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Integrative bioinformatics
frameworks for abdominal aortic
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construction, and structural
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Abdominal aortic aneurysm (AAA) is a non-communicable disease (NCD) with high morbidity and
mortality, commonly observed worldwide. Understanding its molecular mechanisms and identifying
potential therapeutic targets are crucial for disease screening, diagnosis, and treatment. In this study,
we conducted a meta-analysis of multiple genome-wide association studies (GWASs) to identify
genetic variants associated with AAA and explored the functional implications of these variants in
disease pathology. We identified differentially expressed genes (DEGs) based on significant single
nucleotide polymorphisms (SNPs) from expression quantitative trait loci (e€QTL) and transcriptome-
wide association study (TWAS) analyses. Using these DEGs, we constructed an AAA-related protein-
protein interaction (PPI) network and prioritized key genes for further analysis. Furthermore, we
performed drug repurposing by identifying drug-gene and drug-protein interactions in existing
databases and validated potential candidates through molecular docking. Our findings reveal 42
novel disease-associated SNPs and 52 previously unreported disease-related genes. Some residual
confounding factors cannot be fully ruled out and may represent a limitation of our study. However,
it is worth noting that only a minority of SNPs exhibited heterogeneity. Functional pathways
analysis highlighted key processes, including lipid and cholesterol metabolism, tissue remodeling,
and acetylcholine activation. We identified 74 DEGs through eQTL and TWAS analyses, with PPI
network analysis highlighting CD40 and LRP1 as key proteins. Drug repurposing and molecular
docking suggested abciximab and paclitaxel as potential therapeutic agents targeting CD40,

while ivermectin emerged as a strong candidate for LRP1 binding. In conclusion, our integrative
bioinformatics frameworks links genomics and transcriptomics with network biology and structural
modeling, providing valuable insights into the molecular mechanisms of AAA and potential therapeutic
strategies.
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Abdominal aortic aneurysm (AAA) is a critical public health concern, with an estimated 150,000 to 200,000
deaths per year worldwide between 1980 and 2017"2. The high morbidity and mortality rates associated with
ruptured aneurysm can be prevented by early diagnosis®>. AAA, a localized and permanent dilatation of
the abdominal aorta, is typically diagnosed when the aortic diameter reaches 30 mm or greater®”. It is most
prevalent in males aged over 65%. Previous studies have identified a positive family history, smoking, genetic
factors, and high blood pressure as significant risk factors contributing to the disease®!°. Screening high-risk
populations with ultrasound has been investigated as an effective approach to preventing aneurysm-related
mortality!"!2. Despite progress in endovascular surgery, the absence of definitive pharmacological treatment for
AAA emphasizes the need for further exploration of critical pathological mechanisms!*!4.

Recently, genomic approaches using bioinformatics analysis have played an important role in the screening,
diagnosis, and treatment of several diseases. In AAA, various studies incorporating molecular genetics have
investigated genetic risks and the molecular mechanisms underlying the disease. For instance, a candidate gene
case-control study has identified numerous genetic variants linked to AAA, although replication in other genes
has been limited!®. Recent advancements in high-throughput genomic technologies have facilitated genome-
wide association studies (GWASs), where common single nucleotide polymorphisms (SNPs) are examined in
cases and controls using a hypothesis-free approach to identify genetic loci associated with complex diseases'®.
Previous studies have identified three novel loci on chromosome 9 (DAB2IP: DAB2 interacting protein'?), 12
(LRP1: Low-density lipoprotein receptor-related protein 1'#), and 19 (LDLR: Low-density lipoprotein receptor!?).
Additional risk loci have been annotated on chromosomes 1 (SORT1: sortilin 12° and IL6R: interleukin 6
receptor?!), chromosome 2 (ATOHS: Atonal bHLH transcription factor 822), chromosome 5 (LINC01021: Long
intergenic non-protein coding RNA 10212?), and chromosome 9 (CDKN2B-AS1: CDKN2B antisense RNA 12
and JAK2: Janus kinase 22%). Nevertheless, analyses from individual small GWASs have rarely identified causal
genes mediating the effects of variation on traits?*. Although large-scale GWASs have identified 24 genomic risk
loci for AAA through a meta-analysis of GWAS data!”-1%2>26, the identified variants explain only a minority of
the genetic risk?”. To discover additional genetics risk loci, meta-analysis of GWAS data has been developed to
improve statistical power by integrating several GWASs to increasing sample sizes.

Discovery of risk loci from individual and meta-analysis GWASs is essential for disease screening and
prediction. Nonetheless, these methods alone are insufficient for identifying the molecular mechanisms behind
the disease and targeting genes for treatment. Therefore, functional and systematic approaches are needed for
biological pathway analysis. For example, transcriptome-wide association studies (TWAS) identify differentially
expressed genes (DEGs) based on GWAS datasets by constructing predictive models®®. Functional mapping
and annotation (FUMA) is a web-based tool that analyzes functional enrichment pathways based on annotated
genetic risk loci from GWAS results?®. This platform also provides information on expression quantitative trait
loci (eQTLs), which are genetic loci relevant to variations in gene expression. Network biology constructs a
graph data structure based on biological entity relationships®, offering several benefits for gene prioritization
and drug discovery. Some studies prioritize genes or proteins using graph parameters such as degree and
betweenness centrality®!~3>. Once key genes or proteins are identified, finding candidate drugs that interact with
them is necessary to develop targeted treatments. However, some candidate drugs are chemical compounds not
yet approved by the Food and Drug Administration (FDA), requiring time and cost for safety evaluations. Drug
repurposing is a preferred approach, as it focuses on existing drugs known to treat other diseases*, reducing
both cost and time. Afterwards, structural modeling of key proteins also plays a vital role in confirming drug-
protein interactions, such as calculating binding parameters through molecular docking™.

In this study, we applied GWAS summary statistics from three studies, encompassing approximately
two million samples, in a meta-analysis to identify the genetic variations (SNPs) associated with AAA.
Functional enrichment and genetic risk loci annotation of the associated variants were performed to uncover
the mechanisms and pathways contributing to the disease. Additionally, TWAS was utilized to prioritize and
identify DEGs associated with AAA by integrating GWAS summary statistics with eQTLs analysis. A biological
network generated from the DEGs was employed to discover molecular relationships and prioritize genes using
graph algorithms for exploring vital pharmacological target genes. Drug repurposing from database searches
was operated to find possible interactions between key genes or proteins and FDA-approved drugs. Molecular
docking was then used to screen potential drugs against the targeted proteins obtained from network analysis.
The screened drugs were selected to elucidate the interaction profiles and key interacting residues. Therefore, this
study demonstrates how bioinformatics frameworks can be integrated to unveil genetic risk loci, disease-related
pathways, prioritized genes, and target drugs for AAA, merging genomics, transcriptomics, biological networks,
and structural biology (Fig. 1). We hope this integrated strategy provides a valuable pipeline for detecting novel
genetic risk loci, identifying therapeutic targets, and advancing drug discovery against various diseases.

Materials and methods

Data collection and pre-processing

The GWAS summary statistics datasets utilized in our study are summarized in Table 1. All three datasets were
retrieved from the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/search, accessed on 3 April 2024)%.
The first dataset is derived from the Global Biobank Meta-analysis Initiative (GBMI) collaborative network®’,
which includes a large sample size (cases=8,163; controls=1,256,755; total sample size [N]=1,264,918).
Moreover, we applied the second dataset, a study on gene-trait associations based on exome sequencing of UK

Scientific Reports |

(2025) 15:22331 | https://doi.org/10.1038/s41598-025-07989-1 nature portfolio


https://www.ebi.ac.uk/gwas/search
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

GWAS Catalog

l

GWAS met.a-anal‘ysis
N . i ' -
: I8 SN T —

¥
LD and functi

He B Be

Structural

v v
onal analysis ~ eQTL mapping Significant genes from TWAS

1 2 3 4 5 6 7 8 9 10 11 12 13 141516 1718192021

. “+ DEGs "
.= collection

. o

PPI network
construction

<l%.cici

sh o |

;:\‘e‘::\‘\" :"". Gene and protein
TTD PP prioritization

@ORUGBANK +—m Cpli) = z Oy (1) ’

u#Fv #i

A
STITCH

modeling Drug repurposing

and molecular docking based on the key proteins

Biobank participants®® (cases=1184; controls =386,746; N =387,930). The third dataset, a GLMM-based GWA
tool GWAS? (cases=556; controls =455,792; N =456,348), was also incorporated in this study. The combined
sample size of our meta-analysis is N=2,109,196 (cases=9903; controls=2,099,293). Power calculations were
performed using the genpwr package in R*’, based on an expected odds ratio (OR) of 1.4, a significance level of
5x107%, and an additive model. The OR was adapted from the average odds ratios (1.33) of statistically significant
SNPs reported previously*!. All summary statistics consist of effect sizes, standard errors, and p-values for SNPs
associated with AAA. The SNPs that were present in all three datasets with identical alleles were included in the
meta-analysis. SNPs with a minor allele frequency (MAF) <0.01 have already been excluded from the summary
statistics in the original studies, as confirmed through the literature review. SNPs were harmonized across
datasets to ensure that all studies used the same reference allele. The genome coordinates in all datasets were
converted for consistency from GRCh37 to GRCh38 using LiftOver in the UCSC Genome Browser (https://
genome.ucsc.edu/cgi-bin/hgLiftOver, accessed on 5 April 2024)*? before meta-analysis.
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«Fig. 1. Workflow of integrative bioinformatics frameworks for abdominal aortic aneurysm (AAA). AAA

genome-wide association study (GWAS) datasets were retrieved from the GWAS Catalog®® and subjected to
meta-analysis using METAL*. Summary statistics from the meta-analysis were used to identify independent
significant single nucleotide polymorphisms (SNPs) and expression quantitative trait loci (eQTLs) via
FUMA?. Gene-set enrichment analysis was conducted using MAGMA® . Transcriptome-wide association
study (TWAS) was performed using the FUSION pipeline®. Differentially expressed genes (DEGs) were
determined based on genes that were significant in both the eQTL and TWAS analyses. An AAA-associated
protein-protein interaction (PPI) network was constructed using the DEGs and interactome data from the
STRING database®! and visualized with Cytoscape®?. Key nodes in the network were identified based on

high degree and betweenness centrality scores, calculated using the NetworkX package in Python®?. Drug
repurposing candidates were identified through screening drug-gene and drug-protein interaction databases,
such as DrugBank®’, Therapeutic Target Database (TTD)®, Comparative Toxicogenomics Databases (CTD)%,
GeneCards®, and STITCH database®!, and shortlisted drugs were further evaluated via computational
structural modeling and molecular docking simulations using the HDOCK server”!. The structural modeling
results were visualized by the PDBsum website”?, Accelrys Discovery Studio 3.0 (Accelrys Inc.)”, and the
University of California at San Francisco (UCSF) Chimera package.

GWAS meta-analysis

Meta-analyses across the studies were performed using METAL v2020-05-05%*. I and Cochran’s Q statistics were
tested for SNP heterogeneity using METAL. Sample-sized based models were used in this analysis, weighting
studies according to their sample sizes. This sample size-based meta-analysis enables the combination of p-
values from results even when the B-coefficients and standard errors from individual studies are in different
units. Stouffer’s method*® was applied in METAL to meta-analyze the summary statistics. We used a genome-
wide significance threshold of p-value < 5x 1078 for GWAS meta-analysis, which is a widely accepted standard to
correct for multiple comparisons in large-scale association studies****. This threshold is based on a Bonferroni
correction for multiple comparisons, accounting for approximately one million independent common SNPs
across the human genome. We also applied a significance threshold of p-value<1x107 as a suggestive or
alternative threshold. The suggestive threshold is used solely to highlight potentially interesting variants for
further investigation, but it does not indicate a definitive association with the condition of interest. Manhattan
and quantile-quantile (QQ) plots were generated using the gqgman package in R*.

Identification of independent significant SNPs, lead SNPs, and genomic risk loci and eQTLs
mapping

FUMA (https://fuma.ctglab.nl/, accessed on 7 April 2024)* was employed for genomic risk loci mapping, gen
e-based statistics calculation, and functional annotation of the GWAS results, employing default settings. The
program has two main modes: SNP2GENE and GENE2FUNC. The first mode was used to identify lead and
independent significant SNPs, as well as genomic risk loci and eQTLs mapping. Parameters related to linkage
disequilibrium (LD) blocks, such as > and MAF, were computed using the 1000 Genomes Project Phase 3 EUR
as the reference panel. Independent significant SNPs were defined as those with a p-value below the genome-
wide significance threshold (5x 10®) with 2<0.6, while lead SNPs were independent significant SNPs with
2<0.1. Genomic risk loci were characterized by grouping independent significant SNPs with 72> 0.1 into the
same loci. Additionally, other independent significant SNPs within 250 kb of these loci were included. Gene
expression data of aorta tissue from GTEx v8 was used for eQTL mapping. FUMA mainly annotates cis-eQTLs,
which are all independent significant SNPs located near genes that regulate gene expression. The software maps
SNPs to genes up to 1 Mb. Significant SNP-gene pairs, with FDR <0.05, were considered cis-eQTLs.

Functional enrichment analysis using MAGMA and GENE2FUNC

MAGMAY, integrated in FUMA, was used to analyze gene-set enrichment, incorporating curated gene sets and
gene ontology (GO) terms from the Molecular Signature Database (MSigDB v7.0). In functional enrichment
analysis using MAGMA gene-set analysis, pathways with Bonferroni-corrected p-values <0.05 were considered
significant to control for false positives based on the default setting of the program. The gene window in MAGMA
was set to 10 kb upstream and downstream to cover SNPs located in the cis-regulatory regions of genes. MAGMA
was also utilized for the analysis of tissue-specific expression among GTExv8 tissues*®. Furthermore, the second
main mode (GENE2FUNC) in FUMA was employed to analyze the mapped genes from SNP2GENE for their
average expression across GTEx v8 tissues. This was visualized in a heatmap with hierarchical clustering using
the average method and the unweighted pair group method with the arithmetic mean approach (UPGMA) for
genes and tissues. We also evaluated enrichment against different gene sets using hypergeometric tests.

Single-tissue TWAS analysis and DEG identification

To investigate the association between AAA and the predicted expression of gene transcripts, a single-tissue
TWAS analysis was performed using FUSION*’. The software uses the predictive model from its training
parameters and reference panels to predict SNP-gene mapping. FUSION performs the TWAS analysis using cis-
SNPs with SNP-gene mapping within 1 Mb and matched in expression reference panels. The predicted model for
expression in FUSION was derived from the meta-analysis summary statistics results from METAL, combined
with common cis-eQTLs weights from aorta tissues in GTEx v88. FUSION also performs LD correction to
remove SNPs redundancy using LD reference panels. The LD reference for Europeans® was received from
the 1000 Genomes Project. Manhattan and QQ plots were created using the qqman package in R*. Statistical
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significance in the plots was determined using Bonferroni correction based on the number of the total number
of genes (p-value<2.5x 107%). We also applied a suggestive threshold, similar to that used in GWAS analyses,
using p-value < 6.25x 107, This was determined by a Bonferroni correction based on the actual number of genes
tested in the TWAS results.

DEGs were identified from both cis-eQTL results in FUMA and genes identified in TWAS using FUSION. To
ensure an adequate number of DEGs for biological network construction in subsequent analyses and consistency
in significance thresholds between the DEGs from TWAS and the eQTLs identified through FUMA, we applied
the Benjamini-Hochberg correction to control the false discovery rate (FDR). Genes annotated from cis-eQTL
mapping with FDR <0.05, as well as significant genes in TWAS with FDR <0.05, were considered DEGs.

Protein—protein interaction (PPI) network construction and gene prioritization

Human interactome information was downloaded from the STRING database v12.0 (https://string-db.org/,
accessed on 18 April 2024)°!. The dataset contains interactions between protein pairs and their combined scores.
The combined score is a confidence score of protein interactions, considering from experiments, text mining,
databases, co-expression, neighborhood, co-occurrence, and gene fusion. The score ranges from 0 to 1000. The
interactome data was mapped with the DEGs obtained from the previous analysis. Only interactions involving
protein pairs within the DEGs were used to construct an AAA-related PPI network. The network was visualized
using the STRING database and Cytoscape v3.10.2%

NetworkX package®® in Python was employed for PPI network analysis. Two types of edge weights in the
network were calculated based on the combined score of the interactions. The first type, the relationship weight,
was calculated by dividing the combined score by 1000, normalizing the weight between 0 and 1. The second
type, the distant weight, was obtained by subtracting 1 from the relationship weight. Thus, the distant weight is
complementary to the relationship weight and vice versa.

Degree centrality was determined in the network based on the relationship weight. In a network, the degree
centrality of a node is the sum of the number of edges adjacent to the node or, in the case of a weighted graph,
the sum of the relationship weights of the adjacent edges. Nodes with a high degree are considered hub nodes,
indicating their importance in the network. Betweenness centrality, another key parameter for identifying
essential nodes, was also computed. Betweenness centrality measures a node’s role as a bridge or bottleneck in
the network. Nodes with high betweenness centrality scores are critical because their removal could significantly
disrupt the networK’s topology. Betweenness centrality of a node is calculated as the sum of the frequencies of
shortest paths between all pairs of nodes that pass through the node of interest, relative to the total number
of shortest paths between those pairs. The distant weight was used to calculate betweenness centrality by
considering the shortest paths according to Dijkstra’s algorithm®*>>. Both degree and betweenness centrality
were normalized before further analysis.

Gene prioritization was adapted from a method used in a study to identify key genes in a severe COVID19-
related PPI network®®. Nodes in the AAA-associated PPI network with degree or betweenness centrality greater
than the 90th percentile of centrality scores were defined as key genes or proteins. In addition, nodes with
both degree and betweenness centrality exceeding the 90th percentile were considered very important genes or
proteins, which were subsequently used for structural modeling and drug target identification.

Drug repurposing based on the prioritized genes

Thekey genes or proteinsidentified in the previous step were searched in the drug-gene or drug-protein interaction
databases to identify possible FDA-approved drugs that bind to these proteins. Five databases were applied to
find these interactions: DrugBank (https://go.drugbank.com/, accessed on 23 April 2024)%7, Therapeutic Target
Database (TTD) (https://idrblab.net/ttd/, accessed on 23 April 2024)°%, Comparative Toxicogenomics Databases
(CTD) (https://ctdbase.org/, accessed on 23 April 2024)%, GeneCards (https://www.genecards.org/, accessed
on 23 April 2024)%, and STITCH database v5.0 (http:/stitch.embl.de/, accessed on 23 April 2024)!. All FDA-a
pproved drugs with documented drug-protein or drug-gene interactions, as well as those shown to alter gene
expression based on experimental validation, were collected. Drugs interacting with key proteins having both
high degree and betweenness score from the AAA-associated PPI network analysis were selected for further
computational structural analysis in the subsequent method.

GWAS summary statistics Study accession | Case | Control | Sample size | Ancestry | Phenotype source
GBMI meta-analyzes summary statistics from GWASs (Zhou et al.?”) GCST90399672 | 8163 | 1,256,755 | 1,264,918 European | The UKB samples®”
”e[thaelaslg)lhty of exome sequencing to identify gene-trait associations (Backman GCST90080047 | 1184 | 386,746 | 387,930 European | The UKB study®
The UKB data and
GLMM:-based GWA tool GCST90044009 | 556 | 455,792 | 456,348 European | Salable to cohorts

(Jiang et al.*%)

with millions of
individuals®

Table 1. Summary of GWAS summary statistics datasets used in the meta-analysis. GLMM: generalized linear
mixed model, GWA: genome-wide association, UKB: UK Biobank, GBMI: Global Biobank Meta-analysis
Initiative, GWASs: genome-wide association studies.
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Computational studies of repurposed drugs and antibodies binding to critical genes

The targeted genes for structural modeling, cluster of differentiation 40 (CD40) and low-density lipoprotein
receptor-related protein 1 (LRP1), were identified based on their high degree and betweenness centrality from
the PPI network analysis. Molecular docking was performed to elucidate the mechanism by which repurposed
drugs inhibit the PPI between CD40 and CD40 ligand (CD40L) and upregulate LRP1 expression. Protein crystal
structures used in our study were obtained from the RCSB Protein Data Bank (PDB, https://www.rcsb.org/,
accessed on 30 April 2024)%2. The crystal structure of CD40 in complex with CD40L (PDB ID: 3QD6%) was
prepared as the protein receptor for the molecular docking of the anti-human CD40 antibodies, which included
potent candidate compounds as well as previously reported anti-CD40 agents (bleselumab® and dacetuzumab®*).
Meanwhile, CD40L (PDB ID: 3LK]J%) was employed for docking repurposed drugs and previously reported
compounds (suramin® and BIO8898%) to block the CD40/CD40L interaction. For LRP1, two binding subunits,
CR56 (PDB ID: 2FYL®’) and CR17 (PDB ID: 2KNX®%8), were utilized for docking with candidate drugs and
a previously reported protein, the receptor-associated protein (RAP)®. The protonation state of proteins was
configured at pH 7 using PDB2PQR web server®, whereas ChemAxon”® was used to calculate the negative
logarithm of the acid dissociation constant (pKa) value of drugs. Consequently, both drugs/antibodies and the
CD40/CD40L or CR56/CR17 subunits of the LRP1 protein were selected for docking studies using the HDOCK
server (http://hdock.phys.hust.edu.cn/, accessed on 12 May 2024)”!. The binding of drugs/antibodies to proteins
was visualized using the PDBsum website’?, Accelrys Discovery Studio 3.0 (Accelrys Inc.)”, and the University
of California at San Francisco (UCSF) Chimera package”*.

Results

GWAS meta-analysis, genomic risk loci, and gene mapping

The statistical power analysis using the genpwr package indicated that the sample size used in this meta-analysis
was sufficient, with an estimated power ranging from approximately 0.8 to 1 across MAF between 0.01 and
0.9 (Supplementary Fig. S1). Heterogeneity test from the GWAS meta-analysis using METAL*? showed that
most SNPs had low I? values (I*<25) from the I? distribution curve (Supplementary Fig. S2). The percentage
of SNPs with significant Q statistics (p-value<0.05) compared total SNPs was 0.75. The heterogeneity results
were illustrated in Supplementary Table S1. Despite low heterogeneity across the three datasets, the sample
size from Zhou et al.*” (1,264,918) is dramatically higher than that of Backman et al.*® (387,930) and Jiang et
al.*® (456,348). Therefore, we decided to perform the meta-analysis using the sample size-based model, which
weights studies according to their sample sizes. The meta-analysis revealed that 24,765,714 SNPs were reported
in the summary statistics (Supplementary Table S2). Figure 2 displays the Manhattan plot of the METAL results,
and Supplementary Fig. S3 shows the QQ plot. There were 2,709 variants with p-values less than the suggestive
significant level (1x 10~°) and 389 of these had p-values below the genome-wide significant level (5x 1078). To
address variant redundancy, we performed LD analysis using the SNP2GENE mode in FUMAZ. After this
process, we identified 47 independent significant SNPs associated with the disease (Supplementary Table S3).
Most SNPs were located in intronic regions, followed by intergenic regions (Supplementary Fig. S4). Moreover,
in comparison with the GWAS catalog™, we identified 42 novel disease-related SNPs that have not been recorded
in the database. Table S4 in the Supplementary data provides a detailed summary of these predicted novel
disease-related variants.

Furthermore, 23 genomic risk loci were annotated from FUMA (Fig. 3), with 26 lead SNPs identified within
these loci (Supplementary Table S5). Chromosome 11 contributed the highest number of loci, while chromosome
6 contained the largest loci, approximately 800 kb. The highest number of SNPs were found on chromosomes 18
and 15, respectively. Additional information on the genomic risk loci is illustrated in the Supplementary Table
S6. A total of 83 mapped genes were identified, 52 of which have not been previously associated with the disease
in the GWAS Catalog®® or Gene Cards® databases. The list of these novel genes is included in the Supplementary
Table S7. The primary mapped genes were located on chromosomes 10 and 15 (Fig. 3). Additionally, 492 cis-
eQTLs were annotated in FUMA (Supplementary Table S8). These eQTLs were subsequently used as DEGs to
construct the AAA-related PPI network.

Functional enrichment and tissue expression analysis based on genomic results
Gene-set analysis from MAGMA revealed that the mapped genes primarily involved lipid metabolism. Table 2
provides the results of functional enrichment analysis generated with MAGMA. These results were concordant
with the curated gene-set analysis from the GENE2FUNC mode in FUMA (Fig. 4). Additional pathways identified
in the GENE2FUNC include extracellular matrix and soft tissue activities, such as matrix metalloproteinase
activities, fibroblast activities in wound healing and tissue remodeling, and acetylcholine receptor activation.
Tissue expression analysis in MAGMA showed that the gene expression patterns associated with our GWAS
meta-analysis results were similar to those observed in the lung, gastrointestinal tract, artery, and fibrous tissue
(Fig. 5A). These findings were consistent with the heatmap of tissue expression based on mapped genes from
the GENE2FUNC mode in FUMA (Fig. 5B). The heatmap, which includes hierarchical clustering, shows that
intestinal, artery, fibrous, and pulmonary tissues show similar patterns of high significant gene expression, in
alignment with the ranked p-value tissue-specific expression in MAGMA. Additionally, the tissue expression
results were relevant to the functional enrichment analysis, highlighting lipid metabolism and extracellular
matrix activities, which are primarily associated with alimentary and fibrous tissue, respectively.

Identification of DEGs and gene prioritization based on the AAA-associated PPl network

To identify DEGs involved in the association between disease and trait, TWAS were operated using FUSION®.
The results of the predicted genes are shown in the Manhattan plot (Fig. 6), with the QQ plot of the TWAS
analysis illustrated in the Supplementary Fig. S5. Ten transcripts surpassed the suggestive significance threshold
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(6.25x107°), and nine of these, including TDRD10, STK36, THBS2, SUGCT, ADAMTSS, LPR1, IQCH, MRC2,
and NEURL?2, were annotated as known protein-coding genes. The details of these transcripts, including their
functions and statistical results, are summarized in the Supplementary Table S9. Notably, several of these genes,
such as ADAMTSS8, THBS2, TDRD10, MRC2, and LPR1, have previously been reported in the context of AAA.
The gene ENSG00000273466 could not be annotated in FUSION but was considered as a long non-coding RNA
(Inc-ZNF142) in LNCipedia (https://Incipedia.org/, accessed on 23 June 2024)”°. In addition, seven transcripts,
including Inc-ZNF142 (ENSG00000273466), STK36, THBS2, SUGCT, ADAMTSS, IQCH, and NEURL2, had p-
values below the transcriptome-wide significance threshold (2.5x 1076).

Additional significant transcripts were identified through the Benjamini-Hochberg correction by calculating
FDR. An additional 51 transcripts had an FDR <0.05. Therefore, a total of 61 DEGs from the TWAS analysis,
along with 20 DEGs from the eQTL analysis in FUMA, resulted in 74 DEGs (Supplementary Table S10).
Figure 7A shows a Venn diagram of DEGs from the TWAS and eQTL analyses. The AAA-associated PPI network
was generated based on the DEGs using human interactome data from the STRING®! database (Fig. 7B). The
largest component of the network, containing 59 proteins and 296 interactions, was used for further analysis.
The degree and betweenness centrality of each node are detailed in Table S11 in the Supplementary data. Ten key
proteins were prioritized based on centrality measurements, with degree or betweenness scores greater than the
90th percentile. Table 3 lists the key proteins, where proteins with high degree scores are considered hubs, and
those with high betweenness scores are considered bottlenecks. Notably, two proteins, CD40 and LPR1, were
identified as both hubs and bottlenecks.

Repurposed drugs binding to the prioritized proteins to alleviate AAA progression

Repurposed drugs targeting the ten vital proteins were sourced from the TTD, CTD, DrugBank, GeneCards, and
STITCH databases, as summarized in the Supplementary Table S12. A molecular docking study was performed
to examine the binding of these repurposed drugs to two targeted proteins using the HDOCK webserver”®.
The validity of the program was ensured by redocking the crystal structure complexes of both vital proteins, as
shown in the Supplementary Fig. S6 for CD40 and Fig. S7 for LRP1. Each drug was then assessed to determine
its binding energy (AG,, ,) for CD40 and LRP1. Two distinct binding patterns were observed for CD40: the first
involved repurposed anti-CD40 drugs binding directly to CD40, and the second involved the binding of drugs
to CD40L. Both strategies may contribute to mitigating AAA progression.

The results revealed that abciximab exhibited the lowest binding energy (- 198.96 kcal mol™) to CD40 among
the candidate compounds, as well as in comparison with previously reported experimental anti-CD40 agents,
bleselumab (- 158.64 kcal mol™!) and dacetuzumab (-169.31 kcal mol™!), as depicted in the Supplementary
Fig. $8. While paclitaxel demonstrated strong binding to CD40L with a binding energy of —282.64 kcal mol™
outperforming both the candidate compounds and previously reported agents, suramin (- 168.09 kcal mol™)

]
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Fig. 2. Manhattan plot of the meta-analysis results from the AAA genome-wide association studies (GWAS).
Each point shows a variant tested for association with AAA. The x-axis illustrates the genomic position of the
corresponding variant, and the y-axis displays the negative logarithm of the genome-wide association adjusted
p-value. The adjusted p-value was obtained using the Bonferroni correction method. The horizontal red dashed
line represents the genome-wide significance threshold (adjusted p-value =5.00 x 1078), whereas the horizontal
blue dashed line indicates the suggestive significance threshold (adjusted p-value =1.00 x 10~). The plot was
visualized using the gqgman package in R*°.
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and BIO8898 (- 164.89 kcal mol™!), as shown in the Supplementary Fig. S9. Abciximab binding was particularly
stable, facilitated by multiple interaction types, including strong hydrogen bond (H-bond) interactions with
nine CD40 residues: K29, Q42, P43, Q45, E58, C59, G63, W71, and E98 (Fig. 8A,B). Additionally, a salt bridge
formed with E58. Paclitaxel showed robust H-bond contacts with key residues of CD40L, including G226,
Y170, and Y172 via domains A, B, and C, respectively (Fig. 8C,D). The AG,,_ , values and two-dimensional (2D)
interactions of other repurposed drugs associated with CD40/CD40L are provided in the Supplementary Figs.
S10, 11 and Table S13.

Two crucial binding sites were identified on LRP1: the CR56 and CR17 subunits. Ivermectin represented
strong binding affinity for both subunits, with AG,, , values of — 136.18 kcal mol ™! for CR56 (Fig. 9A,B), compared
to the previously reported experimental protein, receptor-associated protein (RAP) (—131.21 kcal mol™), as
depicted in the Supplementary Fig. S12. For CR17, the AG,, , value was—118.59 kcal mol™! (Fig. 9C,D). This
binding affinity was supported by H-bonds with residues H82 and S13, in addition to several hydrophobic
interactions. Further details regarding the binding affinity and key residues of other drugs targeting LRP1 can be
found in the Supplementary Figs. S13, 14 and Table S13 in the Supplementary data.

Summary of key biological findings
As our study primarily involves intensive computational and theoretical approaches to identify molecular
mechanisms and therapeutic targets in AAA, some aspects may be challenging for readers who are not
familiar with bioinformatics and computational biology. Therefore, we have summarized the key findings from
each methodological step in a more biologically oriented manner. Our comprehensive GWAS meta-analysis
identified significant genetic variants and novel risk loci associated with the disease, shedding light on potential
new targets for research and treatment. To minimize the risk of misinterpretation due to insufficient sample size
and heterogeneity in our GWAS meta-analysis, we assessed statistical power and heterogeneity. Our analysis
revealed that the sample size was adequate, and the heterogeneity was relatively low. We discovered 389 variants
with strong associations, many of which were previously unreported, along with 42 entirely novel disease-related
variants. These findings expand our understanding of the genetic basis of the disease and provide a valuable
foundation for future investigations. The identification of 23 key genomic risk loci and the mapping of 83 genes,
including 52 novel ones, offers new insights into the molecular mechanisms driving disease development. The
presence of these novel genes presents new opportunities for exploring their roles in the disease, potentially
leading to the discovery of new biomarkers or therapeutic targets.

Furthermore, our analysis based on the GWAS summary statistics highlights the critical biological processes
and tissues involved in the disease, with a particular focus on lipid metabolism and tissue remodeling. We found
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Fig. 3. Bar plots of the identified genomic risk loci using FUMA based on the GWAS meta-analysis summary
statistics. The y-axis represents the risk loci, annotated by chromosome number and genomic coordinates
(start-end). The x-axis displays various features of each locus, including locus size, number of SNPs, number
of mapped genes, and number of genes physically located within the locus. The plots were generated and
visualized using the FUMA web-based platform?.
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Gene set Number of genes | Beta | Beta STD | SE p-value | Adjusted p-value
Reactome: LDL remodeling 6 1.645 | 0.029 0.324 | 1.943¢-07 | 0.003
GO-BP: Positive regulation of protein catabolic process in the vacuole 5 1.412 | 0.023 0.304 | 1.673e-06 | 0.028
‘WP: Familial hyperlipidemia type 5 14 0.971 | 0.026 0.220 | 5.081e-06 | 0.086
GO-BP: Regulation of phospholipid catabolic process 7 1.418 | 0.027 0.327 | 7.520e-06 | 0.128
WP: Statin inhibition of cholesterol production 29 0.668 | 0.026 0.158 | 1.158e-05 | 0.197
WP: Lipid particles composition 10 1.112 | 0.025 0.265 | 1.341e-05 | 0.228
Reactome: Downregulation of SMAD2, 3, and SMAD4 transcriptional activity | 29 0.627 | 0.024 0.156 | 2.841e-05 | 0.483
GO-BP: Intracellular receptor signaling pathway 279 0.193 | 0.023 0.049 | 3.536e-05 | 0.601
GO-BP: SMAP protein signal transduction 79 0.373 | 0.024 0.094 | 3.878e-05 | 0.659
‘WP: Familial hyperlipidemia type 3 13 0.854 | 0.022 0.217 | 4.180e-05 | 0.710
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Table 2. Gene-set enrichment analysis of the mapped genes using MAGMA. GO-BP: gene ontology biological
process, WP: WikiPathways.
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Fig. 4. Gene-set functional enrichment analysis was conducted based on the mapped genes from the
SNP2GENE mode in FUMA. The enrichment analysis was performed in the GENE2FUNC mode. The y-axis
displays significantly enriched functional pathways. The x-axis is divided into two parts: (1) bar graphs
showing the proportion of overlapping genes within each pathway (red) and the -log;o(adjusted p-value)
(blue), and (2) a heatmap indicating the presence of overlapping genes in each gene set, with orange marking
genes present in the respective sets. P-values were adjusted using the Benjamini-Hochberg method. All plots
were generated and visualized using the FUMA web-based platform?’.

that the mapped genes are predominantly associated with lipid metabolism, which is vital for several cellular
functions. Additionally, genes related to extracellular matrix activities, tissue repair, and wound healing were
identified, further underlining the importance of tissue integrity and remodeling in the disease. The tissue
expression analysis revealed that the genes most closely associated with the disease were highly resemble to the
lung, gastrointestinal tract, artery, and fibrous tissue expression, suggesting that aorta tissue with aneurysm has
functional pathways similar to those tissues. These findings not only confirm the involvement of lipid metabolism
in tissues like the intestine but also point to extracellular matrix remodeling, similar to fibrous tissue, as crucial
in tissues like the artery. Therefore, our study provides key insights into the molecular mechanisms underlying
the disease. By identifying critical pathways and tissues, we lay the groundwork for future research focused on
these processes, which could lead to potential therapeutic targets and a better understanding of the disease’s
progression.

In addition, by analysing how genetic variants affect gene expression, we identified 74 DEGs that are potentially
involved in the association between disease and trait. These genes were discovered using a combination of two
methods: TWAS and eQTL analysis. The TWAS approach revealed 61 DEGs, with several genes already known
to be related to the disease. Additionally, 51 of these DEGs were found to be statistically significant. We further
constructed the AAA-associated PPI network based on the identified DEGs, which helped us understand how
these proteins might interact with each other. Within this network, we identified key proteins that play critical
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generated using the GENE2FUNC mode in FUMA. The red and blue color spectrum represents the high and
| https://doi.org/10.1038/s41598-025-07989-1

Fig. 5. Tissue-specific expression analysis was performed using GTEx v8. The figures were generated and
low expression, respectively.

visualized using the FUMA web-based platform?. (A) A bar plot illustrates the significance levels across
53 tissue types, represented on the x-axis, as determined by MAGMA. The y-axis represents the negative

logarithm of the adjusted p-value (-log, adjusted p-value). The adjusted p-value was obtained using the
Bonferroni correction method. (B) A heatmap displaying the average gene expression levels (logarithmically

base 2 transformed), with hierarchical clustering of the 83 mapped genes across GTEx v8 54 tissue types,
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Fig. 6. Manhattan plot of transcriptome-wide association study (TWAS) of AAA using FUSION®.

The horizontal red dashed line indicates the transcriptome-wide significance threshold (adjusted p-
value=2.5x 107°), while the horizontal blue dashed line represents the suggestive significance threshold
(adjusted p-value=6.25x 1076). Each point shows a transcript tested for association with expression imputation
from the METAL results. The x-axis displays the genomic coordination of the genes, and the y-axis illustrates
the negative logarithm of the transcriptome-wide association adjusted p-value. The adjusted p-value was
obtained using the Bonferroni correction method. Genes with adjusted p-values below the suggestive
significance threshold (i.e., above the corresponding —log;o(p-value) line) are labelled with their gene names.
The plot was visualized using qgman package in R*.

roles, either as hubs (high-degree proteins) or bottlenecks (high-betweenness proteins) such as PSMA4, CD40,
PSMC3, LRP1, SCARA3, MRC2, PSRC1, ADAMTS7, FGF9, and MAP2K5. Notably, CD40 and LPR1 were
found to be both hubs and bottlenecks, suggesting their central importance in the biological processes associated
with the disease. These findings provide valuable insights into the molecular mechanisms of the disease and may
offer targets for future research or therapeutic intervention.

We identified candidate drugs interacting with the important nodes from the PPI network analysis by
search on drug-gene and -protein interaction databases. The docking results revealed abciximab, paclitaxel, and
ivermectin as promising candidates with high binding affinities to the key AAA-related proteins, suggesting
their potential for therapeutic repurposing in abdominal aortic aneurysm. Overall, this study demonstrates the
power of integrative frameworks in advancing the understanding of AAA pathogenesis and potential therapeutic
strategies. These insights provide a valuable foundation for future investigations, encouraging further exploration
through experimental validation and complementary computational approaches.

Discussion

Investigating diseases at the molecular level from various perspectives provides a comprehensive understanding
of disease biology and facilitates the development of strategies for screening, diagnosis, and treatment. In this
study, we integrated multiple bioinformatics frameworks, including genomics, transcriptomics, systems biology,
and structural biology, to deepen our understanding of AAA biology. Moreover, we conducted drug repurposing
by searching drug-gene or protein interaction databases and validated the results through molecular docking to
identify candidate target drugs interacting with our prioritized genes or proteins.

We collected GWAS summary statistics data of AAA from three cohort studies in the GWAS Catalog®.
For the METAL** GWAS meta-analysis, the sample size included 9,903 cases and 2,099,293 controls. We
calculated statistical power based on the combined sample size (2,109,196) and found that the power is high
at between 0.8 and 1 when varying MAF from 0.01 to 0.9. Biases and confounding factors are one of the most
important things to be considered in GWAS meta-analysis studies. A potential limitation of our meta-analysis
is the variability among included cohorts in terms of ancestry, environmental exposures, and study design.
Such differences may introduce heterogeneity in genetic associations. We then carried out the heterogeneity
test in both I? and Cochran’s Q statistics in our study and the result showed low heterogeneity among the three
datasets. However, residual confounding from cohort-specific factors cannot be fully ruled out, and future
ancestry-specific analyses are warranted even though all three GWAS datasets were derived from UK Biobank

Scientific Reports |

(2025) 15:22331 | https://doi.org/10.1038/s41598-025-07989-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

83 20
Mapped genes (FUMA)
DEGs: cis-eQTL genes

DEGs: significant TWAS genes

I MFSD6

INA

S)

FUT11 TCTA

©
8~ o

Fig. 7. Differentially expressed genes (DEGs) and AAA-related protein-protein interaction (AAA-PPI)
network. (A) Venn diagram displaying the DEGs identified from eQTLs in FUMA?? and TWAS in FUSION®.
The mapped genes are also included in the plot. (B) AAA-associated PPI network constructed from human
interactome data in STRING v12.0°! and the identified DEGs. The network was visualized using Cytoscape
v3.10.2°2. Edges represent various types of evidence supporting protein-protein interactions: curated databases
(light blue), experimental data (purple), gene neighborhood (green), gene fusions (red), gene co-occurrence
(blue), text mining (yellow), co-expression (black), and protein homology (periwinkle).
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Protein Degree | Betweenness centrality | Essentiality
PSMA4 0.883 0.036 Hub

CD40 1.000 0.075 Hub, bottleneck
PSMC3 1.000 0.122 Hub

LRP1 1.000 0.122 Hub, bottleneck
SCARA3 1.000 0.044 Hub

MRC2 1.000 0.016 Hub

PSRC1 0.815 0.114 Bottleneck
ADAMTS7 | 0.825 0.123 Bottleneck
FGF9 0.614 0.214 Bottleneck
MAP2K5 0.480 0.164 Bottleneck

Table 3. Key proteins identified from the PPI network analysis.

studies. LD analysis in FUMA? was performed to remove redundant SNPs, resulting in the identification
of 47 independent significant SNPs, 42 of which were novel and related to the disease. The novelty of these
SNPs was confirmed by comparing with the existing AAA-related SNPs reported in the GWAS Catalog®. The
reported disease-associated SNPs in the database originate from several GWAS and genetic variant experiment
studies as well as meta-analyses involved in various types of aneurysms such as AAA, thoraco-abdominal
aneurysm, and intracranial aneurysms!’-1%2>26.77-85_This highlights the effectiveness of GWAS meta-analysis in
identifying new disease-related variants by enhancing statistical power. Based on the literature review, most of
the predicted novel disease-associated SNPs have not been previously reported to be associated with aneurysms,
metabolic syndromes, or other cardiovascular diseases. However, 12 SNPs have been previously reported in
various GWAS studies to be associated with aortic diameter, serum lipid levels, and cardiovascular diseases.
For example, rs35247409 was reported to be associated with ascending aortic diameter, suggesting its potential
involvement in the development of AAA®. There are 7 SNPs related to triglyceride and cholesterol level such
as rs646776, rs9989419, 1572786786, 15186696265, rs1864163, rs4970834, and rs143843429%7-2. Disturbances
in lipid metabolism have been considered contributing factors in AAA progression, potentially linking the
associated SNPs to the disease?>?*. Other variants, for instance, rs646776, rs10811650, rs56393506, rs4845625,
and rs10757279, have been studied to associated with coronary artery disease (CAD)%>~%. Several studies have
shown that AAA has a strong association with CAD as both conditions share common risk factors!®*1%1. CAD is
also considered an independent risk factor for AAA!®,

Furthermore, genomic risk loci and gene mapping identified 52 disease-associated genes that have not been
previously recorded about AAA association in gene databases, reinforcing the advantages of meta-analysis. To
confirm the novelty of the disease-associated genes, we compared them with previously reported AAA-related
genes in the GWAS Catalog®, which includes genes mapped from known disease-associated SNPs. Additionally,
we compared the predicted novel genes with known disease-associated genes from GeneCards®, an integrative
database that compiles information on human genes, including their functions, locations, roles, and disease
associations. Potential implications of our findings for AAA diagnosis were also discussed. Several GWAS
studies have shown the application of disease-related SNPs as genetic biomarkers in various diseases such as
Alzheimer’s disease, COVID-19, and hepatitis C!°2-1%4, The predicted SNPs and genes could contribute to AAA
prevention and precision medicine in the genomic era by enabling the identification of genetic biomarkers
through variant analysis and interpretation. However, further experimental and clinical studies are required
to validate these predictions. In our predicted novel disease-associated genes, most of them have the functions
related to cellular homeostasis activity such as vesicular transportation, DNA replication, and RNA translation.
These genes are still required for further research of the role in AAA pathogenesis. However, some predicted
genes could contribute to the disease development. For instance, CHCHDI and PARK2 mutations can cause cell
injury or death due to mitochondrial dysfunction!%1%. ZSWIM3 encodes a regulator in macrophage-mediated
inflammatory responses!?’. Dysfunction of this gene may cause uncontrolled macrophage-mediated injury in
aortic tissue. PLTP plays a role in phospholipid transportation from VLDL to HDL!®. Mutation in this gene
could cause abnormal lipid metabolism which is one of the contributing factors in AAA progression.

We also identified five main chromosomes contributing dramatically to the number and size of the genomic
risk loci, SNPs, and mapped genes: chromosomes 6, 10, 11, 15, and 18. Previous studies have linked chromosome
11 with familial abdominal aortic aneurysm'*!'', and chromosome 6 deletions to AAA'!. Pathogenic variants
of the FBNI gene on chromosome 15 are implicated in Marfan syndrome, increasing the risk of both thoracic
and abdominal aortic aneurysms'!2. Although no direct association between chromosome 10 and AAA has been
reported, it has been studied in relation to familial thoracic aortic aneurysm!'*!'*. Additionally, chromosome 18
has been linked to genetic regions relevant to bicuspid valve development!>116,

Functional enrichment analysis based on SNPs and mapped genes was generated using MAGMA?Y
and GENE2FUNC mode in FUMA to enhance our understanding of the molecular functions associated
with complex SNPs and genes. The enrichment results were primarily related to cholesterol and lipoprotein
metabolism, which is consistent with AAAs disease mechanisms involving plasma lipoproteins and lipid
metabolism!1711. Several GWAS meta-analyses have shown that SNPs, associated with lipid transportation-
related genes such as APOE, LDLR, LPL, PCSK9, PLTP, SCARB1, HMGCR, and CETP, are considered as variant
risk loci related to AAA pathology!!7118120.121 " Dygregulation of lipid and cholesterol metabolism induces
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Fig. 8. Key residues and critical interactions in the binding of repurposed drugs to CD40 and CD40L.
Structural representation of (A, B) abciximab complexed with CD40 and (C, D) paclitaxel bound to CD40L.
All molecular docking results were obtained from the HDOCK server and visualized using the PDBsum
website”?, Accelrys Discovery Studio 3.0 (Accelrys Inc.)”?, and the University of California at San Francisco
(UCSF) Chimera package.
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Fig. 9. The binding interactions and orientations of ivermectin with the subunits of LRP1 at the (A, B) CR56
and (C, D) CRI17 active sites, along with HDOCK scores for both complexes. Molecular docking simulations
were conducted using the HDOCK server, with subsequent visualization and analysis performed utilizing
Accelrys Discovery Studio 3.0 (Accelrys Inc.)”® and the UCSF Chimera package’.

oxidative stress and inflammatory processes in arterial tissue, leading to vascular damage and weakening®>4.

Oxidative stress also results in lipid peroxidation which is commonly found in AAA. Lipid peroxidation is
associated with necrosis and apoptosis of aortic tissue®®. Furthermore, cyclooxygenase-2 (COX-2), a key enzyme
in lipid peroxidation, has been related to a role in promoting aortic remodeling'?%. In addition, extracellular
matrix and matrix metalloproteinase activities were discovered, emphasizing their role of tissue remodeling in
AAA pathogenesis!>*!?%. Enrichment was also observed for acetylcholine receptor activation, which is relevant
because nicotine from smoking can activate these receptors, leading to increased tissue inflammation and
vascular injury, thereby contributing to atherosclerosis and vascular aneurysm formation!?.

However, an animal model study showed that stimulating the a7 nicotinic acetylcholine receptor
(a7nAChR) had positive effects against AAA'?. This suggests that further research is needed to clarify the role
of acetylcholine and its receptors in AAA pathogenesis. Tissue expression analysis revealed associations with
pulmonary, alimentary, fibrous, and arterial tissues. These findings align with the gene-set enrichment results,
indicating that pathways involved in nicotinic acetylcholine activation, lipid metabolism, and tissue remodeling
play crucial roles in AAA pathogenesis. These terms are commonly linked to the lungs in relation to smoking, the
gastrointestinal tract through lipid metabolism and nutrient absorption, and fibrous tissue in healing processes,
reflecting dysregulation in aneurysmal vessels.

The AAA-associated PPI network was constructed using DEGs from TWAS and eQTL analyses, employing
FUSION* and FUMA, respectively. Degree and betweenness measurement were calculated to identify the key
proteins. Ten key proteins, including PSMA4, CD40, PSMC3, LPR1, SCARA3, MRC2, PSRC1, ADAMTS7, FGF9,
and MAP2KS5, exhibited high scores in either degree or betweenness centrality. Among the prioritized proteins,
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CD40 and LPR1 demonstrated high scores in both degree and betweenness centrality. In the PPI network
obtained from the STRING database, the interactions among these proteins have been validated through various
experimental methods, such as yeast two-hybrid and co-immunoprecipitation, as well as through computational
predictions based on gene co-expression, gene fusion, and neighborhood analysis. Additionally, evidence was
gathered from curated databases and text mining of published literature®'. The confidence in each interaction
is indicated by the combined score, which reflects the number of methods supporting that interaction. These
combined scores play an important role during centrality measurement for prioritizing important nodes. For
example, nodes involved in interactions with high combined scores often form well-defined structures within
the network, such as exhibiting high degree and bridging properties. Subsequently, these nodes also receive high
rankings during prioritization, supporting their essential role in maintaining the function of the interaction
network under disease conditions, as further validated by the combined score. Important nodes arise from
the application of graph theory to the construction of biological networks, such as protein-protein interaction
networks, gene co-expression networks, metabolic networks, and brain connectomes'?’. The first application of
graph theory was in transportation problems, where it was used to identify optimal points or stations and the
shortest paths to deliver mail or parcels more efficiently!'?®. This concept is applied to biological phenomena,
where the system transmits various biological signals through protein interaction networks to trigger specific
biological processes or disease states!?°. Therefore, identifying important nodes or key genes within biological
networks could play a crucial role in the investigation of disease-related genes.

We also compared our identified important nodes to other studies related to network analysis in AAA.
In the PPI network analysis, we cannot experimentally validate the important nodes directly as the key node
identification originates from graph theory and network science concepts. However, we validated indirectly
by comparing our identified key nodes with other studies that identified these nodes based on PPI networks
constructed from their own AAA transcriptomic experiments. Three important nodes from our PPI network,
such as CD40, LRP1, and MAP2KS5, have been previously reported in several AAA-related network analyses.
Although CD40 was not clearly identified as an important node in any prior studies, two transcriptomic
analyses of AAA reported that its ligand, CD40L, was upregulated under disease conditions'>*!3!, suggesting its
important roles in AAA pathology. A weighted gene co-expression network analysis (WGCNA) study using three
AAA transcriptomic datasets also identified LPRI as a DEG with overlapping with previous GWAS studies!*2.
Additionally, the same study reported that MAPKs acted as hub genes in two WGCNA-derived modules. These
findings support the consistency of our constructed PPI network and prioritized important nodes with existing
literature.

The association between our important nodes and AAA was also discussed. PSA4 inhibition was related
to a decreased risk in aortic aneurysm from a Mendelian randomization study'*>. A GWAS meta-analysis
demonstrated the association between a PSRCI variant (rs602633) and AAA!3. Despite no study in association
between PSM3 and AAA pathology, its variants can cause aortic tissue injuries from proteotoxic stress due
to proteasome dysfunction!'®. SCARA3 plays a vital role in oxidative stress protection'®. Currently, there is
no well-established evidence linking SCARA3 to the development of AAA. Its dysfunction may be associated
with aortic injury due to uncontrolled oxidative stress. MRC2 has a function involving collagen fibrosis and
remodeling!**!%”. Collagen dysregulation is one of the causes of aortic tissue pathology, leading to aneurysm.
ADAMTS7, a metalloproteinase (MMP), has a role in collagen and extracellular matrix degradation.
Dysregulation of metalloproteinases contributes to AAA development'*®. FGF9 signaling through PDGFRp
and ERK1/2 pathways results in AAA formation and progression!*’. The association between MAP2KS5 is
required for additional studies although its cascade (JNK) is related to the progression of AAA and intracranial
aneurysm!0141,

LRP1 and CD40 were selected for molecular docking based on their consistently high scores in both high
degree and betweenness centrality. The selection of these nodes was based on network biology principles, wherein
key nodes are identified by their influence on the network structure and the transmission of information within
the network!%. In biological network analysis, centrality measures, which assess the importance of nodes within
a graph or network, are commonly used to identify important nodes!?”. Several centralities have been developed
to identify the importance of nodes in a network such as degree, closeness, betweenness, closeness, PageRank,
and eigenvector centrality. However, many biological network analysis studies commonly prefer the use of degree
and betweenness centrality measures'42-144. These two methods are commonly used to identify important nodes
in biological networks, as their centrality concepts reflect the functional significance of biomolecules within
biological pathways. For example, degree centrality measures the number of direct interactions a node has with
its neighboring nodes, analogous to identifying biomolecules that interact extensively with other molecular
complexes. A node with a high degree is often considered crucial, as it may play a central role within molecular
complexes or biological processes. Additionally, betweenness centrality evaluates the extent to which a node acts
as a bridge or bottleneck in the transmission of information across the network!*>. This property is analogous to
identifying key genes or proteins involved in signaling pathways. Nodes with both high degree and betweenness
centrality scores are likely to play critical roles in maintaining the structure of the PPI network and facilitating
biological information flow in AAA condition.

For LRP1 and CD40 prioritized from both degree and betweenness centrality with high score, we reviewed
additional literature related to experiment studies. Although we could not directly validate their importance,
as their prioritization was primarily based on graph theory and computational network biology concepts, we
supported their relevance through evidence of their biological roles in AAA development and progression from
several experimental studies. LRP1, a type 1 transmembrane receptor expressed ubiquitously!*S, plays a crucial
role in vascular homeostasis by modulating vasoactive substances and intracellular signaling pathways!4”:148,
Two primary binding sites (CR56 and CR17 subunits) on LRP1 interact with various molecules, including
receptor-associated protein'4*!>°, apolipoprotein E®, the synthetic peptide angiopep-2'*!, and potential anti-
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tumor drug candidates'>2. LRP1 also has protective effects on AAA development. Reduced LRP1 expression
on monocytes with a pro-inflammatory profile is associated with atherosclerosis development!** and calcium
signaling, which provides protection against aneurysm formation'**. In addition, LRP1 also regulates MMP9
which is a key in AAA development via extracellular degradation!'®>. A study from mouse embryonic fibroblast
culture provided that LRP1 was a regulator in MMP9 level!*®. LRP1 also influences vascular smooth muscle
cell (VSMC) migration and proliferation including vascular wall integrity'*”!>>!57. VSMC dynamic disturbance
leads to AAA formation. Several studies in mice models have revealed that smooth muscle depletion of LRP1
(smLRP17/") mice causes elastic layer disruption, aneurysm formation, and atherosclerosis!43>3-10, The LRP1-
deficient mice exhibit a proliferative VSMC phenotype and disrupted calcium signaling, impairing VSMC
contraction and promoting aneurysm susceptibility. Additionally, downregulation of LRP1 in VSMCs impairs
pericellular MMP-9 clearance, leading to extracellular matrix degradation and weakening of the vascular wall'®!.
Genetic studies have also identified SNPs in LRP1 associated with increased risk of acute aortic dissection'®2,

CD40 interacts with CD40L, a key interaction in immune synapse stimulation. CD40L activation of CD40
triggers dendritic cells to activate antigen-specific T cells, which are essential for immune cell regulation and
homeostasis'®. The small molecule inhibitor BIO8898 disrupts the CD40L trimeric structure, representing
a novel mechanism for PPI inhibitors®>164, CD40L deficiency has been shown to protect against dissecting
aneurysms and reduce the risk of fatal rupture by decreasing inflammatory cell accumulation, activation, and
protease activity in the arterial wall'®>!%, Several animal experiments have found that inhibiting CD40 signaling
has a protective role in AAA progression. Soluble CD40L (sCD40L) levels were found to be significantly elevated
in the luminal thrombus layer of AAA patients compared to other layers'®’”. One study showed that angiotensin
II-infused Cd401”~ Apoe™~ mice had a significantly lower rate of AAA formation than angiotensin II-infused
Apoe™~ mice!*’. The CD40L-deficient mice are protected from dissecting aneurysm formation and demonstrate
a significantly lower incidence of fatal rupture, attributed to reduced infiltration and activation of inflammatory
cells, as well as decreased MMP-2 and MMP-9 activity'*’. Another study revealed that induced C57BL/6 ]
mice with infrarenal aortic porcine pancreatic elastase infusion and inhibiting CD40 signaling with TRAF-
STOP reduced aortic remodeling and diameter, and AAA development!'®®. Moreover, human transcriptomic
analysis from the same study revealed significant upregulation of CD40 and CD40L in AAA patient samples
compared to control samples. In another study, a gradual increase in CD40L serum levels was observed in
AAA model mice, correlating with progressive aortic dilatation'®. Furthermore, in atherosclerosis, inhibition of
CD40-CD40L signaling reduces plaque size and promotes a more stable, fibrotic plaque phenotype with lower
inflammation!7%-174, This signaling pathway has similarly been explored in AAA. For instance, the antiplatelet
drug trapidil, which inhibits CD40-CD40L interactions, reduced MMP-2 but not MMP-9 activity in human
AAA tissue'”. Currently, no pharmacological treatments are available for AAA; surgical intervention remains
the only therapeutic option once the aneurysm exceeds 5.5 cm or becomes symptomatic. The accumulated
experimental evidence supports a key role for CD40 and LRP1 in AAA pathophysiology, indicating that these
molecules could serve as potential therapeutic targets. Further research into these pathways may offer promising
strategies for the prevention or attenuation of AAA progression.

Drug repurposing was then performed for the two key proteins by searching for potential drug-gene or
protein interactions in five databases: DrugBank®’, TTD, CTD*’, GeneCards®’, and STITCH v5.0°!. Several
drugs targeting the two critical proteins, CD40 and LRPI1, were identified from databases. For CD40, these
include atorvastatin, clobetasol, gemcitabine, simvastatin, paclitaxel, and fludarabine, as well as anti-CD40
antibodies such as ruplizumab, rituximab, and abciximab. For LRP1, the identified drugs include cimetidine,
ivermectin, triprolidine, tenecteplase, lanoteplase, lonoctocog alfa, and moroctocog alfa. Nevertheless, certain
challenges were encountered: the three-dimensional (3D) structures of ruplizumab, tenecteplase, lonoctocog
alfa, and moroctocog alfa were unavailable, and lanoteplase lacked complete annotation. These limitations
hindered the investigation of their binding interactions with CD40 and LRP1. To overcome these challenges, the
3D structures of the targeted proteins can be predicted using AlphaFold2 software based on protein sequences!”.
Molecular docking studies demonstrated that most repurposed drugs, including both small molecules and
antibodies, interacted effectively with CD40/CD40L and the CR56/CR17 subunits of LRP1, exhibiting varying
binding affinities. These results suggest that the proposed framework for drug repurposing is an effective strategy,
particularly in adapting to evolving disease conditions.

Currently, no small-molecule drugs specifically targeting the CD40-CD40L or LRP1 interactions have
received FDA approval for routine clinical use. However, we compared the binding interactions of our candidate
compounds with those of previously reported compounds from experimental studies, utilizing their 3D crystal
structures obtained from the PDB®, to evaluate their interactions with the targeted proteins. Two potent anti-
CD40 monoclonal antibodies are in phase 2 clinical development. Bleselumab is designed to inhibit the CD40-
CD154 interaction, thereby modulating immune responses associated with graft rejection!’”!7%. On the other
hand, dacetuzumab is being investigated for the treatment of CD40-positive malignancies, including non-
Hodgkin's lymphoma and other hematologic malignancies!”*!®. In comparison to our candidate repurposed
drug, abciximab, demonstrated stronger binding energy than both previously reported anti-CD40 agents.
Furthermore, two agents targeting CD40L have also shown potential: suramin!®4!8!, a polyaromatic compound
that disrupts the trimeric structure of CD40L, and BIO8898%°, which intercalates between CD40L subunits,
destabilizing its trimeric conformation and preventing CD40 binding. However, both compounds revealed
weaker binding energies compared to our potent candidate, paclitaxel. In the case of LRP1 (CR56 subunit), the
RAP has been instrumental in elucidating LRP1’s role in pathologies such as Alzheimer’s disease, particularly
in mediating tau protein uptake and propagation'$2!83, Notably, RAP showed considerably poorer binding
affinity toward LRP1 compared to our most promising candidate, Ivermectin. Although most of our candidate
compounds displayed higher binding affinities and potential inhibitory efficacy than previously reported agents,
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additional experimental analysis is needed to further validate the efficacy of these candidates in subsequent
investigations.

Several murine models have demonstrated that antiplatelet therapy exerts a beneficial effect on the
development and progression of AAA67184-186 Abciximab, a glycoprotein IIb/IIIa inhibitor, has been shown
to reduce thrombus size and prevent aortic dilation in a rat xenograft model of aneurysm formation'®’. This
antiplatelet agent suppresses P-selectin expression, decreases leukocyte adhesion to the luminal thrombus, limits
medial elastin degradation, and promotes vascular smooth muscle cell attachment to the thrombus!®’. These
findings emphasize a pivotal role of platelet activation in disease initiation, thrombus growth and remodeling,
and the progression of AAA in this rat model. However, as abciximab is limited to parenteral administration,
its clinical application in outpatient settings remains impractical. This limitation highlights the need for further
research into the development of orally administered antiplatelet therapies.

Paclitaxel is a chemotherapeutic agent widely used in the treatment of various malignancies
Importantly, paclitaxel-coated balloon (DCB) angioplasty was initially investigated for the treatment of de novo
stenotic lesions in the femoral and popliteal arteries'*-1%. Cumulative evidence suggests that paclitaxel DCB
angioplasty enhances vessel patency rates; however, the outcomes remain suboptimal’**'°. A woven vascular
stent-graft modified with silk fibroin-based microspheres containing paclitaxel, metformin, and methanol
(SF-PTX-MET-MT microspheres) has been developed to provide sustained drug release, effectively inhibiting
thrombosis and the progression of AAA?%. The safety and efficacy of the drug-eluting stent were validated using
a human umbilical vein endothelial cell line.

Ivermectin, a widely used antiparasitic agent in both humans and animals , is also recognized as a
classical selective inhibitor of the importin a/f nuclear transport pathway?%*. Despite no study of ivermectin
in AAA, it has been shown to attenuate inflammatory responses by suppressing several key inflammation-
related transcription factors, including NF-kB, NFAT1, AP-1, and STAT1%°42%%, Notably, ivermectin inhibits the
nuclear translocation of NF-kB/p65 and downregulates the expression of major proinflammatory cytokines in
mouse models of coxsackievirus B3-induced myocarditis and experimental autoimmune myocarditis?*®. These
therapeutic effects observed in both viral and non-viral myocarditis models highlight Ivermectin’s potential as a
candidate for the treatment of acute myocarditis?®.

187-189

201,202

Conclusions

This study utilized an integrative bioinformatics approach, incorporating meta-analysis, functional enrichment
analysis, network biology, and gene prioritization to analyze GWAS summary statistics from diverse study
cohorts. Additionally, drug repurposing and molecular docking were performed to identify potential
therapeutic candidates targeting key proteins. Our finding revealed novel significant SNPs and previously
unreported disease-associated genes. Functional enrichment analysis highlighted key pathways, including lipid
and cholesterol metabolism, tissue remodeling, and acetylcholine receptor activation. Furthermore, DEGs from
eQTL and TWAS analyses were utilized to construct an AAA-related PPI network, prioritize critical proteins,
and explore potential drug interactions. Overall, this study demonstrates the power of integrative frameworks in
advancing the understanding of AAA pathogenesis and potential therapeutic strategies. These insights provide a
valuable foundation for future investigations, encouraging further exploration through experimental validation
and complementary computational approaches.

Data availability
The results of METAL summary statistics, TWAS, FUMA, PPI network analysis, drug repurposing, and molec-
ular docking are available in the supplementary data.

Code availability

The source code for the GWAS meta-analysis, TWAS analysis, PPI network analysis, and figure plotting is
available on GitHub (https://github.com/AugustusKH/A A A-MetaGWAS-Functional Analysis). Additionally, all
parameters used in FUMA and the HDOCK server are also provided in the GitHub repository.
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