the 

Kronecker product. The codewords are generated using the data sequence Q, shown in equation 1 as follows,

	 Q = HKT = Hδt(Kp)δt + Hδ(Kp)δ � (1)

where the indices δt = {1, 2, ..., T }/δ represent the indices of the non-frozen bits. The data sequence is denoted 
as Hδt, while the frozen bits, typically assigned a value of zero, are represented by Hδ .

Polar encoding is a basic process in coding theory that tries to convert a block of input information bits into 
a longer sequence of encoded bits. The purpose of polar encoding is to improve data transmission reliability 
using error correction and detection mechanisms. This technique exploits the effect of polarization, where 
certain channels become noisy or noiseless based on their characteristics. The polar encoding process applies 
a systematic transformation to the original information bits. The transformation involves operations with bits, 
permutations, and copies of the sequence to produce a new series of coded elements. To ensure proper encoding, 
the indices of the input vector should be bit-reversed. The encoding technique selectively combines the input 
bits to make use of features that a polarized channel offers. This therefore means that some bits are more reliable 
in transmission and detection, while others can have errors. The encoded bits carry redundancy information, 
enabling the receiver to rectify errors or detect corrupted bits. We deliberately arrange this redundancy to 
enhance the likelihood of correct bit recovery. Polar encoding establishes the foundation upon which reliable 
and efficient communication is possible, especially when using noisy channels.

Modulation
Following polar encoding, encoded bits are used as input for subsequent processing, such as modulation 
and channel transmission. By coupling this encoding method with subsequent stages in the communication 
chain, it is possible to achieve reliable and error-resistant data transport via modern communication systems. 
During transmission, modulation transforms digital bits into the waveform that encodes analog signals. We 
can multiplex modulated signals because they are less susceptible to noise. In our study, modulation changes 
encoded bits for successful transmission across the communication channel.

AWGN channel simulation
A type of random noise known as AWGN frequently disrupts communication networks. In the AWGN channel 
simulation, we add AWGN noise to the transmitted waveform signal to replicate real-world conditions. This 
simulation replicates the noise’s impact on the signal and helps determine system performance at real-world 
noise levels. It’s important to determine whether the approach handles transmission noise well.

Demodulation
Following AWGN channel simulation, the demodulation process uses noisy bits as input for subsequent 
processing. During transmission, demodulation converts waveform signals into digital signals to provide better 
input for the decoder.

Decoding of polar codes
During polar decoding, complex algorithms examine the received demodulated bits to reverse the encoding 
process. As a result, we determine the best order to work with the received data and learn the decoding method 
effectively. Initially, this process involves deciding on the bit values to transmit. Polar decoding uses error 
correction techniques to correct transmission-related errors. The goals include accurate information retrieval 
and restoring the integrity of transmitted data. This is crucial when noise or interference corrupts the transmitted 
data, enabling effective communication. Our investigation reveals that polar decoding correctly converts the 
encoded bits to their original information bits.

Polar codes, when decoded with the successive cancellation (SC) decoding algorithm, can achieve channel 
capacity in code length as the length of the code approaches infinity. The SC decoding algorithm estimates the 
bits ĉq  in a sequential manner, where q ranges from 0 ≤ q ≤ T . The estimation of ĉq  is dependent on the 
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modulated output dT  and the previous bit decisions ĉ1, ĉ2, ..., ĉi−1, represented as ĉq−1
1 . The polar decoder 

applies specific rules in estimating ĉq  as shown in equation 2

	

ĉq =





cq, if q ∈ δ

0, if q ∈ δt & D
(
dT

1 , ĉq−1
1

)
≥ 1

1, if q ∈ δt & D
(
dT

1 , ĉq−1
1

)
< 1.

� (2)

The probability of a non-frozen bit can be determined by calculating the qth likelihood ratio (LR) Dq
T

(
dT

1 , ĉq−1
1

)
 

at length T, which can be computed recursively using two formulas as shown in equation 3 and equation 4.

	

D2q−1
T

(
dT

1 , ĉ2q−2
1

)
=

Dq
T/2

(
d

T/2
1 , ĉ2q−2

o ⊕ ĉ2q−2
y

)
Dq

T/2

(
d

T/2+1
1 , ĉ2q−2

y

)
+ 1

Dq
T/2

(
d

T/2
1 , ĉ2q−2

0 ⊕ ĉ2q−2
y

)
+ Dq

T/2

(
d

T/2+1
1 , ĉ2q−2

y

) � (3)

	
D2q−1

T

(
dT

1 , ĉ2q−2
1

)
= Dq

T/2

(
d

T/2
1 , ĉ2q−2

o ⊕ ĉ2q−2
y

)1−2ĉ2q−1
Dq

T/2

(
d

T/2+1
1 , ĉ2q−2

y

)
� (4)

The symbols ĉ2q−2
o  and ĉ2q−2

y  represent the parts of ĉ2q−2
0  that have odd and even indices respectively. Therefore, 

to calculate the LR at length T, we can calculate two LRs at length T/2 and then break them down recursively 
to a block length of T. The initial LRs can be determined from the channel observation. Due to the high cost 
of implementing multiplication and division operations in hardware, these operations are often avoided and 
instead performed in the logarithm domain using the functions β and η mentioned as in equation 5, 6 and 
equation 7 as follows:

	
β(D1, D2) = 2 tanh−1

[
tanh

(
D1

2

)
tanh

(
D2

2

)]
� (5)

	 β(D1, D2) ≈ sign(D1D2)min(|D1||D2|) � (6)

	 η(D1, D2) = (−1)1−2ĉ2q−1 D1 + D2 � (7)

where D1 = log
[
Dq

T/2

(
d

T/2
1 , ĉ2q−2

o ⊕ ĉ2q−2
y

)]
 and D2 = log

[
Dq

T/2

(
d

T/2+1
1 , ĉ2q−2

y

)]
 are log-likelihood 

ratios (LLRs). In practical implementations, the minimum function can be used to approximate the function β, 
according to equation 7.

Threshold-based bit error rate analysis
BER analysis is an approach that checks the accuracy of bits transmitted and received in order to assess how 
a communication system works. The bit error rate shows the ratio of erroneous bits to all transmitted bits. In 
threshold-based BER analysis, the system’s validity hinges on whether the BER falls below a predetermined 
threshold. Therefore, we often choose the threshold based on our tolerance for system error. If the actual bit 
error rate is less than a predetermined threshold, the transmission shall be considered a success. If the system 
surpasses the threshold, it might not provide performance-matching output. The BER analysis based on a 
threshold provides important information about the system’s ability to handle noise, interference, and other 
factors that may affect the accuracy of transmitted bits. We have used threshold-based BER analysis to evaluate 
the reliability of these suggested methods, like polar coding and noise estimation, in communicating under 
varying noise levels.

Noise estimation using optimized-enabled recurrent neural network
Noise estimation using an optimization-enabled RNN is a method for calculating the noise characteristics in 
a communication system. To achieve correct noise estimates and enhance communication system efficiency, 
this method leverages the power of recurrent neural networks with optimization techniques. Applications that 
involve processing time-series information, including signals affected by noise, can utilize recurrent neural 
networks because of their ability to accommodate data sequences. After training on old data, RNN learns 
patterns and relationships, enabling it to predict noise characteristics based on incoming signals. Optimization-
enabled makes use of optimization techniques to fine-tune RNN’s parameters to enhance its capability for noise 
estimation. Optimization procedures help the RNN converge on more accurate noise estimates, enhancing 
nearly all of its capabilities. Based on our research, the use of noise estimation with optimized-enabled RNNs is 
highly accurate in characterizing noise. This allows our communication system to adjust more effectively under 
noisy conditions, thereby enhancing the performance and reliability of the proposed approaches.

Recurrent Neural Network (RNN)
The RNN is an expansion of the conventional feed-forward neural network, which is designed for processing 
sequential data. RNN is capable of learning complex and noise characteristics from the sequence which effectively 
estimates noise and enhances the performance of the Bit Error Rate (BER). RNNs also act like decoders to 
perform error correction through noise estimation, which is a training network using a backpropagation 
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algorithm to estimate noise levels from the received signals. Over time, this model creates a feed-forward 
network that enables RNN to learn patterns in sequence by allowing gradient calculation. In this context, we 
consider an input sequence represented by M, a hidden vector sequence represented by T, and an output vector 
sequence represented by J. The input sequence is given as M = (m1, m2, ..., ms). A typical RNN computes the 
hidden vector sequence T = (t1, t2, ..., ts) and the output vector sequence J = (j1, j2, ..., js) for each position 
from g = 1, 2, ..., s, using the equation 8 and equation 9.

	 Tg = σ(Nmtmg + Ntttg−1 + ct)� (8)

	 Jg = Ntjtg + cj � (9)

In the convention of RNN for Back Propagation Training Time (BPTT), a weight matrix N and a bias term c are 
utilized when the function σ is a non-linearity function. We do this to process sequence input of different lengths 
effectively. The BPTT algorithm first trains the model using the provided training data and then saves the error 
gradient of the output for each step in time. However, training the RNN can be difficult because the gradient can 
either explode or vanish when trained with the BPTT algorithm.

Noise estimation enhancements for improved decoding
The research focuses on refining noise estimation procedures to improve the accuracy and efficiency of decoding 
in communication systems. Noise often accompanies transmission signals, leading to errors during decoding. The 
main goal of this research is to sharpen the estimates of characteristics for this noise by refining its traditionally 
used methods to improve a decoding process that helps deliver reliable and accurate information. The goal is 
to minimize the effects of noise-induced errors and eventually enhance efficiency in communication systems 
as a whole. This research includes an analysis of the BER-based decoding process. BER refers to the fraction of 
wrong bits over all transmitted bits and becomes a vital indicator for assessing communication system operation. 
The BER-based analysis evaluates the performance of decoding techniques in terms of noise and interference 
handling to provide insight into reliability and efficiency for a communication system.

Methodology
By adjusting its parameters and configuration, the optimization process enhances the performance of the RNN 
model. This research developed an optimization method that combines the rapid pursuit patterns seen in Harris 
hawks with the specific focusing patterns of bald eagles. This combination of properties allows the algorithm to 
dynamically adapt, learn, and change. As a result, it is an effective and versatile optimization process that can 
handle complex errors well and provide significantly improved results. This strategy allows the classifier to be 
fine-tuned for noise estimation. This helps to improve the overall system’s performance. According to Bald Hawk 
optimization principles, classifier tuning is the process of increasing and refining a classifier’s parameters. This 
involves adjusting classifier specifications, such as weight thresholds and other fine-tuning features, to increase 
accuracy. We use Bald Hawk optimization algorithms to iterate the parameter space of the classifier, utilizing the 
search tricks of Bald Eagles and Haris Hawks.

Mathematical modeling of proposed Bald Hawk Optimization (BHO) model
BHO is a unique meta-heuristic optimization method inspired by the hunting habits of bald eagles28 and Harris 
hawks29. It consists of three essential steps. In the early stages, the bald eagle carefully selects the most favorable 
location based on the abundance of available food. In the second stage of site search, the eagle hunts in the 
allocated space for its prey including the exploitation phase of Haris hawk, and in the third stage, it swoops down 
to find the best place for its prey. The mathematical explanation of BHO model is expressed as follows:

Step 1: Solution Initialization
Initially, the solutions are randomly generated based on the hyperparameters including the weights and 

biases of the RNN model as. The initialization of the hunter population in the proposed algorithm is given using 
equation 10 as follows,

	 M = {M1, M2, ...Mz, ..., Mn}; 1 < z ≤ n� (10)

where n is the number of hunters indicating the solution in population M.
Step 2: Fitness Evaluation
After initializing the solution, fitness is evaluated for that solution, and the solution with minimum fitness 

function is indicated as the best solution. In this research, the fitness is evaluated based on minimal Bit Error 
Rate (BER) using the following equation 11,

	 F it(M t+1
z ) = min(BER(M t+1

z ))� (11)

Step 3: Solution Update
The solutions are updated based on the three phases including the search space selection, search, and swooping 
described below.

a. Selection of Search Space
Initially, space of selection is the most important during hunting. The equation 12 is used to generate new 

positions during this phase:

	 Mnew(r) = Mbest + βf(Mmean − M(r))� (12)
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where, β ∈ [1, 2] is the control gain, f ∈ [0, 1] is random number, Mnew(r) is rth newly generated position, 
Mbest is best acquired position during the space of selection, Mmean is the mean position, and M(r) is the most 
recently generated position. The fitness of each new position, Mnew , will be evaluated, and if it surpasses the 
fitness of Mbest, Mnew  will replace Mbest as the new designated best position.

b. Searching in Space
After assigning the best search space Mbest, the algorithm updates the position of the eagles within this 

search space. The updated equation is expressed as below eqquation 13:

	 Mnew(r) = M(r) + e(r)(M(r) − M(r + 1)) + j(r)(M(r) − Mmean)� (13)

where, Mnew(r) denotes the rth newly generated position, while Mmean is the mean position. e(r) and j(r) are 
the rth position’s directional coordinates, which can be described as in equation 14,

	

e(r) = ef(r)
max|ef | ; ef(r) = f(r). cos(θ(r))

j(r) = jf(r)
max|ef | ; ef(r) = f(r). sin(θ(r))

θ(r) =bπ.rand; f(r) = θ(r)K.rand

� (14)

where b ∈ [5, 10] denoted the control parameter that defines the corner between two points, and K ∈ [0.5, 2] is 
a parameter that defines the number of search cycles. The new location fitness will be evaluated, and the Mbest 
value will be updated based on the results.

Exploitation phase
If the pursuit methods of Harris Hawk are integrated with Bald Eagle hunting patterns, there is a definite 

advantage. Here, the developed optimization method combines Harris Hawks’ tactics of hunting cooperatively 
and pursuing agilely with Bald Eagle’s superior vision and focused approach to pursuit. The hybridized algorithm 
would demonstrate collaborative exploitation, where multiple solutions work together to efficiently navigate the 
solution space with agility, similar to the tactics used by cooperative hawks. In the meantime, the algorithm 
leverages the highly developed vision of Bald Eagle to identify regions that are susceptible to optimization and 
employs targeted tactics to pursue optimal solutions. This combination of characteristics allows any algorithm to 
adapt, learn, and dynamically change strategies, resulting in a more productive and flexible optimization process 
that can not only cope with the complex optimization landscape but also produce much better results. The hawk 
pursuit methods and the prey-escaping behaviors are two major parts that make up this phase. Consequently, the 
goal of this phase is to replicate the hawk’s surprise pounce actions on the victim under investigation. To achieve 
this objective, we propose two chasing techniques: 1) soft besiege, and 2) hard besiege. In HHO, switching 
between chasing techniques is determined by two parameters. The following sections describe the proposed 
strategies:

Soft Besiege: In this particular tactic, the concept of soft besiege is applied when both ||T||and d surpass 0.5. 
This indicates that the prey is unable to effectively flee as its energy becomes depleted while attempting to evade 
the hawks and is given by in equation 15, as

	 Ym(q + 1) = ∆Y (q) − T |RYprey(q) − Y (q)|� (15)

Hard Besiege: In the field of strategy, two challenging situations arise when the prey’s energy level is very 
high i.e.||T || < 0.5 and the distance between the prey and the predator is relatively large i.e.d ≥ 0.5. These 
conditions indicate that the prey is able to effectively flee from its predator. In this scenario, the equation 16 
provides the new positions for the hawks.

	 B = 0.5Ym(q + 1) + 0.5Mnew(r)� (16)

c. Swooping
At this phase, eagles advance towards their intended prey from the optimal position they have acquired. The 
hunting approach is depicted in equation 17 as follows:

	 A = 0.5 (Yprey(q) − Y (q) + rand.Mbest + jl(r)(M(r) − D1Mmean) + el(r)(M(r) − D2Mbest))� (17)

Where, el(r) and jl(r) are directional coordinates that can be characterized as random numbers from the range 
[1, 2], while D1 and D2 also represent random numbers from the same range as in equation 18.

	

el(r) = ef(r)
max|ef | ; ef(r) = f(r). cosh(θ(r))

jl(r) = jf(r)
max|ef | ; ef(r) = f(r). sinh(θ(r))

θ(r) =bπ.rand; f(r) = θ(r)K.rand

� (18)

Termination
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Further, the above steps are repeated until reaching the maximum iteration for optimal solution, denoted as 
t < tmax. Finally, the global best solution Mbest is declared as the best solution for effective parameter tuning.

The Pseudo code for BHO is given in algorithm 1 as follows:

Algorithm 1.  Pseudo code for the BHO model

Results and discussion
The RNN-based decoder with BHO model is applied to design an efficient polar code construction and compared 
with alternative techniques.

Experimental setup
The experiment validation of the RNN-based BHO model for the polar code construction is implemented using 
the Matlab Programming Language, the Library is Matlab Deep Learning Toolbox with 8GB internal memory, 
and Windows 10 as the Operating System. The details of hyperparameters are shown in table 1.

Performance metrics
Bit error rate (BER) BER is the ratio of the number of bit errors to the total number of transmitted bits. The 
effective polar code decoding required a minimum BER value, determining the high reliability of the decoded 
data and the effectiveness of the decoding model.

BPSK BER: The Binary Phase Shift Keying (BPSK) BER over an Additive White Gaussian Noise (AWGN) 
channel is the probability that a transmitted bit is incorrectly decoded due to noise. BPSK is a modulation 
technique where binary data is encoded by the phase of a carrier signal. ratio.

Frame error rate (FER): FER is the ratio of the number of frames that contain at least one bit error to the 
total number of transmitted frames. It focuses on the error rate at the frame level. If the FER value is minimum 
then the performance of the decoder is high, when dealing with frame-level data.
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Performance analysis
We analyze the performance of the (1024, 512) polar code based on frame error and signal-to-noise ratio (SNR) 
for Bit Error Rate (BER), Binary Phase Shifting Key Binary Error Rate (BPSK BER), and Frame Error Rate (FER) 
using an RNN-based decoder with BHO model.

Fig. 2.  Polar code performance analysis based on Frame error for (a) BER, (b) BPSK BER, & (c) FER.

 

Sr. No. Hyperparameters Value

1. Learning rate 0.001

2. Batch size 32

3. Activation function ReLU

4. Loss function MSE

5. Default Optimizer Adam

6. Processing range 3.5GHz

7. Population size 100

8. Number of epochs 100

9. Dropout rate 0.5

Table 1.  Summary table of hyperparameters.
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Performance analysis based on frame error
In figure 2, the performance of the RNN-based decoder with BHO model is evaluated depending on the 
respective measures as BER, BPSK BER, and FER. The BER for the RNN-based decoder with BHO model is 
reduced after the maximization of the frame error with the increasing population. The BER for the RNN-based 
decoder with BHO model for the population size 5, 10, 15, 20, and 25 are 0.0000598, 0.0000365, 0.0000199, 
0.00000986, and 0.00000764, respectively at the 45 % frame error, which is in figure 2 a).

The BPSK BER for the RNN-based decoder with BHO model is reduced after the maximization of the frame 
error with the increasing population. The BPSK BER for the RNN-based decoder with BHO model for the 
population size 5, 10, 15, 20, and 25 are 0.02900656, 0.026739613, 0.0229692, 0.019018675, and 0.015193137, 
respectively at the 45 % frame error, which is in figure 2 b).

The FER for the RNN-based decoder with BHO model is reduced after the maximization of the frame error 
with the increasing population. The FER for the RNN-based decoder with BHO model for the population size 
5, 10, 15, 20, and 25 are 0.000614311, 0.000465897, 0.000376094, 0.000295826, and 0.000182007, respectively at 
the 45 % frame error, which is in figure 2 c).

Performance analysis based on SNR
In figure 3, the performance of the RNN-based decoder with BHO model is evaluated depending on the 
respective measures as BER, BPSK BER, and FER. The BER for the RNN-based decoder with BHO model is 
reduced after the maximization of the SNR with the increasing population. The BER for the RNN-based decoder 
with BHO model for the population size 5, 10, 15, 20, and 25 are 0.0000578, 0.0000252, 0.0000112, 0.00000941, 
and 0.00000735, respectively at the 4 dB SNR, which is in figure 3 a).

Fig. 3.  Polar code performance analysis based on SNR for (a) BER, (b) BPSK BER, & (c) FER.
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The BPSK BER for the RNN-based decoder with BHO model is reduced after the maximization of the SNR 
with the increasing population. The BPSK BER for the RNN-based decoder with BHO model for the population 
size 5, 10, 15, 20, and 25 are 0.028500656, 0.026339613, 0.023275062, 0.021974324, and 0.020652839, respectively 
at the 4 dB SNR, which is in figure 3 b).

The FER for the RNN-based decoder with BHO model is reduced after the maximization of the SNR with 
the increasing population. The FER for the RNN-based decoder with BHO model for the population size 5, 10, 
15, 20, and 25 are 0.000604311, 0.000459897, 0.00035587, 0.000243875, and 0.000108295, respectively at the 4 
dB SNR, which is in figure 3 c).

Comparative analysis
In a comparative analysis, the RNN-decoder with BHO model efficacy is shown using the Polar SC decoder30, 
ESBP based decoder31, Bi-LSTM based decoder32, Polar BP decoder33, Polar SCAN decoder34, Polar SSC 
decoder35, Polar SCL decoder36, Polar SCL decoder with TLBO, Polar SCL decoder with SARO, Polar SCL 
decoder with LBR, RNN based decoder with BES and RNN based decoder with HHA.

Comparative analysis based on frame error
Figure 4 a) depicts the RNN-based decoder with BHO model BER for polar code construction. The RNN-based 
decoder with the BHO model surpassed the RNN-based decoder with the HHA model in terms of minimum 
error, achieving a BER of 0.00000872 at 45% frame error.

The RNN-based decoder with BHO model BPSK BER for polar code construction is shown in Figure 4 b). 
The RNN-based decoder with the BHO model surpassed the RNN-based decoder with the HHA model in terms 
of minimum error, with a BPSK BER of 0.015193 at 45% frame error.

Fig. 4.  Polar code comparative analysis based on frame error for a) BER, b) BPSK BER, & c) FER.
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The RNN-based decoder with BHO model FER for polar code construction is shown in Figure 4 c). The 
RNN-based decoder with the BHO model surpassed the RNN-based decoder with the HHA model in terms of 
minimum error, with a FER of 0.0001820 at 45% frame error.

Comparative analysis based on SNR
Figure 5 a) depicts the RNN-based decoder with BHO model BER for polar code construction. The RNN-based 
decoder with the BHO model surpassed the RNN-based decoder with the HHA model in terms of minimum 
error, achieving a BER of 0.00000735 at 4 dB SNR.

The RNN-based decoder with BHO model BPSK BER for polar code construction is shown in Figure 5 b). 
The RNN-based decoder with the BHO model surpassed the RNN-based decoder with the HHA model in terms 
of minimum error, with a BPSK BER of 0.020652839 at 4 dB SNR.

The RNN-based decoder with BHO model FER for polar code construction is shown in Figure 5 c). The 
RNN-based decoder with the BHO model surpassed the RNN-based decoder with the HHA model in terms of 
minimum error, with a FER of 0.0001083 at 4 dB SNR.

Comparative discussion
In this section, an evaluation is carried out to analyze the performance of various polar code construction 
models. The Table 2 represents the different models that are being examined. It is important to mention that, 
when considering the metrics, the RNN-decoder with BHO model exhibits exceptional performance, surpassing 
every other model. In terms of 45% frame errors, the BER, BPSK-BER, and FER reach their lowest error values 
of 0.0000087, 0.01519, and 0.000182, respectively. Similarly in the context of 4 dB SNR, the BER, BPSK-BER, and 
FER achieve values of 0.0000073, 0.02065, and 0.000108, respectively. Compared with other decoder models, the 
proposed model incorporates the strengths of RNN for noise estimation and introduces the innovative Bald Hawk 

Fig. 5.  Polar code comparative analysis based on SNR for (a) BER, (b) BPSK BER, & (c) FER.
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optimization inspired by the cooperative hunting strategies of Harris Hawks and the focused hunting techniques 
of Bald Eagles, adaptive polar coding system is developed, which tunes the model to perform effective decoding. 
RNN is capable of learning complex and noise characteristics from the sequence which effectively estimates noise 
and enhances the performance of the Bit Error Rate. The collaborative attributes of RNNs and the optimization 
strategy led to enhanced accuracy in noise evaluation and improved efficiency in decoding processes. These 
techniques enhance the optimization with robustness and reduce complexity. However, the BHO algorithm 
assists in improving the performance of polar code generation with a minimal error rate. The experimental 
results show that the proposed model has a minimum delay with less resource consumption, achieving effective 
and reliable communication in the presence of noise and other challenges inherent in quantum computing and 
communication systems.

Computational complexity analysis
The computational time complexity of the proposed RNN-decoder with the BHO model is compared with other 
decoder models in terms of SNR value to exhibit the complexity of the proposed model. The RNN-decoder 
with the BHO model achieved a low computation complexity of 17.75ms and other models such as, ESBP based 
decoder achieved 19.05ms, Bi-LSTM-based decoder 18.40ms, the polar BP decoder 17.79ms, the polar scan 
decoder is 17.76ms, polar SSC decoder is 17.89ms, polar SCL decoder is 17.82ms, polar SCL decoder with 
TLO is 17.90ms, polar SCL decoder with SRAO is 17.95ms, polar SCL decoder with LBR is 18.32ms, RNN 
based decoder with BES is 18.57ms, RNN based decoder with HHA is 18.58ms, and The Polar SC decoder 
is 18.68ms respectively. Specifically, the incorporation of BHO optimization reduces the computation time by 
optimally tuning the hyperparameters to attain effective polar code decoding. Figure 6 illustrates the graphical 
representation of time complexity analysis with SNR value.

Statistical analysis
Statistical analysis is utilized to determine the patterns in data and concluding those patterns might help to 
explain the reason for the trial results variation from one experiment to the next. Furthermore, several statistical 
measures such as best, mean, and variance are computed for the various evaluation metrics. The proposed RNN-
decoder with the BHO model achieved a high best value in comparison to other existing models, demonstrating 
the effectiveness of the suggested model. Tables 3 and 4 depict the statistical analysis of the proposed RNN 
decoder with the BHO model using the Frame error and SNR based on best, mean, and variance respectively.

Training and validation loss curve
Figure 7 illustrates the training loss Curve and validation loss curve of the proposed RNN-decoder with the 
BHO model, which is plotted against the number of epochs ranging from 0 to 100. The performance of the RNN-
decoder with the BHO model decreases from 1 to 0 on training loss and validation loss is decreased from 0.8466 
to 0 with multiple iterations. The maximum training loss value that occurred in training data is recorded as 0.12 
and decreased over the 10 to 100 epochs. The performance of the proposed RNN-decoder with the BHO model 
increases based on the minimum training loss and validation loss.

Latency analysis
Figure 8 illustrates the latency analysis of the proposed RNN-decoder with the BHO model compared with 
other existing models. Latency analysis explains the time consumption and speed of the decoding algorithm in 

 Methods

Frame Error (45%) SNR (4 dB)

BER BPSK BER FER BER BPSK BER FER

Polar SC Decoder 0.000977 0.05766 0.007853 0.000268 0.05665 0.006853

ESBP based decoder 0.0008615 0.05565 0.00700 0.0002315 0.05465 0.006058

Bi-LSTM based decoder 0.00078 0.05361 0.00612 0.000207 0.05261 0.005433

Polar BP Decoder 0.000695 0.05164 0.005659 0.000195 0.05064 0.005159

Polar SCAN Decoder 0.000446 0.04663 0.003703 0.000106 0.04563 0.003803

Polar SSC Decoder 0.000238 0.04159 0.002208 0.000094 0.04060 0.002218

Polar SCL Decoder 0.000098 0.03709 0.001271 0.000087 0.03659 0.001371

Polar SCL Decoder
with TLBO 0.000079 0.03209 0.000952 0.000072 0.03250 0.000932

Polar SCL Decoder
with SARO 0.000060 0.02900 0.000614 0.000058 0.02850 0.000604

Polar SCL Decoder
with LBR 0.000036 0.02674 0.000466 0.000025 0.02634 0.00046

RNN-Based Decoder
with BES Model 0.000019 0.02296 0.000376 0.000011 0.02328 0.000356

RNN-Based Decoder
with HHA Model 0.0000098 0.01902 0.000296 0.0000094 0.02197 0.000244

RNN-Based Decoder
with BHO Model 0.0000087 0.01519 0.000182 0.0000073 0.02065 0.000108

Table 2.  Comparative performance for the reviewed and proposed model.
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polar decoding. The proposed RNN-decoder with the BHO model gained less delay of 2.04ms compared with 
other decoders. Existing models achieved high delay such as the polar SC decoder is 5.86ms, ESBP decoder is 
5.46ms, Bi-LSTM-based decoder is 5.38ms, polar BP decoder is 4.99ms, polar SCAN decoder is 4.70ms, polar 
SSC decoder is 4.52ms, polar SCL decoder is 3.97ms, polar SCL decoder with TLO is 3.94ms, polar SCL decoder 
with SRAO is 3.84ms, polar SCL decoder with LBR is 3.37ms, RNN based Decoder with BES is 2.27ms, and RNN 
Based Decoder with HHA gained 2.18ms respectively.

Memory usage analysis
Figure 9 illustrates the memory usage analysis of the proposed RNN-decoder with the BHO model compared 
with other existing models. Memory usage analysis is utilized to analyze the memory usage of the proposed 
RNN-decoder with BHO model with other existing models. The incorporation of RNNs for polar code decoding 
naturally reduces memory usage. The proposed model used 292.61KB for decoding, and other models reached 
memory usage of polar SC decoder is 510.93KB, ESBP decoder is 503.06KB, Bi-LSTM-based decoder is 488.70KB, 

 Models

Metrics

BER BPSK BER FER

Best Mean Variance Best Mean Variance Best Mean Variance

Polar SC decoder 0.5048 0.3748 0.0385 0.4090 0.2521 0.0137 1.0000 0.7902 0.1436

ESBP based decoder 0.5044 0.3730 0.0382 0.4075 0.2514 0.0136 1.0000 0.7880 0.1439

Bi-LSTM based decoder 0.5023 0.3673 0.0387 0.4040 0.2492 0.0134 1.0000 0.7807 0.1481

polar BP decoder 0.5040 0.3712 0.0380 0.4061 0.2506 0.0135 1.0000 0.7857 0.1442

polar SCAN decoder 0.5036 0.3696 0.0385 0.4052 0.2496 0.0135 1.0000 0.7824 0.1468

polar SSC decoder 0.5011 0.3650 0.0389 0.4028 0.2487 0.0134 1.0000 0.7790 0.1494

polar SCL decoder 0.5009 0.3609 0.0395 0.4015 0.2481 0.0133 1.0000 0.7679 0.1510

polar SCL decoder with TLBO 0.5002 0.3576 0.0399 0.4000 0.2473 0.0132 1.0000 0.7656 0.1526

polar SCL decoder with SARO 0.4988 0.3564 0.0403 0.3998 0.2470 0.0132 1.0000 0.7610 0.1589

polar SCL decoder with LBR 0.4929 0.3466 0.0396 0.3973 0.2441 0.0130 1.0000 0.7445 0.1616

RNN-based decoder with BES 0.4973 0.3547 0.0387 0.3932 0.2412 0.0130 1.0000 0.7654 0.1527

RNN-based decoder with HHA 0.4975 0.3527 0.0394 0.3986 0.2427 0.0132 1.0000 0.7609 0.1590

RNN-decoder with BHO model 0.4891 0.3439 0.0382 0.3959 0.2400 0.0131 1.0000 0.7445 0.1616

Table 3.  Statistical Analysis of Frame Error.

 

Fig. 6.  Computational complexity analysis of proposed model with existing models.
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polar BP decoder is 483.78KB, polar SCAN decoder is 448.75KB, polar SSC decoder is 406.61KB, polar SCL 
decoder is 392.98KB, polar SCL decoder with TLO is 385KB, polar SCL decoder with SRAO is 354.63KB, polar 
SCL decoder with LBR is 343.99KB, RNN Based Decoder with BES is 334.94KB, and RNN Based Decoder with 
HHA gained 299.04KB respectively.

Conclusion
In conclusion, this research makes a significant contribution to the realm of error correction in communication 
systems, specifically within the context of polar coding. We develop a novel and adaptive polar coding system by 
combining the strengths of RNN for noise estimation with the innovative Bald Hawk optimization, which draws 
inspiration from the cooperative hunting strategies of Harris Hawks and the focused hunting techniques of Bald 
Eagles. The collaborative attributes of RNNs and the optimization strategy lead to enhanced accuracy in noise 
evaluation and improved efficiency in decoding processes. This approach not only showcases the efficacy of 

Fig. 7.  Training and validation loss curve.

 

 Models

Metrics

BER BPSK BER FER

Best Mean Variance Best Mean Variance Best Mean Variance

Polar SC decoder 0.5048 0.3748 0.0385 0.4090 0.2521 0.0137 1.0000 0.7902 0.1436

ESBP based decoder 0.5044 0.3730 0.0382 0.4075 0.2514 0.0136 1.0000 0.7880 0.1439

Bi-LSTM based decoder 0.5023 0.3673 0.0387 0.4040 0.2492 0.0134 1.0000 0.7807 0.1481

polar BP decoder 0.5040 0.3712 0.0380 0.4061 0.2506 0.0135 1.0000 0.7857 0.1442

polar SCAN decoder 0.5036 0.3696 0.0385 0.4052 0.2496 0.0135 1.0000 0.7824 0.1468

polar SSC decoder 0.5011 0.3650 0.0389 0.4028 0.2487 0.0134 1.0000 0.7790 0.1494

polar SCL decoder 0.5009 0.3609 0.0395 0.4015 0.2481 0.0133 1.0000 0.7679 0.1510

polar SCL decoder with TLBO 0.5002 0.3576 0.0399 0.4000 0.2473 0.0132 1.0000 0.7656 0.1526

polar SCL decoder with SARO 0.4988 0.3564 0.0403 0.3998 0.2470 0.0132 1.0000 0.7610 0.1589

polar SCL decoder with LBR 0.4929 0.3466 0.0396 0.3973 0.2441 0.0130 1.0000 0.7445 0.1616

RNN-based decoder with BES 0.4937 0.3526 0.0389 0.3970 0.2408 0.0134 1.0000 0.7654 0.1527

RNN-based decoder with HHA 0.4954 0.3530 0.0390 0.3958 0.2403 0.0135 1.0000 0.7609 0.1590

RNN-decoder with BHO model 0.4906 0.3423 0.0383 0.3958 0.2376 0.0135 1.0000 0.7444 0.1616

Table 4.  Statistical Analysis of SNR.
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optimization but also underscores the significance of incorporating machine learning techniques for addressing 
challenges in polar decoding. The findings pave the way for more resilient and adaptable error-correction 
mechanisms, bringing us closer to achieving effective and reliable communication in the presence of noise and 
other challenges inherent in communication systems. In terms of 45% frame errors, the BER, BPSK-BER, and 
FER reach their lowest error values of 0.0000087, 0.01519, and 0.000182, respectively. Similarly, in a 4 dB SNR 
context, the BER, BPSK-BER, and FER achieve values of 0.0000073, 0.02065, and 0.000108, respectively.

Fig. 9.  Memory usage analysis.

 

Fig. 8.  Latency analysis.
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Data availability
The datasets used in this investigation are accessible from the corresponding author upon reasonable request at 
mvraaz.nitw@gmail.com.
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